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Abstract
Since the advent of computing, humans have sought computer input technologies that are
expressive, intuitive, and universal. While diverse modalities have been developed, including
keyboards, mice, and touchscreens, they require interaction with an intermediary device that
can be limiting, especially in mobile scenarios. Gesture-based systems utilize cameras or inertial
sensors to avoid an intermediary device, but they tend to perform well only for unobscured or
overt movements. Brain computer interfaces (BCIs) have been imagined for decades to solve
the interface problem by allowing for input to computers via thought alone. However
high-bandwidth communication has only been demonstrated using invasive BCIs with decoders
designed for single individuals, and so cannot scale to the general public. In contrast,
neuromotor signals found at the muscle offer access to subtle gestures and force information.
Here we describe the development of a noninvasive neuromotor interface that allows for
computer input using surface electromyography (sEMG). We developed a highly-sensitive and
robust hardware platform that is easily donned/doffed to sense myoelectric activity at the wrist
and transform intentional neuromotor commands into computer input. We paired this device
with an infrastructure optimized to collect training data from thousands of consenting
participants, which allowed us to develop generic sEMG neural network decoding models that
work across many people without the need for per-person calibration. Test users not included in
the training set demonstrate closed-loop median performance of gesture decoding at 0.5 target
acquisitions per second in a continuous navigation task, 0.9 gesture detections per second in a
discrete gesture task, and handwriting at 17.0 adjusted words per minute. We demonstrate that
input bandwidth can be further improved up to 30% by personalizing sEMG decoding models to
the individual, anticipating a future in which humans and machines co-adapt to provide
seamless translation of human intent. To our knowledge this is the first high-bandwidth
neuromotor interface that directly leverages biosignals with performant out-of-the-box
generalization across people.

Introduction
Interactions with computers are increasingly ubiquitous, but existing input modalities suffer from
persistent tradeoffs between portability, throughput, and accessibility. The concept of a neural
interface that can obviate these tradeoffs and provide seamless interaction between humans and
machines at the speed of thought has long been a staple of science fiction, but has been slower to
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emerge in reality. In recent years, intracortical neural interfaces that directly interface with brain
tissue have advanced the premise (Gilja et al. 2012; Hochberg et al. 2012), demonstrating translation
of thought into language at bandwidth rates comparable with conventional computer input systems
(Collinger et al. 2013; Willett et al. 2023). However, existing high-bandwidth interfaces rely on
invasive neurosurgery, and the underlying models that translate neural signals to digital inputs
remain bespoke. Non-invasive approaches relying on recording of electroencephalogram (EEG)
(Abiri et al. 2019) signals at the scalp have offered more generality across people, e.g., for
entertainment (Kerous, Skola, and Liarokapis 2018). But EEG can require lengthy setup, and the
problematic signal-to-noise ratio (SNR) of these devices has limited their utility (Défossez et al.
2023). Regardless of the modality, issues of signal bandwidth, generalization across populations, and
the desire to avoid per-person or session-to-session calibration remain key technical hurdles in the
field of brain computer interfaces (BCI) (Brandman, Cash, and Hochberg 2017; Lotte et al. 2018;
Gilja et al. 2012; Degenhart et al. 2020; Brandman et al. 2018).
To build an interface that is both performant and accessible, we focused on an alternate class of

non-invasive neuromotor interfaces, which are based on reading out the electrical signals from
muscles, i.e. electromyography (EMG). Myoelectric potentials are produced by the summation of
motor unit action potentials (MUAPs) and thus represent a window into the motor commands
issued by the central nervous system. Surface EMG (sEMG) recordings offer high SNR by virtue of
amplification of neural signals in the muscle (Kandel et al. 2000), enabling real-time single-trial
gesture decoding. Further, sEMG does not suffer from problems that vex computer-vision-based
human-computer interaction (HCI) approaches, such as occlusion, lighting, or gestures with
minimal movement. EMG is widely used in the clinic, for example, to study muscle activation (De
Luca 1997), diagnose disorders (Pullman et al. 2000), and foster and monitor neurorehabilitation
(Farina et al. 2014; Campanini et al. 2020; Merletti and Farina 2016). It has also been used in
human-machine interfaces dating back to the 1950s (Battye, Nightingale, and Whillis 1955; Berger
and Huppert 1952).
Current EMG systems have many limitations for wide-scale use and deployment. Most are limited

to in-lab and supervised research applications while multi-channel sEMG setups are generally
encumbered with wires to external amplifiers and power sources. Many sEMG systems are placed
over unconventional or uncomfortable locations such as the target muscle’s belly to ensure high
signal quality (Merletti and Muceli 2019; Del Vecchio et al. 2020). Even commercially available
EMG-based neuromotor interfaces have been historically challenging to control (Biddiss and Chau
2007), relating to myriad technical issues such as poor robustness across postures (Scheme et al.
2010), lack of standardized data (Phinyomark and Scheme 2018), electrode displacement (Young,
Hargrove, and Kuiken 2011), and lack of both cross-session (Zia Ur Rehman et al. 2018) and
cross-user generalization (Saponas et al. 2008). More recently, deep learning techniques have
shown some success at addressing these limitations, e.g., (Côté-Allard et al. 2019), but a general lack
of available EMG data and low sample sizes are believed to limit their efficacy (Phinyomark and
Scheme 2018). In summary, while sEMG-based approaches show promise due to high SNR, the
question of whether they can be applied to a large population in practical settings to solve practical
HCI problems remains open.
To validate the thesis that sEMG can provide an intuitive and seamless computer input that works

in practice across a population, we developed and deployed robust, non-invasive hardware for
recording sEMG at the wrist. We chose the wrist because humans primarily engage the world with
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their hands, and the wrist provides broad coverage of sEMG signals of hand, wrist, and forearm
muscles while affording social acceptability for wireless wearable technology, such as smart watches
(Jiang et al. 2018; Mendez Guerra et al. 2022). Our sEMG research device (sEMG-RD) is a
dry-electrode, multi-channel recording platform with much higher sample rates (2kHz) than past
consumer sEMG devices (Mendez et al. 2017), and is capable of extracting single putative MUAPs. It
is comfortable, wireless, accommodates diverse anatomy and environments, and can be
donned/doffed in a few seconds.
To transform sEMG into commands that could drive computer interactions, we architected and

deployed neural networks trained on data from thousands of consenting human participants (e.g.
>6,500 participants for one network, see Online Methods). We also created automated behavioral
prompting and participant selection systems to scale neuromotor recordings across a large and
diverse population. We demonstrated the ability of our sEMG-RD to drive different computer
interactions such as 1D continuous navigation (akin to pointing a laser-pointer based on wrist
posture), gesture detection (finger pinches and thumb swipes), and handwriting transcription. The
sEMG decoding models performed well across many people without person-specific training or
calibration, including across-session recalibration. In offline evaluation, our sEMG-RD platform
achieved greater than 90% classification accuracy for held-out participants in handwriting and
gesture detection, as well as greater than 75% accuracy on wrist pose classification. We achieved 0.5
target acquisitions per second in wrist pose-based continuous navigation, 0.9 acquisitions per
second on discrete gestures, and 17.0 adjusted words per minute (aWPM) with handwriting on
computer-based tasks that evaluate these interactions in closed-loop.
Concretely, our scientific innovations include the following. We developed dry electrode sEMG

hardware with high SNR that is easily donned/doffed and that accommodates diverse human
anatomy. Enabled by this hardware platform, we performed data collection at scale to train large
neural network models on thousands of users. We showed that these networks are capable of
generalizing with high performance to new users in closed loop settings, thereby demonstrating that
sEMG serves as a viable biosignal for addressing unsolved HCI problems at scale. We characterized
the models’ performance scaling with respect to the number of users in the dataset and provide a
robust analysis of the effects of personalization.
To our knowledge, this is the first neuromotor interface that achieves such a high level of

performance and scalability. Our sEMG-RD platform has demonstrated the ability to drive various
computer interactions with high accuracy across a large and diverse population, without the need
for person-specific training or calibration. Our approach opens up new directions of EMG-based
HCI research and development while simultaneously solving many of the technical problems that are
of fundamental importance to current and future BCI efforts, whether intracortical (Willett et al.
2023; Musk and Neuralink 2019; Metzger et al. 2023) or non-invasive.

Results

Scalable electromyography recording platform
To build generic data-driven sEMG decoding models capable of predicting user intent from
neuromuscular signals, we developed a hardware and software platform capable of robustly
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interfacing the neuromotor system with computers with minimal setup time across a diverse
population (Fig. 1a). Consenting participants (see Online Methods for participant onboarding and
consent) were seated in front of a computer while wearing an sEMG research device (sEMG-RD) at
the wrist: a dry electrode, multi-channel recording platform with high sample rate (2 kHz), and
low-noise (2.46 µVrms) compatible with everyday use (Fig. 1a) (Jiang et al. 2018; Mendez Guerra et
al. 2022) (Online Methods). We fabricated the device in 4 different sizes to ensure coverage across a
wide range of wrist circumferences. The device streamed wirelessly over secure Bluetooth standard
protocols and provided a battery life of more than 4 hours.
We optimized the sEMG-RD design for recording subtle electrical potentials at the wrist. The

device used 48 gold-plated electrodes configured into 16 bipolar EMG-sensing channels oriented
along the proximo-distal axis of the forearm and the remainder serving as shield and ground
(Extended Data Fig. 1). We chose the circumferential inter-electrode spacing of 10.6–15 mm, varying
with the device size, to approach the spatial bandwidth of EMG signals at the forearm (~5-10 mm)
(Merletti and Farina 2016), while minimizing the device’s form factor. We placed the gap in
electrodes to allow for tightening adjustments along the ulna bone, where muscles are reduced in
density. Together, this allowed for sensing putative MUAPs across the wrist (Fig. 1b)
To collect training data for models, we recruited an anthropometrically and demographically

diverse group of participants (200-6350 participants, depending on task; Extended Data Fig. 2) to
perform three different tasks: continuous navigation, discrete gesture recognition, and handwriting.
In all cases, participants wore sEMG bands on their dominant hand and were prompted to perform
actions using a custom prompting system, run on laptops (Fig. 1c). For continuous navigation,
participants were prompted to flex, extend, or deviate their wrist. During the discrete gesture
detection task, a prompter instructed participants to perform nine distinct gestures with
randomized gesture order and inter-gesture interval. During the handwriting task, participants were
prompted to hold their fingers together (as if holding an imaginary writing implement) and “write”
the prompted text. See Online Methods for further training data protocol details.
We designed the data collection system to facilitate supervised training of sEMG decoding models.

During data collection, we recorded both sEMG activity and the timestamps of labels on the
prompter using a real-time processing engine. We designed the engine to be used during recording
and model inference to reduce online-offline shift (Online Methods). To precisely align prompter
labels to actual gesture times, which may vary due to a participant’s reaction time or compliance, we
developed a time alignment algorithm that allowed for post hoc inference of gesture event times
(Online Methods).
Examination of raw sEMG traces revealed highly structured patterns of activity (Fig. 1d). During

the gesture detection task, each action evoked patterned activity across a set of channels that
roughly correspond to the position of flexor and extensor muscles for the corresponding movement
(Fig. 1d, Extended Data Fig. 1c). The high sensitivity of the sEMG-RD allowed for observation of fine
differences in sEMG power across instances of a given gesture performed during a session (Fig. 1e).
This simultaneously highlights the power of the platform in acquiring repeated time-aligned
examples for supervised learning and the challenges facing generalization of EMG decoders.
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Fig. 1 | A hardware and software platform for high-throughput, real-time surface EMG decoding at the
wrist.

a, Overview of sEMG data collection and computer interaction. A participant wears the sEMG wristband which
communicates to a computer using a Bluetooth receiver. The participant is prompted on a computer screen to
perform movements using programmatically generated prompts. A webcam captures the participant’s hand
and wrist while excluding the face from the field of view. During different experimental protocols participants
are instructed to perform diverse movements of the hand and wrist: deflecting the wrist to different cardinal
directions, performing discrete gestures, and handwriting of text. Between different sessions participants are
instructed to remove and slightly reposition the band to enable generalization across different recording
positions.

b, (Upper) The sEMG wrist band consists of 48 electrode pins configured into 16 bipolar channels along the
proximal-distal axis of the forearm and the remainder serving as shield and ground. A 3D printed housing
encloses cabling and analog amplifiers for each channel. A computing core digitizes the signal and streams
sEMG data using Bluetooth. (Inset) Overlay of 62 and 72 individual instances of two putative MUAPs evoked by
subtle thumb extension (blue) and pinky extension (pink) movements, respectively. Shown are recordings
from a single sEMG channel selected for having high variance during the movement (Online Methods). (Lower)
A proton density weighted, axial plane MRI scan of the wrist, with relevant bone and muscle landmarks labeled.
Colored dots indicate approximate position of electrodes, with an adjustable gap between electrodes placed
over an area of low muscle density at the ulna.

c, Schematic examples of prompters for the wrist pose (left), gesture detection (middle), and handwriting
tasks (right). During each task, prompts move from top to bottom, left to right, or vary from screen to screen
respectively, to instruct participants (see Extended Data Fig. 3).

d, sEMG signals recorded during performance of discrete gestures and high-pass filtered at 20 Hz reveal
intricate patterns of activity across multiple channels accompanying performance of each gesture, with prompt
timings above (e.g. “Middle” indicates the timing of a middle pinch prompt, while a green left arrow indicates
the same for a leftward thumb swipe). Channel coloring corresponds to electrode locations in b. Black
arrowheads highlight activation of flexors during an index-to-thumb pinch and extensors during the release of
the index finger from thumb contact.

e, Variability in gestural sEMG activations across instances (top shows thumb taps, bottom shows downward
thumb swipe). The gray lines show the instantaneous high-pass filtered sEMG power, summed across
channels, for all instances of a gesture during a single band placement. The bold traces show the average. The
mean was subtracted from all traces, and the power was offset by 10-7 V2 to plot on a logarithmic scale without
visually exaggerating baseline variance.

Single-participant sEMG models do not generalize across
individuals
It is well-known across BCI modalities that both across-session and across-user generalization are
difficult problems (Gilja et al. 2012; Sussillo et al. 2016; Degenhart et al. 2020; Saponas et al. 2008).
We wanted to evaluate the difficulty of these generalizations for sEMG decoders. Inspection of the
raw data revealed pronounced variability in the sEMG for the same action across different
participants and band donnings (which we refer to as sessions), reflective of variations in sensor

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2024. ; https://doi.org/10.1101/2024.02.23.581779doi: bioRxiv preprint 

https://paperpile.com/c/OQiGG4/jk0A+GIlL+2Hio+oDPD
https://doi.org/10.1101/2024.02.23.581779
http://creativecommons.org/licenses/by-nc-nd/4.0/


placement, anatomy, physiology, and behavior that can make generalization challenging (Fig. 2a,b).
The distribution of the distances between the event triggered average sEMG waveforms for a single
gesture across different participants heavily overlapped with the distribution of distances across
gestures, highlighting the challenge of the generalization problem (Fig. 2b, Extended Data Fig. 4a).
To evaluate the ability of obtaining performant sEMG decoders across sessions for a given

participant, we trained single-participant models for 100 participants who had collected at least five
sessions on a discrete gesture classification task with nine different gestures (press/release of index
or middle finger to thumb, and thumb-based control: left/right/up/down/tap). For each participant,
we held out one session for evaluation and then trained models on two, three, or four of the
remaining sessions (see Online Methods for more details). As an offline evaluation metric we used
the Classification Error Rate (CLER), defined as: one minus the number of correct predictions
divided by the total number of true events.
Single-participant models trained and tested on the same participant achieved offline

performance that improved substantially with more training data (Fig. 2c, frommedian CLER 50.6%
± 21.7% SEM with two training sessions to median CLER 26.5% ± 15.3% SEM with all 4 training
sessions). In comparison, models trained on one participant and then tested on another showed
substantially worse performance and benefited only mildly from an increasing amount of training
data (Fig. 2d, from median CLER 82.9% ± 10.7% SEM with two training sessions to median CLER
77.7% ± 11.1% SEM with all 4 training sessions). The greater tractability of generalization across
sessions versus generalization across people implies a significant domain shift across people. For
most people, the model trained on their own data performed better compared to all other
single-participant models (Extended Data Fig. 5a), and for all 100 people, their own model was
within the top 5 performing models (Extended Data Fig. 5a).
We wondered whether cross-participant variability was difficult because there was structure or

clusters across people, or whether every participant required a relatively unique single-participant
model. The former could motivate an approach where a set of models trained on a small population
(within each cluster) could achieve a high level of population coverage. Extended Data Fig. 5b shows
a two-dimensional embedding using t-SNE with the distance between two participants being the
average of the model transfer CLER between them. The absence of overt structure suggested that
there are no immediately clear clusters of participants with quantitatively distinct performance
statistics. Additionally, there are no people who exhibit a capacity to generate performant models for
other people, nor are there any people for whom other people’s models always perform well.
Extended Data Fig. 5c shows a scatter plot of the receiver score (CLER for a specific participant
when using the models of all other participants) vs the donor score (CLER for each participant when
using the model of a specific participant). The two metrics are weakly correlated and show high error
rates (CLER > 60% in all cases).
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Fig. 2 | Generalization performance of single- andmulti-participant models.

a, Cross-participant (horizontal) and cross-session variability (light lines) in gestural sEMG for four discrete
gestures (different rows and colors) across seven participants. Light lines are the high-pass filtered sEMG
power, averaged across all channels and all gesture instances during a single band placement. The bold lines
correspond to the average across all band placements.

b, t-SNE embedding of sEMG activations across participants for the four different gestures in a and 20
participants. Colormap as in (a), with shading reflecting different participants. We used a concatenation of the
0-, 1- and 2-diagonals of the sEMG covariance matrix over a 300ms window centered on each gesture instance
to yield a 48x60-dimensional feature space (see Online Methods). t-SNE was run in 2 dimensions with
perplexity 35 on the flattened feature space.

c, Single-participant models trained and tested on the same participant show better generalization across
sessions on discrete gesture classification as more training data is used. All pairwise comparisons are
significant, p < 10-10, Wilcoxon signed-rank test.

d, Models trained on a single participant generalize poorly across participants on discrete gesture classification
even when more training data is used. All pairwise comparisons are significant, p < 10-10, Wilcoxon signed-rank
test.

e-g, Classification error of decoding models trained to classify (e) wrist poses (flexion, extension, neutral), (f)
discrete gestures (up/down/left/right thumb swipes, thumb tap, index/middle press/release), and (g)
handwritten characters (a-z, 0-9, ,.?’!, space), as a function of number of participants in the training set.
Plots show mean +/- SEM classification error evaluated on a test set of held-out participants (39 for wrist pose,
100 for discrete gestures and 50 for handwriting). Inset equations show the form and parameters of the fitted
scaling curves, plotted with dashed lines for each task and model size (N measured in units of 100’s of
participants and D measured in millions of parameters). Note for the largest model for discrete gestures,
indicated by an open circle, we used varying numbers of sessions per participant (see Online Methods for full
details).
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O�ine evaluation of generic models
To avoid the need to train and tune models for each individual, we trained generic models that are
able to generalize across people. To do this, we collected large quantities of data from thousands of
data collection participants. For each task (i.e. wrist pose, discrete gestures, and handwriting), data
was collected open-loop to train the decoding models. See Online Methods for further details.
A natural question when training generic models is how performance of the model scales with the

number of participants whose data is included in the training corpus. Of secondary interest is how
this performance scaling relationship interacts with size of the architecture (i.e. number of model
parameters). To explore these relationships, we looked at offline decoding performance of models
trained on varying quantities of training data (Fig. 2e-g). The offline evaluation was performed
entirely on held-out participants as a way of estimating model performance for a participant whose
data was not included in the training set. The function fit to the empirical performance data is an
inverse power law both as a function of parameters and data quantity, consistent with the scaling
properties of large language models (Hoffmann et al. 2022) and vision transformers (Zhai et al.
2022). Note that the parameters of the scaling relationship are shared across architecture sizes (see
Online Methods). In general we observed reliable performance improvements as a function of
increasing number of participants in the training corpus as well as overall better performance for
larger models.

Online evaluation of generic models
Ultimately, closed-loop performance of our sEMG decoding models is the main metric that confirms
their HCI utility. For each task, closed-loop evaluation was performed on naive participants who had
not previously had meaningful experience using any sEMG decoder on these tasks (the same N=20
for wrist pose and handwriting, N=24 separate participants for discrete gestures). The core tasks
were using the wrist pose decoder to continuously control a 1D cursor to acquire targets, the discrete
gestures decoder to navigate and perform actions in a discrete lattice, and the handwriting decoder
to write out prompted phrases that were then visualized on the screen (see Online Methods for
evaluation tasks; see Supplementary Video 1, 2, 3, 4 for representative performance; see Extended
Data Fig. 6 for depiction of task dynamics). For each task, participants performed 3 distinct blocks
of trials to allow for characterization of learning, with the first block always being a practice block
(10 trials for discrete gestures and handwriting, 50 trials for wrist pose) that allowed them to adapt
to the controller.
For all tasks, we observed learning effects, where participants improved with experience. During

the practice block, the study supervisor gave verbal coaching as needed to participants to encourage
them to learn the gestures to complete each task. Coaching was along the lines of “hold your hand
like this”, “perform the swipe faster”, “write more continuously, without pausing between each
character”, etc. Coaching was actively provided by default only during the practice block, whereas in
the evaluation blocks it was provided only on trials that users struggled to complete. The same style
of coaching was used for evaluation blocks as during practice. While participants were typically able
to perform each task on their own after the initial practice block, for the discrete gestures and
handwriting tasks we found that coaching during the evaluation block was valuable for a subset of
participants.
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Every participant was able to complete every trial of the three tasks. For wrist pose control, all
participants were able to successfully move the cursor to each target and stay on the targets for 500
ms to acquire them. Performance was characterized by time to target acquisition (Fig. 3d) and dial-in
time, which measures the time taken to get back to the target after exiting it prematurely (Fig. 3e;
see Online Methods for definitions). We found that participants continued to improve in both of
these metrics as they performed each block of the task. While offline classification metrics for the
wrist pose decoder show meaningful rates of misclassification (Fig. 2e), the use of the model in
closed-loop for continuous control supported reasonable performance by the metrics presented in
Figures 3d and 3e. All participants successfully acquired the target in every trial and the majority of
them subjectively reported that the cursor moved in the intended direction >80% of the time
(Extended Data Fig. 7c).
For discrete gestures, all participants were able to complete the task by navigating with the swipe

gestures and performing the activation gestures (thumb tap, index pinch-and-hold, middle
pinch-and-hold) when required. Performance on the discrete gesture task was characterized by a
measure of how often the first detected gesture following a prompt matched the prompted gesture
(Fig. 3f) as well as how long it took to complete each prompted gesture (Fig. 3g). Acquisition rates
improved with practice but first hit probabilities did not, suggesting that participants were adapting
to the task rather than to the model. The confusion matrix across discrete gestures is shown in Fig.
3h. Note that errors on this task (reflected in both confusions and first hit probabilities) are a
combination of model decoding errors as well as “cognitive” errors, where the participant performed
the wrong gesture. Index and middle holds were sometimes released too early (i.e. the detected
release followed the detected press less than 0.5s later), which are indicated in this confusion
matrix as an “early release”. The rate of misclassification seen offline (~7% mean error over users,
Fig. 2f) is comparable to the closed loop confusion rates (~93%mean accuracy over users, diagonal
of Fig. 3h).
Performance of the closed-loop handwriting decoder was evaluated by participants entering

prompted phrases and was characterized by character error rate (Fig. 3i) and speed of text entry (Fig.
3j). Improvements from practice to evaluation blocks indicate that participants were able to use the
practice trials to discover handwriting movements that were effective for writing accurately with the
decoder.
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Fig. 3. Generic sEMG decodingmodels enable closed-loop control in diverse interaction tasks.

a-c, Schematics of the three closed-loop interaction tasks demonstrated here. (a) A horizontal 1D cursor task
in which participants continuously control a cursor (red circle) to acquire a target (blue rectangle) in a row of
possible targets (gray rectangles). The participant sees all the possible targets with this trial’s target
highlighted; when the target is captured, it disappears and a randomly chosen target among the ones
remaining is highlighted to begin the next trial. (b) A discrete grid navigation task where participants use
discrete thumb swipe gestures to navigate along rectilinear trajectories and perform prompted actions when
specified by colored shapes. (c) A prompted text entry task in which participants input text via handwriting
movements. (See Supplementary Videos 1-4).

d-e, Performance of N=20 naive test participants using the wrist-pose decoder to perform a horizontal 1D
continuous cursor control task. (d) Mean target acquisition time in each block of the task; median in final
block is 1.95s. Here and below, boxplots show the distribution over participants and overlaid gray lines show
individual participants’ data. (e) Mean dial-in time in trials in which the cursor prematurely exited the target
before completing the 500ms hold time; median in final block is 1.61s. Inset shows the fraction of trials in
which this occurred; median in final block is 38.4%. For both acquisition time and dial-in time, performance in
each block significantly improved relative to the previous block, indicating learning effects over time.

f-h, Performance of N=24 naive participants on a discrete grid navigation task in which participants were
prompted to perform the 9 discrete gestures. (f) Fraction of trials in each block in which the first gesture
detected by the model was the correct one (“first hit probability”, out of 130 total prompted gestures in each
block); median in final block is 0.92. (g) Participants’ mean gesture completion rate in each task block;
median in final block is 0.88 completions per second. Mean gesture completion rate in each block significantly
increased over the previous block, indicating learning effects over time. (h) Discrete gesture confusion rates in
evaluation blocks, averaged across participants. Confusion rates are expressed as a percent of instances in
which the corresponding gesture was expected (across rows).

i-j, Performance of N=20 naive test participants on a handwriting task. (i) Character error rate (CER) over
prompts in each block; median in final two blocks is 0.048 and 0.052. CERs were significantly lower in the
evaluation blocks than in the practice block. (j) Participants’ aggregate adjusted words per minute (aWPM): ((1
- CER) * WPM) over prompts in each block of the handwriting task; median in final two blocks is 17.0 and 13.9
adjusted words per minute. Note that a few outlier prompts with poor performance (e.g. due to accidentally
pressing the submit button before completing the prompt) had a strong influence on the aggregate metric for
some users; the median CER or aWPM over prompts was respectively lower (0.039 and 0.046 in last two
blocks) and higher (19.6 and 17.7) than the aggregate over prompts.

For all panels, one and two asterisks respectively indicate p<0.05 and p<0.005, and “ns” indicates “not
significant” (p>0.05); one-tailed Wilcoxon signed-rank test.

Representations learned by the discrete gesture model
The neural networks employed as generic sEMG decoding models for this work learn to recognize
sEMG patterns based on training with participant data. To confirm our intuitions about how the
decoders function, we visualized the representations learned by the intermediate layers of the
discrete gestures decoder. The network architecture consisted of a 1D convolutional layer, followed
by 3 recurrent LSTM layers (Hochreiter and Schmidhuber 1997) (Fig. 4a), and finally a classification
layer (not shown).
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To interpret the convolution layer, we visualized representative filters (Fig. 4b) alongside putative
MUAPs (Fig. 4c) detected using the wristband. The filters appear to form a coarse basis set spanning
the statistics of MUAPs; specifically, Fig. 4d,e show the general similarity in frequency content and
spatial envelope between the putative MUAPs and emergent convolutional filters.
To examine the intermediate LSTM representations, we visualized the changing representational

geometry across layers. We analyzed the representations of four properties: gesture category,
participant identity, band placement, and gesture-evoked sEMG power (a proxy for behavioral
variability over executions of the same gesture). Fig. 4f-h show LSTM hidden unit activity at each
layer evoked by snippets of sEMG activity triggered on discrete gesture events, colored by one of the
four aforementioned properties. By examining the dominant principal components (PCs), we
observed a trend of gesture category becoming more separable deeper in the network as the
representations of each gesture become more tightly clustered and less sensitive to nuisance
variables (participant identity, band placement, and power). With increasing depth in the network,
gesture category accounted for an increasing proportion of the variance in the representation of
each layer (Fig. 4i; Online Methods). In summary, the network learns to solve this task by
progressively shaping its representation of the EMG to be more and more invariant to nuisance
variables.
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Fig. 4 | The discrete gesture decoder learns representations that are physiologically grounded and with
deeper layers increasingly organized by gesture category and invariant to nuisance variables.

a, Schematic of network architecture, consisting of a convolutional layer followed by three LSTM layers. Final
linear readout and intermediate normalization layers are not shown (Online Methods).

b, Representative convolutional filter weights from the first layer of the trained model. Filters are typically
spatially localized and have a bandpass frequency response.

c, Example putative MUAPs recorded with the sEMG wristband (after high-pass filtering, following the same
preprocessing procedure for the data inputted to the model).

d, Frequency response, normalized by its peak, of channel with maximum power, for each example
convolutional filter from panel b (thin blue lines) and each MUAP in panel c (orange lines). Thicker blue line
shows the median over all convolutional filters in the trained network. The full distribution of spectral
properties of all the convolutional filters are shown in Extended Data Fig. 8. Dashed black line shows the mean
frequency response over channels of sEMG from 10 randomly sampled sessions from the model training set.
Note that the sEMG is pre-processed by high-pass filtering (see Online Methods), thus the frequency response
cuts off sharply at 40Hz.

e, Per-channel root mean square power, normalized by its peak, for each example convolutional filter from
panel b (thin blue lines) and each MUAP in panel c (orange lines). As in previous panel, thicker blue line shows
the median over all convolutional filters in the trained network and dashed black line shows the per-channel
normalized RMS power of sEMG over 10 sessions from the model training set.

f-h, PCA projection of LSTM representations of 500ms sEMG snippets aligned with instances of each discrete
gesture, from 3 participants held out from the training set, with 3 different band placements. Each row shows
the representation of each LSTM layer. Each column shows the same data, colored by: (f) discrete gesture
category, (g) participant identity and band placement, or (h) sEMG root mean square power at the time of the
gesture. Whereas the discrete gesture category appears to become more tightly clustered at the deeper LSTM
layers, nuisance variables like participant identity, band placement, and sEMG power appear to be more
clustered at the earlier LSTM layers and less so at the deeper layers.

i, Proportion of total variance accounted for by each variable, for each layer (mean and 95% confidence
intervals estimated from all 50 test participants; see Online Methods). The proportion of variance accounted
for by discrete gesture category increases as a function of layer depth whereas that accounted for by the
participant identity and band placement nuisance variables decreases. Differences between layers are
statistically significant in most cases (p < .05, one-tailed paired sample t-test) as indicated by asterisks. Error
bars (barely visible) show 95% Student-t confidence interval for the mean.

Personalizing sEMG handwriting models improves average
performance
While generic models allow a neuromotor interface to be used with little to no setup, performance
can be improved for a particular individual by personalizing the generic model to data from that
participant. We explored personalization for the handwriting task through the fine-tuning of all of
the generic model’s parameters using additional supervised data from a set of 40 participants not
included in the training data of the generic model. For each participant, we held out a single session
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that was recorded in each of the three postures used in training (see Online Methods). We then
trained personalized models for 300 epochs without early stopping on prompts sampled uniformly
at random from all of their remaining sessions (Fig. 5a).
Fine-tuning generic models improved their average CER for all amounts of additional data and for

all numbers of pre-training participants (Fig. 5b). In all cases, more personalization data led to
further reductions in population average CER. However across all generic models, as the generic
model was pre-trained with data from more participants the absolute and relative improvement in
CER from personalization diminished (Fig. 5c), indicating that there are diminishing returns to
personalizing already performant generic models.
Personalizing models can thus be seen as an alternative to expanding the generic corpus size in

order to decrease a model’s CER on the target participant (Fig. 5d). For example, for the model
pre-trained on the smallest corpus of 25 participants (or 1,900 minutes), personalization with 20
minutes of data from the target participant was equivalent to training a generic model with 14,000
minutes of additional data from other participants—effectively adding 7x as much data as in the
original pre-training corpus. For the model trained on 3,200 participants (or 240,000minutes), 10
minutes of personalization led to a model as performant as a generic model pre-trained on double
the number of pre-training participants. Thus as more data from other participants is added, the
effective enhancement of the generic training corpus achieved through personalization diminishes.
Conversely, fixed enhancements of the generic training corpus correspond to a diminishing amount
of personalization data—adding 14,000 minutes of data is equivalent to 20 minutes of
personalization for the 25 pre-training participant model and only about 1 minute for the 200
pre-training participant model.
While personalization improved performance on the target participant, model performance

improvements from personalization did not transfer across participants. For the most performant
generic model trained (6,527 participants, 60.2M parameters), we found that personalizing on one
participant and evaluating on another participant generally had a negative impact on performance
when compared to the generic model performance (Fig. 5e). Personalization on the same participant
improved performance in 88% of participants and led to a relative improvement of 8.35% ± 2.36%
(median ± s.e.m. over participants), while personalization on a different participant (data from one
participant used to personalize a model for another participant) only improved performance on 7%
of such participant pairs and led to an average relative decrease of 8.86% ± 0.53% (median ± s.e.m.,
taken across each evaluation participant after averaging across personalized models, Online
Methods).
Personalization disproportionately improved the performance of poorly performing participants

across all generic models (Fig 5f). For example, for generic models pre-trained with 6,527
participants, personalization provided larger relative gains for participants with higher generic model
CER (Fig. 5f, inset) and more moderate gains or occasional regressions for those with already low
CERs. (In Extended Data Figure 9, we show that these regressions can be mitigated with early
stopping during fine-tuning, albeit at the cost of increased data required for validation.)
The degree to which models can be personalized depends on the ability to collect fine-tuning data

in a given deployment environment, the need for the performance gains from personalization, and
the ability to collect pre-training data. Overall, these results define clear trends and tradeoffs for
personalization that enable rational design of data collection and modeling strategies for
neuromotor interfaces.
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Fig. 5 | Personalization of sEMG handwriting models improves performance over a generic model.

a, Schematic of the supervised domain adaptation approach for handwriting personalization. Predictions for
example prompts are shown before (above the bold prompt, e.g., “howdy!”) and after personalization (below
the bold prompt) for two participants. Prompts are shown in black, correct predictions in green, and incorrect
predictions in purple.

b, The performance of a 60.2M parameter model pre-trained on varying numbers of participants (red).
Performance of pre-trained models fine-tuned on varying amounts of personalization data for each test
participant (shades of blue). All points represent the population mean of test participants for each setting. The
dashed lines show power law fits (Online Methods).

c, The relative improvement of personalized models increases with increasing duration of fine-tuning data per
participant but decreases as the number of pre-training participants increases. The y-axis shows the relative
reduction in CER that personalization provides beyond a given generic model, with higher numbers indicating
larger improvements. The x-axis and colors are the same as b. Dashed lines are the relative improvements
calculated from the power law fits shown in b.

d, The relative increase in the amount of pre-training data required to match performance for a given amount of
personalization data decreases with larger amounts of pre-training data (Online Methods). The y-axis shows
the relative increase in the number of pre-training participants, the x-axis and colors are the same as b. Dashed
lines are the relative increases calculated from the power law fits shown in b.

e, Personalizing models yields negative average transfer to other participants but can occasionally benefit some
participants. Each column shows a single personalized model (on 20 minutes of data), each row a single test
participant’s data, and the colors the relative reduction in CER of that model from generic model performance
on that participant’s data (positive, green, is an improvement). Diagonals show improvement due to
personalization on the same participant. We use the 60.2M parameter model pre-trained on 6527 participants
as base for personalization. Columns and rows are sorted by participants most improved by personalization
(diagonal).

f, Across the population of test participants, those with worse performance on the pre-trained model tend to
exhibit larger relative improvement, and the best performing users occasionally exhibit regressions. We show
the relative reduction in CER (higher is better) of the 60.2M parameter model fine-tuned on 20 minutes of data
without early stopping. Results are shown for all numbers of pre-training participants. Each dot represents one
participant (participants are repeated across pre-trained models). The x-axis shows generic model performance
for each model. We show the range of Spearman correlation coefficients for each fit and the median p-value
(maximum p=0.0035).

Discussion
We introduced an easily donned/doffed wrist-based neuromotor interface capable of enabling a
diverse range of computer interactions for novel users. We began by developing a robust and
scalable data collection framework that allowed us to collect large training corpora across diverse
participants (Fig. 1). We then used contemporary supervised deep learning to produce generic sEMG
models that overcame issues observed in single-participant models that have long stymied
generalization in brain computer interfaces (Fig. 2). The resulting sEMG decoders enabled
continuous control, discrete input, and text entry in closed-loop evaluations without any need for
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session- or participant-specific data or calibration (Fig. 3). A dissection of intermediate
representations in the discrete gesture neural network decoder highlighted its ability to disentangle
nuisance parameters related to band placement and behavioral style (Fig. 4). Finally we
demonstrated improvements in handwriting decoder that increase with ever more personalization
data, suggesting that models can continue to improve through model refinement or scaling data
collection (Fig. 5). Together this work defines a framework for building generic interaction models
using non-invasive biological signals.

Related work in HCI and BCI
The work presented here sits at the nexus between HCI and BCI, building a bridge between these
fields. The HCI community has placed significant emphasis on advancing gestural input for various
technology applications by deploying machine-learning-backed solutions for differing sensing
modalities such as computer vision (Kinect, Meta Quest, etc.) inertial measurement units (Wen,
Ramos Rojas, and Dey 2016), sEMG (Mendez et al. 2017; Saponas et al. 2008), bio-acoustic signals
(Laput, Xiao, and Harrison 2016), electrical impedance tomography (Zhang and Harrison 2015),
electromagnetic signals (Laput et al. 2015), and ultrasonic beamforming (Iravantchi, Goel, and
Harrison 2019). The most direct antecedent of the work presented here is the now discontinued
sEMG Myo armband (worn on forearm) by Thalmic Labs, as used for gesture detection by e.g.,
(Mendez et al. 2017), who built single-user models to classify more intuitively separated gestures
such as wrist extension, open hand, etc. We demonstrated our sEMG-RD’s advantages over existing
HCI work in three main areas: self-contained sensing suitable for mobile environments,
generalizable and performant algorithms trained on thousands of participants for cross-user
generalization, and an approach that encompasses a broader spectrum of recognition, including
handwriting, gestures, and poses to input text and discrete and continuous controls.
Our non-invasive sEMG work has intimate connections to BCI. EEG-based BCI systems lag

significantly behind other modalities in terms of performance for a variety of reasons, primarily
relating to issues with signal quality and secondarily interpretation, but also issues such as a lack of
unification around hardware or software (Jayaram and Barachant 2018). As a result, modeling
efforts have been focused on small models and relatively small datasets (e.g. <50 users, (Lawhern et
al. 2018)). Beyond EEG-based BCI, the use of EEG to analyze sleep has more recently deployed neural
networks on tens of thousands of participants (Perslev et al. 2021) and EEG-based BCIs (notably,
spellers) can still achieve impressive bitrates of 100-300 bits per minute using variations of the
steady-state visually evoked potential paradigm (Maslova et al. 2023) (our handwriting decoder
showed a per-minute bit rate of 528 bits per minute). However, these EEG systems—while highly
optimized for speed—require individualized setups and highly intrusive display elements.
In the field of intracortical BCI, approaches have so far been limited to single participant studies

and hindered by nonstationarities in recordings and over sessions (Degenhart et al. 2020; Brandman
et al. 2018; Sussillo et al. 2016; Gilja et al. 2012). While the field of intracortical BCI is transitioning
to neural network decoders (Sussillo et al. 2016, 2012; Willett et al. 2023; Metzger et al. 2023), it
remains focused on solving these calibration issues, which result largely as a function of limited
data. Given that sEMG signals derive from the summed activity of motor unit firing, it is possible that
sEMG decoding methods can guide methods developed for intracortical BCI systems, despite the
fact that sEMG is completely noninvasive with more direct correspondence between recorded signals
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and motor behavior. The large-scale approaches demonstrated here may provide direction to the
larger BCI field as it scales up beyond single-user studies, e.g. (Musk and Neuralink 2019).
As a point of comparison, (Willett et al. 2021) describe an invasive BCI for decoding imagined

handwriting that achieves mean text entry speeds of 18 words per minute and error rates of 5.9%.
This is the fastest character-based BCI for text entry in the literature. The results reported here for
our non-invasive method are generally similar, with a median speed over users of 17.7 words per
minute (aggregate over prompts, median over prompts was 20.9 due to outliers) and median CER
over users of 4.8% (aggregate over prompts, median over prompts was 3.9%). However, we
emphasize that the (Willett et al. 2021)) system requires surgical implantation of electrodes and 5
days of practice, whereas our focus is on non-clinical populations and only requires non-invasive
electrodes and minutes of practice. Our results are not yet as performant as typing on a mobile
keyboard, for which (Palin et al. 2019) measure speeds for 37,000 users of an online typing test tool
with users’ own devices that could include autocorrect and other assistive technologies. They find an
average typing speed of 36.2 words per minute and an uncorrected error rate (percentage of errors
remaining after user editing) of 2.3%. Finally, the fastest text entry BCI is described by (Willett et al.
2023) and operates at the word-level on attempted speech from a subject with amyotrophic lateral
sclerosis via invasive intracortical recordings. This system was able to achieve speeds of 62 words per
minute with a 23.8% word error rate on a vocabulary of 125,000 words. While our current
noninvasive sEMG-based handwriting interface operates at the character-level, word-level models
achieving faster writing speeds could be feasible though would require users to learn novel schemes.

Datasets andmodel fine-tuning
Our results suggest that collecting large corpora of diverse data provides a means for constructing
generalized sEMG models that are performant across a diverse population. We recapitulated the
limitations of single-participant models (Fig. 2) and showed that generalization can be achieved
using sufficiently large, diverse datasets and high-capacity deep learning models (Fig. 3d-k). In
particular, we observed power law scaling of model performance with the number of participants
recorded (Fig. 3a-c). These power laws mirror emerging work in natural language processing and
computer vision that highlights power law scaling of network performance with the amount of data
recorded (Hoffmann et al. 2022; Kaplan et al. 2020).
The fine-tuning of models on data from a specific individual further improved system performance

for that individual (Fig. 5). While generic model performance may suffice for most users, this form of
personalization can be applied selectively to users for whom the generic model works insufficiently
well due to differences in anatomy, physiology, or behavior. Personalization has shown benefits to
accuracy for automatic speech recognition in language models (McGraw et al. 2016) and acoustic
models (Mdhaffar, Tommasi, and Estève 2021) as well as speech enhancement (Eskimez et al. 2022).
(Pillutla et al. 2022) have shown that federated learning is able to partially personalize models in the
field in a privacy preserving manner that does not send user data to a centralized repository, so it is
possible that the user benefits of such approaches could be achieved purely on a user’s own device.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2024. ; https://doi.org/10.1101/2024.02.23.581779doi: bioRxiv preprint 

https://paperpile.com/c/OQiGG4/HYgK
https://paperpile.com/c/OQiGG4/fGOf
https://paperpile.com/c/OQiGG4/fGOf
https://paperpile.com/c/OQiGG4/fVAM
https://paperpile.com/c/OQiGG4/a7eO
https://paperpile.com/c/OQiGG4/a7eO
https://paperpile.com/c/OQiGG4/KPmG+JP08
https://paperpile.com/c/OQiGG4/Mpto
https://paperpile.com/c/OQiGG4/h8s7
https://paperpile.com/c/OQiGG4/QAXW
https://paperpile.com/c/OQiGG4/0oCX
https://doi.org/10.1101/2024.02.23.581779
http://creativecommons.org/licenses/by-nc-nd/4.0/


Future directions
This non-invasive, wrist-based interface allows direct intentional motor signal detection from the
muscle; thereby, the sEMG decoder opens new directions in novel and accessible computer
interactions. For instance such a decoder could be used to directly detect an intended gesture’s
force, which is generally unobservable with existing camera or joystick controls. Moreover the
sensitivity of sEMG to detect signals as subtle as putative individual MUAPs (Fig. 1b) enables the
creation of extremely low-effort controls—an important innovation with potential impact for people
with a diverse range of motor abilities or ergonomic requirements. Explorations of interactions in
neuromotor signal space—as opposed to gesture space—may enable entirely novel forms of control,
for example by exploring the limits of novel muscle synergies or interaction schemes that directly
depend on individual motor unit recruitment or firing rate control.
Scientifically, a viable research platform, such as sEMG-RD, could enable studying, for example,

the effects of neurofeedback on motor unit activity for novel human-machine interactions
(Formento, Botros, and Carmena 2021; Bräcklein et al. 2022, 2021), decoding of motor function
(Stachaczyk et al. 2020; Tanzarella et al. 2023), or investigating the underpinning mechanisms of
motor unit control (Marshall et al. 2022; Hug et al. 2023).
Finally, in the clinic, the ability to design interactions that require only muscular activity rather

than performance of a specific movement or interaction with a keyboard or joystick could enable
viable interaction schemes for those with reduced mobility, muscle weakness, or missing effectors
entirely (Yamagami et al. 2023). All of these novel interactions will be facilitated by continued
improvements in the channel count and sensitivity of sEMG devices, and potentially other signals
recorded at the wrist.
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OnlineMethods

Hardware

sEMG-RD Device
The surface electromyography devices consisted of two primary subcomponents: a digital capsule
and an analog wristband (Extended Data Fig. 1). The digital capsule comprised the battery, antenna
for Bluetooth communication, and a printed circuit board that contained a microcontroller, an
analog-to-digital converter, and an inertial measurement unit. The analog wristband comprised
discrete links that each housed a multi-layer rigid printed circuit board that contained the low-noise
analog front-end circuits and gold-plated electrodes. The analog front end applied 20 Hz high-pass
and 850 Hz low-pass filters to the data.
These printed circuit boards were inserted into Nylon 12 PA 3D printed housings and then strung

together with a multi-layer flexible printed circuit board along with a strain-relieving fabric. An
elastic nylon cord was routed continuously between the links and was tied together at the wristband
gap to form a clasp and tensioning mechanism. Finally the digital capsule was connected to the
analog wristband through a connector on the flexible printed circuit board and fastened together
with screws for mechanical stability. The device underwent a biocompatibility testing process to
ensure its safety.

Data collection and processing

MRI scan
In order to visualize the position of the sEMG-RD’s electrodes relative to wrist anatomy we collected
a high-resolution anatomical MRI scan (Siemens Magnetom Verio 3T) from a consenting
participant’s right forearm. We collected axial scans along the forearm, beginning from just distal to
the wrist and ending just distal to the elbow. The scan was collected pursuant to an IRB governed
study protocol conducted by Imperial College London.

Participant Experience
Study recruitment and participant onboarding followed IRB-approved protocol(s), which included
providing participants with information about the study protocol and asking them to review and
sign an IRB-reviewed consent form prior to beginning the study. Participants were provided with
the opportunity to ask questions prior to their participation and were able to discontinue their
participation at any time. On-site research administrators monitored participants during the study
protocol(s) to ensure participant well-being. Participants were financially compensated for their
time participating in the study.
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Collection at scale
Participants visited data collection and lab facilities to perform the study protocols. On a given day,
there were up to 300 participants who partook in a study. Once a participant was in the facility,
measurements of the wrist and hand were taken, including forearm circumference and wrist
circumference. Next, the participant was fitted with an sEMG-RD band around the wrist to collect
sEMG data. Instructions were provided for gestures and movements prompted in the subsequent
study session expected to last around 3 hours (including rests and briefing).
All responses and information provided during the study were collected and stored using

de-identification technique(s) in a secure database.

Prompted study design
All of our tasks were framed as supervised machine learning problems. Insofar as the behaviors we
prompted involved overt movements, we could hypothetically leverage instrumentation to obtain
ground-truth labels, which would complement the prompted labels. We experimented with various
modalities of ground truth labels; however, instrumentation also imposed constraints on what could
be explored (dedicated sensors need to be built for each individual modeling task) and limited
ecological validity of the signal (physical sensors can restrict movement range, poses, conditions,
etc). Therefore we relied on experimental design and prompting to obtain approximate ground truth
for our data, rather than direct instrumentation. We acknowledge the potential tradeoff between
quality of labels and scalability of the data collection process.
Training and evaluation protocols were implemented in a custom, internal software framework

that leveraged the capabilities of Lab.js, an established open-source, web-based study builder
(Henninger et al. 2022). This framework orchestrated both the presentation of task-specific
prompter applications and the recording of annotations from these applications. The framework
was developed using TypeScript and the task-specific prompters were built upon the React
framework.

Real-time data collection system
Data collection for our studies was performed using an internal framework for real-time data
processing that supports data collection, offline model training and benchmarking and online
evaluation. At its core, the framework offers an engine for defining and scheduling a data processing
graph. On the periphery, it provides well-defined APIs for real-time performance monitoring and
interaction with consumer applications (e.g. prompting software, applications for stream
visualization).
For data collection, our internal platform served as the host for recording real-time signals and

annotations to a standardized data format (i.e. HDF5). For offline model training and benchmarking,
our internal platform provides an API for batch processing of data corpora. This helps to generate
featurized data from the recorded raw-signals and apply model inference for offline evaluation. To
ensure online and offline parity, the internal platform also supports running the same sequence of
processing steps on real-time signals for online evaluation.
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Training data corpora

Wrist pose corpus

The wrist pose training corpus included sEMG recordings from 389 participants (3 recording
sessions per participant). In each session, a participant repeatedly held 5 wrist poses: wrist flexion,
wrist extension, wrist ulnar deviation, wrist radial deviation and wrist neutral. Each pose was
performed 8 times, with the order of the poses randomized. The hold times for each pose was
between 2 and 5 seconds drawn uniformly at random. After holding each pose, the participant
rested between 0.5 and 1 seconds (drawn uniformly). The participants performed these movements
in the “laser-pointer” posture with a loose fist in front of the body, thumb at top and elbow at
approximately 90 degrees.

Discrete gesture corpus

The discrete gesture training corpus was composed of data from 4800 participants. As noted in the
main text, there were nine prompted gestures: index and middle finger presses and releases, thumb
tap, and thumb left/right/up/down swipes. Each session consisted of stages in which combinations
of gestures were prompted at specific times. These combinations usually included the full set of
trained gestures, but in some stages were restricted to specific subsets (e.g. pinches only, thumb
swipes only). During data collection for these stages, participants were asked to hold their hand and
arm in one of a range of postures or to translate/rotate their arms while completing gestures. In
~10% of stages, instead of prompting specific timing, participants were asked to complete
sequences of 3-5 gestures at their own pace. About ⅓ of the training corpus was composed of a
range of null data in which participants were either asked to generate specifically-timed null
gestures (e.g. snaps, flicks) or to engage in more loosely-prompted longer form null behaviors (e.g.
typing on a keyboard).

Handwriting corpus

The handwriting recognition corpus comprised sEMG recordings from a total of 6627 participants.
The data was collected in short blocks, during which participants were prompted to write a series of
randomly selected items, including letters, numbers, words, random alphanumeric strings, or
phrases. The set of phrases used for sampling was sampled (after filtering to remove offensive words
and phrases) from a dump of Simple English Wikipedia in June of 2017, the Google Schema-guided
Dialogue Dataset (Rastogi et al., 2020), and the Reddit corpus from ConvoKit (Chang et al., 2020).
Each participant contributed varying amounts of data, but approximately one hour and 15 minutes
each on average. Each block was performed in one of three randomly chosen conditions: seated
writing on a surface, seated writing on their leg as the surface, or standing writing on their leg. Note
that we did not have ground truth information about the fidelity with which participants wrote these
prompts, but for a subset of participants, handwriting was performed with a Sensel (Sunnyvale, CA)
touch surface device. Visual examinations of a subset of the Sensel recordings suggested that
approximately 98% of prompted characters were executed successfully.
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sEMG processing and analysis

Putative motor unit action potential extraction
Fig. 1b shows MUAPs evoked by subtle contractions of the thumb and pinky extensors in one
participant. For each digit, the participant selected the sEMG channel with maximum variance
during sustained contractions based on visual inspection of the raw signals. Subsequently, the
participant was prompted to alternate between resting and performing sustained contractions of
the chosen digit for three repetitions while receiving visual feedback about the raw sEMG signal on
the selected channel. Each rest and movement prompt was 10 seconds long with 1 second
inter-prompt intervals. The participant used the visual feedback on the selected channel to titrate
the amount of generated force to recruit as few MUs as possible with each contraction.
MUAPs were extracted offline for each digit using a simple spike detection algorithm. The sEMG

traces were first pre-processed by filtering with a 2nd order Savitzky-Golay Differentiator filter. The
filtered sEMG was rectified to improve the alignment of detected MUAPs, averaged over channels,
then smoothed with a 2.5ms Gaussian filter to obtain a 1D sEMG envelope. Spikes were detected via
peak finding on the sEMG envelope using scipy.signal.find_peaks with prominence=0.5
(Virtanen et al. 2020). MUAPs were extracted using a 20ms long window across all sEMG channels,
centered on each peak. The waveforms shown in Fig. 1b were obtained from the selected channel for
thumb (12; blue) and pinky (14; pink) extension using all MUAPs detected during the second
prompted movement period; no attempt was made to cluster MUAPs into different units. For
visualization, the opacity of the each trace was scaled as 1 / (1 + |ai + median(𝒂)|), where ai is the
peak-to-peak amplitude of the ith MUAP and 𝒂 are the amplitudes of all detected MUAPs for each
contraction.

Multivariate power frequency (MPF) features
The wrist pose and handwriting tasks used custom features extracted from the raw sEMG; we refer
to this feature set as multivariate power frequency (MPF) features. To obtain these features, we first
applied a 40 Hz high-pass filter. We then extracted the squared magnitude of the cross spectral
density with a rolling window of 160 sEMG samples and a stride of 40 samples. The cross spectral
density was chosen to preserve cross-channel relationships in the spectral domain. The magnitude
of cross spectral density was estimated with a discrete Fourier transform (64 sample, stride of 10)
and binned into 6 frequency bins (0-62.5, 62.5-125, 125-250, 250-375, 375-687.5, 687.5-1000Hz).
This produced a set of 6 symmetric and positive definite 16x16 square matrices that update every 40
samples, for an output frequency of 50Hz. Building on robust results in the EEG space for this class
of features, each of these matrices was then projected into their respective Riemannian tangent
space (Barachant et al. 2012). Finally, the first three off-diagonals were preserved and half-vectorized
for each matrix, and then concatenated across the 6 frequency bins, producing a single 384 (6x3x16)
dimensional vector for each 80ms window. An implementation for both the cross spectral density
estimation and tangent space mapping can be found in the pyRiemann python toolbox (Barachant
et al. 2023).
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Discrete gesture time alignment
Since all discrete gesture data collection was performed by prompting participants, we only had
access to approximate timing of the gesture execution (i.e. the time at which the participant was
prompted to perform the gesture). However, training sEMG decoding models to infer when the
participant performs a gesture required more precise alignment of labels with the signal in order to
be effective. While a task like handwriting used an alignment free loss (i.e. Connectionist temporal
classification, CTC) and would be applicable in this task as well, forced-alignment allowed us to gain
much finer control over the latency of the detections produced by our models, which was critical for
practical use of discrete gesture as control inputs.
When gestures were well isolated, i.e. when the inter-gesture interval was greater than the

uncertainty of the timing, existing solutions from the literature could be readily deployed on sEMG
data, leading to robust inference of gesture timing (Williams et al. 2020). However, realistic data
collection involved rapid sequence of gestures in close succession, which made identification of
timing of individual gestures a challenging problem and required a dedicated solution. Therefore we
developed an approach to infer precise timing of the gestures.
Our approach was to infer timing of all gestures in a sequence, defined as a series of consecutive

gestures where uncertainty bounds overlap. We did this by searching for the sequence of gesture
timings that best explained the observed data according to a generative model of our MPF features.
First, for the purposes specifically of this timing adjustment stage, we defined the generative

model for a set of K gesture instances, as the sum of gesture-specific templates centered at
corresponding event times , with additive noise:𝑡

𝑘
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index (i.e. the gesture template for the class of gesture corresponding to event k), and a noise𝑘 𝑛(𝑡),
term. We note that this generative model is only valid for ballistic gesture execution and
power-based features. We also note that templates are shared across execution of the same gesture
type.
We define the generative inference as the joint optimization of gesture templates and times at

which each gesture occurred. We solved this via an expectation-maximization algorithm (Dempster,
Laird, and Rubin 1977): we first estimated the templates based on prompted times, then inferred
timestamps of the gesture sequence, and repeated with new inferred event times until convergence,
(i.e. when the timestamp updates across iterations of the EM algorithm were smaller than a
tolerance value).
Templates were estimated by an EMG analog of the regression-based estimator of the event-related

potential (rERP; (Smith and Kutas 2015), in order to disentangle overlapping contributions of
gesture when performed in fast sequence. We note here that the gesture templates are specificϕ

𝑘
(𝑡)

to each participant and band placement. Timings were obtained by the following optimization
problem:
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We optimized this numerically through a beam search algorithm, subject to additional ad hoc
constraints that bounded how far the adjusted times could deviate from the prompted times based
on priors from the data collection protocol.
Direct application of the above procedure produced timestamps that were referenced to the

session template, and there was an indeterminacy as to the timing offset within the gesture, which
can vary due to initial conditions. To better standardize alignment of template timing across
individuals, we performed a global recentering step at the end of timestamp estimation. Specifically,
we found the time of maximal correlation between the session template (i.e. for a particular
participant) and a global template (grand average of all templates across participants).

Additional details for single-participant models
Training details: To train the single-participant models for the discrete gesture classification task we
selected 100 participants that had completed at least 5 sessions of data collection and selected 5 of
those sessions. Then we randomly picked 4 of these sessions for training and the remaining held-out
session for testing. From these 4 sessions we randomly created nested subsets of 2, 3, and all 4
sessions to train 3 different models for each participant. Given the limited amount of training data
per model, we use the MPF feature and a small neural network as described below.
Architecture: The single-participant discrete gestures model took as input the MPF features. The

network architecture consisted of (a) one fully-connected (FC) layer with Leaky ReLU followed by
(b) cascaded time-depth separable (TDS) blocks (Hannun et al. 2019) across time scales and (c)
three more FC layers to produce a logit value for each of the 9 discrete gestures to be predicted. For
(b), we use two TDS blocks per time-scale: at each scale s, an AveragePool layer with kernel size 2^s
is applied to the output of (a) and fed to a TDS block with dilation 2^s. The output is then added to
the output of scale s-1 (if it exists) and passes through another TDS block with dilation 2^s as the
output of scale s to be used by the next scale s+1 (if it exists) or subsequent layers. We used 6 scales
(s=0,...,5), and the feature dimension was set to 256 for all TDS blocks and all but the very last FC
layer.
Optimization: We used the standard Adam optimizer with the following learning rate schedule: the

learning rate increases linearly from 0 to 1e-3 over a 5-epoch warm-up phase, then undergoes a
one-time decay to 5e-4 after epoch 25, and remains constant thereafter. Each model was trained for
300 epochs to avoid under- or over-fitting for single user models based on our experience. Training
was done using a binary cross-entropy loss.

Related deep learning architectures and approaches
The three HCI tasks described here, continuous pose prediction, discrete action recognition, and the
transcription of handwriting into characters, represent related but distinct time series modeling and
recognition tasks. Machine learning, and specifically deep learning, approaches have become
extremely popular solutions to these problems, including convolutional models (e.g., Karpathy et al.,
2014), recurrent neural networks (e.g., Graves et al., 2013), and streaming transformers (e.g., Gulati
et al., 2020).
As an example of the similarity between our tasks and established machine learning problems,

consider the relationship between handwriting recognition from sEMG and automatic speech
recognition (ASR) from audio waveforms. Both tasks map continuous waveform signals (with
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dimensionality equal to the number of microphones or sEMG channels) at a fixed sample rate, to a
sequence of tokens (phonemes or words for ASR, characters for our sEMG-RD). Components of our
modeling pipeline have analogs in ASR, including: feature extraction, data augmentation, model
architecture, loss function, decoding, and language modeling. As noted below, each of these
modeling pipeline components required substantive domain-specific modification for sEMGmodels.
For feature extraction, ASR typically uses log mel filterbanks; we used our analogous multivariate

power frequency features (Online Methods). For data augmentation, we used the ASR technique of
SpecAugment (Park et al., 2019), which applies time- and frequency-aligned masks to these spectral
features during training. A popular model architecture for ASR is the Conformer (Gulati et al., 2020),
which provides the advantages of attention-based processing in a form that is compatible with
causal time series modeling. We find that this method worked well for sEMG-based handwriting
recognition as well. A popular loss function for ASR is CTC (Graves et al., 2006), which allows neural
networks to be trained from pairs of waveforms and their textual transcriptions, without the need
for a precise temporal alignment. As we similarly had pairs of sEMG recordings and transcriptions
without precise temporal alignment, we also utilized CTC to train our models. When decoding
models at test time, ASR employs a beam search (Ney et al., 1989) to approximate the full
forward-backward algorithm lattice (Rabiner, 1989) while still incorporating predictions from a
language model, biasing decoding towards more likely character and word sequences. We similarly
integrated beam decoding with language modeling into our decoders (e.g., Pratap et al., 2020),
although in the experiments we used “greedy” CTC decoding for the sake of simplicity.

Wrist pose
To train wrist pose classification models, we focused on three wrist poses, which corresponded to a
subset of the prompted data: wrist flexion, wrist extension, and wrist neutral. We excluded wrist
ulnar deviation, wrist radial deviation, and rest, by masking out time points corresponding to those
poses in the loss function (cross-entropy loss). We consistently held out a fixed set of 20
participants for validation and 39 participants for testing, and varied the number of training
participants from 20 to 320. We used a batch size of 1024, with each sample in the batch consisting
of 3 (contiguous) seconds of recordings. When evaluating the model’s offline performance, we took
the most common prediction in the duration of each held pose as the model’s prediction for that
trial (8 trials per pose in each session; see Training data corpora for details).
Architecture: The wrist pose network architecture took as input our custom MPF features of the

sEMG signal. The network architecture consisted of two convolutional blocks, with each block
consisting of a convolutional layer (dropout=0.1), followed by layer normalization, and a
fully-connected layer (ReLU activations). Each layer in the network stack consisted of 128 hidden
units and the kernel size of the convolutional layer varied between 1 and 3.
Optimization: We trained each network with the AdamW optimizer for a maximum of 400 epochs,

with a learning rate of 5e-5 and weight decay of 1e-3. We used a cosine annealing learning rate
scheduler, with a minimum learning rate of 1e-8 at 400 epochs. Using the validation loss
(cross-entropy loss of the validation data), we performed early stopping when validation
performance did not improve for 50 epochs. We evaluated the test performance of the training
checkpoint with the lowest validation loss.
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Discrete Gestures
To train discrete gesture models, we segmented training data from participants into groups of 40,
80, 160, 320, 640, 1280, 2800 and 4800 participants. For each group, we tested the generalization
performance of models on offline data from the same set of 100 held-out participants. For
validation, another set of held-out users was used; we employed a random set of 16 users for the
training groups of size 40 and 80. Subsequently, for larger groups, 10% of the training users were
utilized for validation. Each dataset used in training, validation, and testing contained recordings
from only a single session per participant. For the largest model, dented with a separate marker on
the graph in Fig. 2, we used 4800 training participants and we included multiple sessions of data
when available (i.e. many participants collected multiple repeats of the open-loop training protocol).
This last point was not included in the fitting procedure for the scaling law, but this model was used
in the closed-loop evaluations.
Architecture: The discrete gestures network architecture took as input high-pass filtered sEMG

signal. The high-pass filtering was applied with a cutoff of 40Hz with the choice of cutoff
determined empirically and primarily motivated by the need to remove motion artifacts (De Luca et
al. 2010). The network architecture consisted of a convolutional layer with a stride of 10, reducing
the input frequency from 2kHz to 200Hz. This was followed by a layer norm layer, three LSTM layers,
another layer norm layer and a linear readout layer corresponding with nine classes, corresponding
to the number of gestures. For the smaller model, the dimensions of the convolutional layer and the
number of hidden units in the recurrent blocks were set to 128. For the larger model, they were set to
512.
Optimization: Networks were trained using the AdamW optimizer. To mitigate divergence during

training, gradient clipping was applied throughout. We further utilized a learning rate scheduler that
decayed the learning rate by a factor of 0.5 after a fixed number of epochs (i.e., every 25 epochs).
The learning rate for the smaller model was initially set to 1e-3, whereas for the larger model, it was
set to 5e-4. Training was done using a binary cross-entropy loss. Each model was trained for a
consistent wall clock duration. Final checkpoints were selected based on the model that yielded the
highest validation score, defined as classification accuracy.

Handwriting
To train handwriting models, we employed the CTC loss as described by (Graves et al. 2006).
Notably, we used characters instead of phonemes for this purpose. The characters predicted
included all lower-case letters [a-z], numbers [0-9], [space], and punctuation marks [,.?’!].
Additionally, we integrated a greedy implementation of the FastEmit regularization technique (Yu et
al. 2020). This regularization approach effectively reduced the streaming latency of our models by
penalizing sequences of 'blank' outputs.
Nine training corpora were generated, each containing a varying number of participants ranging

from 25 to 6527 in a geometric sequence (excluding the last point). Each corpus was a superset of
the previous corpus’s participants, ensuring that participants in the 25-participant corpus are also
present in the 50-participant and 100-participant corpora, and so on. Participants were uniformly
sampled without replacement from the entire corpus, preserving the distribution of data quantity
per participant found in the full corpus. We used 100 held-out participants to create our evaluation
corpora, which remained constant throughout our investigation. The validation corpus comprised
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data from 50 participants and was utilized for early stopping during model training. The test corpus
contained data from 50 participants and served for the final evaluation of each handwriting model's
generalization performance. We also used a subset of these 50 test participants for our
personalization corpus (see Personalization experiments).
Two primary data augmentation strategies were employed. The first involved SpecAugment (Park

et al. 2019), which applies time- and frequency-aligned masks to spectral features during training.
The second strategy involved rotational augmentation, randomly rotating all channels by either -1, 0,
or +1 position uniformly. This meant that channel signals were shifted one channel to the left,
remained unshifted, or were all shifted to the right, respectively.
For evaluating the model’s offline performance for each user, we used the character error rate

aggregated over all prompts collected for that user:

character error rate , = 𝑖
∑ 𝑒𝑑𝑖𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑖

𝑖
∑𝑝𝑟𝑜𝑚𝑝𝑡_𝑙𝑒𝑛𝑔𝑡ℎ

𝑖

where edit_distancei is the Levenshtein distance between the prompt and the model output for
prompt i and prompt_lengthi is the length of the prompt.
Architecture: The handwriting network architecture took our custom MPF features of the sEMG

signal as input. Initially, these features underwent a rotational-invariance module, which comprised
a fully-connected layer with LeakyReLU activation. This module was applied to sEMG channels that
were discretely rotated by +1, 0, and -1 channels. The resulting outputs were then averaged over the
rotation process. It is important to note that this rotation was performed on top of the channel
rotation augmentation. The signal was then passed through a conformer (Gulati et al. 2020)
architecture consisting of 15 layers. Each layer encompassed 4 attention heads and employed a
time-convolutional kernel with a size of 8. Throughout the conformer layer convolutional blocks, a
stride of 1 was employed, except for layers 5 and 10 where the stride was set to 2. To ensure the
model functioned in a streaming manner, a modified conformer architecture was used. This
adaptation is similar to the approach outlined in (Beltagy, Peters, and Cohan 2020), but with
adjustments to ensure causality. Specifically, self-attention is solely applied to a fixed local window
situated directly before the current time step. In our networks, the size of this attention window was
16 for the initial 10 conformer layers and then decreased to 8 for the subsequent 5 layers. Finally, the
outputs from the conformer blocks were subjected to average pooling across channels. They were
then passed through a linear layer, which projected the output to match the size of the character
dictionary. A softmax function was applied thereafter. During decoding, the model's best estimate at
each output time step was greedily followed, and repeating characters in the prediction were
removed to reduce the output.
In our investigation, we explored various trainable model parameter counts. We manipulated the

parameter count of our models by adjusting the feed-forward dimension and input dimension
within our conformer architecture. Importantly, we upheld a consistent 1:2 ratio between the input
dimension and the feed-forward dimension in the conformer blocks.
Optimization: The training of our conformer architecture was executed using AdamW as the

optimization algorithm. This process spanned a maximum of 200 epochs and involved a learning
rate set at 6e-4 for the 1M parameter model and 3e-4 for the 60M parameter model, both with a
weight decay of 5e-2. A cosine annealing learning rate schedule was implemented, featuring a
warm-up period lasting 1500 steps and a minimum learning rate of 0. Our chosen batch size was
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512, wherein each sample within the batch represented a prompt that was zero-padded to match the
length of the longest prompt within that batch. To prevent gradient explosion, we applied gradient
clipping with a norm threshold of 0.1 throughout the training process. It is worth noting that these
parameters were determined based on insights gained from prior experiments and hyperparameter
explorations. Lastly, we assessed the test performance of the training checkpoint corresponding to
the lowest validation character error rate.

Online evaluation

Study participants
For the wrist pose control and handwriting tasks, we used, as closed-loop study participants, N=20
Meta employees with less than 1 hour of self-reported previous experience. 18/20 participants
reported no previous experience whatsoever with either of these interactions. For the discrete
gestures task, N=24 naive participants were recruited with no prior knowledge or experience with
sEMG wristbands. Demographic information about these participants is shown in Extended Data
Fig. 7d-g.

Task structure
All closed loop experiments were structured into three blocks: practice block, evaluation block #1,
and evaluation block #2. During the practice block, participants were explicitly instructed to explore
performing the required gestures/movements in different ways in order to understand how to best
perform the task. Explicit coaching was provided during this block to guide participants towards
behaviors that were known to be typically well suited for the given sEMG decoder (e.g. “do not press
too hard when doing an index/middle press”). During the evaluation blocks, participants were
instructed to be as performant as possible, and coaching was only provided when necessary if the
participant was stuck on a given trial.

Wrist pose control
To evaluate continuous closed-loop control with the wrist pose decoder, we converted the decoder
outputs into smoothed velocities to provide velocity-based control similar to a joystick. Specifically,

the decoder output probabilities, , control horizontal cursor positions, ,𝑝
𝑡
 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛, 𝑝

𝑡
 𝑓𝑙𝑒𝑥𝑖𝑜𝑛,  𝑝

𝑡
 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑥

𝑡

as follows:
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with gain g=0.2, dead zone size d=0.07, damping factor =0.7, and h = 1 if the sEMG wristband is onγ
the right hand (so that wrist flexion/extension maps to left/right, respectively) and -1 if it is on the
left hand (so that wrist flexion/extension maps to right/left).
We evaluated cursor-control performance using a 1D cursor control task, in which participants

were prompted to move the cursor to one of 10 equally-sized rectangular targets presented on a
horizontal grid (see Fig. 3a, Extended Data Fig. 6a, Supplementary Video 1). At each trial, one of the
10 targets was highlighted, and the participant was instructed to move the cursor towards that
target. The target was acquired when the cursor remained within the target for 500ms. Once a target
was acquired, the rectangular target disappeared, and one of the remaining 10 targets was
prompted, initiating the next trial. Once all 10 targets were acquired, a new set of 10 targets was
presented, and each one was prompted in a random sequence. This was repeated 5 times in each
block, for a total of 50 trials per block. The cursor position was continually decoded from sEMG
throughout the session and never reset between trials or blocks. The cursor workspace was bounded
at the outer edges of the leftmost and rightmost targets.
All trials with an initial cursor distance less than 10% of the target width were discarded (56/3000

trials). These occurred whenever, by chance, the next prompted target happened to be immediately
next to the current cursor position. Such serendipitous trials had abnormally low acquisition times
so were discarded as outliers. Fig. 3d shows the mean acquisition time over all non-discarded trails in
each block, for each participant. The 500ms hold time is not included in the acquisition time. Note
that this average is over trials with varying starting distances from the target. In Extended Data Fig.
7, we further examine performance in this task using Fitts’s law throughput (Fitts 1954), which
accounts for trial-to-trial differences in reach distances and has been previously used in HCI
(MacKenzie 1992) and BCI settings (Gilja et al. 2012).
An additional measure we used to quantify performance was dial-in time (Fig. 3e), which is a

measure of precise control around the target, adapted from the BCI literature (Fan et al. 2014).
Dial-in time was measured as the time from the first target entry to the last target entry, not
including the 500ms target hold time. Fig. 3e shows the mean dial-in time over all non-discarded
trials in which the cursor prematurely exited the target before completing the 500ms hold time (i.e.
trials in which the dial-in time was greater than 0).

Discrete gestures
To evaluate the discrete gesture decoder in closed loop, we used a discrete grid navigation task in
which each of the thumb swipes (left/right/up/down) was used to move a yellow circular character,
named Chomper, along a discrete grid (see Fig. 3b, Extended Data Fig. 5b, Supplementary Video 2).
Movements were prompted with a series of targets indicating the direction in which Chomper
should move, and every few steps the participant was prompted to perform one of the three
“activation” gestures: thumb tap, index hold or middle hold. Index/middle holds were defined as a
press followed by a release at least 500ms later. If the release followed the press less than 500ms
later, this was classified as an “early release” error. If the model detected a thumb swipe in the wrong
direction, Chomper would move in the detected direction and the participant would thus be
prompted to swipe in the opposite direction to move Chomper back to its previous position. The
total number of prompted gestures in each trial could thus vary depending on how many times the
wrong thumb swipe direction was detected. Incorrect activation detections would be indicated to
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the participant, but would not alter Chomper’s position. Each trial consisted of a randomly sampled
sequence of 8 thumb swipes and 5 activations, with 10 trials in each block. Participants were
explicitly instructed to favor accuracy over speed when performing the task.
Completion rate (Fig. 3g) was defined as the time required to complete a trial divided by the

minimum number of discrete gestures required to complete a trial (8 thumb swipes + 5 activations =
13 gestures). Mistakenly making additional gestures that were counterproductive to completing the
trial added to the time required, but did not increase this number of required gestures. To calculate
the confusion matrix for each participant, we counted the number of times each gesture was
detected when a given gesture was expected. To get a proportion, we then divided this by the total
number of gestures executed when that given gesture was expected. Fig. 3h shows the average
confusion matrix across all participants, using the trials in the two evaluation blocks only. The first
hit probability (Fig. 3f) was calculated by taking the proportion of prompted gestures in which the
first executed gesture was the expected one. For both the first hit probability and the confusion
matrix metrics, we included the 13 prompted gestures in each trial as well as any additional
prompted thumb swipes resulting from swiping in the wrong direction.
Note that in order to complete the discrete gestures task, the participant was required to perform

all gestures correctly. So before this task began, all participants were screened to confirm that each
gesture worked for them; however, no participants had prohibitive issues with any gesture.

Handwriting
To evaluate the handwritten character decoder in a closed loop, we used a handwriting task in which
participants were prompted to handwrite 5-word phrases sampled from the Mackenzie corpus
(Mackenzie and Soukoreff 2001). Characters ([a-z], [0-9], [space], [,.?’!]) were decoded
online with the decoder and displayed to the participant in real time (see Fig. 3c, Extended Data Fig.
5c, Supplementary Video 3), and participants were instructed to ensure that the decoded phrase was
understandable before submitting it and moving on to the next trial. If the participant produced any
incorrect characters, they could use the backspace key on the keyboard to erase errors and then
re-write them. Trials were completed when participants made their best attempt to write the
prompted phrase and then submitted the written text by pressing a key on the computer keyboard
using their non-dominant hand. Each block consisted of 10 such trials.
In our analysis, we report the aggregate character error rate (CER) and adjusted words per minute

(aWPM) over all prompted characters in each block, calculated as in (Palin et al. 2019). For each
block, the character error rate was aggregated over all 10 prompts as follows:

CER , = 𝑖=1,...,10
∑  𝑒𝑑𝑖𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑖

𝑖=1,...,10
∑ max {𝑝𝑟𝑜𝑚𝑝𝑡_𝑙𝑒𝑛𝑔𝑡ℎ

𝑖
, 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑙𝑒𝑛𝑔𝑡ℎ

𝑖
}

where edit_distancei is the Levenshtein distance between the prompt and the model output
submitted by the user in trial i, prompt_lengthi is the length of the prompt, and output_lengthi is the
length of the model output. The maximum between these two is used in the denominator in order to
ensure the aggregate CER is between 0 and 1 for the adjusted WPMmetric to be meaningful.
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Discrete gesture detectionmodel investigation

Network convolutional filter analysis
To examine the initial Conv1d layer of the trained discrete gesture decoder, we first measured various
spatiotemporal properties of each of the Conv1d filter weights. We measured the root mean square
power in each channel and identified the channel with maximum power. We then measured the
frequency response of this max channel using a discrete Fourier transform and identified the peak
frequency with strongest magnitude response. We measured the bandwidth of the frequency
response as the range of contiguous frequencies around this peak that had a magnitude response
within 50% of the peak. We additionally counted how many channels had root mean square power
within 50% of the max channel. The distributions of these metrics across all Conv1d filters are
shown in Extended Data Fig. 8. We next identified the set of Conv1d filters that fell within the
interquartile range of these three metrics (peak frequency, bandwidth, number of active channels),
and randomly selected six filters with different peak channels. These are the representative examples
shown in Fig. 4b, 4d, 4e. The six putative MUAPs shown in Fig. 4c were extracted using the
procedure described in Online Methods, and then the raw EMG signal in the central 10ms of each
snippet was high-pass filtered with the same preprocessing procedure applied to the discrete
gestures model training data (Online Methods). This allowed a direct comparison with the 10ms
convolutional filters trained on data preprocessed in this way. The same procedure for measuring
RMS power and frequency response was applied to the six putative MUAPs after this preprocessing
to obtain the curves shown in Fig. 4d, 4e.

Discrete gesture detection network LSTM representation analysis
To examine the LSTM representations of the trained discrete gesture decoder, we used recordings
from 3 different sessions from each of 50 randomly selected users from the test set. From each of
these recording sessions, we randomly sampled forty 500ms sEMG snippets ending at labels for
each gesture class (after label timing alignment, see Online Methods), for a total of 40 x 9 = 360
sEMG snippets per session. We then passed each of these snippets through the trained discrete

gesture decoder, with the LSTM state initialized to zeros, to obtain vector representations, ,𝑋 ∈ 𝑅512

of each snippet. These are the vectors whose PC projections are plotted in Fig. 4f-h, in each case
colored by a different property. Gesture-evoked sEMG power was measured as the root mean square
of the last 100ms of each sEMG snippet. For each participant and gesture, this was then binned into
20 bins with a matched number of snippets, dividing the EMG power into the categories plotted in
Fig. 4h.
To quantify the structure in these representations, we used the proportion of variance in LSTM

representations accounted by a given variable, :ξ

.𝑉𝑎𝑟
ξ
[𝐸

𝑥
[𝑋|ξ]]/𝑉𝑎𝑟

𝑋
[𝑋]

The numerator is the variance in the mean representation for each category of , and theξ
denominator is the total variance of the representations. In each case, variance is calculated as the
trace of the covariance of the representations. For the discrete gesture identity and participant
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identity analysis, we divide the 50 participants into 10 non-overlapping sets of 5 participants and
calculate the proportion of variance separately for each set. The curves in Fig. 4i show the mean and
95% confidence interval over these 10 sets. For the band placement and gesture-evoked EMG power
curves, the proportion is calculated separately for each of the 50 participants, and the mean and
95% confidence interval over participants is shown. For this analysis, the EMG power was binned as
indicated above but into only 3 bins (low/medium/high) rather than 20.

Personalization experiments
We studied the personalization of handwriting models with 40 participants from the test corpus
that were held out from the 6527 participants in the pre-training corpus. For each participant, we
further trained, i.e., fine-tuned, a chosen generic handwriting model on a fixed budget of data solely
taken from that participant's sessions. The resulting personalized model was then evaluated on
held-out sessions of data from the same participant it was personalized on. We considered
personalization data budgets of 1, 2, 5, 10 and 20 minutes. We repeated this process for each of our
40 participants and reported the population average of the personalized model performance.
Data: We created a training and testing set for each of our 40 personalization participants by

holding out three sessions for the test set and keeping the rest of the sessions in the training set. The
three held out testing sessions were chosen such that there was one session recorded in each of the
three postures (seated writing on a surface, seated writing on their leg, and standing writing on their
leg). The training set, obtained by gathering the rest of the participant’s sessions, was subsetted in
order to obtain the desired number of minutes of labeled recording. The subsetting was done
through random uniform sampling of the prompts from all of the sessions in the training set. Each
subset of the full training set was a superset of the precedent data budget size, ensuring that the
prompts in the 1-minute budget were also present in the 2-minute and 5-minute budget, and so on.
Optimization: The optimization details closely resemble the procedure followed for generic

training (See Generic Model training) with a few differences, which were that we used a cosine
annealing learning rate schedule without warmup. Also, we varied the fine-tuning learning rate as a
function of the number of pre-training participants used to pre-train the upstream generic model,

such that: , with N being the number of pre-training participants.𝐿𝑅(𝑁) =  1. 24 * 10−5 *  𝑁−0.42

The learning rate relationship with generic pre-training participants was found through a grid
learning rate sweeps for the models pre-trained on 25, 400, and 6527 participants, then fitting a
power law to the population average performance minima found. We did not use weight decay
during fine-tuning. We fine-tuned the model for 300 epochs, at a batch size of 256, with no early
stopping such that the training is always 300 epochs.
Statistics: In Fig. 5e, we find negative transfer of personalized models across participants. In order

to characterize each participant’s performance on other fine-tuned models, we first compute the
mean of each row without the diagonal. We then compute the median of the means along with the
standard error of the median (s.e.m.). This is compared with the median of the diagonal values.
In Extended Data Fig. 9, we added early stopping to the personalization procedure to disambiguate

the contribution of increased personalized data budget per user from an increase in the number of
fine-tuning iterations. We find very similar results with (Extended Data Fig. 9) and without (Fig. 5 of
the main text) early stopping, except a few of the best performing users exhibit regressions from
personalization without early stopping. This verifies that the benefits from including more
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personalization data are not due to an increase in training iterations. Note that in practice early
stopping would require additional data from the participant to use for validation. Here we used the
test set for early stopping, so the results in Extended Data Fig. 9 should be considered validation
numbers.

Fitting procedures

Generic performance fitting
Fitted function: In Fig. 2d-f, we show the fits of the generic error scaling with the number of training
participants. The fits follow a functional form taken from the large language model literature
(Hoffmann et al. 2022), where the error is a function of both model size ( , in number of𝐷
parameters) and data quantity ( , in number of participants):𝑁

𝐸𝑟 =  𝑒 +  𝐴
𝑁

/𝑁
α

𝑁 +  𝐴
𝐷

/𝐷
α

𝐷

where all fitted parameters are positively bounded. It is generally understood that the term in this𝑒
equation is the irreducible error of the task and the the second and third terms both contribute to
the error reduction as and are increased, respectively. Note that there exists diminishing return𝑁 𝐷
regimes if either or are increased individually, as the other term fixes the asymptotic error floor.𝑁 𝐷
Fitting procedure: A single set of parameters fit all of the observed points in each graph, with the

exception of the heterogeneous data point in the discrete gestures experiments which we keep held
out because of its training corpus distinction with the rest of the points. The fitted parameters were
obtained by minimizing the Mean Squared Logarithmic Error (MSLE) using the L-BFGS-B
optimization algorithm (Byrd et al. 1995) along with 200 iterations of the basin hopping strategy
(Olson et al. 2012). The initial guess and the bounds for the fitted parameters are shown in Table 1.

Table 1 - Parameters for power law fits in Fig. 3.

Parameter 𝑒 𝐴
𝑁

α
𝑁

𝐴
𝐷

α
𝐷

Initial guess 0 1 1 1 1

Bounds [0,  ∞) [0,  ∞) [0,  ∞) [0,  ∞) [0,  ∞)

Wrist pose 2.6 7.7 0.33 13.5 0.12

Discrete
gestures

4.2 12.3 0.33 0.1 2.68

Handwriting 2.1 26.1 0.36 3.6 2.65
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Personalization experiment fitting
Fitted function: In Fig. 5b, we show the fits of the 60M parameter model error rate as a function of
the number of pre-training participants for the generic model and each personalization data budget.
The fits follow a functional follow a simple power law fit with the pre-training data quantity ( , in𝑁
number of participants), such that:

.𝐸𝑟 = 𝑒 +  𝐴/𝑁α

We did not take into consideration the contribution from model size, since we are only fitting
observations from a single model size (hence the error from finite model size is absorbed into e).
Fitting procedure: The fitted parameters for each personalization data budget were obtained by

minimizing the Mean Squared Logarithmic Error (MSLE) using the L-BFGS-B optimization algorithm
(Byrd et al. 1995) along with 200 iterations of the basin hopping strategy (Olson et al. 2012). The
initial guess and the bounds for the fitted parameters are shown in Table 2.

Table 2 - Parameters for power law fits in Fig. 5.

Parameter 𝑒 𝐴 α

Initial guess 0 1 1

Bounds [0,  ∞) [0,  ∞) [0,  ∞)

0minutes (generic) 0.4 30.1 0.32

1 minute 1.7 23.1 0.31

2 minutes 1.7 21.4 0.30

5 minutes 1.7 18.9 0.28

10 minutes 1.7 17.3 0.27

20 minutes 1.2 16.4 0.25

Personalization equivalence calculations
Relative increase calculation: To determine the equivalent pre-training participant budget needed to
match a given personalization performance, we need a continuous estimate of generic model
performance as a function of the number of pre-training participants. For this, we used logspace
piecewise linear interpolation of the generic performance values, which we denote by .𝑓

𝑔𝑒𝑛𝑒𝑟𝑖𝑐
(𝑁)

Given the number of pre-training participants, N, and personalization minutes, m, personalized
models have an observed character error rate given by CER(N, m). To find the equivalent additional
pre-training participants needed to match performance between generic and personalized ∆𝑁
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models we set and solve for using the Newton𝑓
𝑔𝑒𝑛𝑒𝑟𝑖𝑐

(𝑁 + ∆𝑁) =  𝐶𝐸𝑅(𝑁,  𝑚)   ∆𝑁

Conjugate-Gradient method. This gives the points in Fig. 5(d). Overlaid on the plot as dotted lines,
we used the power law fit of the points corresponding to each number of personalization minutes in
Fig. 5(b) to infer continuous curves of equivalent fold-increase in pre-training data required using
the approach described above.
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Supplemental figures
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Extended Data Fig. 1 | Schematic and anatomical interfacing of sEMG Research Device.

a, The sEMG Research Device electrical system architecture. The sEMG-RD uses 48 pogo-pin style round
electrodes in order to provide good comfort and contact quality. The 48 channels are configured into 16 bipolar
channels arranged proximo-distally, with the remainder electrodes serving as either shield or ground. Each
electrode is 6.5 mm in diameter (gold plated brass). For each differential sensing channel (16 in total),
center-to-center spacing between paired sensing electrodes is 20 mm. The sEMG-RD has low noise analog
sensors with input-referred RMS noise of 2.46 µVrms, measured during benchtop testing with differential
inputs shorted to their mid-point voltage. With analog sensors’ nominal gain value of 190 and Analog to Digital
Converter’s (ADC) full-scale range 2.5 V, the sEMG-RD offers a dynamic range of approximately 65.5 dB. Each
channel is sampled at 2000 Hz. The Inertial Measurement Unit (IMU) functional block includes sensors of
3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer sampled at 100 Hz. We note that the IMU
was not utilized for any online or offline experiments described in this manuscript. The microcontroller
facilitates the transfer of unprocessed data from all ADCs and IMU directly to the bluetooth radio. No skin
preparation or gels are needed for using the sEMG-RD, because its analog sensors have very high
input-impedance – approximately 10 pF capacitance in parallel with 10 TOhm resistance—providing excellent
signal robustness against large variations of electrode-skin impedance among the population.

b, The mechanical architecture consists of a kinematic chain with flexible joints connecting 16 pods that house
the sprung electrodes that comprise the sEMG channels. This enables broad population coverage in
maintaining consistent quality contact between the dry electrode and skin. Since each differential sensing
channel is placed along the proximal-distal direction, the device is able to maintain symmetry with respect to
wrist anatomy and provide generalizability across right and left hands, as long as the wearer keeps the gap
location on the ulna side.

c, Anatomical depiction of electrode locations relative to relevant muscle and skeletal landmarks, adapted from
a public domain image (Gray 1918). Pink overlays cover muscles that predominantly control the wrist, blue
overlays cover muscles less involved in wrist control, red overlays cover blood vessels and yellow overlays cover
nerves. The green diamond indicates the position of the electrode gap. Note the gap that arises between
channels 0 and 15, due to variation in wrist circumference and elasticity between compartments, is aligned
with the region of the wrist where the ulna is located.
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Extended Data Fig. 2 | Anthropometric and demographic features of sEMG datasets.

a, The number of participants in each corpus.

b-e, Histograms of anthropometric characteristics of participants: (b) wrist circumference, (c) self-reported
age, (d) self-reported BMI, and (e) self-reported height. The irregularity in the histogram of self-reported age is
likely due to participants rounding their age to nearby values. We measured wrist circumferences with a
standard measuring tape at the wrist just below the ulna bone where the participants are expected to don the
band. Values outside of the range of 10-30 cm were truncated. We calculated BMI as the weight (in kilograms)
divided by height (in meters) squared.

f-i, Distributions of the demographic characteristics across all participants: (f) dominant handedness, (g)
self-reported proficiency at typing on a computer keyboard, (h) self-reported gender, and (i) arm exercise
frequency, chosen from one of the following options: Never (never), Less than once per week (rarely), 1-2 times
per week (occasionally), more than twice per week (often).

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2024. ; https://doi.org/10.1101/2024.02.23.581779doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.23.581779
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2024. ; https://doi.org/10.1101/2024.02.23.581779doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.23.581779
http://creativecommons.org/licenses/by-nc-nd/4.0/


Extended Data Fig. 3 | Examples of open-loop prompting for the three tasks.

a, Example prompter frame used to train the model for the wrist prediction task. Vertical bars move from the
top of the screen to the bottom. A series of indicator lines labeled with different directions were shown at the
bottom-middle of the screen. The participant is instructed to perform the appropriate pose when a descending
bar reaches the indicator line, e.g. extend/flex their wrist horizontally or deviate their wrist vertically, following
the direction marked on the indicator line overlapping with the bar. ‘0’ corresponds to a neutral wrist pose.
The pose is held until the entire bar has passed the indicator line.

b, Time series of example prompter frames for the wrist pose task. At t0a bar appeared above the indicator line
for ‘wrist right’. At t1 the bar reached the indicator and the bar changed color to pink, indicating that the
participant should move their wrist to the right. At t2 the color was maintained, indicating that the participant
should continue to hold the wrist posture, and a second descending bar appeared above the ‘wrist down’
indicator line. At t3 the completed ‘wrist right’ bar has changed color to gray, indicating that the participant
should return their wrist to a neutral posture, and the ‘wrist down’ bar continues to descend towards the
indicator line.

c, Example of prompting for the discrete gesture recognition task. A series of gestures to be performed are
depicted, with colors and labels corresponding to the gesture type. Gestures are separated by blank space in
which no gesture was to be performed. These prompts scroll similarly to the wrist pose prompter, though
leftwards instead of downwards. When the prompt reaches the indicator line, gestures should be initiated –
either instantaneous gestures such as finger pinches or thumb swipes that are depicted as single lines or held
gestures such as index and middle holds that are depicted as solid bars. Held gestures should be released when
the indicator line reaches the end of the rectangle. Gestures that have already been prompted are shown in
gray.

d, Detailed example of prompting during holds. At t0 an index hold gesture prompt appeared on the right side
of the screen, with the time indicator line in white. At t1 the gesture prompt reached the time indicator, and the
hold prompt changed color to indicate the hold should be performed by the participant. At t2 the hold was no
longer selected by the indicator bar and turned gray, indicating that the participant should release the hold.

e, Example prompter shown during the handwriting task. The screen instructed the participant to write “how
was your day” with their hand on the surface of the table, while seated.

f, During the experimental session, different prompts, including numbers and punctuation, were shown,
ranging from single characters to full sentences. Besides writing on a desk surface, the participant was also
asked to perform handwriting on their leg while standing and on their leg while seated.
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Extended Data Fig. 4 | Distribution of sEMG event similarities across participants and gestures.

Purple: cosine similarity between individual sEMG activations of a given gesture and the sEMG template
(event-triggered average) for that gesture. From left to right: cosine similarities are plotted for all events within
a single session (single band placement), across sessions of a single participant, or across all participants from
Fig 2a. While similarity was relatively high within a single band placement, sEMG activations became
progressively more distinct across different band placements and individuals. Orange: same, except for the
cosine similarity of one gesture compared to the template for a distinct gesture. These were lower than
similarity within the same gesture, irrespective of whether the grouping was done over a single band placement
or across the population. Differences shown across sessions, participants and gestures are representative for
all gestures and pairs of gestures.
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Extended Data Fig. 5 | Lack of overt structure in single-participant sEMG decoder performance.

a, For each held-out individual, only a small fraction of other single-participant models in the discrete gesture
detection task (Fig. 2c,d) outperformed the person’s own model (green line, <5% for any given person, people
sorted by fraction of models that outperformed person’s own model). All the results in this figure are based on
models trained on 4 sessions.

b, Qualitative inspection of t-SNE embeddings reveal no prominent similarity structure when the average
model transfer CLER is used as a proxy for distance between two participants.

c, Scatter plot comparing, for each participant, that participant’s model’s average offline performance on other
participants’ held-out sessions (donor score, x-axis) compared to the average performance of other
participant’s models on that participant’s held out session (receiver score, y-axis). There is not a significant
Pearson correlation between the donor and receiver score (r=0.13, p=0.19). Individual models that show high
CLER fail to generalize across the population and thus show very weak generalization capabilities (green dots
show scatter plot between donor and receiver score, and dashed gray line shows x=y line).
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Extended Data Fig. 6 | Example screenshots of closed-loop evaluation tasks.

a, Example trial of 1D horizontal cursor control task, in which the participant was prompted to reach to the
rightmost target (in panel labeled t0, light blue rectangle). When the cursor (red) landed on the target, a short
timer began, marked by the black fill of the cursor (middle panel, t1). In this trial, the cursor was held on the
target for 500ms to complete the timer, so the target was acquired and therefore disappeared as the next target
was prompted (right panel, t2).

b, Example sequence from discrete grid navigation task, in which the participant was prompted to perform
(from left to right): thumb swipe up, index hold, thumb swipe right, thumb swipe right, middle hold.

c, Example handwriting task trial, in which the participant is prompted to write the phrase “example flashing
red light means” (top) and the participant’s writing (below).
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Extended Data Fig. 7 | Additional online evaluationmetrics

a, Distribution of 1D horizontal cursor control task per-trial acquisition times as a function of index of
difficulty, , where is the target width and is the initial target distance in trial (Gilja et al.log

2
(1 + 𝑑

𝑡
/𝑤) 𝑤 𝑑

𝑡
𝑡

2012). The relationship between these two measurements appears to be linear, suggesting behavior in this task
obeys Fitts’s law (Fitts 1954). Pearson correlation coefficient and p-value are shown in the upper right hand
corner of each panel.

b, Mean throughput on the 1D horizontal cursor control task. Throughput is defined as the index of difficulty
divided by acquisition time. The mean throughput over trials in each block is shown for each participant,
following the same conventions as Fig. 3d,e; median in the last block is 1.37 bits/sec. Throughput in each block
significantly improved relative to the previous block (p<.05, one-tailed Wilcoxon signed-rank test), indicating
learning effects consistent with the improvements in acquisition time and dial-in time shown in the main text.

c, Distribution of subjective impressions about the reliability of each EMG decoding model. At the end of each
online evaluation task, participants were asked to respond to a multiple choice question about how reliably
their intended action was detected. For the discrete gestures task, they were asked to answer this question
separately for each of the thumb swipe directions and “activation” gestures.

d-g, Demographics of N=20 participants that performed the wrist pose control and handwriting closed-loop
evaluation tasks and the N=24 participants that performed the discrete gestures task: (d) self-declared gender,
(e) self-declared dominant hand, (f) self-declared age, (g) measured wrist circumference.
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Extended Data Fig. 8 | Spatiotemporal properties of all discrete gesture decoder convolutional filters

a, Index of channel with max root-mean-square (RMS) power. Here and in all other panels in this figure, the
triangles at the top mark the values of the 6 example convolutional filters from Fig. 4b (in blue) and the 6
example putative MUAPs from Fig. 4c (in orange).

b, Number of channels with RMS power within 50% of the peak channel.

c, Peak frequency response of the channel with max RMS power.

d, Bandwidth of the channel with max RMS power (see Online Methods).
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Extended Data Fig. 9 | Influence of early stopping during personalization.

In this figure, we employ early stopping during personalization to disambiguate the role of more
personalization data from increased fine-tuning iterations as well as to mitigate regressions among the
best-performing users. Specifically, we used mean CER on held out test data as a selection criteria for
epoch-wise early stopping. Aside from early stopping, the setup here is identical to that in Fig. 5 (b, e, f) of the
main text. Overall, results are very similar to Fig. 5 of the main text, indicating that the increase in
personalization data is the primary driver of improved performance. Regressions among the best-performing
users are now absent. Note also that we do not have separate validation and test sets, so these results should
be understood as validation performance.

a, Same as Fig. 5(b) of the main text, except with the inclusion of early stopping during fine-tuning.

b, Same as Fig. 5(e) of the main text, except with the inclusion of early stopping during fine-tuning. Compared
with Fig. 5(e), transfer of personalized models to other participants yields overall smaller regressions likely
because early-stopped models remain closer to the pre-trained model.

c, Same as Fig. 5(f) of the main text, except with the inclusion of early stopping during fine-tuning.
Regressions exhibited by a few of the best performing users in Fig. 5(f) are now absent due to early stopping.
We show the range of Pearson correlation coefficients for each fit and the median p-value (maximum
p=0.020).

Supplementary Videos

Supplementary Video 1 | Example session of the 1D horizontal cursor control task with generic wrist
pose decodingmodel

Example user performing the 1D horizontal cursor control task with the generic wrist pose decoding model
evaluated in Fig. 3d-e. In each trial, the participant is prompted to move the cursor to a target and acquire it by
holding the cursor within the target region for 500ms. Once that target is acquired, the target disappears and
another is prompted. Once all 10 targets are acquired, another 10 identical targets are presented and prompted
in random order. Video shows all 50 trials in one task block, where a “trial” is defined as a single target
acquisition. Video in the lower right shows the user’s hand during the task.

Supplementary Video 2 | Example session of the discrete grid navigation task with generic discrete
gestures decodingmodel
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Example user performing the discrete grid navigation task with the generic discrete gesture decoding model
evaluated in Fig. 3f-h. In each trial, the participant is instructed to move a character along a sequence of points
on a grid by using the four “navigation” gestures (thumb swipe left/right/up/down). Every few steps, a colored
point with text prompts the participant to perform an “activation” gesture (thumb tap, index hold, middle
hold). Video shows all 10 trials in one task block. Video in the lower right shows the user’s hand during the
task.

Supplementary Video 3 | Example session of the handwriting task with handwriting model

Example user performing the handwriting task with the generic handwriting decoding model evaluated in Fig.
3i-j. In each trial, the participant is prompted to write a phrase. First part of the video shows all 10 trials in one
task block, with the user’s hand on the table as in the experiment reported in the main text. Second part of the
video shows the same user writing on their lap, to demonstrate the model’s invariance to hand posture. Video
in the lower right shows the user’s hand during the task. While we instructed users to make corrections to
decoded text that was not understandable, in this particular session the user did not have to make any such
corrections.

Supplementary Video 4 | High-level explanatory video of technology with examples

Overview of the technology. A participant can easily don the sEMG-RD, which can detect rich surface
electromyogram signals that accompany movement. sEMG decoding models enable multiple human-computer
interactions in novel participants, for example 1D continuous control, discrete gesture recognition, and
handwriting. Examples of the three tasks in the second half of the video are taken from Supplementary Video
1-3. Example video of handwriting to produce the phrase ‘hello world!’ at the start of the video was made using
the generic handwriting decoding model evaluated in Fig. 3i-j.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2024. ; https://doi.org/10.1101/2024.02.23.581779doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.23.581779
http://creativecommons.org/licenses/by-nc-nd/4.0/


References
Abiri, Reza, Soheil Borhani, Eric W. Sellers, Yang Jiang, and Xiaopeng Zhao. 2019. “A Comprehensive Review of EEG-Based

Brain-Computer Interface Paradigms.” Journal of Neural Engineering 16 (1): 011001.
Barachant, Alexandre, Quentin Barthélemy, Alexandre Gramfort, Jean-Rémi King, Pedro L. C. Rodrigues, Dave, Emanuele Olivetti, et al.

2023. pyRiemann/pyRiemann: v0.5. https://doi.org/10.5281/zenodo.8059038.
Barachant, Alexandre, Stéphane Bonnet, Marco Congedo, and Christian Jutten. 2012. “Multiclass Brain-Computer Interface

Classification by Riemannian Geometry.” IEEE Transactions on Bio-Medical Engineering 59 (4): 920–28.
Battye, C. K., A. Nightingale, and J. Whillis. 1955. “The Use of Myo-Electric Currents in the Operation of Prostheses.” The Journal of

Bone and Joint Surgery. British Volume 37-B (3): 506–10.
Beltagy, Iz, Matthew E. Peters, and Arman Cohan. 2020. “Longformer: The Long-Document Transformer.” arXiv [cs.CL]. arXiv.

http://arxiv.org/abs/2004.05150.
Berger, N., and C. R. Huppert. 1952. “The Use of Electrical and Mechanical Muscular Forces for the Control of an Electrical Prosthesis.”

The American Journal of Occupational Therapy: Official Publication of the American Occupational Therapy Association 6 (3):
110–14.

Biddiss, Elaine A., and Tom T. Chau. 2007. “Upper Limb Prosthesis Use and Abandonment: A Survey of the Last 25 Years: A Survey of
the Last 25 Years.” Prosthetics and Orthotics International 31 (3): 236–57.

Bräcklein, Mario, Deren Yusuf Barsakcioglu, Jaime Ibáñez, Jonathan Eden, Etienne Burdet, Carsten Mehring, and Dario Farina. 2022.
“The Control and Training of Single Motor Units in Isometric Tasks Are Constrained by a Common Input Signal.” eLife 11 (June).

Bräcklein, Mario, J. Ibáñez, D. Y. Barsakcioglu, and Dario Farina. 2021. “Towards Human Motor Augmentation by Voluntary Decoupling
Beta Activity in the Neural Drive to Muscle and Force Production.” Journal of Neural Engineering 18 (1): 016001.

Brandman, David M., Sydney S. Cash, and Leigh R. Hochberg. 2017. “Review: Human Intracortical Recording and Neural Decoding for
Brain-Computer Interfaces.” IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE
Engineering in Medicine and Biology Society 25 (10): 1687–96.

Brandman, David M., Tommy Hosman, Jad Saab, Michael C. Burkhart, Benjamin E. Shanahan, John G. Ciancibello, Anish A. Sarma, et al.
2018. “Rapid Calibration of an Intracortical Brain--Computer Interface for People with Tetraplegia.” Journal of Neural Engineering
15 (2): 026007.

Byrd, Richard H., Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. 1995. “A Limited Memory Algorithm for Bound Constrained
Optimization.” SIAM Journal of Scientific Computing 16 (5): 1190–1208.

Campanini, Isabella, Catherine Disselhorst-Klug, William Z. Rymer, and Roberto Merletti. 2020. “Surface EMG in Clinical Assessment
and Neurorehabilitation: Barriers Limiting Its Use.” Frontiers in Neurology 11 (September): 934.

Collinger, Jennifer L., Brian Wodlinger, John E. Downey, Wei Wang, Elizabeth C. Tyler-Kabara, Douglas J. Weber, Angus J. C.
McMorland, Meel Velliste, Michael L. Boninger, and Andrew B. Schwartz. 2013. “High-Performance Neuroprosthetic Control by an
Individual with Tetraplegia.” Lancet 381 (9866): 557–64.

Côté-Allard, Ulysse, Cheikh Latyr Fall, Alexandre Drouin, Alexandre Campeau-Lecours, Clément Gosselin, Kyrre Glette, François
Laviolette, and Benoit Gosselin. 2019. “Deep Learning for Electromyographic Hand Gesture Signal Classification Using Transfer
Learning.” IEEE Transactions on Neural Systems and Rehabilitation Engineering 27 (4): 760–71.

Défossez, Alexandre, Charlotte Caucheteux, Jérémy Rapin, Ori Kabeli, and Jean-Rémi King. 2023. “Decoding Speech Perception from
Non-Invasive Brain Recordings.” Nature Machine Intelligence 5 (10): 1097–1107.

Degenhart, Alan D., William E. Bishop, Emily R. Oby, Elizabeth C. Tyler-Kabara, Steven M. Chase, Aaron P. Batista, and Byron M. Yu.
2020. “Stabilization of a Brain-Computer Interface via the Alignment of Low-Dimensional Spaces of Neural Activity.” Nature
Biomedical Engineering 4 (7): 672–85.

De Luca, Carlo J. 1997. “The Use of Surface Electromyography in Biomechanics.” Journal of Applied Biomechanics 13 (2): 135–63.
De Luca, Carlo J., L. Donald Gilmore, Mikhail Kuznetsov, and Serge H. Roy. 2010. “Filtering the Surface EMG Signal: Movement Artifact

and Baseline Noise Contamination.” Journal of Biomechanics 43 (8): 1573–79.
Del Vecchio, A., A. Holobar, D. Falla, F. Felici, R. M. Enoka, and D. Farina. 2020. “Tutorial: Analysis of Motor Unit Discharge

Characteristics from High-Density Surface EMG Signals.” Journal of Electromyography and Kinesiology: Official Journal of the
International Society of Electrophysiological Kinesiology 53 (102426): 102426.

Dempster, A. P., N. M. Laird, and D. B. Rubin. 1977. “Maximum Likelihood from Incomplete Data via theEMAlgorithm.” Journal of the
Royal Statistical Society 39 (1): 1–22.

Eskimez, Sefik Emre, Takuya Yoshioka, Huaming Wang, Xiaofei Wang, Zhuo Chen, and Xuedong Huang. 2022. “Personalized Speech
Enhancement: New Models and Comprehensive Evaluation.” In ICASSP 2022 - 2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 356–60. IEEE.

Fan, Joline M., Paul Nuyujukian, Jonathan C. Kao, Cynthia A. Chestek, Stephen I. Ryu, and Krishna V. Shenoy. 2014. “Intention
Estimation in Brain-Machine Interfaces.” Journal of Neural Engineering 11 (1): 016004.

Farina, Dario, Ning Jiang, Hubertus Rehbaum, Aleš Holobar, Bernhard Graimann, Hans Dietl, and Oskar C. Aszmann. 2014. “The
Extraction of Neural Information from the Surface EMG for the Control of Upper-Limb Prostheses: Emerging Avenues and
Challenges.” IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in
Medicine and Biology Society 22 (4): 797–809.

Fitts, P. M. 1954. “The Information Capacity of the Human Motor System in Controlling the Amplitude of Movement.” Journal of
Experimental Psychology 47 (6): 381–91.

Formento, Emanuele, Paul Botros, and Jose M. Carmena. 2021. “Skilled Independent Control of Individual Motor Units via a
Non-Invasive Neuromuscular-Machine Interface.” Journal of Neural Engineering 18 (6): 066019.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2024. ; https://doi.org/10.1101/2024.02.23.581779doi: bioRxiv preprint 

http://paperpile.com/b/OQiGG4/imjF
http://paperpile.com/b/OQiGG4/imjF
http://paperpile.com/b/OQiGG4/xE0K
http://paperpile.com/b/OQiGG4/xE0K
http://dx.doi.org/10.5281/zenodo.8059038
http://paperpile.com/b/OQiGG4/xE0K
http://paperpile.com/b/OQiGG4/wLxg
http://paperpile.com/b/OQiGG4/wLxg
http://paperpile.com/b/OQiGG4/zvIX
http://paperpile.com/b/OQiGG4/zvIX
http://paperpile.com/b/OQiGG4/5qld
http://arxiv.org/abs/2004.05150
http://paperpile.com/b/OQiGG4/5qld
http://paperpile.com/b/OQiGG4/PogN
http://paperpile.com/b/OQiGG4/PogN
http://paperpile.com/b/OQiGG4/PogN
http://paperpile.com/b/OQiGG4/Qrqs
http://paperpile.com/b/OQiGG4/Qrqs
http://paperpile.com/b/OQiGG4/Yjio
http://paperpile.com/b/OQiGG4/Yjio
http://paperpile.com/b/OQiGG4/R51c
http://paperpile.com/b/OQiGG4/R51c
http://paperpile.com/b/OQiGG4/MTNT
http://paperpile.com/b/OQiGG4/MTNT
http://paperpile.com/b/OQiGG4/MTNT
http://paperpile.com/b/OQiGG4/ORxP
http://paperpile.com/b/OQiGG4/ORxP
http://paperpile.com/b/OQiGG4/ORxP
http://paperpile.com/b/OQiGG4/nM3v
http://paperpile.com/b/OQiGG4/nM3v
http://paperpile.com/b/OQiGG4/rXE1
http://paperpile.com/b/OQiGG4/rXE1
http://paperpile.com/b/OQiGG4/QosC
http://paperpile.com/b/OQiGG4/QosC
http://paperpile.com/b/OQiGG4/QosC
http://paperpile.com/b/OQiGG4/xzbG
http://paperpile.com/b/OQiGG4/xzbG
http://paperpile.com/b/OQiGG4/xzbG
http://paperpile.com/b/OQiGG4/UdJV
http://paperpile.com/b/OQiGG4/UdJV
http://paperpile.com/b/OQiGG4/2Hio
http://paperpile.com/b/OQiGG4/2Hio
http://paperpile.com/b/OQiGG4/2Hio
http://paperpile.com/b/OQiGG4/2SxY
http://paperpile.com/b/OQiGG4/wwcr
http://paperpile.com/b/OQiGG4/wwcr
http://paperpile.com/b/OQiGG4/4KhL
http://paperpile.com/b/OQiGG4/4KhL
http://paperpile.com/b/OQiGG4/4KhL
http://paperpile.com/b/OQiGG4/kxcX
http://paperpile.com/b/OQiGG4/kxcX
http://paperpile.com/b/OQiGG4/QAXW
http://paperpile.com/b/OQiGG4/QAXW
http://paperpile.com/b/OQiGG4/QAXW
http://paperpile.com/b/OQiGG4/A82x
http://paperpile.com/b/OQiGG4/A82x
http://paperpile.com/b/OQiGG4/FrLz
http://paperpile.com/b/OQiGG4/FrLz
http://paperpile.com/b/OQiGG4/FrLz
http://paperpile.com/b/OQiGG4/FrLz
http://paperpile.com/b/OQiGG4/U2dj
http://paperpile.com/b/OQiGG4/U2dj
http://paperpile.com/b/OQiGG4/5NkP
http://paperpile.com/b/OQiGG4/5NkP
https://doi.org/10.1101/2024.02.23.581779
http://creativecommons.org/licenses/by-nc-nd/4.0/


Gilja, Vikash, Paul Nuyujukian, Cindy A. Chestek, John P. Cunningham, Byron M. Yu, Joline M. Fan, Mark M. Churchland, et al. 2012. “A
High-Performance Neural Prosthesis Enabled by Control Algorithm Design.” Nature Neuroscience 15 (12): 1752–57.

Graves, Alex, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. 2006. “Connectionist Temporal Classification: Labelling
Unsegmented Sequence Data with Recurrent Neural Networks.” In Proceedings of the 23rd International Conference on Machine
Learning, 369–76. ICML ’06. New York, NY, USA: Association for Computing Machinery.

Gray, Henry. 1918. Anatomy of the Human Body. Philadelphia: Lea & Febiger.
Gulati, Anmol, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han, et al. 2020. “Conformer:

Convolution-Augmented Transformer for Speech Recognition.” arXiv [eess.AS]. arXiv. http://arxiv.org/abs/2005.08100.
Hannun, Awni, Ann Lee, Qiantong Xu, and Ronan Collobert. 2019. “Sequence-to-Sequence Speech Recognition with Time-Depth

Separable Convolutions.” arXiv [cs.CL]. arXiv. http://arxiv.org/abs/1904.02619.
Henninger, Felix, Yury Shevchenko, Ulf K. Mertens, Pascal J. Kieslich, and Benjamin E. Hilbig. 2022. “Lab.js: A Free, Open, Online Study

Builder.” Behavior Research Methods 54 (2): 556–73.
Hochberg, Leigh R., Daniel Bacher, Beata Jarosiewicz, Nicolas Y. Masse, John D. Simeral, Joern Vogel, Sami Haddadin, et al. 2012. “Reach

and Grasp by People with Tetraplegia Using a Neurally Controlled Robotic Arm.” Nature 485 (7398): 372–75.
Hochreiter, S., and J. Schmidhuber. 1997. “Long Short-Term Memory.” Neural Computation 9 (8): 1735–80.
Hoffmann, Jordan, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas, et al.

2022. “An Empirical Analysis of Compute-Optimal Large Language Model Training.” In Advances in Neural Information Processing
Systems, edited by S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, 35:30016–30. Curran Associates, Inc.

Hug, François, Simon Avrillon, Jaime Ibáñez, and Dario Farina. 2023. “Common Synaptic Input, Synergies and Size Principle: Control of
Spinal Motor Neurons for Movement Generation.” The Journal of Physiology 601 (1): 11–20.

Iravantchi, Yasha, Mayank Goel, and Chris Harrison. 2019. “BeamBand: Hand Gesture Sensing with Ultrasonic Beamforming.” In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 1–10. CHI ’19. New York, NY, USA: Association
for Computing Machinery.

Jayaram, Vinay, and Alexandre Barachant. 2018. “MOABB: Trustworthy Algorithm Benchmarking for BCIs.” Journal of Neural
Engineering 15 (6): 066011.

Jiang, Shuo, Bo Lv, Weichao Guo, Chao Zhang, Haitao Wang, Xinjun Sheng, and Peter B. Shull. 2018. “Feasibility of Wrist-Worn,
Real-Time Hand, and Surface Gesture Recognition via sEMG and IMU Sensing.” IEEE Transactions on Industrial Informatics / a
Publication of the IEEE Industrial Electronics Society 14 (8): 3376–85.

Kandel, Eric R., James H. Schwartz, Thomas M. Jessell, Steven A. Siegelbaum, and A. J. Hudspeth. 2000. Principles of Neural Science,
Fifth Edition. 5th ed. New York, NY: McGraw-Hill Medical.

Kaplan, Jared, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu,
and Dario Amodei. 2020. “Scaling Laws for Neural Language Models.” arXiv [cs.LG]. arXiv. http://arxiv.org/abs/2001.08361.

Kerous, Bojan, Filip Skola, and Fotis Liarokapis. 2018. “EEG-Based BCI and Video Games: A Progress Report.” Virtual Reality 22 (2):
119–35.

Laput, Gierad, Robert Xiao, and Chris Harrison. 2016. “ViBand: High-Fidelity Bio-Acoustic Sensing Using Commodity Smartwatch
Accelerometers.” In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, 321–33. UIST ’16.
New York, NY, USA: Association for Computing Machinery.

Laput, Gierad, Chouchang Yang, Robert Xiao, Alanson Sample, and Chris Harrison. 2015. “EM-Sense: Touch Recognition of
Uninstrumented, Electrical and Electromechanical Objects.” In Proceedings of the 28th Annual ACM Symposium on User Interface
Software & Technology, 157–66. UIST ’15. New York, NY, USA: Association for Computing Machinery.

Lawhern, Vernon J., Amelia J. Solon, Nicholas R. Waytowich, Stephen M. Gordon, Chou P. Hung, and Brent J. Lance. 2018. “EEGNet: A
Compact Convolutional Neural Network for EEG-Based Brain-Computer Interfaces.” Journal of Neural Engineering 15 (5): 056013.

Lotte, F., L. Bougrain, A. Cichocki, M. Clerc, M. Congedo, A. Rakotomamonjy, and F. Yger. 2018. “A Review of Classification Algorithms
for EEG-Based Brain-Computer Interfaces: A 10 Year Update.” Journal of Neural Engineering 15 (3): 031005.

MacKenzie, I. Scott. 1992. “Fitts’ Law as a Research and Design Tool in Human-Computer Interaction.” Human–Computer Interaction 7
(1): 91–139.

Marshall, Najja J., Joshua I. Glaser, Eric M. Trautmann, Elom A. Amematsro, Sean M. Perkins, Michael N. Shadlen, L. F. Abbott, John P.
Cunningham, and Mark M. Churchland. 2022. “Flexible Neural Control of Motor Units.” Nature Neuroscience 25 (11): 1492–1504.

Maslova, Olga, Yuliya Komarova, Natalia Shusharina, Alexander Kolsanov, Alexander Zakharov, Evgenia Garina, and Vasiliy Pyatin.
2023. “Non-Invasive EEG-Based BCI Spellers from the Beginning to Today: A Mini-Review.” Frontiers in Human Neuroscience 17
(August): 1216648.

McGraw, Ian, Rohit Prabhavalkar, Raziel Alvarez, Montse Gonzalez Arenas, Kanishka Rao, David Rybach, Ouais Alsharif, et al. 2016.
“Personalized Speech Recognition on Mobile Devices.” In 2016 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 5955–59. IEEE.

Mdhaffar, Salima, Marc Tommasi, and Yannick Estève. 2021. “Study on Acoustic Model Personalization in a Context of Collaborative
Learning Constrained by Privacy Preservation.” In Speech and Computer, 426–36. Springer International Publishing.

Mendez Guerra, Irene, Deren Y. Barsakcioglu, Ivan Vujaklija, Daniel Z. Wetmore, and Dario Farina. 2022. “Far-Field Electric Potentials
Provide Access to the Output from the Spinal Cord fromWrist-Mounted Sensors.” Journal of Neural Engineering 19 (2): 026031.

Mendez, Irene, Bo W. Hansen, Christine M. Grabow, Erik J. L. Smedegaard, Nanna B. Skogberg, Xenia J. Uth, Astrid Bruhn, B. Geng, and
Ernest N. Kamavuako. 2017. “Evaluation of the Myo Armband for the Classification of Hand Motions.” In IEEE Int. Conf. Rehabil.
Robot., 2017:1211–14.

Merletti, Roberto, and Dario Farina. 2016. Surface Electromyography: Physiology, Engineering, and Applications. EPUB. Edited by
Roberto Merletti and Dario Farina. 1st ed. IEEE Press Series on Biomedical Engineering. Nashville, TN: John Wiley & Sons.

Merletti, Roberto, and Silvia Muceli. 2019. “Tutorial. Surface EMG Detection in Space and Time: Best Practices.” Journal of

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2024. ; https://doi.org/10.1101/2024.02.23.581779doi: bioRxiv preprint 

http://paperpile.com/b/OQiGG4/jk0A
http://paperpile.com/b/OQiGG4/jk0A
http://paperpile.com/b/OQiGG4/JZSr
http://paperpile.com/b/OQiGG4/JZSr
http://paperpile.com/b/OQiGG4/JZSr
http://paperpile.com/b/OQiGG4/LtYV
http://paperpile.com/b/OQiGG4/65Ej
http://paperpile.com/b/OQiGG4/65Ej
http://arxiv.org/abs/2005.08100
http://paperpile.com/b/OQiGG4/65Ej
http://paperpile.com/b/OQiGG4/yqaQ
http://paperpile.com/b/OQiGG4/yqaQ
http://arxiv.org/abs/1904.02619
http://paperpile.com/b/OQiGG4/yqaQ
http://paperpile.com/b/OQiGG4/qFSe
http://paperpile.com/b/OQiGG4/qFSe
http://paperpile.com/b/OQiGG4/ddEJ
http://paperpile.com/b/OQiGG4/ddEJ
http://paperpile.com/b/OQiGG4/fYQA
http://paperpile.com/b/OQiGG4/KPmG
http://paperpile.com/b/OQiGG4/KPmG
http://paperpile.com/b/OQiGG4/KPmG
http://paperpile.com/b/OQiGG4/YYFt
http://paperpile.com/b/OQiGG4/YYFt
http://paperpile.com/b/OQiGG4/cIYQ
http://paperpile.com/b/OQiGG4/cIYQ
http://paperpile.com/b/OQiGG4/cIYQ
http://paperpile.com/b/OQiGG4/KFjd
http://paperpile.com/b/OQiGG4/KFjd
http://paperpile.com/b/OQiGG4/6H4K
http://paperpile.com/b/OQiGG4/6H4K
http://paperpile.com/b/OQiGG4/6H4K
http://paperpile.com/b/OQiGG4/2HwF
http://paperpile.com/b/OQiGG4/2HwF
http://paperpile.com/b/OQiGG4/JP08
http://paperpile.com/b/OQiGG4/JP08
http://arxiv.org/abs/2001.08361
http://paperpile.com/b/OQiGG4/JP08
http://paperpile.com/b/OQiGG4/Lrpb
http://paperpile.com/b/OQiGG4/Lrpb
http://paperpile.com/b/OQiGG4/vVq1
http://paperpile.com/b/OQiGG4/vVq1
http://paperpile.com/b/OQiGG4/vVq1
http://paperpile.com/b/OQiGG4/HrPE
http://paperpile.com/b/OQiGG4/HrPE
http://paperpile.com/b/OQiGG4/HrPE
http://paperpile.com/b/OQiGG4/g1Ew
http://paperpile.com/b/OQiGG4/g1Ew
http://paperpile.com/b/OQiGG4/V2qs
http://paperpile.com/b/OQiGG4/V2qs
http://paperpile.com/b/OQiGG4/47Qe
http://paperpile.com/b/OQiGG4/47Qe
http://paperpile.com/b/OQiGG4/dtnt
http://paperpile.com/b/OQiGG4/dtnt
http://paperpile.com/b/OQiGG4/Dscv
http://paperpile.com/b/OQiGG4/Dscv
http://paperpile.com/b/OQiGG4/Dscv
http://paperpile.com/b/OQiGG4/Mpto
http://paperpile.com/b/OQiGG4/Mpto
http://paperpile.com/b/OQiGG4/Mpto
http://paperpile.com/b/OQiGG4/h8s7
http://paperpile.com/b/OQiGG4/h8s7
http://paperpile.com/b/OQiGG4/bkkw
http://paperpile.com/b/OQiGG4/bkkw
http://paperpile.com/b/OQiGG4/Mzyg
http://paperpile.com/b/OQiGG4/Mzyg
http://paperpile.com/b/OQiGG4/Mzyg
http://paperpile.com/b/OQiGG4/CXbh
http://paperpile.com/b/OQiGG4/CXbh
http://paperpile.com/b/OQiGG4/Dope
https://doi.org/10.1101/2024.02.23.581779
http://creativecommons.org/licenses/by-nc-nd/4.0/


Electromyography and Kinesiology: Official Journal of the International Society of Electrophysiological Kinesiology 49 (102363):
102363.

Metzger, Sean L., Kaylo T. Littlejohn, Alexander B. Silva, David A. Moses, Margaret P. Seaton, Ran Wang, Maximilian E. Dougherty, et
al. 2023. “A High-Performance Neuroprosthesis for Speech Decoding and Avatar Control.” Nature 620 (7976): 1037–46.

Musk, Elon, and Neuralink. 2019. “An Integrated Brain-Machine Interface Platform with Thousands of Channels.” Journal of Medical
Internet Research 21 (10): e16194.

Olson, Brian, Irina Hashmi, Kevin Molloy, and Amarda Shehu. 2012. “Basin Hopping as a General and Versatile Optimization
Framework for the Characterization of Biological Macromolecules.” Advances in Artificial Intelligence 2012 (December).
https://www.hindawi.com/journals/aai/2012/674832/.

Palin, Kseniia, Anna Maria Feit, Sunjun Kim, Per Ola Kristensson, and Antti Oulasvirta. 2019. “How Do People Type on Mobile Devices?
Observations from a Study with 37,000 Volunteers.” In Proceedings of the 21st International Conference on Human-Computer
Interaction with Mobile Devices and Services, 1–12. MobileHCI ’19 9. New York, NY, USA: Association for Computing Machinery.

Park, Daniel S., William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D. Cubuk, and Quoc V. Le. 2019. “SpecAugment: A
Simple Data Augmentation Method for Automatic Speech Recognition.” arXiv [eess.AS]. arXiv. http://arxiv.org/abs/1904.08779.

Perslev, Mathias, Sune Darkner, Lykke Kempfner, Miki Nikolic, Poul Jørgen Jennum, and Christian Igel. 2021. “U-Sleep: Resilient
High-Frequency Sleep Staging.” Npj Digital Medicine 4 (1): 72.

Phinyomark, Angkoon, and Erik Scheme. 2018. “EMG Pattern Recognition in the Era of Big Data and Deep Learning.” Big Data and
Cognitive Computing 2 (3): 21.

Pillutla, Krishna, Kshitiz Malik, Abdel-Rahman Mohamed, Mike Rabbat, Maziar Sanjabi, and Lin Xiao. 2022. “Federated Learning with
Partial Model Personalization.” In Proceedings of the 39th International Conference on Machine Learning, edited by Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, 162:17716–58. Proceedings of Machine
Learning Research. PMLR.

Pullman, S. L., D. S. Goodin, A. I. Marquinez, S. Tabbal, and M. Rubin. 2000. “Clinical Utility of Surface EMG: Report of the Therapeutics
and Technology Assessment Subcommittee of the American Academy of Neurology: Report of the Therapeutics and Technology
Assessment Subcommittee of the American Academy of Neurology.” Neurology 55 (2): 171–77.

Saponas, T. Scott, Desney S. Tan, Dan Morris, and Ravin Balakrishnan. 2008. “Demonstrating the Feasibility of Using Forearm
Electromyography for Muscle-Computer Interfaces.” In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. New York, NY, USA: ACM. https://doi.org/10.1145/1357054.1357138.

Scheme, Erik, A. Fougner, Øyvind Stavdahl, Adrian D. C. Chan, and Kevin Englehart. 2010. “Examining the Adverse Effects of Limb
Position on Pattern Recognition Based Myoelectric Control.” In IEEE Eng. Med. Biol. Soc., 2010:6337–40.

Smith, Nathaniel J., and Marta Kutas. 2015. “Regression-Based Estimation of ERPWaveforms: II. Nonlinear Effects, Overlap Correction,
and Practical Considerations.” Psychophysiology 52 (2): 169–81.

Stachaczyk, Martyna, S. F. Atashzar, Sigrid Dupan, Ivan Vujaklija, and Dario Farina. 2020. “Toward Universal Neural Interfaces for Daily
Use: Decoding the Neural Drive to Muscles Generalises Highly Accurate Finger Task Identification across Humans.” IEEE Access 8:
149025–35.

Sussillo, David, Paul Nuyujukian, Joline M. Fan, Jonathan C. Kao, Sergey D. Stavisky, Stephen Ryu, and Krishna Shenoy. 2012. “A
Recurrent Neural Network for Closed-Loop Intracortical Brain-Machine Interface Decoders.” Journal of Neural Engineering 9 (2):
026027.

Sussillo, David, Sergey D. Stavisky, Jonathan C. Kao, Stephen I. Ryu, and Krishna V. Shenoy. 2016. “Making Brain-Machine Interfaces
Robust to Future Neural Variability.” Nature Communications 7 (1): 13749.

Tanzarella, Simone, Massimiliano Iacono, Elisa Donati, Dario Farina, and Chiara Bartolozzi. 2023. “Neuromorphic Decoding of Spinal
Motor Neuron Behaviour During Natural Hand Movements for a New Generation of Wearable Neural Interfaces.” IEEE
Transactions on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology
Society 31 (July): 3035–46.

Virtanen, Pauli, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, et al. 2020.
“SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.” Nature Methods 17 (3): 261–72.

Wen, Hongyi, Julian Ramos Rojas, and Anind K. Dey. 2016. “Serendipity: Finger Gesture Recognition Using an Off-the-Shelf
Smartwatch.” In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, 3847–51. CHI ’16. New York,
NY, USA: Association for Computing Machinery.

Willett, Francis R., Donald T. Avansino, Leigh R. Hochberg, Jaimie M. Henderson, and Krishna V. Shenoy. 2021. “High-Performance
Brain-to-Text Communication via Handwriting.” Nature 593 (7858): 249–54.

Willett, Francis R., Erin M. Kunz, Chaofei Fan, Donald T. Avansino, Guy H. Wilson, Eun Young Choi, Foram Kamdar, et al. 2023. “A
High-Performance Speech Neuroprosthesis.” Nature 620 (7976): 1031–36.

Williams, Alex H., Ben Poole, Niru Maheswaranathan, Ashesh K. Dhawale, Tucker Fisher, Christopher D. Wilson, David H. Brann, et al.
2020. “Discovering Precise Temporal Patterns in Large-Scale Neural Recordings through Robust and Interpretable Time
Warping.” Neuron 105 (2): 246–59.e8.

Yamagami, Momona, Alexandra A. Portnova-Fahreeva, Junhan Kong, Jacob O. Wobbrock, and Jennifer Mankoff. 2023. “How Do People
with Limited Movement Personalize Upper-Body Gestures? Considerations for the Design of Personalized and Accessible Gesture
Interfaces.” In ASSETS ’23: Proceedings of the 25th International ACM SIGACCESS Conference on Computers and Accessibility,
1–15.

Young, Aaron J., Levi J. Hargrove, and Todd A. Kuiken. 2011. “The Effects of Electrode Size and Orientation on the Sensitivity of
Myoelectric Pattern Recognition Systems to Electrode Shift.” IEEE Transactions on Bio-Medical Engineering 58 (9): 2537–44.

Yu, Jiahui, Chung-Cheng Chiu, Bo Li, Shuo-Yiin Chang, Tara N. Sainath, Yanzhang He, Arun Narayanan, et al. 2020. “FastEmit:
Low-Latency Streaming ASR with Sequence-Level Emission Regularization.” arXiv [eess.AS]. arXiv.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2024. ; https://doi.org/10.1101/2024.02.23.581779doi: bioRxiv preprint 

http://paperpile.com/b/OQiGG4/Dope
http://paperpile.com/b/OQiGG4/Dope
http://paperpile.com/b/OQiGG4/wH1J
http://paperpile.com/b/OQiGG4/wH1J
http://paperpile.com/b/OQiGG4/HYgK
http://paperpile.com/b/OQiGG4/HYgK
http://paperpile.com/b/OQiGG4/sVwW
http://paperpile.com/b/OQiGG4/sVwW
https://www.hindawi.com/journals/aai/2012/674832/
http://paperpile.com/b/OQiGG4/sVwW
http://paperpile.com/b/OQiGG4/fVAM
http://paperpile.com/b/OQiGG4/fVAM
http://paperpile.com/b/OQiGG4/fVAM
http://paperpile.com/b/OQiGG4/vptr
http://paperpile.com/b/OQiGG4/vptr
http://arxiv.org/abs/1904.08779
http://paperpile.com/b/OQiGG4/vptr
http://paperpile.com/b/OQiGG4/5gZd
http://paperpile.com/b/OQiGG4/5gZd
http://paperpile.com/b/OQiGG4/kYyL
http://paperpile.com/b/OQiGG4/kYyL
http://paperpile.com/b/OQiGG4/0oCX
http://paperpile.com/b/OQiGG4/0oCX
http://paperpile.com/b/OQiGG4/0oCX
http://paperpile.com/b/OQiGG4/0oCX
http://paperpile.com/b/OQiGG4/7bjU
http://paperpile.com/b/OQiGG4/7bjU
http://paperpile.com/b/OQiGG4/7bjU
http://paperpile.com/b/OQiGG4/oDPD
http://paperpile.com/b/OQiGG4/oDPD
http://paperpile.com/b/OQiGG4/oDPD
http://dx.doi.org/10.1145/1357054.1357138
http://paperpile.com/b/OQiGG4/oDPD
http://paperpile.com/b/OQiGG4/6Ru1
http://paperpile.com/b/OQiGG4/6Ru1
http://paperpile.com/b/OQiGG4/ZBh3
http://paperpile.com/b/OQiGG4/ZBh3
http://paperpile.com/b/OQiGG4/wbbt
http://paperpile.com/b/OQiGG4/wbbt
http://paperpile.com/b/OQiGG4/wbbt
http://paperpile.com/b/OQiGG4/mLgG
http://paperpile.com/b/OQiGG4/mLgG
http://paperpile.com/b/OQiGG4/mLgG
http://paperpile.com/b/OQiGG4/GIlL
http://paperpile.com/b/OQiGG4/GIlL
http://paperpile.com/b/OQiGG4/vA9O
http://paperpile.com/b/OQiGG4/vA9O
http://paperpile.com/b/OQiGG4/vA9O
http://paperpile.com/b/OQiGG4/vA9O
http://paperpile.com/b/OQiGG4/LpR8
http://paperpile.com/b/OQiGG4/LpR8
http://paperpile.com/b/OQiGG4/1KUo
http://paperpile.com/b/OQiGG4/1KUo
http://paperpile.com/b/OQiGG4/1KUo
http://paperpile.com/b/OQiGG4/fGOf
http://paperpile.com/b/OQiGG4/fGOf
http://paperpile.com/b/OQiGG4/a7eO
http://paperpile.com/b/OQiGG4/a7eO
http://paperpile.com/b/OQiGG4/mUqR
http://paperpile.com/b/OQiGG4/mUqR
http://paperpile.com/b/OQiGG4/mUqR
http://paperpile.com/b/OQiGG4/JeKy
http://paperpile.com/b/OQiGG4/JeKy
http://paperpile.com/b/OQiGG4/JeKy
http://paperpile.com/b/OQiGG4/JeKy
http://paperpile.com/b/OQiGG4/3fsC
http://paperpile.com/b/OQiGG4/3fsC
http://paperpile.com/b/OQiGG4/mUZB
http://paperpile.com/b/OQiGG4/mUZB
https://doi.org/10.1101/2024.02.23.581779
http://creativecommons.org/licenses/by-nc-nd/4.0/


http://arxiv.org/abs/2010.11148.
Zhai, Xiaohua, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. 2022. “Scaling Vision Transformers.” In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 12104–13. openaccess.thecvf.com.
Zhang, Yang, and Chris Harrison. 2015. “Tomo: Wearable, Low-Cost Electrical Impedance Tomography for Hand Gesture Recognition.”

In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology, 167–73. UIST ’15. New York, NY,
USA: Association for Computing Machinery.

Zia Ur Rehman, Muhammad, AsimWaris, Syed Omer Gilani, Mads Jochumsen, Imran Khan Niazi, Mohsin Jamil, Dario Farina, and
Ernest Nlandu Kamavuako. 2018. “Multiday EMG-Based Classification of Hand Motions with Deep Learning Techniques.” Sensors
(Basel, Switzerland) 18 (8): 2497

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2024. ; https://doi.org/10.1101/2024.02.23.581779doi: bioRxiv preprint 

http://arxiv.org/abs/2010.11148
http://paperpile.com/b/OQiGG4/mUZB
http://paperpile.com/b/OQiGG4/TCBa
http://paperpile.com/b/OQiGG4/TCBa
http://paperpile.com/b/OQiGG4/mdZr
http://paperpile.com/b/OQiGG4/mdZr
http://paperpile.com/b/OQiGG4/mdZr
http://paperpile.com/b/OQiGG4/aBo2
http://paperpile.com/b/OQiGG4/aBo2
http://paperpile.com/b/OQiGG4/aBo2
https://doi.org/10.1101/2024.02.23.581779
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2024. ; https://doi.org/10.1101/2024.02.23.581779doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.23.581779
http://creativecommons.org/licenses/by-nc-nd/4.0/

