TOD-Flow: Modeling the Structure of Task-Oriented
Dialogues

Sungryull Sohn'* Yiwei Lyu?* Anthony Zhe Liu?> Lajanugen Logeswaran'
Dong-Ki Kim! Dongsub Shim! Honglak Lee'-2
LG Al Research 2University of Michigan, Ann Arbor

Abstract

Task-Oriented Dialogue (TOD) systems have become crucial components in inter-
active artificial intelligence applications. While recent advances have capitalized
on pre-trained language models (PLMs), they exhibit limitations regarding trans-
parency and controllability. To address these challenges, we propose a novel
approach focusing on inferring the TOD-Flow graph from dialogue data annotated
with dialog acts, uncovering the underlying task structure in the form of a graph.
The inferred TOD-Flow graph can be easily integrated with any dialogue model to
improve its prediction performance, transparency, and controllability. Our TOD-
Flow graph learns what a model can, should, and should not predict, effectively
reducing the search space and providing a rationale for the model’s prediction.
We show that the proposed TOD-Flow graph better resembles human-annotated
graphs compared to prior approaches. Furthermore, when combined with several
dialogue policies and end-to-end dialogue models, we demonstrate that our ap-
proach significantly improves dialog act classification and end-to-end response
generation performance in the MultiWwOZ and SGD benchmarks. Code available
at: https://github.com/srsohn/TOD-Flow

1 Introduction

Task-Oriented Dialogue (TOD) systems have attracted significant attention due to their potential
applications in personal assistants, customer support, and other interactive systems that necessitate
human-like conversation [2, 39]. Many of the recent advances in TOD have heavily leaned on
pre-trained language models (PLMs) [12, 38] that are first pre-trained on a large corpus of data in an
unsupervised manner, and then either fine-tuned [12, 6, 36] or subjected to few-shot prompting [15,
17] to adapt them to specific dialogue domains. While these approaches have yielded commendable
performance, they have limitations. Few-shot prompted models have been challenged by issues
of transparency, controllability, and adaptability to specific domains, especially when working
with only a few examples. The lack of understanding of their decision-making processes and fine-
grained control over their output is often inadequate, which can result in sub-optimal conversational
experiences. On the other hand, fine-tuned models are confronted with their own unique challenges.
While they offer improved performance by aligning the model with task-specific semantics, this
approach typically requires large annotated datasets and resources which can be a limiting factor in
practice. Furthermore, these models often lack transparency, making it challenging to understand the
reasons behind their decisions or predictions.

Some prior works [29, 18] introduced workflow-based dialog models to handle the challenges in
existing TOD models. These methods aim to explicitly model the structure of dialog in a graph
format. Grounding the dialog in the graph offers benefits in terms of 1) elucidating the reasoning of

“Equal Contribution

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

(TOD-Flow Graph \

B x
C
< © q 0
B o Next Dialog Acts:) Next Dialog Acts:
A _/ T \ % S Confirm Information Fllter_& Confirm Information
\ ‘// v A © BookHotel !\ﬂodlfy - BookHetel
N \\ k-]] WithiGraph + Inform Price
\ 7 3 £
1{cC
D « \ =T

A B DialogActs

—_—

CAN: A is required for B

Sampled Responses:
1. Booking is complete

Ranked Response:

Violation 2. The priceis ...; Can you

S Check & !
—_— . The price is ...; Can you confirm?
SHOULD: After A, C always follows confirm? Hank 3. Canyou confirm ... ?
oo With Graph

3. Canyou confirm...?

Response
Generation Task
N

\SHOULD NOT: After A, D never follows)

Figure 1: (Left) Our TOD-Flow graph captures the causal dependency between dialog acts in terms
of can, should, and should not relationships. (Right) Intuitively, given the TOD-Flow graph, we can
predict the relevant and irrelevant dialog act or responses based on the current dialog state. Based
on the predicted relevance, we can filter and rank the base model outputs to enhance the prediction
performance in both dialog act classification and end-to-end response generation tasks.

system’s decisions in terms of the relationships (i.e., transparency); 2) allow human manipulation of
the dialogue model via graph modification (i.e., controllability) without retraining the dialog model.
However, real-world dialogues were often unstructured, making it non-trivial to be modeled as a
workflow, and the necessity of manually designing the domain-specific workflow or its elements
limits its practical applicability.

To tackle these challenges, we propose to learn the subtask graph [33] from task-oriented dialog data.
Intuitively, the subtask graph can predict the affordance (i.e., availability) of the action from the status
of environment and agent (i.e., the progress of completing a task or the subtasks). The subtask graph
framework has two major benefits: i) subtask graphs can be inferred from the demonstrations without
any direct supervision (e.g., video [16] or transcript [21]), ii) subtask graphs can be combined with
the base prediction model to improve its prediction since the subtask graph does not decide what to
predict but instead suggests the affordable candidates of prediction.

Contributions. The main contribution of this work is generalizing the subtask graph framework
into task-oriented dialog settings. To this end, we propose the TOD-Flow graph, which extends the
subtask graph framework in three major aspects. First, we show that subtask graph can infer the
relationship between dialog state and dialog acts without requiring any manual definition of nodes
and edges in graphs. Second, in addition to the precondition (or can relationship), we present learning
algorithms to model two novel relationships, should and should not, which provide more fine-grained
control and improved prediction. For instance, a can relationship may represent that the system can
make a payment only if the user confirms the payment. The should relationship may learn that if
a user ask about the address of the hotel, the system should reply back. Conversely, a should not
relationship may dictate that the system usually does not predict a farewell if the user’s last utterance
implies a question. Third, we demonstrate that the inferred TOD-Flow graphs can enhance any
dialog policy or end-to-end dialog system, whether fine-tuned or prompted, without the necessity of
retraining.

2 Background

Our main contribution, the TOD-Flow graph, is an extension of the subtask graph framework [33, 34],
which describes the causal dependency structure of a compositional task 7 consisting of a set of
subtasks. In the context of task-oriented dialogue, dialog acts can be seen as subtasks. Each
subtask has a precondition that must be satisfied before the subtask can be performed. Note that
the precondition is not the only relationship between subtask, and in Section 3.2 we extend it by
incorporating other types of relationships. Since precondition describes the causal relationship
between subtasks, it imposes a constraint on the order in which subtasks can be performed (e.g.,
the system can make a payment only after the user confirms the payment). Formally, we define the

precondition as a Boolean expression consisting of Boolean constants (e.g., True or False), Boolean
variables and logical connectives (e.g., and (&), or (])). To illustrate, consider the precondition of
subtask C: fc = &(A, B), where the subtasks A and B must be completed before C is completed. It can
be equivalently viewed as a Boolean function where inputs are Boolean variables indicating whether
subtasks A and B are completed, and the output represents whether the precondition f; is satisfied:
fc(A = True,B = False) = True & False = False. Also, the boolean expression fc = &(A,B) can
be viewed as a graph with vertices consisting of subtasks and logical operators V' = {A,B, C, &} and
edges E = {A — &,B — &, & — C} that represent preconditions. We will use these different views
of the precondition (i.e., as a boolean expression, graph or function) interchangeably. The subtask
graph visualizes the preconditions f1, . .. of the subtasks (see Figure 1 for examples). We note that
the subtask graph has been adopted in various settings [20, 34, 35] and subsumes other task graph
formats [1, 3, 32], flowchart [29], and workflow [18].

3 TOD-Flow Graph Learning

3.1 Problem Formulation

For dialogue turn ¢, let u; be the user input and and r, be the corresponding system response. The
user inputs and system responses are represented as a set of dialog acts that labels a piece of dialog
according to its category of meaning: u;,r; € A, where A is the set of dialog acts. Let d; be the
database query result that can be obtained through querying the database. Then, the dialog data D
is a set of dialog trajectories D™ = {(ug, ro,do,u1,...),...}. Given the dialog data D, the goal
of TOD-flow graph learning task is to generate the TOD-flow graph G that models the dependency
between system acts, user acts, and database results in graph format.

Challenges. There are two main challenges in tackling this task. First, the information in the
dialogue is noisy due to annotation errors such as missing or ambiguous dialog acts, slots, and values.
Second, these dialog annotations provide only the partial information about underlying relationships
between subtasks. Thus, we need to infer whether each relationship is satisfied or not from the
dialogue annotations. We describe how we overcome these challenges in Section 3.3.

3.2 TOD-Flow Graph

For each dialog act a, the TOD-flow graph is defined in terms of three conditions: Can,, Shd,, and
Shdnt,. Intuitively, Can,, Shd, and Shdnt, condition respectively defines whether the dialog act a
can, should, and should not be performed by the agent (user or system) at a given status. Similar to
the precondition in subtask graph framework (see Section 2), each condition is defined as a Boolean
expression. Also, it can be equivalently viewed as a Boolean function f¢@", fShd_ fshdnt . ¢ £(1}
or a graph (see Section 2), where ¢ € {0, 1}~ is the subtask completion (or dialog state) vector
indicating whether n' subtask has been achieved (i.e., c[n] = 1) or not (i.e., c[n] = 0).

3.3 Learning TOD-Flow Graphs

Dataset Given the dialogue data D = {(us, d:,)}, we aim to build the graph inference dataset
De = {(ct,a)}, from which we can infer the TOD-flow graph £, £5"9 and fShdnt, The action set
a, is the set of dialog acts that were performed at turn ¢: a; = u;Ur;. The completion set c; is the set of
dialog acts and database query that has ever been performed before turn ¢: ¢; = ¢;—1 Ua;—1 U{d;_1}.

Shd inference. When should condition is satisfied (i.e., f3"¥(c)=1), the agent is required to perform
the n'™ dialog act (i.e., a[n] = 1). When the should condition is not satisfied (i.e., f3"¢(c)=0), the
should relationship has no effect on the policy. This relationship can be represented as the confusion
matrix shown in the first two rows in Table 1. Accordingly, we maximize the true positive, while

minimizing the false positive by maximizing the objective Jsnq in Equation (1).

Jshg = E(c,a[n}) [H(a[n] = 1|f7§hd(c) = 1)] M

Model ;b a;: a,:

Dialog |3 a, . ~w EMultiple sampled predictions}

Z @,8,c,5 {80
* ; Can acts
a[n] Executed Not executed Completion —=L =2 Filter
Cond (aln]=1) | (aln] =0) 5 T I
fohd =1 True positive | False positive Graph Shd acts -~ -
Shd — x|
fa' =0 - - e @ A
— — ,Cy A,
fonant — 1 False positive | True positive {F) é,G}
sthdnt =0 - - Shdnt acts > Remove
— A
fen =1 True positive - {} {&.C, {
Can _ : - F,G} c,G}
f” =0 False negatlve Final Graph-coqditioned prgdictions
fBC=1 True positive | False positive Prediction © a%: g Cazé}
fBC=0 False negative | True negative {c,F,c} size=3 size=2

Table 1: Confusion matrix of the TOD-flow
graphs (Shd, Shdnt, Can) and the BC baseline
with respect to the dialog act label a[n]. The
empty cell (—) indicates that the label for each
relationship is unavailable.

Figure 2: An illustration of our graph-
conditioned dialog policy. We sample mul-
tiple predictions from base dialog policy 7,
then use our graph to filter, add and remove
acts from each prediction following Algo-
rithm 1. Then we obtain final prediction by se-
lecting the graph-conditioned prediction with
the largest size.

Shdnt inference. Similar to Shd, when the shoud-not condition is satisfied, (i.e., f>M"(c) = 1),
the agent is required not to perform the n'" dialog act (i.e., a[n] = 0), and agent has a freedom to
execute the n™ dialog act when the condition is not satisfied (i.e., fo'"t(c) = 0). Table 1 summarizes
the relationship between Shdnt and a[n]. We learn f'"t by maximizing the following objective:

Tshant = Ee,afn)) [Ialn] = 0[£;"" () = 1)] . @

Can inference. By definition of Can (or precondition), a dialog act can only be performed (a,, = 1)
if its Can condition is satisfied (i.e., f52"(c) = 1): a true positive case in Table 1. On the contrary, it
is a contradiction if a dialog act a,, is performed while its Can is not satisfied (i.e., f;®"(c) = 0): a
false negative case in Table 1. Thus, the f*®" can be learned by maximizing the following objective:

Jean =]E(c,a[n]) [H[fgan(c) - 1|a’[n] = 1H : S

However, different from Shd and Shdnt, inferring Can is nontrivial, because if we maximize Jcan, We
get the trivial precondition: always true (i.e., f52"(c) = 1 for all ¢). Previous works handled this issue
by either making additional assumptions [10, 13] or applying regularization [16]. However, these
approaches unavoidably introduces noise in learning, and require careful hyperparameter tuning to
balance between objective and regularization. Instead, inspired by the fact that Can and —Shdnt (i.e.,
negation of Shdnt) applies to the policy in the same manner (i.e., the dialog act a can be performed if
both £ = 1 and f,°""t = 1), we propose to infer Can and Shdnt simultaneously as follows:

JeanA-shdnt = IE(c,a[n]) [H[fr(ian/\—\shdnt(c) = 1|a[n] = 1}
+ a I[fEen =5t (¢) = 0|a[n] = 0]] “4)
where a determines the relative weight between Can and Shdnt in optimization. Intuitively, the agent

can perform n'" dialog act only if Can is satisfied and Shdnt is not satisfied.

Baseline As an ablation model, we consider the behavioral cloning (BC) [24] objective, which tries
to mimic the demonstration behavior:

Jec = Ec,apm [I[f2C(c) = a[n]]] &)
The confusion matrix is shown at the bottom of Table 1.

We can use any binary classification models to optimize the objectives (1), (4), and (5). We used the
decision tree models in the experiment following the previous works [3, 14, 34].

Algorithm 1 TOD-flow graph-conditioned dialogue model

Require: Dialogue model 7, TOD-flow graph f¢@", fShd_ #Shdnt Completion ¢

Ensure: Sampled dialog acts a

Ia~T > Sample dialog acts from 7
. /| £Shd —
2: a«au{a|f) (c)h; 1} > Apply Shd
. /| £CanA—=Shdnt —
3 a<—an{alfg (c) =1} > Apply Can A =Shdnt
4: return a
./ SYSAsk™ |SYSAsked Pickup city s SYSASk ™ |SYSAsked Pickup city
\\.pickup city /"1 pickup city informed \.pickup city /" pickup city informed
aN] /N
© 3 /SYSAsk™ | sYSAsked Pickup date (3 g2 " SYSAsk™__| SYSAsked Pickup date [3\
25 ; - 8| ¢©8 . /=8
£ % *‘\p\leUp dat/e/’ ” pickup date informed "\ ‘% 3 | £ % f‘»‘\p\ICkup date /™ pickup date informed '\ 55% \
s 2 — Sz s S A — ' =
23 - 805 D5 e -0
58 _,/ SYSASk™ SYSAsked Pickwptme # S| §S a»(SYSASk ™ |SYSAsked Pickuptime f &S|
kS o \pickup time /" pickup time informed & = o J \pickup time /"~ pickup time informed &/
\& o \&
; - I
ava AT~ \ v AT~
- g SYS Ask ™ ' SYSAsked Dropoff date sl SYSAsk ™ ' SYSAsked Dropoff date
\dropoff date/ " dropoff date informed \dropoff date/ ™ dropoff date informed
(a) Human-drawn Ground Truth (b) BC
v o mummmmn ; e
- g SYSAsk ™ SYSAsked Pickup city sl SYSAsk ™ SYSAsked Pickup city
. \\.pickup city /™ pickup city informed \\.pickup city /" pickup city informed
o | ¥ ! / o\ o o
335 a_»(SYSAsk™ [SYSAsked Pickup date g\ 835 [//SYS Ask™ | SYSAsked Pickup date
== \pickup date /™ pickup date informed '\, C% | == \pickup date /™ pickup date informed \(\ | g
d =1 — =1
2x(L a>0% 2% &0
% 5 ; / '/.S/YS Aék\\\ SYS Asked Pickup time / \5 § “ E § $[//lS"YS A.s'k\\ SYS Asked Pickup time / ‘@
= 8 i \kaup time / pickup time informed 8 i= 8 \p\l{:kup time / pickup time informed
A o \ \ 9 — \©
; ./ SYSAsk™ | SYSAsked Dropoff date g_s(SYSASk ™ 'SYSAsked Dropoff date
- \dropoff date” ™ dropoff date informed \dropoff date /™ dropoff date informed

(c) MSG2 (d) TOD-Flow (Ours)
O Dialog acts Dialog State (SYSTEM) > Positive edge "> Redundant edges
Legend Negative edge .,
& And block Dialog State (USER) > Status Update edge __» Missing edges

Figure 3: Comparing baselines and our method against human-drawn ground truth graph on a subpart
of the RentalCars_1 domain of SGD. Dotted lines are negative edges (logical negations). Red Edges
are missing edges and blue edges are redundant edges compared to the ground truth. In this scenario,
the system is allowed to ask for a slot if user has informed the intent of finding an available car and
has not yet informed this slot and the system have not yet asked for the slot; and the system can only
query for a car when all 4 slots are informed. Our method perfectly matches the ground truth, while
both baselines have incorrect edges (BC has 4 redundant edges and 2 missing edges, while MSG?
has 11 missing edges).

4 Graph-conditioned Dialog Modeling

We describe how the inferred TOD-flow graph G can enhance the prediction performance of any
off-the-shelf dialogue policies and end-to-end dialog systems.

4.1 Graph-conditioned Dialog Policy

The inferred TOD-flow graph (Shd and Can A —Shdnt) can propose the dialog acts that can, should,
and should not be performed given the current dialog history (or completion set). Figure 2 and
Algorithm 1 describes the entire process. Given a base dialogue policy 7°F, we sample the system
acts from the policy a ~ 7PF, and filter, add and remove acts from the sampled system acts according
to the Can, Shd, and Shdnt, respectively.

SGD (24 domains) MultiWOZ (14 domains)

Models

FLAN-T5 GPT-turbo FLAN-T5 GPT-turbo
No Graph 49.9% 78.8% 21.6% 40.8%
+BC 57.2% 71.8% 23.5% 38.2%
+MSG?2 [16] 52.4% 79.4% 23.8% 40.2%
+TOD-Flow (ours) 83.1% 89.2% 35.0% 48.2%

Table 2: Average F-1 scores of next system action prediction experiment on two datasets (SGD and
MultiWOZ) and two large language models (FLAN-TS5 and GPT-turbo) as few-shot predictors. We
can see that while BC often damages performance, TOD-Flow consistently improves performance
by a significant amount.

We can further improve the prediction performance if our baseline dialog model can be sampled
multiple times with different results, as illustrated in Figure 2. We use the graph to condition each
candidate result, then select the best one using a selection method such as most number of actions in
set, candidate with least graph violations, etc. We empirically found that simply choosing the result
with the most actions works best.

4.2 Graph-conditioned End-to-end Response Generation

End-to-end dialogue system directly reads and outputs the utterances in natural language form. Given
the base end-to-end model 7¢2¢, we sample multiple system utterances from the base model (mostly
via beam-search alternates, see Appendix A.2.1 for details). Then, we use a few-shot prompted GPT-
turbo model to annotate each generated candidate utterance with the dialog act (see Appendix A.2.3
for details). Finally, we use the inferred graph to choose the best utterance that has the least violation
rate (i.e., portion of dialog acts that violates the inferred Can, Shd, and Shdnt conditions). Note that
with this approach, all final responses still comes from the base end-to-end model, so the improvement
is still upper-bounded by the capabilities of the model. Our graph simply presents a better candidate
selection method.

5 Experiments

We perform experiments to show that (1) the TOD-flow graph can be accurately predicted without
any supervision, (2) our graph can improve the accuracy of dialog policy models, and (3) our graph
can improve the quality of response generation in end-to-end dialog models.

5.1 Dataset

We used two standard TOD benchmarks. Schema-Guided Dialogue (SGD) [31] has over 20k task-
oriented simulated conversations based on human-designed schema. SGD covers a wide range of
domains (i.e., different dialog acts and goals). We use 24 domains in SGD, and did not use the
schema for experiment. MultiWwOZ [4] has 10k human-human conversations on 14 domains. Since
MultiWOZ is collected from human-human conversations, the utterances are much more linguistically
diverse than SGD. Also, different from SGD where the annotations are generated from the schema,
annotations in MultiWOZ are labeled by human. Therefore, the annotations in MultiWOZ are often
noisy (i.e., inconsistent, wrong, or missing), which present additional challenge compared to SGD.

For both datasets, we obtain train/test splits of the dialogs within each domain (see Appendix A.1.1
for details). The training set is used for 1) inferring TOD-Flow graph, 2) building demonstration
for few-shot prompted models, and 3) finetuning the finetuning-based models. The test set is only
used for evaluation. For graph inference, we map the dialog act of user, database, and system to
completion c and dialog act a vectors as described in Section 3.3.

5.2 Baselines

We compare three graph inference algorithms:

Can-Shdnt Shd Ranking SGD (24 domains) MultiWOZ (14 domains)

graph graph method FLAN-T5 GPT-turbo FLAN-T5 GPT-turbo
No graph X X Greedy 49.9% 78.8% 21.6% 40.8%
Graph X Compliance 70.4% 82.5% 26.1% 41.6%
ablations X Compliance 65.6% 83.5% 30.4% 44.5%
Samplin Greedy 80.9% 88.5% 26.2% 45.5%
2 ragking Majority 75.2% 88.1% 20.7% 45.0%
ablation Sg Violation 76.2% 88.3% 23.7% 44.7%
Uniform 75.8% 88.0% 23.2% 45.2%
Ours Compliance 83.1% 89.2% 35.0% 48.2%

Table 3: Ablation studies on graphs and ranking methods for next system action prediction. The
numbers shown are average F-1 scores. We see that both Can-Shdnt and Shd graphs have significant
contributions towards the performance and our Compliance ranking method outperforms greedy
sampling or other ranking methods.

* BC learns to imitate the demonstration via behavioral cloning (see Section 3.3)

« MSG? [16] learns the subtask graph by optimizing the J¢,, (see Equation (3)) with com-
plexity regularization.

* TOD-Flow (ours) is our TOD-Flow graph learning algorithm.

For fair comparison, we used the scikit-learn decision tree model [27] for all the graph inference
algorithms.

5.3 TOD-Flow Graph Inference

We first qualitatively compare the inferred graphs with the human-drawn graphs on RentalCars_1
domain in SGD dataset. We found that in general TOD-Flow produces graphs that agree with the
human-drawn graphs much more often compared to baselines (BC and MSG?). Figure 3 illustrates
the subpart of the inferred and human-drawn graph, where TOD-Flow inferred the graph perfectly
matches the human-drawn graph, while the baselines missed important information (such as not
requiring all 4 required slots to be informed before performing the query).

5.4 Task 1: Dialog Policy Learning

Base Models. We use two instruction-tuned large language models (LLM) as baseline dialog
policy: FLAN-T5-xx1 [7] and GPT-turbo!. At each turn, we prompt the LLM with five demonstration
dialogues from train split of the same domain followed by the dialogue history, and ask the model to
predict next system dialog acts. See Appendix A.1.2 for more details on prompting the LLM.

Evaluation Protocol. We sample 10 candidate predictions from the base models, which is filtered
and ranked based on the graph (see Section 4.1) to choose the best prediction.

Metric. We measure F-1 score between the ground-truth and predicted system dialog acts at each
turn and average over entire domains.

Results. Table 2 summarizes the F-1 score of each model on SGD and MultiwWOZ. Overall, we
observe that TOD-Flow consistently improves the prediction accuracy with a significant margin
compared to other baselines BC and MSG? on all base models and all dataset. We also found that
the improvements are bigger on FLAN-TS compared to GPT-turbo. This indicates that the GPT-turbo
already models the Can, Shd, and Shdnt to some extent, so that augmenting it with the graph provide
less benefits. Since BC learns to mimic the exact behavior in demonstration, BC tends to dictate
the base policy more aggressively and hurts the performance when combined with strong base
model GPT-turbo. MSG? correctly models the precondition of dialog acts, but provides less benefit

"https://platform.openai.com/docs/models/gpt-3-5

compared to TOD-Flow due to the conservative graph learning (i.e., complexity regularization) and
lacking the ability to model Shd and Shdnt relations.

Ablations. To further justify our design choices, we performed ablation studies on two key com-
ponents of TOD-Flow: the graphs and the ranking method after graph-conditioning. For filtering
graphs, we examined the effect of Can-Shdnt and Shd graphs. Regarding the ranking method, we
compare the proposed ranking approach (i.e., Compliance) against various alternatives:

* Greedy ranks by likelihood of base LLM.

* Compliance ranks predictions by larger number of actions complying with the graph
(i.e. rank by size in Figure 2).

e Majority chooses the majority prediction among the multi-sampled predictions.

* Violation ranks predictions by least number of actions filtered, added, and removed in graph
conditioning.

* Uniform randomly chooses one of the multi-sampled predictions.

The results are shown in Table 3, and TOD-Flow outperformed all ablations, showing the necessity
of all graphs and ranking by largest set.

5.5 Task 2: End-to-end Response Generation

Base Models. We use the three SOTA end-to-end dialogue models finetuned on MultiWOZ:
GALAXY [12], HDNO [36], and HDSA [6] as base models. Note that for GALAXY, since we were
unable to reproduce the official prediction using the official repository, we report the result with both
official prediction (GALAXY) and the greedy (i.e., beam search with beam width=1) prediction we
obtained by running the official repository (GALAXY™).

Evaluation protocol. From each model, we first sample five system response utterances: one from
official prediction? [25] and four from the model downloaded from the official implementation (see
appendix A.2.1 for details). The graph conditioning process follows Section 4.2. As an ablation, we
also evaluated our method without conditioning on Shd graphs.

Metric. We follow the standard evaluation metric using the official code [25], which computes
three metrics on the MultiWOZ test set: BLEU (average BLEU [26] scores between generated and
ground truth response), Info (percentage of dialogs where the system presents an appropriate entity)
and Succ (percentage of dialogs where the task goals are achieved). The combined score is computed
as Score =BLEU + (Info + Succ) /2. See Appendix A.2.2 for details on computing these metrics. We
report all four metrics of the compared methods.

Result. We show the results in Table 4. We found that TOD-Flow can consistently improve /nfo and
Succ metrics for all the base end-to-end dialog models. BLEU score fluctuates because it depends a lot
on the exact wording of each response, which our graphs have no control over. The combined score
consistently improves by 0.62, 0.6, 0.58, and 1.34 for HDSA, HDNO, GALAXY, and GALAXY",
respectively. Note that these score improvements are actually quite significant, as the difference
between top and second top SOTA methods (GALAXY and HDNO) is only 0.74.

Next, we compare different ranking methods: Uniform, BC, MSG?2, and TOD-Flow. First, we
consider Uniform method as a lower-bound performance which assign uniform ranking and randomly
samples among the five sample predictions. Note that the performance of Uniform is significantly
lower than the official prediction (i.e., the first row of each base model). This is because the greedy
prediction is in general much better in quality than the sampled predictions. Among the graph
prediction methods, TOD-Flow consistently outperforms other baselines, MSG? and BC. In fact,
the MSG? and BC often underperforms the official prediction. Since the sampled predictions are in
general much worse than the greedy prediction, unless the graph-based ranking is highly accurate, it
often samples the prediction that is worse than greedy prediction. On the contrary, TOD-Flow is often
able to accurately pick out the non-greedy better alternative to outperform the official predictions.
We show one such example in Table 5 in the Appendix.

*https://github.com/Tomiinek/MultiWOZ_Evaluation/tree/ master/predictions

Graph BLEU Info Succ Score Graph BLEU Info Succ Score

(no graph) 20.74 87.20 78.00 103.34 (no graph) 19.92 92.00 82.80 107.32

+uniform 20.07 87.04 78.02 102.60 >~ +uniform 18.28 88.94 8038 102.94

< +BC 20.76 86.80 77.70 103.01 ﬁ +BC 19.85 91.80 82.50 107.00

é) +MSG? 20.71 86.90 77.90 103.11 é +MSG? 19.69 9130 81.00 105.84
+TOD-Flow +TOD-Flow

“No-Shd 20.69 87.70 78.20 103.64) “No-Shd 19.86 92.40 8330 107.71

+TOD-Flow 20.51 88.10 79.00 104.06 +TOD-Flow 19.85 9240 83.70 107.90

(no graph) 17.83 93.00 84.50 106.58 (no graph) 18.88 90.70 80.70 104.58

+uniform 17.39 92.62 83.58 105.49 5, +uniform 17.86 87.86 79.54 101.56

© +BC 17.79 9290 84.50 106.49 x +BC 18.88 90.20 80.40 104.18

E +MSG? 17.83 9290 84.40 106.48 5 +MSG? 1870 89.80 80.50 103.85
T +TOD-Flow < +TOD-Flow

No-Shd 18.08 93.10 85.10 107.18 @) “No-Shd 19.04 91.10 81.40 105.29

+TOD-Flow 17.97 93.20 85.00 107.07 +TOD-Flow 19.12 91.10 82.30 105.82

Table 4: Results from the response generation experiment with Galaxy [12], HDNO [36] and
HDSA [6] as base models. The Score metric is computed by Score =BLEU +(Info +Succ)/2.

We also found that excluding Shd graphs significantly reduced the improvement in all base models
except HDNO. This shows that, while using only Can-Shdnt graphs also consistently improves
performance of all base models, including Shd graphs can generally get even better results.

6 Related Work

Task-oriented dialog systems are automated dialog systems that aims to help users achieve specific
tasks, such as booking trains/hotels/restaurants, or providing information about weather/nearby attrac-
tions/nearby utilities. There are two general approaches to building these systems: pipeline approach
and end-to-end approach [39]. The pipeline approach typically consists of several independent
modules: (1) Natural Language Understanding (NLU): a module that translates input user utterance
into standardized action and slot value representations. This task is often represented as a multi-class
classification task and is usually done by sequence models such as RNNs [8, 9] and BERT [5].
Recent advances in large language models such as InstructGPT (Davinci series) and ChatGPT enables
performing reliable NLU with in-context demonstrations [30]. (2) Dialog State Tracking (DST): a
module that keeps track of the current dialog state (especially the slots and values). With a good NLU
module, this step can usually be done in a rule-based fashion by accumulating user intents, actions
and slot updates. Another approach is to use a language model to directly generate current dialog
state [22]. (3) Dialog Policy: given the current dialog state, this module predicts the next system
actions, usually via Reinforcement-Learning-based methods such as DQN/Policy Gradient [19, 40]
or experience-replay [23]. (4) Natural Language Generation (NLG): given the current dialog states
and the predicted next system actions, the NLG module needs to generate a response in natural
language. This step is usually done through a fine-tuned language model [28, 22]. On the other hand,
end-to-end task-oriented dialog systems does everything in one module. Some end-to-end approaches
use one language model to perform all 4 steps [11], while other approaches skips some of the steps
and directly generates final response [12, 37]. In general, the pipeline systems have the advantage of
being more human-interpretable and each module can be updated or constrained independently (thus
making them more controllable). Our work aims to improve the quality as well as controllability of
the Dialog Policy module by automatically learning a precondition graph and constrain the predicted
next actions with the graph, and we have also demonstrated that our method can improve end-to-end
models as well.

7 Conclusion

This work has introduced a novel framework for improving the efficiency and predictive accuracy
of task-oriented dialogues models. By leveraging the concept of subtask graph and generalizing
it to a TOD-flow graph, we accurately inferred the latent task structure within a dialogue. As
showcased through extensive experimentation with two public TOD datasets, the proposed technique
has been proven to effectively generate accurate and human-interpretable graphs. Importantly, we
have integrated these inferred graphs with a range of dialogue models, without necessitating retraining,
resulting in a substantial enhancement in performance in both dialog act classification and end-to-end
response generation.

Limitations

Although our method can be directly used when there are multiple domains involved in a single dialog
(by treating combination of domains as a single separate domain and creating graphs using dialogs
that has the same combination of domains, similar to what we did for MultiWwOZ), this approach is
limited in that (1) we need to infer a graph for every combination of domains that is present (such as
the multi-domain dialogs in SGD, where there are 24 different single-domains alone), and (2) we
cannot easily generalize to unseen domain combinations (even if we have graphs for each individual
domain). In the future, we would like to explore ways to directly combine graphs for individual
domains into multi-domain graphs and thus address the two limitations above.

We also relied on action annotations from the datasets to infer graphs, which limits the applicability
of our approach. It would be interesting to extend our approach to unannotated raw dialogues.

References

[1] Jacob Andreas, Dan Klein, and Sergey Levine. Modular Multitask Reinforcement Learning
with Policy Sketches. In ICML, 2017.

[2] Vevake Balaraman, Seyedmostafa Sheikhalishahi, and Bernardo Magnini. Recent neural
methods on dialogue state tracking for task-oriented dialogue systems: A survey. In Proceedings
of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages
239-251, Singapore and Online, July 2021. Association for Computational Linguistics.

[3] Craig Boutilier, Richard Dearden, Moisés Goldszmidt, et al. Exploiting Structure in Policy
Construction. In IJCAI, 1995.

[4] Pawet Budzianowski, Tsung-Hsien Wen, Bo-Hsiang Tseng, Ifiigo Casanueva, Stefan Ultes,
Osman Ramadan, and Milica Gasi¢. Multiwoz — a large-scale multi-domain wizard-of-oz
dataset for task-oriented dialogue modelling, 2020.

[5] Qian Chen, Zhu Zhuo, and Wen Wang. Bert for joint intent classification and slot filling. arXiv
preprint arXiv:1902.10909, 2019.

[6] Wenhu Chen, Jianshu Chen, Pengda Qin, Xifeng Yan, and William Yang Wang. Semantically
conditioned dialog response generation via hierarchical disentangled self-attention, 2019.

[7] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan
Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu,
Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie
Pellat, Kevin Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent
Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob
Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-finetuned
language models, 2022.

[8] Daniel Guo, Gokhan Tur, Wen-tau Yih, and Geoffrey Zweig. Joint semantic utterance classifica-
tion and slot filling with recursive neural networks. In 2014 IEEE Spoken Language Technology
Workshop (SLT), pages 554-559. IEEE, 2014.

[9] Dilek Hakkani-Tiir, Gokhan Tiir, Asli Celikyilmaz, Yun-Nung Chen, Jianfeng Gao, Li Deng,
and Ye-Yi Wang. Multi-domain joint semantic frame parsing using bi-directional rnn-Istm. In
Interspeech, pages 715-719, 2016.

[10] Bradley Hayes and Brian Scassellati. Autonomously Constructing Hierarchical Task Networks
for Planning and Human-Robot Collaboration. In ICRA, 2016.

[11] Wanwei He, Yinpei Dai, Min Yang, Jian Sun, Fei Huang, Luo Si, and Yongbin Li. Unified
dialog model pre-training for task-oriented dialog understanding and generation. In Proceedings
of the 45th International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR °22, page 187-200, New York, NY, USA, 2022. Association for Computing
Machinery.

10

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Wanwei He, Yinpei Dai, Yinhe Zheng, Yuchuan Wu, Zheng Cao, Dermot Liu, Peng Jiang,
Min Yang, Fei Huang, Luo Si, et al. Galaxy: A generative pre-trained model for task-oriented
dialog with semi-supervised learning and explicit policy injection. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pages 10749-10757, 2022.

De-An Huang, Suraj Nair, Danfei Xu, Yuke Zhu, Animesh Garg, Li Fei-Fei, Silvio Savarese,
and Juan Carlos Niebles. Neural Task Graphs: Generalizing to Unseen Tasks from a Single
Video Demonstration. In CVPR, 2019.

De-An Huang, Suraj Nair, Danfei Xu, Yuke Zhu, Animesh Garg, Li Fei-Fei, Silvio Savarese,
and Juan Carlos Niebles. Neural task graphs: Generalizing to unseen tasks from a single video
demonstration. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 8565-8574, 2019.

Vojtéch Hudecek and Ondfej Dusek. Are llms all you need for task-oriented dialogue? arXiv
preprint arXiv:2304.06556, 2023.

Yunseok Jang, Sungryull Sohn, Lajanugen Logeswaran, Tiange Luo, Moontae Lee, and
Honglak Lee. Multimodal subtask graph generation from instructional videos. arXiv preprint
arXiv:2302.08672, 2023.

Tiziano Labruna, Sofia Brenna, Andrea Zaninello, and Bernardo Magnini. Unraveling chatgpt:
A critical analysis of ai-generated goal-oriented dialogues and annotations, 2023.

Issam H Laradji, Stefania Raimondo, David Vazquez, Pau Rodriguez, Christopher Pal, et al.
Workflow discovery from dialogues in the low data regime. Transactions on Machine Learning
Research, 2023.

Zachary C. Lipton, Xiujun Li, Jianfeng Gao, Lihong Li, Faisal Ahmed, and Li Deng. Bbg-
networks: Efficient exploration in deep reinforcement learning for task-oriented dialogue
systems, 2017.

Anthony Z. Liu, Sungryull Sohn, Mahdi Qazwini, and Honglak Lee. Learning Parameterized
Task Structure for Generalization to Unseen Entities. In AAAI 2022.

Lajanugen Logeswaran, Sungryull Sohn, Yunseok Jang, Moontae Lee, and Honglak Lee.
Unsupervised task graph generation from instructional video transcripts. arXiv preprint
arXiv:2302.09173, 2023.

Andrea Madotto, Zihan Liu, Zhaojiang Lin, and Pascale Fung. Language models as few-shot
learner for task-oriented dialogue systems. CoRR, abs/2008.06239, 2020.

Shrikant Malviya, Piyush Kumar, Suyel Namasudra, and Uma Shanker Tiwary. Experience
replay-based deep reinforcement learning for dialogue management optimisation. ACM Trans.
Asian Low-Resour. Lang. Inf. Process., may 2022. Just Accepted.

Donald Michie, Michael Bain, and J Hayes-Miches. Cognitive models from subcognitive skills.
IEE control engineering series, 44:71-99, 1990.

Tomas Nekvinda and Ondfej Dusek. Shades of bleu, flavours of success: The case of multiwoz,
2021.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics, pages 311-318, Philadelphia, Pennsylvania, USA, July 2002.
Association for Computational Linguistics.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825-2830, 2011.

11

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Baolin Peng, Chenguang Zhu, Chunyuan Li, Xiujun Li, Jinchao Li, Michael Zeng, and Jianfeng
Gao. Few-shot natural language generation for task-oriented dialog, 2020.

Dinesh Raghu, Shantanu Agarwal, Sachindra Joshi, et al. End-to-end learning of flowchart
grounded task-oriented dialogs. In Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 43484366, 2021.

Abhiramon Rajasekharan, Yankai Zeng, Parth Padalkar, and Gopal Gupta. Reliable natural
language understanding with large language models and answer set programming, 2023.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, and Pranav Khaitan. To-
wards scalable multi-domain conversational agents: The schema-guided dialogue dataset. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 8689-8696,
2020.

Keisuke Sakaguchi, Chandra Bhagavatula, Ronan Le Bras, Niket Tandon, Peter Clark, and
Yejin Choi. proScript: Partially Ordered Scripts Generation. In Findings of EMNLP, 2021.

Sungryull Sohn, Junhyuk Oh, and Honglak Lee. Hierarchical Reinforcement Learning for
Zero-shot Generalization with Subtask Dependencies. In NeurIPS, 2018.

Sungryull Sohn, Hyunjae Woo, Jongwook Choi, and Honglak Lee. Meta Reinforcement
Learning with Autonomous Inference of Subtask Dependencies. In ICLR, 2020.

Sungryull Sohn, Hyunjae Woo, Jongwook Choi, Lyubing Qiang, Izzeddin Gur, Aleksandra
Faust, and Honglak Lee. Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization. In UAI 2022.

Jianhong Wang, Yuan Zhang, Tae-Kyun Kim, and Yunjie Gu. Modelling hierarchical structure
between dialogue policy and natural language generator with option framework for task-oriented
dialogue system. arXiv preprint arXiv:2006.06814, 2020.

Weizhi Wang, Zhirui Zhang, Junliang Guo, Yinpei Dai, Boxing Chen, and Weihua Luo. Task-
oriented dialogue system as natural language generation. In Proceedings of the 45th Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR
’22, page 2698-2703, New York, NY, USA, 2022. Association for Computing Machinery.

Chien-Sheng Wu, Steven Hoi, Richard Socher, and Caiming Xiong. Tod-bert: Pre-trained
natural language understanding for task-oriented dialogue. arXiv preprint arXiv:2004.06871,
2020.

Zheng Zhang, Ryuichi Takanobu, Qi Zhu, MinLie Huang, and XiaoYan Zhu. Recent ad-
vances and challenges in task-oriented dialog systems. Science China Technological Sciences,
63(10):2011-2027, 2020.

Li Zhou, Kevin Small, Oleg Rokhlenko, and Charles Elkan. End-to-end offline goal-oriented
dialog policy learning via policy gradient, 2017.

12

A Experiment Details

A.1 Next Action Prediction
A.1.1 Dataset Preprocessing details

In the next action prediction experiment, we are using 2 datasets: MultiWOZ [4] and SGD [31]. We
first split each dataset into domains and train/test splits. For MultiWOZ, the dataset has an official
splitting of train/val/test splits, so we follow the same splits; while MultiWOZ contains dialogs from
7 domains, 2 of them (police, hospital) have no test dialogs, thus we split MultiwWOZ dialogs into
14 domains, including 5 single-domains (i.e. dialogs that only involves one of the 5 domains) and 9
multi-domains (i.e. dialogs that involves multiple domains, such as Hotel+Train). For SGD, since the
official train/val/test splits often involves test schemas that does not exist in the train set, we decided
to create our own train/test splits from the official training set. There are 24 different schemas that
have single-schema dialogs in the official training set, so we treat each of these schemas as a separate
domain and randomly split dialogs within each domain into train/test splits at a 9:1 ratio.

We then turn each dialog into a trajectory (as defined in section 3.1). Below is how we define the
dialog actions within each domain of each dataset:

For SGD, since there are already very comprehensive dialog acts and slot annotations, we directly
use the acts defined in the dataset (with a few re-naming) plus the slot annotations to build our set of
all possible actions. In addition, since SGD provides explicit annotations about system’s database
queries, whenever the system queries database, we add an additional turn in our trajectory with one
action "SYSTEM query <Intent>" and the status update would be either query success or query
failure.

For MultiWOZ, we mostly also directly use the acts and slots in the dataset annotation to build our
set of all possible actions, but we did some re-naming and re-organization to remove some redundant
combinations of acts and slots (for example, "SYSTEM Booking-Inform <slot>" was changed into
"SYSTEM OfferBook + SYSTEM inform <slot>"). Since there are no explicit annotation about
database querying, we simply assume that the system looks up information before each "book/nobook"
operation and add a corresponding status update to the utterance before these actions. We do not
explicitly add "query" actions or additional turns to the trajectories.

Then, within each domain, we will use the trajectories of the train split dialogs to obtain graphs and
also act as demonstrations for LLMs, and use the graphs to improve next action predictions on the
test dialogs.

A.1.2 Large Language Model Prompting Details

In this experiment, we used GPT-turbo-3.5 as well as FLAN-TS [7] as baseline next action predictors.
We prompt the two LLMs using the exact same prompting method. For each domain, we first
randomly select 10 dialogs from the training split, and then use their trajectories (i.e. actions and
statuses of each turn) as demonstrations. Then for every system utterance in the test-split dialogs in
the domain, we include as many of the demonstration trajectories as possible without exceeding the
max token limit of the LL.Ms, and then we include the partial trajectory of the test dialog up to the
turn where the next system actions needs to be predicted. Lastly, we ask the LLM to predict the next
system actions, and we programmatically parse the results into individual action items. See Figure 4
for example prompt for SGD and MultiWOZ dataset.

When obtaining the baseline result for each model, we use the top prediction by probability by
setting temperature to zero (thus the language model’s generation is deterministic). When we need to
multiple predictions for graph filtering, for FLAM-T5-xx1 we simply do a beam-search of size 10; for
GPT-turbo-3.5 we set temperature to 1 and sample 10 times.

13

A.2 Response Generation

A.2.1 Getting Alternates from each model

For Galaxy [12], we used the top choice of beam-size-1 as well as the top 3 choices of beam-size-5
as alternates. The overall ranking of the 5 choices from highest to lowest are baseline, beam-size-1,
beam-size-5 top choice, beam-size-5 second choice, beam-size-5 third choice.

For HDNO [36], since the official prediction baseline is the top choice of beam-size-5, we use the
two choices from beam-size-2 and the second and third choice from beam-size-5 as alternates. The
overall ranking of the 5 choices from highest to lowest are baseline (i.e. beam-size-5 top choice),
beam-size-2 top choice, beam-size-5 second choice, beam-size-2 second choice, beam-size-5 third
choice.

For HDSA [6] the process is slightly different. HDSA model consists of 2 parts: the first part
(predictor) predicts the actions the system will perform (although in a very different format than what
we do in our next action prediction experiment, so not directly comparable), and the second part
(generator) uses the output of the predictor to generate the response. If we fix the predictor output and
do beam-search on the generator only, the actions within the generated response will almost always
be identical, which renders our method useless. Therefore, we created our alternates by tweaking a
hyperparameter in the predictor a little bit. The output of the predictor is a binary vector, and the
post-sigmoid logits of the predictor is converted to the binary vector by a threshold. The HDSA
official code repository has 0.4 as the default threshold, and we changed the threshold around that
value and used the different generated vectors as inputs to the generator to obtain our alternates. The
overall ranking of the 5 choices from highest to lowest are baseline, threshold-0.4, threshold-0.375,
threshold-0.35, threshold-0.325.

A.2.2 Evaluation Details

We use the official MultiWOZ_Evaluation repository to evaluate the BLEU/INFORM/SUCCESS
metrics. Since our policy-learning setting assumes that we have access to the ground truth dialog
state before the utterance, we use the ground truth dialog state and active domains in the evaluation
scripts (by removing dialog state / active domain predictions and only including the response in
the prediction file). This is necessary because we found that active domain predictions affect the
INFORM/SUCCESS metrics, and incorrect active domain can increase/decrease INFORM/SUCCESS
randomly. Therefore, to ensure fairness and consistency, we always use the ground truth active domain
during evaluation.

A.2.3 Using GPT as NLU unit

We prompt GPT-turbo-3.5 to convert the candidate responses into action sets. For responses for
dialogs in each domain, We first provide randomly selected dialogs from the training split of the
same domain together with their ground truth system actions as demonstrations. Then, we specify the
desired output format and provide an example of the output format. Lastly, we provide the dialog
history of the current candidate responses, and ask GPT to give us actions to all candidate responses
(i.e. the baseline + 4 sampled from the models). We start with 6 demonstrations, and we reduce the
number of demonstrations by one iteratively if the total number of tokens exceeds the maximum
token limit of the model (4097). We show one example prompt for responses from Galaxy [12]
together with the GPT completion in Figure 5.

We evaluated the quality of this NLU process by using this process to predict actions of the ground
truth responses and compare the predicted actions to the ground truth actions on a subset of the
test dialogs. We found that on average our NLU’s predicted actions achieves an average F-1 score
of 77.6%, which is okay but far from perfect, and the imperfectness of our NLU brings additional
challenge to our task.

B Human-drawn GT graphs for SGD

In order to perform qualitative assessment of the quality of our graphs, we manually drew graphs for
10 domains in SGD. We show 2 such graphs in Figure 6 for RideSharing_1 schema and Figure 7 for
RentalCars_1 schema respectively.

14

SNGO0772 Fourth Turn:
... (USER and SYSTEM talks about a hotel)
USER: No, I'm not ready to book it yet. Thank you!
Utterance Actions
Ground Just let us knowl when you are
Truth ready and we will be happy to
assist you. Have a great day!
GALAXY the address is [value_address],
Top/Official | postcode [value_postcode].

SYSTEM general-reqmore;
SYSTEM offerbook

SYSTEM hotel-inform addr;
SYSTEM hotel-inform post;

Predicted Fhe phone number SYSTEM hotel-inform phone
Response is [value_phone]

Our chosen

Alternate is there anything else i can

GALAXY help you with?

Prediction

Table 5: An example response generation where our graphs helped us select a better response from
alternate response predictions. The "inform phone" action from the top/official response is not in
"Can" according to our graph (since the user never asked for it) and did not include "reqmore" action
which is in "Shd" according to the graph (since you should ask if the user needs anything else after
the user ended a particular intent), and these violations caused us to select an alternate that do not
violate our graph, and the alternate turns out to be better and closer to the ground truth.

15

Demonstration:

USER Actions: Inform number of days, Inform Intent ReserveHaotel

Status: Informed number of days, Intent Informed ReserveHotel

SYSTEM Actions: Request hotel name, Request check in date

Status: Requested hotel name, Requested check in date

USER Actions: Inform number of rooms, Inform hotel name, Inform check in date

Status: Informed number of rooms, Informed hotel name, Informed check in date

SYSTEM Actions: Confirm hotel name, Confirm check in date, Confirm number of days, Confirm number of rooms
Status: Confirmed hotel name, Confirmed check in date, Confirmed number of days, Confirmed number of rooms
USER Actions: Request phone number, Request destination, Affirm

Status: Requested phone number, Requested destination, Affirmed

SYSTEM Actions: Query ReserveHotel

Status: DATABASE N>0 ReserveHotel

SYSTEM Actions: Inform phone number, Inform destination, Notify Success

Status: Informed phone number, Informed destination, Notified Success

USER Actions: Thank You, Goodbhye

Status: Thanked, GOODBYE

SYSTEM Actions: Goodbye

Status: END OF DIALOG

Demonstration:
[... omitting 9 demonstrations ...]

Based on the demonstrations above, predict the next line of Action and Status below:
USER Actions: Inform Intent ReserveHotel

Status: Intent Informed ReserveHotel
SYSTEM Actions: Request hotel name, Request check in date

Demonstration:

USER act: hotel-inform type, hotel-inform area, hotel-inform stars
Status: hotel-inform type, hotel-inform area, hotel-inform stars
SYSTEM act: hotel-inform name

Status: hotel-inform name

USER act: hotel-inform price

Status: hotel-inform price

SYSTEM act: booking-offerbook, hotel-inform price, hotel-inform stars
Status: booking-offerbook, hotel-inform price, hotel-inform stars
USER act: general-thank

Status: general-thank

SYSTEM act: general-bye
Status: general-bye

Demonstration:
[... omitting 5 demonstrations ...]

Based on the demonstrations above, predict the next line of SYSTEM Actions below:
USER act: hotel-inform area

Status: hotel-inform area
SYSTEM act: hotel-request type, hotel-request price

Figure 4: Example of using GPT-turbo-3.5 to do next system action prediction from the Hotels_1
domain of SGD (top) and from the Hotel+Train domain of MultiWOZ (bottom). We first provide
a few demonstration trajectories in the prompts, then we ask the large language model to complete
the prompt. The text highlighted in green is the GPT completion, while everything before that is our
input prompt. We give the exact same prompt to the other LLM (FLAN-T5-xx1).

16

Demonstration:

USER Utterance: i am planning a trip to [value_departure] and looking for a train to get me there . can you help me find 1
please ?

SYSTEM Utterance: we have many trains to cambridge , where are you departing from ?

SYSTEM Actions: SYSTEM train-request depart | SYSTEM train-inform num choices | SYSTEM train-inform dest

USER Utterance: i am departing from [value_departure] and i would like to go to [value_destination] . i would like my train
to arrive by [value_arrive] and leave on [value_day] .

SYSTEM Utterance: the [value_id] arrives in [value_destination] by [value_arrive] , can i book a ticket for you ?

SYSTEM Actions: SYSTEM train-inform arrive | SYSTEM train-inform dest | SYSTEM train-inform id | SYSTEM
train-offerbook

[... omitting 7 turns of interactions ...]

USER Utterance: not at this time . thank you for all the information . i am all set . goodbye .

SYSTEM Utterance: have a nice day , goodbye

SYSTEM Actions: SYSTEM general-bye

Demonstration:
[... omitting 5 more full dialog demonstrations ...]

Now, we are going to ask you to predict the actions from several candidate responses. Your answer format must fit the
following example:

(1) [value_name] is a [value_food] restaurant .

(2) there are [value_choice] restaurant-s that meet your criteria . 1 serves [value_food] food and the other serves
[value_food] food . do you have a preference ?

(3) there are [value_choice] restaurant-s that meet that criteria . 1 serves [value_food] food and the other serves
[value_food] food . which would you prefer ?

Your output should be:

(1) SYSTEM restaurant-inform name | SYSTEM restaurant-inform food
(2) SYSTEM restaurant-ask-for-selection food | SYSTEM restaurant-inform num-choices | SYSTEM restaurant-inform food
(3) SYSTEM restaurant-ask-for-selection food | SYSTEM restaurant-inform num-choices | SYSTEM restaurant-inform food

Now consider the following partial dialog:
USER Utterance: i am looking for a train that leaves on [value_day] and arrives by 10.30

Based on the demonstrations above, predict the SYSTEM Actions for each of the following candidate SYSTEM response:
(1) i can help you with that . where are you departing from and arriving ?

(2) where are you departing from and arriving to ?

(3) there are [value_choice] trains that meet that criteria . where are you departing from and arriving to ?

(4) there are [value_choice] trains available . where are you departing from and arriving ?

(5) there are [value_choice] trains available . where are you departing from and arriving to ?

Your Answer:

(1) SYSTEM train-request depart | SYSTEM train-request dest

(2) SYSTEM train-request depart | SYSTEM train-request dest

(3) SYSTEM train-inform num choices | SYSTEM train-request depart | SYSTEM train-request dest
(4) SYSTEM train-inform num choices | SYSTEM train-request depart | SYSTEM train-request dest
(5) SYSTEM train-inform num choices | SYSTEM train-request depart | SYSTEM train-request dest

Figure 5: Example of using GPT-turbo-3.5 to obtain actions from candidate responses from
Galaxy [12]. The parts highlighted in green are completion from GPT, and everything before
that is our prompt.

17

O g R
= e

et et et
@us:n,m.“,xmmmm@ @,mmmw < STATUS_ USER Roquest awumam,@

T

ffect

USER Inform shared_ride Qrk Tt destivation >

et frect

v — st —
_STaTUS USPR ,:m,,..s.va s ,usw,w...mnmm/\

)
—
L e
N —
STEM Confiem desination > SYSTEM Confinn anber of riders SYSTEM Confrn stared ride >
- ot
STATUS SYSTEM Contmeddsiion STATUS SYSTEM Cofimed e of s> __STATUS SYSTEM. Cnfmed frel e

G (ana)

STATUS_DATABASE_N-0 GetRide an (o)

SN A for i ST oty S
fia e

SIS SYS M sk e > SIATUS_SYSTEM Nttt _soce >

Figure 6: Human-drawn ground truth graph for RideSharing_1 domain in SGD.

18

I A e | S DA i

s oo

-
) (B [OSCD,

T T T e e T
£ =
G

o

TS VST Ot e >

Figure 7: Human-drawn ground truth graph for RentalCars_1 domain in SGD.

19

