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Abstract

Sparse Mixture of Experts (MoE) models are001
popular for training large language models due002
to their computational efficiency. However, the003
commonly used top-k routing mechanism suf-004
fers from redundancy computation and memory005
costs due to the unbalanced routing. Some ex-006
perts are overflow, where the exceeding tokens007
are dropped. While some experts are vacant,008
which are padded with zeros, negatively im-009
pacting model performance. To address the010
dropped tokens and padding, we propose the011
Rectify-Router, comprising the Intra-GPU Rec-012
tification and the Fill-in Rectification. The013
Intra-GPU Rectification handles dropped to-014
kens, efficiently routing them to experts within015
the GPU where they are located to avoid inter-016
GPU communication. The Fill-in Rectifica-017
tion addresses padding by replacing padding018
tokens with the tokens that have high routing019
scores. Our experimental results demonstrate020
that the Intra-GPU Rectification and the Fill-in021
Rectification effectively handle dropped tokens022
and padding, respectively. Furthermore, the023
combination of them achieves superior perfor-024
mance, surpassing the accuracy of the vanilla025
top-1 router by 4.7%.026

1 Introduction027

Sparse Mixture of Experts (MoE) is gaining pop-028

ularity as a model architecture for training large029

language models (Fedus et al., 2022; Du et al.,030

2022; Zoph et al., 2022; Jiang et al., 2024; Dai031

et al., 2024) owing to its computational efficiency.032

In a sparse MoE model, each token is assigned to033

one or more experts based on a routing mechanism.034

The top-k router is currently the most widely used035

routing mechanism, where tokens are directed to036

the experts with the top-k scores.037

However, top-k router is unbalanced, where the038

number of tokens routed to different GPUs is not039

the same. In order to achieve a balanced workload040

across GPUs, top-k routing imposes a maximum041

Figure 1: The illustration of dropped token and padding
in top-k router of MoE. Queue i represents the queue
of tokens to be sent to expert i. The capacity of each
expert is fixed to 3.

limit on the number of tokens that each expert can 042

process. Consequently, any tokens exceeding this 043

limit are dropped, and vacant experts are padded 044

with zeros, which negatively impacts the overall 045

model performance (Gale et al., 2022). 046

Previous studies have attempted to address the 047

balance issue in routing by introducing auxiliary 048

loss mechanisms (Shazeer et al., 2017; Lepikhin 049

et al., 2021; Zoph et al., 2022). But even with 050

these enhancements, the performance drop result- 051

ing from dropped tokens is still significant (Zhou 052

et al., 2022; Gale et al., 2022). Although some 053

approaches have proposed absolutely balanced 054

routers, they have been found to underperform 055

the original top-k routing methodology (Yu et al., 056

2022). 057

Rather than focusing on improving the bal- 058

ance of the top-k router, this work introduces an 059

alternative approach called the Rectify-Router, 060

which rectifies top-k router by post-processing 061

the dropped tokens and padding from the top-k 062

router. We propose two Rectify-Routers: the Intra- 063

GPU Rectification and the Fill-in Rectification. 064
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The Intra-GPU Rectification is designed to handle065

the dropped tokens, while the Fill-in Rectification066

specifically addresses the padding issue.067

Post-processing the dropped tokens with another068

router may bring expensive communication cost.069

Therefore, we propose the Intra-GPU Rectifica-070

tion which routes the dropped tokens to the ex-071

perts within the GPU where they are located, elim-072

inating the need for inter-GPU communication.073

Our empirical experiments have demonstrated that074

the Intra-GPU Rectification effectively handles the075

post-processing of dropped tokens and is more effi-076

cient than the commonly used routers, in terms of077

communication.078

To address the padding issue, we present the079

Fill-in Rectification, which replace padding tokens080

with the tokens that have high routing scores. Fill-081

in Rectification first identifies the optimal expert082

for each token based on the routing scores and083

subsequently selects the tokens with the highest084

routing score to replace the padding for each expert.085

By employing Fill-in Rectification, tokens with the086

higher routing scores receive more computational087

allocation.088

The Intra-GPU Rectification and Fill-in Rectifi-089

cation are orthogonal approaches that can be seam-090

lessly combined. Our experiments have demon-091

strated their effectiveness in handling dropped to-092

kens and padding. Furthermore, combing the Intra-093

GPU Rectification and Fill-in Rectification yield094

improved performance compared to using them095

individually.096

Contributions The contributions of our work can097

be summarized as follows:098

1. We introduce the concept of Rectify-Router099

to handle the dropped tokens and padding in100

MoE models. Specifically, the dropped tokens101

are efficiently processed using the Intra-GPU102

Rectification, while the padding tokens are103

optimally managed using the Fill-in Rectifica-104

tion.105

2. Our experiments demonstrate that both the106

Intra-GPU Rectification and the Fill-in Recti-107

fication significantly improve the performance108

of the top-k routing, even without additional109

training.110

3. We found that our methods are robust to vari-111

ous settings of expert capacity and that Intra-112

GPU Rectification can be used for accelerat-113

ing MoE by reducing expert capacities.114

2 Related Works 115

The routing of MoE can be classified into two cat- 116

egories: balanced and unbalanced. The balanced 117

routing assigns the same number of tokens to each 118

expert, while the unbalanced routing does not make 119

sure that the number of tokens received by each ex- 120

pert is the same. 121

Unbalanced Routing Top-k routing was the 122

most commonly used unbalanced routing proposed 123

by Shazeer et al. (2017), which greedily assigns 124

tokens to experts, according to the token-expert 125

assignment scores. Numerous MoE models have 126

adopted top-k routing, including Switch Trans- 127

former (Fedus et al., 2022), Glam (Du et al., 2022), 128

ST-MoE (Zoph et al., 2022), Flan-MoE (Shen et al., 129

2023), and NLLB (Koishekenov et al., 2022), to 130

name just a few. 131

It is worth noting that many unbalanced rout- 132

ing methods are variations or derivatives of top-k 133

routing. For example, Switch Transformer (Fedus 134

et al., 2022) argues in favor of using top-1 routing 135

instead of top-2 routing for improved efficiency. 136

ST-MoE (Zoph et al., 2022) and LIMoE (Mustafa 137

et al., 2022) propose auxiliary loss functions to 138

enhance the stability of MoE during training. Ad- 139

ditionally, SCoMoE (Zeng and Xiong, 2023) and 140

Gating-Dropout (Liu et al., 2022) improve the effi- 141

ciency of top-k routing by designing hierarchical 142

routing systems based on the hierarchical structure 143

of the communication topology. 144

The routing method proposed in this paper is 145

also a variation of top-k routing. However, unlike 146

the aforementioned approaches, our objective is to 147

address the issues of dropped tokens and padding 148

that arise from unbalanced routing. Switch Trans- 149

former (Fedus et al., 2022) tackles the problem 150

of dropped tokens by increasing the capacity of 151

experts, allowing each expert to handle more to- 152

kens. While this approach reduces the number of 153

dropped tokens, it introduces additional overhead 154

in terms of both speed and memory. On the other 155

hand, Megablocks (Gale et al., 2022) addresses 156

the challenges of padding and dropped tokens by 157

gathering all experts onto the same GPU and em- 158

ploying model parallelism rather than expert par- 159

allelism. However, their approach may encounter 160

difficulties when dealing with a large expert size or 161

a substantial number of experts. 162

Balanced Routing In response to the imbalance 163

issue inherent in top-k routing, several balanced 164
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Figure 2: Left: Post-processing of dropped tokens at GPU 0 with Intra-GPU Rectification. Right: Post-processing
of padding at GPU 0 with Fill-in Rectification.

routing methods have been proposed. For in-165

stance, the Base Layer approach (Lewis et al.,166

2021) employs a balanced assignment algorithm167

to evenly distribute tokens among experts. How-168

ever, their assumption that tokens within the same169

batch can be evenly clustered may not hold true170

in all cases, which can potentially result in poorer171

performance (Yu et al., 2022). Another alterna-172

tive to balanced routing is random routing (Zuo173

et al., 2022), which assigns tokens to experts in a174

random manner. While random routing achieves175

balance and efficiency, it lacks any specialization176

or optimization in the routing process. Another177

approach called expert choices (Zhou et al., 2022)178

allows each expert to select a fixed number of to-179

kens, rather than relying on tokens to determine180

their target experts. This approach helps to avoid181

padding issues but still results in dropped tokens.182

Soft routing (Puigcerver et al., 2023) is a method183

that compresses tokens by applying a linear trans-184

formation to generate fixed-size hidden states for185

each expert. However, this method is only suitable186

for encoder models with fixed input lengths and187

may not be applicable to autoregressive decoder188

models.189

3 Preliminary190

In this section, we will introduce expert parallelism,191

top-k routing, and two prevalent challenges that192

emerge while employing top-k routing: padding 193

and dropped tokens. 194

Expert Parallelism and Top-k Routing In ex- 195

pert parallelism, experts are distributed across 196

GPUs uniformly. If there are n experts and k GPUs, 197

each GPU contains k/n experts. The process of 198

transmitting tokens to the respective experts entails 199

inter-GPU communication. 200

Top-k routing greedily assigns tokens to experts 201

according to the routing score: 202

Ri = argtopkj∈[m]{aij |aij = wT
j xi} (1) 203

where aij is the score of assigning the ith token to 204

the jth expert, wj denotes the embedding vector 205

of the jth expert, xi corresponds to the hidden 206

states of the i token. The index set Ri signifies the 207

target experts of the ith token. Given the scores 208

of assigning token xi to m experts, denoted as 209

ai0, ai1, ..., aim, Ri contains the indices of experts 210

with top-k scores. 211

Since each token undergoes processing by mul- 212

tiple experts, the outputs of these experts for the 213

same token are consolidated through linear combi- 214

nation. The combining weights are determined by 215

the normalized routing scores, as defined in Eq. (1): 216

oi =
∑
j∈Ri

eaij∑
j∈Ri

eaij
Ej(xi). (2) 217
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Here, oi represents the combined result of token xi.218

The term eaij∑k
j eaij

denotes the normalized routing219

scores, while Ej(xi) refers to the outputs of the jth220

expert with token xi as its input.221

The top-k routing approach exhibits an inher-
ent imbalance, wherein the distribution of tokens
among different experts is not uniform. However,
the current distributed framework exclusively sup-
ports balanced computation across GPUs. Con-
sequently, there exists a limitation on the maxi-
mum number of tokens that each expert can receive,
which is referred to as the capacity. The capacity
is determined by the capacity factor, which is typ-
ically set to k for top-k routing (Lepikhin et al.,
2021; Rajbhandari et al., 2022). Mathematically,
the capacity can be expressed as:

capacity = capacity factor × number of tokens
number of experts

.

Dropped Tokens and Padding The issue of222

dropped tokens and padding arises naturally when223

dealing with the expert capacity setting, as depicted224

in Figure 1. With a fixed expert capacity, overflow225

experts are compelled to drop tokens with the low-226

est routing scores and directly pass them to the227

next layer through residual connections, as high-228

lighted in red in Figure 1. Consequently, due to the229

dropped tokens, the set Ri defined in Eq. (1) only230

includes the successfully routed experts, i.e., |Ri|231

<= k.232

Conversely, certain experts may receive fewer233

tokens than the capacity limitation, leading to re-234

dundant computation in the form of padding. These235

padding instances are illustrated in yellow in Fig-236

ure 1.237

If the capacity factor for top-k routing is set to k,238

the number of dropped tokens and padding tokens239

will be equal. However, this equality does not hold240

if we modify the capacity factor. Increasing the241

capacity factor results in fewer dropped tokens but242

more padding. Conversely, reducing the capacity243

factor reduces padding tokens but increases the244

number of dropped tokens.245

4 Method246

In this paper, we introduce a novel approach to247

address both the dropped tokens and padding as-248

sociated with top-k routing by utilizing Rectify-249

Routers. Specifically, we propose two Rectify-250

Routers: the Intra-GPU Rectification and the Fill-in251

Rectification, which are visualized in Figure 2. The252

Intra-GPU Rectification is designed to efficiently 253

post-process the dropped tokens, while the Fill-in 254

Rectification is dedicated to addressing the padding 255

problem. 256

4.1 Rectify-Router for Dropped Tokens: 257

Intra-GPU Rectification 258

We expect to post-process the dropped tokens by 259

evenly routing them across GPUs. But sending to- 260

kens among GPUs requires expensive communica- 261

tion cost. Furthermore, the dropped tokens have the 262

lower routing scores than the other tokens routed 263

to the same expert, which may be less important. 264

Therefore, we propose an efficient Rectify-Router 265

for the dropped tokens: Intra-GPU Rectification, 266

which dispatch the dropped tokens to the experts 267

inside GPU, which does not require any communi- 268

cation among GPUs. This process is visualized in 269

the left part of Figure 2, where the dropped tokens 270

from GPU 0 are routed to the expert 0 or expert 1 271

at GPU 0. 272

Given the input token xi, the Intra-GPU Rectifi- 273

cation greedily assigns token xi to the optimal ex- 274

pert within the same GPU according to the routing 275

scores. The Intra-GPU Rectification can be seen 276

as a variant of the top-k routing. If all experts are 277

distributed in the same GPU, then the Intra-GPU 278

Rectification is exactly the top-1 routing. 279

In top-k routing, the same token may be dropped 280

by multiple times. Take the top-2 routing as an 281

example, if a token xi is dropped at both the first 282

and second routing, it should be sent to two experts 283

at Intra-GPU Rectification. To simplify the prob- 284

lem, we only send xi to one expert, although it is 285

dropped twice. In another example, the token xi 286

is dropped only at the second routing, while the 287

first routing is successful. In this case, we have to 288

combine the results of top-k routing and Intra-GPU 289

Rectification. We combine them linearly according 290

to the routing scores: 291

oi =

∑
j∈Ri

eaijEj(xi) + (k − |Ri|)eaihEh(xi)

(
∑

j∈Ri
eaij ) + (k − |Ri|)eaih

,

(3) 292

where Ej(xi) represents the expert outputs ob- 293

tained through top-k routing, while Eh(xi) denotes 294

the expert outputs from Intra-GPU Rectification. 295

We normalize the routing scores aij and aih as 296

the combining weights of Ej(xi) and Eh(xi) re- 297

spectively. Specifically, we scale the combining 298

weights of Eh(xi) with a constant factor (k− |Ri|) 299

, because a token is dropped (k − |Ri|) times but 300
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only processed by one expert in the Intra-GPU Rec-301

tification.302

Similar to the top-k router, the Intra-GPU Rec-303

tification also exhibits imbalance. However, this304

imbalance does not affect the computational fair-305

ness among GPUs. In Intra-GPU Rectification, the306

computation cost of a GPU is solely determined307

by the number of dropped tokens at that particular308

GPU, rather than the routing outcomes. Since the309

data is independently and identically distributed310

across devices, the number of dropped tokens on311

different GPUs is approximately the same.312

4.2 Rectify-Router for Padding: Fill-in313

Rectification314

Fill-in Rectification aims to replace the unneces-315

sary padding with the tokens that have high routing316

scores, which is visualized in the right part of Fig-317

ure 2. This process is divided into two separate318

stages. Firstly, we identify the most suitable ex-319

pert for each token, and subsequently, we select the320

optimal tokens for each expert.321

During the initial stage, each token will choose322

the expert ranked as the k+1th highest score as the323

optimal expert. This decision is based on the fact324

that the top-k experts have already been assigned,325

and the k + 1th expert is considered the most suit-326

able among the remaining experts. Furthermore,327

each token is only allowed to select one expert,328

which avoids the same token being processed by329

multiple experts during the second stage.330

Upon completion of the first stage, we transition331

to the second stage. It is worth noting that multiple332

tokens may select the same expert. Consequently,333

it is possible that the number of tokens choosing a334

particular expert surpasses the number of padding335

tokens of that expert. In such scenarios, we pri-336

oritize the tokens with higher routing scores for337

replacing the padding tokens.338

Indeed, implementing this algorithm can be339

achieved by extending the top-k router to a top-340

k + 1 router while ensuring the expert capacity341

remains unchanged. As the expert capacity is fixed,342

introducing the Fill-in Rectification incurs minimal343

additional overhead. Alternatively, we can view344

this approach as reducing the capacity factor of345

the top-k + 1 routing from k + 1 to k to avoid the346

padding.347

The Fill-in Rectification has a potential issue re-348

lated to the normalization of routing scores, where349

the gradient of routing scores may vanish due to350

the invalid normalization. We address this issue 351

in Appendix A with straight-through trick (Bengio 352

et al., 2013). 353

5 Experiments 354

5.1 Experiment Settings 355

Model We follow previous work (Komatsuzaki 356

et al., 2023) to train MoE models from a pretrained 357

dense model. We initialize all experts in the same 358

layer of MoE as the FFN parameters of the cor- 359

responding layer in the Dense model. We use the 360

LLama2-7b (Touvron et al., 2023) to initialize MoE 361

models. Following previous work (Lepikhin et al., 362

2021; Fedus et al., 2022), for every alternate layer, 363

we replaced the FFN layer in LLama2-7b with an 364

MoE layer to transform it to an MoE model. Conse- 365

quently, LLama2-7b, with 32 FFN layers, is trans- 366

formed into an MoE model with 16 FFN layers and 367

16 MoE layers. In most of our experiments, we 368

employ eight experts per layer in the MoE models. 369

But in Appendix B, we explore the extension of the 370

number of experts to 32. To ensure efficient com- 371

putation, we evenly distribute the experts across 372

multiple GPUs, with each GPU hosting a single ex- 373

pert for each layer. Our experiments are conducted 374

using the MoE implementation of DeepSpeed (Ra- 375

jbhandari et al., 2022) and the training framework 376

of gpt-neox (Andonian et al., 2021). 377

For simplicity, we denote our Intra-GPU Recti- 378

fication as IR, and the Fill-in Rectification as FR. 379

The top-k router, depending on whether it uses the 380

Intra-GPU Rectification or the Fill-in Rectification, 381

will be denoted as Top-k +IR or Top-k+FR, re- 382

spectively. 383

Training During the training phase, we uti- 384

lize the OpenOrca dataset (Lian et al., 2023), 385

which is an open-source reimplementation of Orca 386

dataset (Mukherjee et al., 2023). It augments the 387

instructions from flan data (Longpre et al., 2023) by 388

adding complex system prompts and generate the 389

step-by-step reasoning or explanation using chat- 390

gpt (OpenAI et al., 2023). 391

We conduct our model training on a cluster of 32 392

GPUs (80GB). The training process consists of 10k 393

steps with a global batch size of 256 and a micro 394

batch size of 8. Following Mukherjee et al. (2023), 395

we construct training examples by concatenating in- 396

structions with their corresponding responses: “[in- 397

struct][response]”. However, only the tokens in the 398

response are utilized for the next-token-prediction 399
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Model Router CF Train Speed MMLU SuperGLUE TruthfulQA LogiQA Avg

LLama2-raw - - 3.2k 25.85 59.06 25.21 25.03 33.78
LLama2 - - 3.2k 35.01 63.74 30.23 27.64 39.15

LLama-MoE
(Top-1)

Top-1 1.0 2.4k 33.05 64.34 29.49 28.11 38.74
Top-1+IR 1.0 2.3k 36.27 64.52 30.35 30.56 40.42
Top-1+FR 1.0 2.3k 34.66 63.97 28.51 29.18 39.08
Top-1+FR+IR 1.0 2.2k 35.81 65.08 30.84 30.56 40.57

LLama-MoE
(Top-2)

Top-2 2.0 1.7k 35.39 64.58 29.98 29.33 39.82
Top-2+IR 2.0 1.6k 35.92 65.11 29.98 29.03 40.01
Top-2 + FR 2.0 1.6k 35.90 64.35 31.08 29.80 40.28
Top-2 +FR+IR 2.0 1.5k 36.01 65.60 30.72 29.95 40.57

Table 1: The performance of LLama2-7b and MoE models on MMLU, SuperGLUE, TruthfulQA and LogiQA. CF
denotes the capacity factor defined in Eq. (3). Avg represents the average accuracy. The training speed is measured
as the number of tokens that each GPU can process per second. All models were trained on OpenOrca except
for LLama2-raw. Top-k+FR and Top-k+IR represents the top-k router using Fill-in Rectification and Intra-GPU
Rectification respectively. Top-k+FR+IR combines both the Fill-in Rectification and the Intra-GPU Rectification.

loss. To remove the padding, we fix the sequence400

length to be 2048 and pack multiple examples to401

the same sequence. For optimization, we use the402

Adam optimizer (Kingma and Ba, 2015) with an403

initial learning rate of 1e-5, which is decayed to 1e-404

6 using a cosine learning rate scheduler. Regarding405

the load-balance loss for the top-k router, we set406

the weights to 1e-2, following Fedus et al. (2022).407

Evaluation We evaluated our models on mul-408

tiple benchmarks, including MMLU (Li et al.,409

2023), SuperGLUE (Wang et al., 2019), Truth-410

fulQA (Lin et al., 2022) and LogiQA (Liu et al.,411

2020), which covers the evaluation in knowledge,412

natural language understanding, safety, and logical413

reasoning respectively. All evaluations were con-414

ducted in a zero-shot setting. Our evaluation metric415

was accuracy, and we utilized the lm-evaluation-416

harness (Gao et al., 2023) framework for conduct-417

ing the evaluations.418

5.2 Main Results419

We trained both LLama2-7b and LLama-based420

MoE on OpenOrca and evaluated them on MMLU421

(knowledge), SuperGLUE (NLU), TruthfulQA422

(Safety) and LogiQA (Reasoning), the results of423

which are shown in Table 1. Comparing the perfor-424

mance of LLama2-raw (pretrained) and LLama2425

(trained on OpenOrca), we observed that the426

LLama2 outperforms LLama2-raw substantially,427

which demonstrates the effectiveness of finetuning428

on openorca. To evaluate the effectiveness of our429

methods, we applied our Intra-GPU Rectification430

(IR) and Fill-in Rectification (FR) to both the top-1431

router and top-2 router. These configurations are 432

grouped as LLama-MoE (Top-1) and LLama-MoE 433

(Top-2) in Table 1. 434

LLama-MoE (Top-1) We conducted 4 top-1 435

based MoE models (Top-1, Top-1+FR, Top-1+IR, 436

Top-1+FR+IR). The performance of the vanilla 437

top-1 router is subpar, and it is even inferior to 438

the dense model (LLama2-FT) on both MMLU 439

and TruthfulQA. But after incorporating our pro- 440

posed Intra-GPU Rectification (Top-1+IR), the per- 441

formance of the top-1 router are significantly im- 442

proved on all benchmarks, especially on MMLU 443

and LogiQA. This indicates that the dropped to- 444

kens have a substantial impact on model perfor- 445

mance, and the Intra-GPU Rectification effectively 446

handles these dropped tokens. Our Fill-in Rectifi- 447

cation (Top-1+FR) also significantly improves the 448

performance of the model on MMLU and LogiQA 449

tasks. But it is worth noting that the performance 450

of the model declined on the other two benchmarks. 451

Therefore, it can be concluded that the primary is- 452

sue with top-1 routing lies in dropped tokens rather 453

than padding. Combing the Intra-GPU Rectifica- 454

tion and Fill-in Rectification resulted in the best 455

top-1-based router (Top-1+FR+IR), which outper- 456

forms the vanilla top-1 router by 1.83 (4.7%) in 457

terms of the average accuracy across benchmarks. 458

LLama-MoE (Top-2) Top-2 based routers also 459

encompass 4 routers (Top-2, Top-2-FR, Top-2-IR, 460

Top-2-FR+IR). Both the Intra-GPU Rectification 461

and Fill-in Rectification significantly enhance the 462

performance of Top-2 router on at least 2 bench- 463

marks, which demonstrate that our methods are 464
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Train Router Test Router Test CF Test Speed MMLU SuperGLUE TruthfulQA LogiQA Avg

Top-1

Top-1

1.0

9.4k 33.05 64.34 29.49 28.11 38.74
Top-1+IR 9.2k 36.21 64.64 29.86 29.18 39.97
Top-1+FR 8.9k 33.28 62.76 28.51 29.49 38.51
Top-1+FR+IR 8.6k 36.40 63.94 29.98 29.80 40.03

Top-2

Top-2

2.0

6.2k 35.39 64.58 29.98 29.33 39.82
Top-2+IR 6.0k 35.70 64.40 30.47 29.95 40.13
Top-2+FR 5.8k 35.96 65.37 30.35 30.26 40.48
Top-(2+1)+IR 5.5k 36.14 65.16 30.35 31.49 40.78

Table 2: The performance of applying Intra-GPU Rectification and Fill-in Rectification only at inference. All
models are trained with the vanilla top-1 router and top-2 router (referred to as the train router), but they were
evaluated with Intra-GPU Rectification or Fill-in Rectification at inference (referred to as the test router). Test CF
denotes the capacity factor set during inference. Test speed represents the number of tokens processed per second
on each GPU during inference.

effective for the top-2 router as well. Just as we465

observed with the top-1 routing results, combining466

the Intra-GPU Rectification and the Fill-in Recti-467

fication in the top-2 router yielded the best perfor-468

mance on all benchmarks. Specifically, the Top-469

2+FR+IR outperformed the vanilla top-2 router by470

a margin of 0.75 (1.8%) in terms of the average471

accuracy across benchmarks.472

Interestingly, we observed that the top-1 router473

outperformed the top-2 router in some bench-474

marks. For example, Top-1+FR+IR outperforms475

Top-1+FR+IR on both TruthfulQA and LogiQA,476

which raises concerns about potential overfitting in477

the top-2 router. Finally, it is important to note that478

that both the Intra-GPU Rectification and Fill-in479

Rectification do not alter the capacity of experts,480

hence they do not significantly influence the train-481

ing speed.482

5.3 Improve Top-k Routing at Inference483

In this experiment, we conducted a study to eval-484

uate the effectiveness of applying Rectify-Routers485

at the inference stage of MoE models. The results486

are presented in Table 2. We found that both the487

Intra-GPU Rectification and Fill-in Rectification488

can improve the performance of top-1 and top-2489

routers at inference, even they are not applied at490

training. Similar to the results in Table 1, combin-491

ing Intra-GPU Rectification and Fill-in Rectifica-492

tion yielded better results than using either method493

alone. Moreover, both the Intra-GPU Rectification494

and Fill-in Rectification only slightly slows down495

(<10%) the inference speed of top-k routers.496

Comparing the results of Table 1 and Table 2,497

we observed that using the Rectify-Routers (Intra-498

GPU Rectification and Fill-in Rectification) at both499

training and inference is better than only applying 500

them at inference for top-1 based models. Con- 501

versely, for top-2 based models, the application of 502

Rectify-Routers solely during the inference stage 503

proves to be sufficient, as it demonstrates compara- 504

ble performance to using them during both training 505

and inference. Therefore, we recommend training 506

Rectify-Routers for the top-1 router and directly 507

applying them at inference for the top-2-router. 508

5.4 Capacity Factor Variation 509

In the previous experiments, we maintained a fixed 510

capacity factor of k for top-k routing, as it is a com- 511

mon practice. However, there are instances where 512

it may be beneficial to adjust the capacity factor 513

for improved efficiency or performance. Therefore, 514

in this section, we examine the performance of our 515

Rectify-Routers under different capacity factors. 516

We anticipate that the Intra-GPU Rectification will 517

be more effective with a lower capacity factor, as it 518

deals with a larger number of dropped tokens. On 519

the other hand, we expect the Fill-in Rectification 520

to perform better with a higher capacity factor, as 521

it introduces more padding. We validate these hy- 522

potheses in Table 3 and Table 4, respectively. To 523

minimize training costs, we train MoE models us- 524

ing the vanilla top-k router with a capacity factor 525

of k, and evaluate models with different capacity 526

factors. We only present the average accuracy of 527

models in Table 3 and Table 4. The complete re- 528

sults are shown in Appendix D 529

Post Routing with Low Capacity From Table 4, 530

we can see that decreasing the capacity factor im- 531

proves the efficiency of both top-1 and top-2 based 532

models. However, It also leads to noticeable de- 533

crease in the model performance on benchmarks. It 534
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Train Router Test Router Test CF Test Speed Avg

Top-1

Top-1
1.0

9.4k 38.74
Top-1+IR 9.2k 39.97

Top-1
0.75

12.1k 37.83
Top-1+IR 9.9k 40.06

Top-1
0.5

16k 34.84
Top-1+IR 10.6k 40.40

Top-2

Top-2
2.0

6.2k 39.82
Top-2+IR 6.0k 40.13

Top-2
1.5

7.4k 39.50
Top-2+IR 6.6k 39.60

Top-2
1.0

8.9k 38.51
Top-2+IR 7.3k 40.01

Table 3: Performance of top-k routers and their variants
with low capacity factors (<= k).

is interesting that the top-2 router is more robust to535

the decrease in capacity factor. Specifically, reduc-536

ing the capacity factor of the vanilla top-2 router537

from 2 to 1.5 only results in a slight performance538

decline (0.32).539

In contrast to the vanilla top-1 or top-2 routers,540

the MoE models incorporating our Intra-GPU Rec-541

tification (Top-1+IR and Top-2+IR) are robust to542

the decrease of capacity factor. We even observed543

that the lower capacity factor leads to a better per-544

formance for both Top-1+IR and Top-2+IR, which545

suggests that the Intra-GPU Rectification acts as546

a form of regularization for the MoE models by547

constraining the choices made by the experts. The548

similar results are also observed in Zeng and Xiong549

(2023); Liu et al. (2022). By setting the capacity550

factor of Top-1+IR to 0.5 and that of Top-2-IR to551

1.0, we observed that they are faster than the vanilla552

top-1 (1.13x) and top-2 routers (1.18x) respectively,553

while maintaining comparable or superior perfor-554

mance.555

Fill-in Rectification with High Capacity In-556

creasing the capacity factor of MoE models has557

been widely suggested in previous research stud-558

ies (Fedus et al., 2022; Zoph et al., 2022). In align-559

ment with these findings, we have also observed560

the benefits of increasing the capacity factor in561

terms of improving model performance, as demon-562

strated in Table 4. Notably, we have found that563

increasing the capacity factor of the top-1 router564

leads to a more substantial improvement in model565

performance than that of the top-2 router.566

Our Fill-in Rectification introduces a more sig-567

nificant and consistent improvement with the in-568

Train Router Test Router Test CF Test Speed Avg

Top-1

Top-1
1.0

9.4k 38.74
Top-1+FR 8.9k 38.51

Top-1
1.25

8.6k 39.59
Top-1+FR 8.1k 40.10

Top-1
1.5

7.9k 39.86
Top-1+FR 7.3k 40.33

Top-2

Top-2
2.0

6.2k 39.82
Top-2+FR 5.8k 40.48

Top-2
2.5

5.4k 39.89
Top-2+FR 5.1k 40.51

Top-2
3.0

4.9k 40.03
Top-2+FR 4.5k 40.44

Table 4: Performance of top-k routers and their variants
with high capacity factors (>= k).

crease in capacity factor. Top-1+FR and Top-2+FR 569

consistently outperform Top-1 and Top-2, respec- 570

tively, across various capacity factor settings. 571

Through our empirical validation, we have con- 572

firmed our hypothesis that decreasing the capacity 573

factor benefits Intra-GPU Rectification, while in- 574

creasing the capacity factor enhances the Fill-in 575

Rectification. By combining the Intra-GPU Rec- 576

tification and the Fill-in Rectification, we have 577

achieved a model that is robust to both high and 578

low capacity settings. 579

5.5 Other Experiments 580

1) We scale the number of experts from 8 to 32 in 581

Appendix B; 2) We analyze the impact of experts- 582

GPUs distribution on our Intra-GPU Rectification 583

in Appendix C.1; 3) We validate the importance of 584

straight-through trick in Appendix C.2; 4) We ex- 585

plore whether our methods is still effective without 586

load-balance loss in Appendix C.3. 587

6 Conclusion 588

In this paper, we present the Rectify-Router, a 589

method to tackle dropped tokens and padding in 590

MoE models. By introducing the Intra-GPU Recti- 591

fication and the Fill-in Rectification, we effectively 592

handle the issues of dropped tokens and padding, 593

respectively. Experimental results demonstrate the 594

individual effectiveness of both techniques and the 595

synergistic performance improvement when they 596

are combined. Furthermore, our methods prove to 597

be effective in diverse settings, including varying 598

numbers of experts, different expert capacities, and 599

even without the load-balance loss. 600
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7 Limitation601

In this paper, we propose Rectify-Router to tackle602

the issues of dropped tokens and padding in the603

top-k router. The effectiveness of our methods has604

been demonstrated through experiments. But our605

experiments still have the following limitations due606

to the expensive training cost:607

1. The MoE models trained in this work are ini-608

tialized from a dense model (LLama2-7b). We609

have not validated our methods by training610

from scratch.611

2. Our experiments are conducted based on612

LLama2-7b, while the other settings like613

LLama2-70B have not been explored.614

These limitations highlight potential areas for615

future research and expansion of our work.616
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A Gradient Issues in Fill-in Rectification941

There is a potential issue in the Fill-in Rectification,942

which stems from the implementation of the top-k943

routing. According to Eq. (1), the routing scores944

of top-k routing are normalized on the selected ex-945

perts Ri, rather than considering all expert choices.946

Several implementations like deepspeed-moe (Ra-947

jbhandari et al., 2022) and fairseq-moe (Ott et al.,948

2019) first normalize the routing scores on all ex-949

perts and then re-normalize the scores specifically950

for the selected experts:951

gij =
eaij∑m
j eaij

(4)952

oi =
∑
j∈Ri

gij∑
j gij

Ej(xi),953

where gij represents the routing scores that are954

initially normalized across all experts and then fur-955

ther normalized specifically on the selected experts956

(Ri). However, their implementation is equivalent957

to directly normalizing the routing scores on Ri.958

There are two potential issue of normalizing rout-959

ing scores on Ri: 1) the routing scores of activated960

experts can not influence those of inactivated ex-961

perts. For example, the increase of aij(j ∈ Ri)962

does not lead to the decrease of ail(l /∈ Ri) . 2) In963

the case of top-2 routing, if the first routing of xi is964

successful while the second routing fails due to the965

expert overflow, the gradients of all routing scores966

of xi will be zero ( ∂L
∂aij

= 0). This is because967

that there is only one available expert choice for968

xi (|Ri| = 1). Normalizing on |Ri| would always969

yield a value of 1, regardless of the actual value of970

aij , leading to invalid gradients.971

This problem is more prominent for the Fill-in972

Rectification, since it brings more dropped tokens,973

i.e., more unsuccessful routing. To address this974

problem, we utilize the straight-through trick to975

stop the gradient of normalization item in Eq. (4),976

which ensures that the gradient of routing scores977

remain valid:978

∂L

∂aij
≡ ∂L∑

j gij∂
gij∑
j gij

∂gij
∂aij

(5)979

No modifications have been made to the forward980

stage. But at the backward stage, the gradient of981

the routing score ∂L
∂gij

is calculated as ∂L∑
j gij∂

gij∑
j gij

982

rather than 0, where the normalization item
∑

j gij983

is taken as a constant number without gradient.984

B Scaling to 32 Experts 985

In this experiment, we aimed to investigate the ef- 986

fectiveness of our methods when applied to a larger 987

number of experts. We expanded the number of 988

experts from 8 to 32. To reduce training costs, 989

we only applied the Rectify-Routers (Intra-GPU 990

Rectification and Fill-in Rectification) during eval- 991

uation. The results of this experiment are presented 992

in Figure 3. 993

Interestingly, our findings indicate that increas- 994

ing the number of experts from 8 to 32 does not 995

necessarily result in improved model performance. 996

In fact, in certain benchmarks, such as SuperGLUE, 997

the performance of the model even declined. This 998

observation aligns with previous research (Komat- 999

suzaki et al., 2023), suggesting that increasing the 1000

number of experts can potentially be detrimental. 1001

One plausible explanation for this phenomenon is 1002

that a larger number of experts may lead to overfit- 1003

ting of the model. We believe that increasing the 1004

number of experts is helpful with enough training 1005

data. Notably, scaling from 8 to 32 experts only 1006

yielded notable benefits in the case of TruthfulQA. 1007

Despite the lack of consistent improvement 1008

when increasing the number of experts, our meth- 1009

ods (Intra-GPU Rectification and Fill-in Rectifica- 1010

tion) still demonstrated significant enhancements 1011

compared to the vanilla top-k routing approach 1012

in the context of 32 experts. For instance, while 1013

the vanilla top-1 and top-2 routers with 32 experts 1014

underperformed those with 8 experts on MMLU, 1015

our methods (Top-2+FR+IR) enabled the 32-expert 1016

models to outperform their 8-expert counterparts. 1017

C Analysis 1018

C.1 Impact of Expert Distribution 1019

Our Intra-GPU Rectification is a variant of the top- 1020

1 router, where tokens are assigned to the top-1 1021

expert within GPU. When all experts are situated 1022

in the same GPU, the Intra-GPU Rectification es- 1023

sentially functions as the top-1 router. Therefore, 1024

the distribution of experts across GPUs can poten- 1025

tially influence the performance of the Intra-GPU 1026

Rectification. We conducted an investigation to 1027

explore this aspect and present the results in Table 1028

5. 1029

Interestingly, we found that increasing the num- 1030

ber of experts per GPU did not yield significant 1031

improvements for either the top-1 router or the 1032

top-2 router. This suggests that the Intra-GPU Rec- 1033
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(a) The performance of 8-experts and 32-experts MoEs on
MMLU

(b) The performance of 8-experts and 32-experts MoEs on
SuperGLUE

(c) The performance of 8-experts and 32-experts MoEs on
TruthfulQA

(d) The performance of 8-experts and 32-experts MoEs on
LogiQA

Figure 3: The performance of 8-experts and 32-experts MoEs on MMLU, SuperGLUE, TruthfulQA and LogiQA.

tification demonstrates robustness to variations in1034

the number of experts per GPU.1035

C.2 Impact of Straight-through Trick1036

In Appendix A, we propose a solution to address1037

the gradient issue associated with the Fill-in Recti-1038

fication by utilizing the straight-through trick. To1039

evaluate the effectiveness of this technique, we con-1040

ducted an experiment comparing the performance1041

of the Fill-in Rectification with versus without the1042

straight-through trick. The results of this compari-1043

son are presented in Table 6.1044

Our findings indicate that the straight-through1045

trick proves to be beneficial in improving the perfor-1046

mance of the Fill-in Rectification (Top-1+FR). This1047

suggests that the straight-through trick is neces-1048

sary for the Fill-in Rectification to achieve optimal1049

results. However, the application of the straight-1050

through trick does not yield a significant improve- 1051

ment in the performance of the top-2 router. This 1052

can be attributed to the fact that the proportion of 1053

unsuccessful routing is relatively small (5%) for the 1054

top-2 router, while it is considerably large (50%) 1055

when employing the Fill-in Rectification. 1056

C.3 Impact of Load-Balance Loss 1057

The Rectify-Routers proposed in this paper were 1058

designed to address the issues of dropped tokens 1059

and padding resulting from unbalanced routing. 1060

In our previous experiments, we utilized the load- 1061

balanced loss introduced by Lepikhin et al. (2021) 1062

to enhance the balance of routing for all models, 1063

including those utilizing the Rectify-Routers. How- 1064

ever, it is intriguing to investigate whether the 1065

Rectify-Routers remain effective in the absence 1066

of the load-balance loss. The results of this explo- 1067
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Router Experts/GPU MMLU SuperGLUE TruthfulQA LogiQA Avg

Top-1+IR
1 36.21 64.64 29.86 29.18 39.97
2 36.17 64.38 30.23 29.03 39.95
4 36.47 64.37 29.62 28.87 39.83

Top-2+IR
1 35.70 64.40 30.47 29.95 40.13
2 35.79 64.73 30.35 29.18 40.01
4 35.79 65.38 30.35 29.18 40.17

Table 5: The performance of Intra-GPU Rectification evaluated under various settings of the number of experts per
GPU.

Model ST MMLU SuperGLUETruthfulQA LogiQA Avg

Top-1+FR Yes 34.66 63.97 28.51 29.18 39.08
Top-1+FR No 33.96 62.75 29.25 28.57 38.63

Top-2 Yes 35.39 64.58 29.98 29.33 39.82
Top-2 No 35.86 64.73 29.98 28.26 39.70

Table 6: The performance of Top-1+FR and Top-2 router with and without straight-through trick. The second
column (ST) denotes whether the straight-through trick is used.

ration are presented in Table 7.1068

Upon analyzing the results in Table 7, we ob-1069

served a notable disparity in the performance of1070

the vanilla top-1 router with and without the load-1071

balance loss, particularly in the case of SuperGLUE1072

and TruthfulQA. This discrepancy suggests that the1073

load-balance loss plays a crucial role in improving1074

the performance of the vanilla top-1 router. How-1075

ever, when considering our Rectify-Routers (Top-1076

1+FR+IR), removing the load-balance loss does1077

not result in a significant loss of performance. This1078

finding indicates that our Rectify-Routers enhance1079

the resilience of the top-1 router against the load-1080

balance loss. Nevertheless, as a general trend, it is1081

still preferable to employ a load-balance loss, even1082

when utilizing the Rectify-Routers.1083

D Complete Results of Capacity Factor1084

Variation1085

In Section 5.4, we have discussed the performance1086

of MoE models across various capacity factor set-1087

tings. However, it is worth noting that only the1088

average accuracy are reported in Table 3 and Table1089

4. For a comprehensive overview, we present the1090

complete results in Table 8 and Table 9, which en-1091

compass the evaluation outcomes across all bench-1092

marks.1093
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Model Aux-loss MMLU SuperGLUE TruthfulQA LogiQA Avg

Top-1 yes 33.05 64.34 29.49 28.11 38.74
Top-1 no 33.88 61.60 27.41 29.95 38.21

Top-1+FR+IR yes 36.40 63.94 29.98 29.80 40.03
Top-1+FR+IR no 36.09 64.05 31.21 28.57 39.98

Table 7: The performance comparison of using vs. not using load-balance loss. Aux-loss represents whether
load-balance loss is used.

Train Router Test Router Test CF Test Speed MMLU SuperGLUE TruthfulQA LogiQA Avg

Top-1

Top-1
1.0

9.4k 33.05 64.34 29.49 28.11 38.74
Top-1+IR 9.2k 36.21 64.64 29.86 29.18 39.97

Top-1
0.75

12.1k 30.88 62.68 29.37 28.41 37.83
Top-1+IR 9.9k 36.12 64.61 29.74 29.80 40.06

Top-1
0.5

16k 26.43 59.71 26.68 26.57 34.84
Top-1+IR 10.6k 36.32 65.23 29.98 30.10 40.40

Top-2

Top-2
2.0

6.2k 35.39 64.58 29.98 29.33 39.82
Top-2+IR 6.0k 35.70 64.40 30.47 29.95 40.13

Top-2
1.5

7.4k 35.22 65.00 30.47 27.34 39.50
Top-2+IR 6.6k 35.71 64.47 29.98 28.26 39.60

Top-2
1.0

8.9k 33.28 62.76 28.51 29.49 38.51
Top-2+IR 7.3k 35.93 64.40 29.62 30.10 40.01

Table 8: Performance of top-k routers and their variants with low capacity factors (<= k). The difference between
this table and Table 3 is that the evaluation results on all benchmarks are reported in this table, but only the average
accuracy is reported in Table 3

Train Router Test Router Test CF Test Speed MMLU SuperGLUE TruthfulQA LogiQA Avg

Top-1

Top-1
1.0

9.4k 33.05 64.34 29.49 28.11 38.74
Top-1+FR 8.9k 33.28 62.76 28.51 29.49 38.51

Top-1
1.25

8.6k 34.51 62.94 29.13 31.79 39.59
Top-1+FR 8.1k 35.01 65.22 30.23 29.95 40.10

Top-1
1.5

7.9k 36.40 64.21 28.88 29.95 39.86
Top-1+FR 7.3k 36.10 64.89 30.23 30.10 40.33

Top-2

Top-2
2.0

6.2k 35.39 64.58 29.98 29.33 39.82
Top-2+FR 5.8k 35.96 65.37 30.35 30.26 40.48

Top-2
2.5

5.4k 35.96 64.53 30.23 28.87 39.89
Top-2+FR 5.1k 36.00 64.92 30.59 30.56 40.51

Top-2
3.0

4.9k 35.72 64.65 30.59 29.18 40.03
Top-2+FR 4.5k 35.98 65.31 30.23 30.26 40.44

Table 9: Performance of top-k routers and their variants with high capacity factors (>= k). The difference between
this table and Table 4 is that the evaluation results on all benchmarks are reported in this table, but only the average
accuracy is reported in Table 4
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