Under review as a conference paper at ICLR 2024

ERM++: AN IMPROVED BASELINE FOR
DOMAIN GENERALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-source Domain Generalization (DG) measures a classifier’s ability to gen-
eralize to new distributions of data it was not trained on, given several training
domains. While several multi-source DG methods have been proposed, they in-
cur additional complexity during training by using domain labels. Recent work
has shown that a well-tuned Empirical Risk Minimization (ERM) training pro-
cedure, that is simply minimizing the empirical risk on the source domains, can
outperform most existing DG methods. ERM has achieved such strong results
while only tuning hyper-parameters such as learning rate, weight decay, and batch
size. This paper aims to understand how we can push ERM as a baseline for
DG further, thereby providing a stronger baseline for which to benchmark new
methods. We call the resulting improved baseline ERM++, and it consists of
better utilization of training data, model parameter selection, and weight-space
regularization. ERM++ significantly improves the performance of DG on five
multi-source datasets by over 5% compared to standard ERM using ResNet-50,
and beats state-of-the-art despite being less computationally expensive. We also
demonstrate the efficacy of ERM++ on the WILDS-FMOW dataset, a challenging
DG benchmark. Finally, we show that with a CLIP-pretrained ViT-B/16, ERM++
outperforms ERM by over 10%, allowing one to take advantage of the stronger
pre-training effectively. We will release code upon acceptance.

1 INTRODUCTION

Domain Generalization (DG) (Blanchard et al.,[2011; Muandet et al., 2013) tackles the crucial task
of developing models that can excel on previously unseen data distributions, all without relying on
the availability of target data for model updates. This is vital when gathering new domain-specific
data is impractical, and differences between training and deployment data are unknown beforehand.
In multi-source DG, each training sample is categorized as belonging to one of several domains.
Many advanced methods explicitly harness this domain membership information (Ganin et al., 2016;
Zhang et al., 2021} |L1 et al., 2018bj [Zhou et al.,|2021)). However, recently DomainBed (Gulrajani &
Lopez-Paz, 2020) conducted a comprehensive evaluation of these methods and revealed that Empir-
ical Risk Minimization (ERM) surprisingly outperforms most prior work in DG when hyperparam-
eters are well-tuned. This achievement is particularly remarkable because ERM relies on domain
labels in a rather limited manner, through oversampling minority domains to balance domain sizes
in the training data. Even though advanced techniques come equipped with strong inductive biases,
they fail to surpass ERM’s performance. This shows the critical importance of well-tuned baselines;
they ensure that research results are reliable and meaningful. Without a solid baseline, it can be
challenging to determine whether reported improvements are due to the proposed method’s effec-
tiveness or simply a result of arbitrary choices or overfitting to the dataset. Nevertheless, |(Gulrajani
& Lopez-Paz| (2020)’s tuning of ERM only consists of learning rate, weight decay, and batch size.
There are substantial other important design choices, and our primary objective in this paper is to
examine those which do not result in alterations to model architecture or intricate training strategies.

We conduct a critical analysis of various components within the training pipeline to develop ERM++,
revolving around three main themes. First, we explore how the training data is being used, including
training length and checkpoint selection (Section [3.I). Currently, the DG standard is to split off
a subset of data for hyper-parameter and checkpoint selection (Gulrajani & Lopez-Paz, 2020; (Cha
et al., 2021;2022). Motivated by the metric learning literature (Mishra et al., 2021} Movshovitz-

|Under review as a conference paper at ICLR 2024

Diverse Shifts OfficeHome
Multiple Train Sources Test Target
/g Art Product Clipart 75
A <
W V. p >
LRt BN
o D, o ©
A . o
(" AtPainting Photo Sketch 370
@« i O
= <
‘ Ly
~ / o 65
/U Real Quickdraw Infograph (o]
3 5 =
5 ‘ Sd
=l
\ ERM SWAD + MIRO ERM++

Figure 1: We tackle the task of Multi-Source DG, where a model is trained on several source domains
and evaluated on a different target domain. This simulates the real-world scenario where we don’t
know how deployment data will differ from training data. We do this by improving the classic, and
already strong, ERM (Gulrajani & Lopez-Paz, [2020) algorithm with careful application of known
methodologies and call it ERM++. We verify our method on a diverse set of domain shifts, and
show that ERM++ achieves the best reported numbers in the literature, and even outperforms the
state-of-the-art SWAD + MIRO(Cha et al.| 2021). We argue that ERM++ should become the default
baseline to build off of.

[Attias et al., 2017} [Tan et al., 2019)), we instead propose to two passes: one to select hyper-parameters
and training length, and the second to retrain with the full-data and selected hyper-parameters. This
allows us the leverage the fact that increasing data size improves generalization. Second, we consider
how we initialize network parameters such as the selection of pretraining network and whether or
not to fine-tune or freeze layers (Section [3.2). While pre-training has been shown to be critical for
domain adaptation and generalization(Angarano et al.,[2022; [Kim et al.,[2022), stronger initializaton
has not yet become part of a standard DG benchmark. Similarly, while first training the linear probe
has been widely used over the years (Kanavati & Tsunekil, 2021}, [Zhai & Wul [2018)), it has not been
integrated into a commonly used multi-source DG baseline. Third, we investigate weight-space
regularization methods that are often used to help avoid overfitting to the training data (Section[3.3).
It’s been shown that averaging model iterates results in converging to flatter minima and improved

generalization(Arpit et al.} 2021} [Cha et al.} 2021} [zmailov et al., 2018} [Wortsman et al.| [2022b),

and we investigate different averaging strategies.

Put together, we find that we can outperform all prior work by over 1 percent on ResNet-50, when
we hold 1 domain out in 5 datasets (OfficeHome, PACS, DomainNet, Terralncognita, and VLCS),
and average across domains. In the process, we show the robustness of two recent works (MIRO
and DIWA) which do not use domain label information on top of ERM++, while also showing that a
method which does use domain-labels (CORAL (Sun & Saenkol [2016)) doesn’t compose well with
ERM++. Finally, we demonstrate massive utility of ERM++ on CLIP-pretrained ViT(Radford et al.|
relative to ERM, giving an over 10% performance improvement on the same 5 tasks.

2 RELATED WORK

Domain-invariant feature learning: In multi-source domain generalization, it is common to lever-
age the domain labels to learn domain-invariant features. CORAL (Sun & Saenko| 2016) aligns
second-order statistics of different domains. DANN (Ganin et al, 2016) uses an adversarial loss
to match feature distributions across source domains. However, using domain knowledge to learn
domain-invariant features can learn to ignore important signals. In fact, [Vedantam et al.|(202T) find
low correlation between low source-target discrepancy and good DG performance.

Domain-Aware Data Augmentation: Data augmentation is a common tool to expand the training
domain 2021} 2020; [Zhong et al, 2022} Yan et al., 2020). For exam-
ple, Inter-domain mixup blends the images of different domains, and augmentation
with style transfer can further diversify training images (Zhong et al.l [2022)), though it is expensive.
Instead of relying on data augmentation techniques during training on sources, we propose to em-
ploy all training samples from the source, including validation data, which expands knowledge about

Under review as a conference paper at ICLR 2024

the task. We also propose to use backbones pretrained with strong domain-agnostic augmentation
such as Augmix (Hendrycks et al.,|2020), which mixes different synthetic augmentations.
Ensembling: Deep ensembles are effective for domain generalization (Arpit et al., [2021} |Fort
et al.| [2019). However, they are computationally inefficient, needing to run inference through
many models. It has been recently shown that averaging model weights can approximate an ensem-
ble(Wortsman et al., [2022a; [Rame et al., |2022; 'Wortsman et al., [2022b; (Cha et al., 2021} [zmailov
et al., [2018), either from a single trajectory or multiple trajectories. We choose to leverage the en-
sembles from a single training trajectory.

Preventing Catastrophic Forgetting: Several recent approaches aim to leverage generalizable fea-
tures from a model pre-trained on large-scale data. Adapting such a model to the downstream task
without forgetting its generalizable representations is the key to achieving generalization Wortsman
et al.| (2022b) interpolate between the pre-trained and adapted model. [Kumar et al.| (2022)) and Zhai
& Wul (2018)) mitigate feature distortion by pre-training a linear probe first before fine-tuning the
backbone, warmstarting the fine-tuning with a good initialization. MIRO (Cha et al., |2022)) maxi-
mizes the mutual information in feature space between the fine-tuned and pre-trained networks. Our
approach utilizes warmstart and confirms its effectiveness in diverse settings.

3 REVISITING TRAINING PROCEDURES TO CREATE ERM++ FOR DOMAIN
GENERALIZATION

We study the problem of Multi-Source DG for classification. We train a model on data consisting
of multiple domains and evaluate it on data from unseen domains. More formally, let us consider
training domains d € {dy, ...,d, }. A training dataset is constructed using all sample, label pairs in
all training domains D = {(X %Y%), (X9 YI)}. After training classifier f on D, it is tested
on a held-out testing domain d;.s:. As stated in previous sections, approaches utilizing invariance
of the domain or regularization of features can complicate the training. Instead we perform simple
empirical risk minimization (ERM), formalized as minimizing the average loss over all samples
% > iep {(xi,y;). In practice, we compose batches to be equal parts of each source domain.

Our goal is to investigate the general training components that go into creating an ERM model to
provide a strong baseline for future work, ensuring that improvements reported by new methodol-
gies cannot be achieved using simpler means. These components include how to effectively use the
source data (Section[3.1)), considerations when selecting and using pretrained weights (Section 3.2)),
and weight-space regularization methods that help prevent overfitting to the source domains (Sec-
tion[3.3). We refer to our new stronger baseline as ERM++.

3.1 IMPROVED DATA UTILIZATION

A key component of training any neural network is utilizing the (often limited) training data ef-
fectively. A common practice in the domain generalization literature is to split source datasets into
(often 80%/20%) train/validation sets under a fixed number of iterations for each dataset (e.g. , (Gul-
rajani & Lopez-Paz, [2020; (Cha et al., 2021; Rame et al.| [2022; |Arpit et al., 2021)). The validation
data is used to set hyperparameters and perform checkpoint (no. training steps) selection. This ap-
proach has two major drawbacks. First, by creating a separate validation set we are sacrificing a
significant portion of our labeled data, and data quantity is known to be important for generaliza-
tion. Second, by training under a fixed (relatively small) number of iterations we ignore the varying
convergence rates of different models, which may result in an underperforming model. We address
these with techniques we call Long Training, Early Stopping and Full Data.

Allowing model convergence (Long Training, LT): We observe that source validation performance
does not saturate on many datasets (See Appendix [B.3)), therefore we increase the celing on number
of training steps by 4x. This allows the model to achieve its maximum performance.

Determining training length (Early Stopping, ES): Given the high ceiling on number of training
steps, it is possible to overfit. Therefore, we use validation performance to select the number of
training steps. This number of training points is a parameter we call ¢. This is similar to checkpoint
selection as done in prior work, however we afterwards retrain with the full data (see below).
Using the full data (Full Data, FD): Inspired by the training procedures in metric learning litera-
ture (e.g. Mishra et al.| (2021)); [Movshovitz-Attias et al.|(2017); Tan et al.|(2019); Teh et al.| (2020);
Wang et al.| (2020)), we explore a two-stage training procedure. In the first stage we use the same

Under review as a conference paper at ICLR 2024

train/validation splits as in prior work in order to choose training length. In the second stage we train
our model for deployment using the entire (train+validation) dataset in order to train with the entire
dataset for better generalization.

3.2 INITIALIZING MODEL WEIGHTS

Most domain generalization methods do not train a model from scratch, but rather transfer the
weights of an existing model, typically pretrained on ImageNet (Deng et al., 2009). This is moti-
vated by the idea that pre-training allows the model to learn robust features useful for generalization
on downstream tasks. There are three main decisions that we explore further: selecting what model
weights to transfer, determining what weights to fine-tune or keep frozen, and how to initialize any
new weights (e.g. final classifier weights) in your network.

Weight Initialization (Strong Init.): Recent work has shown that better ImageNet models have

better domain generalization properties for DG (Kim et al., 2022} [Angarano et al.,[2022). However,

this has been explored in the context of varying model size. Therefore, performance gains can be ei-

ther from a.) improved pre-training dataset (upstream) performance resulting in improved DG or b.)

larger models resulting in improved DG performance, regardless of upstream performance. These

also disregard the needs of some applications, such as computational requirements (larger models
necessitate more resources) or restrictions on architectures due to a shared encoder for a multitask
problem. Thus, we explore the effect of different initializations for the same model architecture,

specifically a ResNet-50 (He et al., [2016)):

» TorchVision Model Weights: This is the standard ImageNet pretrained initialization present in
TorchVision. It was trained with weak augmentations for 90 epochs.

* AugMix trained network: AugMix (Hendrycks et al.,|2020) is a method used to improve model
consistency using augmentations without training the model on data which is too different from
the test data. AugMix takes two augmented views of an image and mixes them in pixel space.
Then the model is trained to produce consistent output between two AugMix augmentations and
the clean image.

* ResNet A1: ResNet Al initializes weights from the training recipe presented in (Wightman et al.,
2021). The model is heavily tuned to find training settings which result in very strong ImageNet
performance. Examples include training for 600 epochs, the LAMB optimizer, strong augmenta-
tions, and a binary cross-entropy.

* Meal V2 : MealV2 (Shen & Savvides, [2020) is a highly performant ensemble, distilled into a
ResNet-50. In particular, a SeNet-154 (Hu et al., 2018) (81.23% ImageNet Top-1) and ResNet-
152 (81.02% ImageNet Top-1) are distilled into ResNet-50.

Each of these models has different ImageNet validation accuracies, ranging from 76.13% (TorchVi-
sion weights) to 80.7% (Meal-V2 (Shen & Savvides, 2020)). However, as our experiments will
show, simply swapping out the standard initialization for the strongest ImageNet model does not re-
sult in the best performance. We empirically find the strongest of these, Augmix (Hendrycks et al.,
2020), and refer to it as Strong init.
Unfreezing BatchNorm(UBN): It has been shown that what parameters to update during fine-
tuning a pre-trained model, and when, can have substantial effects on downstream performance.
Surgical fine-tuning (Lee et al.l 2022) shows that only updating some blocks results in improved
performance, but that different datasets require the unfreezing of different blocks, making it unsuit-
able for a general DG training procedure (as is our goal). Therefore, most domain generalization
methods will fine-tune most layer weights, with the exception of BatchNorm parameters, which are
sometimes kept frozen. We experiment further with the effect freezing the BatchNorm parameters
has on performance, and refer to unfreezing them as UBN.

Initializing Classifier Weights (Warm Start, WS): New class labels require new a classification

layer, and a standard method is to initialize a new classifier randomly and subsequently finetune

the entire model. However, a recurring observation made by many researchers over the years is that
your model may suffer from divergence from the initialization due to the noisy gradients from newly
initialized layers (Goyal et al.l [2017; He et al., [2016; [Rame et al.l |2022). In the case of pretrained
models, this results in catastrophic forgetting of robust, pre-trained features. To address this, re-

searchers would begin training by Warmstart (WS) (Kanavati & Tsunekil 2021} [Zhai & Wul 2018)

(also commonly referred to as warmup), where the new layer weights are trained with all pretrained

weights kept frozen for several hundred steps. After this short training cycle, new and old layer

weights are finetuned together (sometimes except for BatchNorm layers).

Under review as a conference paper at ICLR 2024

Hparam Search Runs Train FLOPS | Avg. Top-1

ERM-++ w/out LT (ours) 2 (for ES) 1x 68.4%
ERM-++(ours) 2 (for ES) <4x 68.9%
MIRO 4 (for \) 2x 68.1%
DIWA 60(for averaged models) 15x 68.0%

Table 1: Computational Cost: ERM++ achieves high performance without extensive hyper-
parameter searches, instead using reasonable default ones. Even without Long Training (Section
[3.1), we're able to achieve SOTA performance on ResNet-50 averaged across Terralncognita, Of-
ficeHome, PACS, DomainNet and VLCS. Train FLOPs are relative to ERM++w/out LT

3.3 WEIGHT-SPACE REGULARIZATION

Regularization has long been used to prevent over-fitting of models to training data. Overfitting is
an even bigger challenge in DG, because the the source data has a different distribution than the
target distribution. One regularization technique is averaging model iterates (Arpit et al., 2021} |Cha
et al., 2021} [Izmailov et al.| [2018; [Ruppert, |[1988; Wortsman et al., 2022alb; Rame et al., 2022} [Li
et al.,|2022)), which improves generalization by converging to flatter minima (Izmailov et al., [2018]).
Methods can roughly be divided into those which average within a single trajectory (Arpit et al.
2021} Izmailov et al., 2018} |Cha et al., 2021)), and those between different trajectories originating
from a single parent (L1 et al., [2022; Wortsman et al.,[2022a; Rame et al.| 2022).

Model Parameter Averaging, (MPA): |Arpit et al.| (2021) revisit a simple method for parameter
averaging where simply all iterates are averaged(MPA). We verify that MPA works in combination
with other techniques present in ERM++. In a departure from most of the other improvements
explored (wrt. using domain labels), we also experiment with training domain experts to induce
model diversity(SMPA), but find that this does not result in improved performance over within-
trajectory averaging. Therefore MPA is part of ERM++, but SMPA is not.

3.4 ERM++ COMPUTATIONAL COST

ERM++ induces less training cost overhead compared to competing methods, see Table
DIWA (Rame et al.l 2022) and MIRO (Cha et al) 2022) both use expensive hyper-parameter
searches, while we simply use reasonable default ones. Overall, without long training, ERM++
achieves SOTA accuracy with 50% of the training compute of MIRO and 5% of the compute of
DIWA (Rame et al.;,2022), while retaining the same inference overhead.

4 EXPERIMENTAL SETTINGS

We benchmark ERM++ on a diverse set of datasets commonly used for evaluating multi-source DG:
OfficeHome (Venkateswara et al.,[2017)) is a 65-way classification problem depicting everyday ob-
jects from 4 domains: art, clipart, product, and real, with a total of 15,588 samples.

DomainNet (Peng et al.l [2019) is 345-way object classification problem from 6 domains: clipart,
infograph, painting, quickdraw, real, and sketch. With a total of 586,575 samples, it is larger than
most of the other evaluated datasets in both samples and classes.

PACS (Li et al.,[2017) is a 7-way object classification problem from 4 domains: art, cartoon, photo,
and sketch, with 9,991 samples. It helps verify our method in smaller-scale settings.

VLCS (Fang et al., 2013) is a 5-way classification problem from 4 domains: Caltech101, LabelMe,
SUNO09, and VOC2007. There are 10,729 samples. VLCS is a good test for close OOD; the member
datasets are all real photos. The distribution shifts are subtle and simulate real-life scenarios well.
Terralncognita (Beery et al., [2018) is a 10-way classification problem of animals in wildlife cam-
eras, where the 4 domains are different locations. There are 24,788 samples. This represents a
realistic use-case where generalization is indeed critical.

Wilds-FMOW (Koh et al.| 2021 |Christie et al.l 2018]) is a 62-way land-use classification problem,
with satellites from 5 regions as different domains. There are 141,696 samples. Wilds-FMOW is a
realistic problem different from the above and not focused on objects.

We follow the DomainBed training procedure and add additional components from ERM++. In
particular, we use the default hyper-parameters from DomainBed (Gulrajani & Lopez-Paz, 2020),

Under review as a conference paper at ICLR 2024

| OH PA DN TI VL |Avg

64.3+2.2 83.5+0.8 33.9+2.8 47.6+0.8 78.5+0.5|61.6
65.8+1.3 82.6+0.9 38.3+0.3 45.8+1.6 77.5+0.1|62.0
DANN (Ganin et al.,[2016) 65.9+0.6 83.6+0.4 38.3+0.1 46.7+0.5 78.6+0.4|62.6
MTL (Blanchard et al.,|2021]) 66.4+0.5 84.6+0.5 40.6+0.1 45.641.2 77.24+0.4/62.9
Mixup (Xu et al.,|2020;|Yan et al., 2020) |68.1+0.3 84.6+0.6 39.24+0.1 47.94+0.8 77.4+0.6|63.4
MLDG (L1 et al.,[2018a) 66.8+0.6 84.9+1.0 41.24+0.1 47.7+0.9 77.2+0.4|63.6
ERM (Vapnik,|1999) 67.6+0.2 84.2+0.1 44.0+0.1 47.840.6 77.3+0.1/64.2
CORAL (Sun & Saenko, 2016) 68.7+0.3 86.2+0.3 41.5+0.1 47.6+1.0 78.8+0.6|64.5
mDSDI (Bui et al., [2021) 69.2+0.4 86.2+0.2 42.84+0.1 48.1+1.4 79.0+0.3|65.1
MIRO (Cha et al., [2022) 70.5+0.4 85.4+0.4 44.34+0.2 50.4+1.1 79.0+0.0/65.9
SWAD (Cha et al., [2021]) 70.6+0.2 88.1+0.1 46.5+0.1 50.0+0.3 79.1+0.1|66.9
CORAL + SWAD (Sun & Saenkol 2016)|71.3+0.1 88.3+0.1 46.8+0.0 51.0+0.1 78.9+0.1|67.3
DIWA (Rame et al.,|[2022) 72.8 89.0 47.7 51.9 78.6 [68.0
MIRO + SWAD (Cha et al., 2022) 72.4+0.1 88.4+0.1 47.0+0.0 52.9+0.2 79.6+0.2|68.1
ERM++ (Ours) 74.7+0.0 89.8+0.3 50.8+0.0 51.2+0.3 78.0+0.1|68.9

IRM (Arjovsky et al.,[2019)
CDANN (L1 et al.,2018b)

Table 2: Comparison to recent methods: Performance of recent methods as reported by (Cha
et al.| [2022). ERM outperforms almost all prior work, especially when combined with techniques
such as SWAD and MIRO. ERM++ outperforms all prior work on average. DIWA does not report
confidence intervals.

e.g. , a batch size of 32 (per-domain), a learning rate of 5Se-5, a ResNet dropout value of 0, and
a weight decay of 0. Unless we specify that the Long Training component is added, we train
models for 15000 steps on DomainNet (following SWAD(Cha et al., 2021)) and 5000 steps for
other datasets, which corresponds to a variable number of epochs dependent on dataset size. If Long
Training is used, we extend training by 4x. We train on all source domains except for one, validate
the model on held-out data from the sources every 300 steps, and evaluate on the held-out domain.

5 RESULTS

|/OH PA VL DN TI |Avg
MIRO + SWAD |72.4 88.4 79.6 47.0 52.9|68.1 [OH PA VL DN TI |Avg
DIWA 72.8 89.0 78.6 47.7 52.9|68.0 ERM 1664 834 759 444 3531611
ERM++ 74.7 89.8 78.0 50.8 51.2|68.9 ERM++|83.4 91.1 81.5 58.8 48.3|72.6

DIWA + ERM++ |75.1 90.0 78.6 51.5 51.4|69.3

CORAL + ERM++66.9 83.8 79.3 46.2 48.1|64.9
MIRO + ERM++ |76.3 88.8 77.9 50.4 53.4/69.4

(a) Without a well-tuned baseline, it can be challenging to
determine whether reported improvements are due to the
proposed method’s effectiveness or simply a result of ar-
bitrary choices. We combine ERM++ with MIRO (Cha
et al., |2022), DIWA (Rame et al., |2022), and CORAL
(Sun & Saenkol [2016). Both DIWA and MIRO improve
performance, validating that DIWA and MIRO are effec-
tive methods even when built on top of a stronger baseline.
However, CORAL proves to be brittle and does not per-
form well when combined with ERM++.

(b) CLIP-ViT-B/16(Radford et al., 2021):
With all ERM++ components except UBN
(Unfrozen Batch Norm), ERM++ outper-
forms ERM by over 10%, showing the gen-
erality of ERM++ for different architec-
tures. Furthermore, ERM training of the
ViT does not outperform ResNet-50, mean-
ing that standard ERM cannot leverage the
much stronger pre-training of CLIP. In con-
trast, ERM++ allows us to effectively use
ViT’s.

Table 3: ERM++ in combination with other methods (a.) and compared to standard ERM on a CLIP
pretrained ViT-B/16 (b.)

Table 2| compares ERM++ to prior work, where we outperform the state-of-the-art across five Do-
mainBed datasets by an average of 1%. The single largest gain was on DomainNet (3% gain),
with OfficcHome and PACS obtaining still substantial gains of 1.5-2%. Table [3(a) demonstrates
our training procedure’s ability to generalize, where we combine our approach with several of the

Under review as a conference paper at ICLR 2024

ERM:++ Components (#7 is full ERM++)‘OfﬁceHome PACS VLCS DomNet TerraInc‘AVg.

#|MPA |FD|LT|WS|ES|S. Init|[UBN| 15K 10K 11K 590K 25K |

1| X | X|X| X |X| X v 67.1+0.2 85.1+0.3 76.9+0.6 44.1+0.15 45.2+0.6|63.7
20 /| X | X X | X| X v 70.2+0.3 85.7+0.2 78.5+0.3 46.4+0.0 49.4+0.4|66.0
3| VOV XXX X v 71.5+0.1 87.3+0.2 77.4+0.1 46.84+0.0 49.8+0.5/66.5
4 vV (VI XX X v 71.7+0.1 88.7+0.2 76.9+0.1 48.3+0.0 49.6+0.4/67.0
5| vV |VIVI| V| X]| X v 72.6+0.1 88.8+0.1 77.0+£0.1 48.6+0.0 49.3+0.3|67.3
6| v |VI|V|V/ |V X v 72.6+0.1 88.8+0.1 78.7+0.0 48.6+0.0 49.2+0.3/67.6
7 v |V V|| v 74.7+0.0 89.8+0.3 78.0+0.1 50.8+0.0 51.2+0.3|68.9
8| vV |V | X|V | V| V v 74.6+0.1 87.9+0.2 78.6+0.1 49.84+0.0 51.1+0.8|68.4
9 v |V |V |V | V| V/ X 74.7+0.2 90.1+0.0 78.6+0.1 49.9+0.0 49.0+0.4|68.3

Table 4: We present the overall ablation for ERM++. ERM++ corresponds to experiment 7. (1)
ERM (Gulrajani & Lopez-Paz| [2020) baseline with unfrozen BN. (2) MPA: Model parameter av-
eraging, which uniformly improves results. (3) FD: training on the full data. (4) LT: Training for
4x longer, which ensures convergence improves performance by an additional half percent. (5)
WS: Warm-starting the classification layer especially improves OfficeHome. (6) ES: Splitting off
validation data to find a training length yields substantial gains. (7) S.Init: Initializing the initial
parameters to those trained with AugMix brings performance to state of the art. (8) Removing LT
from (7) still results in state-of-the-art performance with half of the training cost of MIRO. (9) UBN:
When we freeze the BN parameters, we see that performance substantially degrades.

highest performing methods in prior work (DIWA (Rame et al., [2022), MIRO (Cha et al.| [2022),
and CORALSun & Saenkol| (2016)). We find that our approach is able to boost the performance
of DIWA and MIRO by over 1%, while CORAL decreases performance by several percent. This
validates that DIWA and MIRO are effective methods even when built on top of a stronger base-
line, while CORAL is more brittle. It also demonstrates the importance tuning the baseline before
drawing conclusions. Finally, in Table[3(b), we show that ERM++ components also bring a massive
benefit to the DG capabilities of CLIP-pretrained VIT-B/16 models, demonstrating the generality of
ERM++. We provide a detailed analysis of each component below.

5.1 DATA UTILIZATION

Using the full data (FD): The most common ERM (Gulrajani & Lopez-Paz, 2020} implementation
splits off 80% of the source domains for training, and keeps the remaining 20% for hyper-parameter
validation and checkpoint selection. By comparing Table [in experiments 2 and 3, we show that
training on the full data improves over checkpoint selection on a validation set on all datasets except
for VLCS. Early Stopping (ES) below helps us recover VLCS performance.

Long training (LT): Prior work has shown that training to proper convergence can have large im-
pacts on transfer learning performance (Chen et al.| 2020). To explore this setting for DG, we
extended training by 4x for each dataset. In other words, DomainNet models are trained for 60K
steps while the other datasets are trained for 20K steps. This training length is one where we observe
source validation accuracies start to saturate for most datasets (see Appendix [B.3). We present the
results in Table[d] experiment 4. Training for longer, on average, increases performance by 0.5%.
Early Stopping (ES): Although the training pieces presented so far improve DG performance on
the datasets considered on average, one consistent pattern is that VLCS performance degrades in
experiments number 3 (FD), 4 (LT). This suggests that VLCS is a dataset which is prone to over-
fitting. We observe that this is true even on a validation set constructed from the source domains.
Therefore, we propose an additional step where we use 20% validation splits in order to search for
the proper number of training steps, and then retrain using the full data. In Table |4, Experiment 6,
we see this dramatically improves VLCS performance w/out affecting other datasets.

5.2 PRETRAINED MODEL WEIGHT USAGE

Warmstart (WS): In Table] we compare to training using a random initialization for the new
classification layer (Experiment 4) or by using Warmstart (Experiment 5). We find WS provides

Under review as a conference paper at ICLR 2024

| OffHome PACS VLCS DomNet Terralnco | Avg [ImgNet

TorchVision Weights 72.2 85.9 785 46.9 49.7 166.6| 76.1
AugMix (Hendrycks et al., 2020) 74.6 87.9 78.6 49.8 51.0 |68.4| 79.0
Meal V2 (Shen & Savvides} [2020) 75.5 86.7 79.1 495 509 |68.3| 80.7
ResNet Al (Wightman et al.,[2021) | 70.8 82.8 777 430 373 |62.3| 804

Table 5: Top-1 Accuracy with different ResNet-50 initialization: We investigate initialization
weights from different pre-training procedures. The differences between different initializations are
very substantial, up to about 6%. Interestingly, improved ImageNet accuracy does not strongly
correlate with improved performance. In fact, the strongest initialization is from AugMix pretrained
weights, with an ImageNet validation accuracy 2% less than the strongest model. Additionally,
MealV2 is a distilled model from a very strong ensemble, where the student is initialized to AugMix
weights. The distillation process doesn’t improve generalization performance overall, improving
over AugMix only in domains which resemble ImageNet. This suggests that the distillation process
effectively matches the student to the teacher over the data used in the distillation process, but not
elsewhere.

[Painting Clipart Info Real Quickdraw Skectch [Avg

Aug(Hendrycks et al., [2020) 57.3 68.8 25.6 70.2 17.1 59.8 |49.8
MV?2(Shen & Savvides,, 2020) | 57.3 68.5 254 1709 16.1 59.0 |49.5

Table 6: Model distillation’s effect on DG: We look at the per-domain accuracy on DomainNet,
comparing Augmix training (Aug) and MealV2 (MV2). MealV2 is a method used to distill a large
ensemble into a student ResNet-50, where the student is initialized to AugMix weights. We can
see that the distillation process, while dramatically improving ImageNet performance, only slightly
changes DG performance. In particular, generalization gets slightly worse for all domains except for
(R)eal, which is the most similar to ImageNet. This is surprising, since it has been shown that both
ensembles |Arpit et al.|(2021) and larger models |Angarano et al.| (2022) improve DG performance.

a small but consistent boost on average across datasets. We find this is likely due to a decrease in
overfitting to the source domains. We verify that WS has a regularization effect by measuring the
L2 distance of the final model from initialization (the pre-trained model) and find that the trained
weights were more than twice as far without using WS (58.1 with and 122.5 w/o).
Unfreezing the Batchnorm (UBN): BatchNorm is commonly frozen in current DG recipes for
reasons not well justified. However, we find that frozen batch normalization leads to quick over-
fitting in the long-training regime. In Figure 4 we can see that frozen batch normalization results
in overfitting. In contrast, without frozen batch normalization this is not an issue. As seen in Table
Experiment 9, freezing BN also results in lower performance. It can be concluded that unfrozen
BatchNorm, gives an effective regularization effect by randomizing shifting and scaling of features.
Stronger initializations (S. Inif): One of the key components of the standard DG training scheme is
initializing the model parameters with a pre-trained model. The effect of the strong initialization for
our model is shown in Table 4] experiment 7, where we achieve a 1% boost an average. However,
selecting a model takes care. Table[5|compares ResNet-50 models of varying ImageNet performance
described in Section[3.2] We summarize our findings below:
» Stronger ImageNet performance does not necessarily correspond to better DG performance. In
particular, both the ResNet-50 A1 and Meal V2 weights achieves much better ImageNet Top-
1 Accuracy than the standard TorchVision weights, but do not achieve the best DG performance.
However, the overall consistency of the AugMix weights across all 5 datasets makes it a reasonable
choice.
* Model Distillation, which strongly improves source accuracy, does not increase overall DG per-
formance. Meal-V2 is a distillation of the ensemble if two very strong ImageNet models into
a ResNet-50. Interestingly, the student in Meal-V2 is initialized with the same AugMix trained
network as we do in our experiments. Therefore, the differences in performance can be strictly
attributed to the effects of model distillation. Looking at the results in more detail, as in Table
[el we can see that performance on ImageNet-like domains improves while performance on other
domains suffers. This suggests that the distillation process effectively matches the student to the
teacher over the data used in the distillation process, but not elsewhere.

Under review as a conference paper at ICLR 2024

RO R1 R2 R3 R4 |Avg

ERM 34.947.138.643.853.8/43.6
ERM++ |41.550.340.550.457.7|48.1
- Strong Init|39.2 50.1 39.5 49.5 58.7|47.4
- WS 41.350.4 41.0 50.6 59.3/48.5
- UBN 39.649.138.949.158.1/47.0

(a) WILDS-FMOW Top-1 Accuracy: We show that
ERM++ outperforms ERM on this on the challeng-
ing WILDS-FMOW classification dataset. We also
ablate several components of ERM++. UBN (Un-
frozen Batch Norm) and Strong Init (from Augmix)
improve performance, while surprisingly WS (warm-
start) decreases performance in this particular sce-

P I Q S R C |Avg

ERM [51.121.213.952.063.7 63.0 |44.1
SMPA|52.927.214.351.365.6 65.2 |46.1
MPA |55.224.016.7 57.4 67.0 67.49/48.0

(b) Weight Space Regularization: We show ex-
periments different types of parameter averaging for
weight regularization on DomainNet. SMPA is a spe-
cialized model parameter averaging, where we aver-
age parameters of domain specialists, while MPA av-
erages parameters within a single training trajectory.
While both MPA and SMPA outperform ERM, MPA
outperforms SMPA.

nario. We emphasize that ERM++ overall improves
over ERM(Gulrajan1 & Lopez-Paz,2020).

Table 7: (a.) Compares ERM and ERM++ on Wilds-FMOW, while in (b.) we show the effect of
model parameter averaging.

* AugMix is a model trained with generalization to synthetic corruptions as a goal and results in a
very strong DG performance. Therefore, while ImageNet Top-1 accuracy is not a good indicator
for DG performance, investigating the correlation between synthetic corruption performance and
DG performance is promising.

5.3 WEIGHT SPACE REGULARIZATION

Generalist Model Parameter Averaging (MPA): We confirm that regularizing model parameters
by averaging iterates is an important tool in improving DG performance; in Table 4 (Experiments 1
and 2) we compare models trained with and without parameter averaging across timesteps. Specifi-
cally, we average the parameters of all training steps after an initial burn-in period of 100 steps. We
confirm that such model parameter averaging consistently and substantially improves DG.

Specialist Model Parameter Averaging (SMPA): We also explored a setting where instead of av-
eraging model weights, we attempt to include diversity between the models being averaged as this
has been shown to boost performance (Rame et al., [2022)). Following (Li et al.| 2022), we first train
a generalist model on all source domains for 5 epochs, then train specialist models for 5 epochs,
before averaging parameters. Results on the DomainNet dataset are reported in Table [3b] Although
averaging specialists improves over ERM, it does not improve over averaging iterates of a generalist.

5.4 GENERALIZING BEYOND WEB-SCRAPED DATASETS

We have demonstrated that ERM++ is a highly effective recipe for DG on several datasets: Office-
Home, PACS, DomainNet, and Terralncognita. These datasets are diverse and represent a strong
evaluation of ERM++. However, (Fang et al.| [2023)) show that on datasets not consisting of web-
scraped data, the correlation between ImageNet performance and transfer performance is quite weak.
To verify that this is not the case for ERM++, we perform an ablation study on WILDS-FMOW, a
land-use classification dataset, and see that ERM++ substantially improves over ERM (Table [3a)).

6 CONCLUSION

This paper develops a strong baseline, ERM++, that can be used to improve the performance of DG
models. By identifying several techniques for enhancing ERM, our approach achieves significant
gains in DG performance, reporting a 1% average boost over the state-of-the-art on the challeng-
ing DomainBed evaluation datasets and demonstrating efficacy in realistic deployment scenarios on
WILDS-FMOW. We find that ERM++ can also boost the performance of state-of-the-art methods,
and that it improves ViT models pretrained on CLIP by over 10%. Our results highlight the impor-
tance of improving the training procedure for better DG performance and provide a strong baseline
for future research. ERM++ opens up opportunities for exploring additional techniques to further
improve DG performance.

Under review as a conference paper at ICLR 2024

7 ETHICS STATEMENT

In general, methods which generalize well to new domains are more likely to results in fair,accurate,
and ethical systems. Nevertheless, the assumption that a trained model will always generalize to
new data is dangerous, and we caution readers that much improved robustness on unseen domains
is still not perfect, or even good, robustness.

8 REPRODUCIBILITY STATEMENT

We release the code in the provided zip file, and provide training details in Appendix [E]

REFERENCES

Simone Angarano, Mauro Martini, Francesco Salvetti, Vittorio Mazzia, and Marcello Chiaberge.
Back-to-bones: Rediscovering the role of backbones in domain generalization. arXiv preprint
arXiv:2209.01121, 2022.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, 2019.

Devansh Arpit, Huan Wang, Yingbo Zhou, and Caiming Xiong. Ensemble of averages: Im-
proving model selection and boosting performance in domain generalization. arXiv preprint
arXiv:2110.10832, 2021.

Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In Proceedings of
the European conference on computer vision (ECCV), pp. 456-473, 2018.

Gilles Blanchard, Gyemin Lee, and Clayton Scott. Generalizing from several related classification
tasks to a new unlabeled sample. Advances in neural information processing systems, 24, 2011.

Gilles Blanchard, Aniket Anand Deshmukh, Urun Dogan, Gyemin Lee, and Clayton Scott. Domain
generalization by marginal transfer learning. The Journal of Machine Learning Research, 22(1):
46-100, 2021.

Manh-Ha Bui, Toan Tran, Anh Tran, and Dinh Phung. Exploiting domain-specific features to en-
hance domain generalization. Advances in Neural Information Processing Systems, 34:21189—
21201, 2021.

Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee, and
Sungrae Park. Swad: Domain generalization by seeking flat minima. Advances in Neural Infor-
mation Processing Systems, 34:22405-22418, 2021.

Junbum Cha, Kyungjae Lee, Sungrae Park, and Sanghyuk Chun. Domain generalization by mutual-
information regularization with pre-trained models. In Computer Vision-ECCV 2022: 17th Eu-
ropean Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XXIII, pp. 440—457.
Springer, 2022.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597-1607. PMLR, 2020.

Gordon Christie, Neil Fendley, James Wilson, and Ryan Mukherjee. Functional map of the world.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Teee, 2009.

Alex Fang, Simon Kornblith, and Ludwig Schmidt. Does progress on imagenet transfer to real-world
datasets? arXiv preprint arXiv:2301.04644, 2023.

10

Under review as a conference paper at ICLR 2024

Chen Fang, Ye Xu, and Daniel N Rockmore. Unbiased metric learning: On the utilization of multiple
datasets and web images for softening bias. In Proceedings of the IEEE International Conference
on Computer Vision, pp. 1657-1664, 2013.

Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep ensembles: A loss landscape per-
spective. arXiv preprint arXiv:1912.02757, 2019.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, Francois
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural net-
works. The journal of machine learning research, 17(1):2096-2030, 2016.

Priya Goyal, Piotr Dollar, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Diverse weight averaging for out-of-distribution
generalization. arXiv preprint arXiv:1706.02677, 2017.

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. arXiv preprint
arXiv:2007.01434, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Dan Hendrycks, Norman Mu, Ekin D. Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-
narayanan. AugMix: A simple data processing method to improve robustness and uncertainty.
Proceedings of the International Conference on Learning Representations (ICLR), 2020.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 7132-7141, 2018.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wil-
son. Averaging weights leads to wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

Fahdi Kanavati and Masayuki Tsuneki. Partial transfusion: on the expressive influence of trainable
batch norm parameters for transfer learning. In Medical Imaging with Deep Learning, pp. 338—
353. PMLR, 2021.

Donghyun Kim, Kaihong Wang, Stan Sclaroff, and Kate Saenko. A broad study of pre-training for
domain generalization and adaptation. arXiv preprint arXiv:2203.11819, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A
benchmark of in-the-wild distribution shifts. In International Conference on Machine Learning,
pp- 5637-5664. PMLR, 2021.

Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-
tuning can distort pretrained features and underperform out-of-distribution. arXiv preprint
arXiv:2202.10054, 2022.

Yoonho Lee, Annie S Chen, Fahim Tajwar, Ananya Kumar, Huaxiu Yao, Percy Liang, and
Chelsea Finn. Surgical fine-tuning improves adaptation to distribution shifts. arXiv preprint
arXiv:2210.11466, 2022.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain
generalization. In Proceedings of the IEEE international conference on computer vision, pp.
5542-5550, 2017.

DaLi, Yongxin Yang, Yi-Zhe Song, and Timothy Hospedales. Learning to generalize: Meta-learning
for domain generalization. In Proceedings of the AAAI conference on artificial intelligence, vol-
ume 32, 2018a.

11

Under review as a conference paper at ICLR 2024

Margaret Li, Suchin Gururangan, Tim Dettmers, Mike Lewis, Tim Althoff, Noah A Smith, and Luke
Zettlemoyer. Branch-train-merge: Embarrassingly parallel training of expert language models.
arXiv preprint arXiv:2208.03306, 2022.

Ya Li, Mingming Gong, Xinmei Tian, Tongliang Liu, and Dacheng Tao. Domain generalization
via conditional invariant representations. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018b.

Samarth Mishra, Zhongping Zhang, Yuan Shen, Ranjitha Kumar, Venkatesh Saligrama, and
Bryan A. Plummer. Effectively leveraging attributes for visual similarity. In The IEEE Inter-
national Conference on Computer Vision (ICCV), 2021.

Yair Movshovitz-Attias, Alexander Toshev, Thomas K. Leung, Sergey loffe, and Saurabh Singh. No
fuss distance metric learning using proxies. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), Oct 2017.

Krikamol Muandet, David Balduzzi, and Bernhard Scholkopf. Domain generalization via invariant
feature representation. In International conference on machine learning, pp. 10-18. PMLR, 2013.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
for multi-source domain adaptation. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 1406-1415, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748-8763. PMLR, 2021.

Alexandre Rame, Matthieu Kirchmeyer, Thibaud Rahier, Alain Rakotomamonjy, Patrick Galli-
nari, and Matthieu Cord. Diverse weight averaging for out-of-distribution generalization. arXiv
preprint arXiv:2205.09739, 2022.

David Ruppert. Efficient estimations from a slowly convergent robbins-monro process. Technical
report, Cornell University Operations Research and Industrial Engineering, 1988.

Zhigiang Shen and Marios Savvides. Meal v2: Boosting vanilla resnet-50 to 80%-+ top-1 accuracy
on imagenet without tricks. arXiv preprint arXiv:2009.08453, 2020.

Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation.
In Computer Vision—-ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and
15-16, 2016, Proceedings, Part I1I 14, pp. 443-450. Springer, 2016.

Reuben Tan, Mariya I Vasileva, Kate Saenko, and Bryan A Plummer. Learning similarity conditions
without explicit supervision. In The IEEE International Conference on Computer Vision (ICCV),
pp. 10373-10382, 2019.

Eu Wern Teh, Terrance DeVries, and Graham W. Taylor. Proxynca++: Revisiting and revitalizing
proxy neighborhood component analysis. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and
Jan-Michael Frahm (eds.), The European Conference on Computer Vision (ECCV), 2020.

Vladimir N Vapnik. An overview of statistical learning theory. IEEE transactions on neural net-
works, 10(5):988-999, 1999.

Ramakrishna Vedantam, David Lopez-Paz, and David J Schwab. An empirical investigation of do-
main generalization with empirical risk minimizers. Advances in Neural Information Processing
Systems, 34:28131-28143, 2021.

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
hashing network for unsupervised domain adaptation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 5018-5027, 2017.

Xun Wang, Haozhi Zhang, Weilin Huang, and Matthew R Scott. Cross-batch memory for embedding
learning. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

12

Under review as a conference paper at ICLR 2024

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch—-image—-models, 2019.

Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet strikes back: An improved training
procedure in timm. arXiv preprint arXiv:2110.00476, 2021.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International Conference on Machine Learning, pp. 23965-23998. PMLR,
2022a.

Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, et al. Robust
fine-tuning of zero-shot models. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 79597971, 2022b.

Minghao Xu, Jian Zhang, Bingbing Ni, Teng Li, Chengjie Wang, Qi Tian, and Wenjun Zhang.
Adversarial domain adaptation with domain mixup. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, pp. 6502—-6509, 2020.

Shen Yan, Huan Song, Nanxiang Li, Lincan Zou, and Liu Ren. Improve unsupervised domain
adaptation with mixup training. arXiv preprint arXiv:2001.00677, 2020.

Andrew Zhai and Hao-Yu Wu. Classification is a strong baseline for deep metric learning. arXiv
preprint arXiv:1811.12649, 2018.

Marvin Zhang, Henrik Marklund, Nikita Dhawan, Abhishek Gupta, Sergey Levine, and Chelsea
Finn. Adaptive risk minimization: Learning to adapt to domain shift. Advances in Neural Infor-
mation Processing Systems, 34:23664-23678, 2021.

Zhun Zhong, Yuyang Zhao, Gim Hee Lee, and Nicu Sebe. Adversarial style augmentation for
domain generalized urban-scene segmentation. arXiv preprint arXiv:2207.04892, 2022.

Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Domain generalization with mixstyle. arXiv
preprint arXiv:2104.02008, 2021.

13

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

Under review as a conference paper at ICLR 2024

A APPENDIX

B ADDITIONAL RESULTS

B.1 REGULARIZATION EFFECTS OF UNFREEZING BATCH NORM.

painting
55
>
(@)
© 50
-]
(@)
()
© 45
i
o
2 40
—— No Frozen BN
35
—— Frozen BN
0 10000 20000 30000 40000 50000 60000

Finetune Steps

Figure 4: Unfreezing Batchnorm: Here we show the test curves of the fine-tuning on the held-out
painting domain of DomainNet. With frozen BatchNorm, training is faster but it overfits.

B.2 PER-DATASET DETAILS

In Tables [§] (OfficeHome), [0] (DomainNet), [I0] (VLCS), [LT] (Terralncognita), [I2] (PACS), we expand
results for the datasets and report accuracies for each held-out domain. We compare ERM++ with
reported performances of ERM (Gulrajani & Lopez-Paz,[2020), DIWA (Rame et al., [2022)), SWAD,
(Cha et al} 2021)), and MIRO (Cha et al) 2022). ERM + SWAD + MIRO and DIWA are the
current SOTA for ResNet-50 models for this set of datasets. Overall trends include ERM++ being
especially effective at sketch-like domains, indicating a lowered texture bias. On the sketch and
clipart domains in DomainNet, ERM++ outperforms prior best performance by over 4%. When we
additionally combine MIRO with ERM++, we see much improved performance on OfficeHome and
Terralncognita without much affecting the performance on the other datasets.

B.3 VALIDATION-SET ACCURACY CURVES

In Figures [I2]I3|[T4]T5] and [I6] we provide source-validation accuracies for each of the 5 datasets,
for the number of steps corresponding to long training, which is 20000 steps for most datasets except
for the larger DomainNet, which is 60000 steps. As one can see, at this point, validation accuracy
is saturated for most domains in most datasets, so this training length is reasonable. Prior training
lengths are denoted as red vertical lines in these figures, and one can see that for many datasets this
is not a sufficient training length. As we describe in Section 5.1 of the main paper, this improves
performance by 0.5% on average.

C DATASET VISUALIZATIONS

In Figures [5] (OfficeHome), [6] (DomainNet), [7] (VLCS), [§] (Terralncognita), [(PACS), [I0] (FMoW)
we show samples of a few classes from each of the datasets, and each domain. As one can see, both

14

Under review as a conference paper at ICLR 2024

| art clipart product real | avg

63.1 519 77.2 78.1 | 67.6
66.1 57.7 78.4 80.2 | 70.6

ERM |Gulrajani & Lopez-Paz| (2020)
ERM + SWAD Cha et al] 2021)

DIWA (2022) 692 59 817 822|728
ERM + MIRO + SWAD (2022) | - - - - | 724
ERM-++ 707 622 818 84.0 | 747
ERM-++ + MIRO 740 615 838 857|763

Table 8: OfficeHome: Per-domain top-1 accuracy against reported results of recent top-performing
methods SWAD, DIWA, and MIRO. does not report per-domain performance for
MIRO, so we only show average for that case. DIWA doesn’t report standard errors. ERM++ not
only greatly increases performance relative to SWAD, DIWA, and MIRO but also reduce variance
between runs. The largest gains are on the held-out domain with the largest domain shift(clipart),
illustrating the ability of ERM++ to improve performance on difficult DG tasks.

Art Clipart Product Real

Radio Flowers Bike

Toys

Figure 5: OfficeHome:Samples from the OfficeHome dataset, from each domain and selected
classes. The dataset focuses on household objects. The domain shifts are in low-level style mostly,
and there is little spatial bias.

the datasets and distribution shifts are quite diverse, highlighting the flexibility of our method. We
present some key attributes of the datasets below.

OfficeHome (Venkateswara et al.,[2017) Figure[5] This dataset focuses on household objects. The
domain shifts are in low-level style mostly, and there is little spatial bias.

15

Under review as a conference paper at ICLR 2024

|painting clipart info real quickdraw sketch|avg
ERM |Gulrajani & Lopez-Paz|(2020) 50.1 63.0 21.2 63.7 139 52.9 |44.0

ERM + Cha et al’ 535 660 224658 161 555 |46.5
DIWA (2022) 554 662 233687 165 56 |47.7
ERM + MIRO + SWAD|Cha et al|(2022)| - - - - - - |47.0
ERM++ 584 715 262707 173 60.5 |50.8
ERM++ + MIRO 585 710 265711 159 595 |50.4

Table 9: DomainNet: Per-domain top-1 accuracy against reported results of recent top-performing
methods SWAD, DIWA, and MIRO. does not per-domain performance for MIRO,
so we only show average for that case. DIWA doesn’t report standard errors. ERM++ not only
greatly increases performance relative to SWAD, DIWA, and MIRO but also reduce variance be-
tween runs. Similar to results on OfficeHome (Table [8), the largest performance gains(of larger
than 4%) are on domains very different from the source domain(clipart and sketch). This suggests
ERM++ is less sensitive to texture bias than ERM|Gulrajani & Lopez-Paz|(2020). The bias of MIRO
to the pre-trained weights manifests in slightly higher performance on close to ImageNet domains
like real when combined with ERM++, at the slight expense of performance on other domains.

Real Clipart Painting Infograph Sketch Quickdraw

Banana WineBottle SnowMan

Zebra

Figure 6: DomainNet: Samples from the DomainNet dataset. While the real domain is quite similar
to what one might expect in ImageNet, the distribution shifts are quite substantial in other domains.
Quickdraw and Infograph are particularly challenging, so the 1-3% gains of ERM++ on these do-
mains is meaningful (Table [9). While most domains contain primarily shifts in low level statistics
(for example, real to painting), Infograph also has many non-centered objects.

DomainNet (Peng et al.,[2019) Figure[6] While the real domain is quite similar to what one might
expect in ImageNet, the distribution shifts are quite substantial in other domains. Quickdraw and
Infograph are particularly challenging, so the 1-3% gains of ERM++ on these domains is meaningful
(Table).

16

Under review as a conference paper at ICLR 2024

| caltech101 labelme sun09 voc2007 | avg
ERM Gulrajani & Lopez-Paz| (2020) 97.7 64.3 73.4 74.6 77.3

ERM + Cha et al 98.8 633 753 792 | 79.1
DIWA (2022 98.9 624 739 789 | 786
ERM + MIRO + SWAD (2021) - - - - 79.6
ERM++ 98.7 632 716 787 | 780
ERM++ + MIRO 99.0 624 718 783 | 779

Table 10: VLCS: Per-domain top-1 accuracy against reported results of recent top-performing meth-
ods SWAD, DIWA, and MIRO. does not per-domain performance for MIRO, so
we only show average for that case. DIWA doesn’t report standard errors. Although overall per-
formance on VLCS is lower than competing methods, we can see that this drop primarily comes
from lower performance on sun09. Furthermore, there are many ambiguous images in the LabelMe
domain (see Figure @), raising questions about the usefulness of trying to train on this domain.

Caltech LabelMe SUNO09 VOC2007

Bird

Car

Chair

Dog

Figure 7: VLCS: The low-level statistics are quite similar between domains, however spatial biases
differ between domains. Caltetch objects are quite centered, while other domains do not have this
trait. For example the LabelMe domain has cars along the side of the image, and there are many
chairs in the VOC2007 domain. Furthermore, in some cases the size of the objects differs dramat-
ically. Finally, there are many ambiguous images in the LabelMe domain (see Figure [IT)), raising
questions about the usefulness of trying to train on this domain.

VLCS (Fang et al., 2013): Figure[/] Low-level statistics are quite similar between domains in
this dataset, however spatial biases differ between domains. For example, Caltetch objects are quite

centered, while other domains do not have this trait. For example the LabelMe domain has cars
along the side of the image, and there are many chairs in the VOC2007 domain. Furthermore, in
some cases the size of the objects differs dramatically. Lastly, there are many ambiguous images

17

Under review as a conference paper at ICLR 2024

|Loc. 100 Loc. 38 Loc. 43 Loc. 46| Average

ERM++ + MIRO

e

54.3 425 556 388 47.8
55.4 449 597 399 50.0
57.2 50.1 603 3938 51.9

- - - 52.9
48.3 507 618 439 51.2
60.81 488 61.1 427 534

Table 11: Terralncognita: Per-domain top-1 accuracy against reported results of recent top-
performing methods SWAD, DIWA, and MIRO. does not per-domain performance
for MIRO, so we only show average for that case. DIWA doesn’t report standard errors. ERM++ out-
performs other methods on 3 out of 4 held out domains despite slighly underperforming on average.
However, we point out that ERM++ w/MIRO outperforms both DIWA and MIRO, and improves
ERM-++ by a further 2%.

Bobcat

Dog

Rabbit

Squirrel

L100

L38

Figure 8: Terralncognita: Samples from the Terralncognita dataset, from each domain and selected
classes. The background stays consistent, and the animal object frequently takes up a small portion
of the frame. At night the images are black-and-white. This dataset matches realistic deployment

scenarios well.

in the LabelMe domain (see Figure [TT)), raising questions about the validity of trying to improve

performance on this dataset.

18

Under review as a conference paper at ICLR 2024

| art_painting cartoon photo sketch | avg
ERM Gulrajani & Lopez-Paz 84.7 80.8 97.2 793 | 84.2

ERM + Cha et al| (2021 89.3 834 973 825 | 88.1
DIWA (2022) 90.6 834 982 838 | 89

ERM + MIRO + SWAD (2022) - - - - | 884
ERM++ 90.6 837 981 866 | 89.8
ERM++ + MIRO 90.2 83.8 986 824 | 888

Table 12: PACS: Per-domain top-1 accuracy against reported results of recent top-performing meth-
ods SWAD, DIWA, and MIRO. does not per-domain performance for MIRO, so we
only show average for that case. DIWA doesn’t report standard errors. ERM++ leads to substantial
improvement over prior work. As in other dataset (OfficeHome, DomainNet), large performance
gains are made on the sketch domain.

ArtPainting Cartoon Photo Sketch

House Guitar Dog

Person

Figure 9: PACS: Samples from the PACS dataset, from each domain and selected classes. The sub-
jects tend to be centered, and the sketches are more realistic than the quickdraw setting in Domain-
Net. Though the domians are similar to that of DomainNet, PACS has fewer than 10000 samples
compared to 586000 of DomainNet. Therefore PACS tests the capabilities of ERM++ on smaller
data.

Terralncognita (Beery et al., 2018): Figure [§] The background stays consistent, and the animal
object frequently takes up a small portion of the frame. At night the images are black-and-white.
This is a very realistic dataset, on which is good to test.

PACS (Li et al.,[2017) Figure[9} The subjects tend to be centered, and the sketches are more realistic
than the quickdraw setting in DomainNet. Though the domains are similar to that of DomainNet,

19

Under review as a conference paper at ICLR 2024

Asia Europe Africa Americas Oceania Other

AirportHangar

CropField

Figure 10: FMoW:Samples from the Terralncognita dataset, from each domain and selected classes.
The images differ in region but also in resolution and scale. The distribution shift between FMoW
and the pretraining data is large, therefore FmoW represents the ability of ERM++ to perform on
non web-scraped data (see Section 5.4 of the main paper).

PACS has fewer than 10000 samples compared to 586000 of DomainNet. Therefore PACS tests the
capabilities of ERM++ on smaller data.

FMoW: Figure The images differ in region but also in resolution and scale. The distribution
shift between FMoW and the pretraining data is large, therefore FmoW represents the ability of
ERM-++ to perform on non web-scraped data (see Section 5.4 of the main paper).

D RUNTIME COMPARISONS

As discussed in the main paper Section 3.4; ERM++ achieves higher predictive performance than
competing methods MIRO and DIWA (Rame et all, 2022)) despite lower com-
putational cost for training. The reason is reduced cost of hyper-parameter search; we use fixed
hyper-parameters, borrowed from the DomainBed framework, (see Section [E.2] for more details)
while DIWA averages 20-60 models and MIRO search for 4 A weight regularization values in each
experiment. Assuming the worst case scenario of training two full passes (one on validation data for
number of training steps for Early Stopping, and one on full training data with validation data folded
in Full Data), and the same number of training steps as MIRO; ERM++ costs % that of MIRO while
obtaining better performance. In particular, this configuration represents Experiment 8 in Table 3 of
the main paper.

For each forward step MIRO there is an additional forward pass of the data through the model which
is absent in ERM++. On the other hand, ERM++ does take a forward pass through the running
average model to update batch normalization statistics, which is not done in former methods. This
means that each forward pass is compute-equivalent for ERM++ and MIRO, for a given architecture.

20

Under review as a conference paper at ICLR 2024

Figure 11: Sample from LabelMe Domain in VLCS: Is this a dog, person, or chair? Many samples
in the LabelMe domain of VLCS are ambigrous but assigned a label (in this case, dog). This raises
questions about the usefulness of training on this domain.

art clipart product real

©
s
<
S
©
S8
9
8

®
3
®
]
@
3
®
&

©
&
©
3
®
&
©
&

®
£
®
£
®
2
©
£

2
2
®
3

@
Validation top-1 accuracy

Validation top-1 accuracy
Validation top-1 accuracy
Validation top-1 accuracy

0 5000 10000 15000 20000 8075 5000 10000 15000 20000 80 5000 10000 15000 20000 807 5000 10000 15000 20000

Finetune steps Finetune steps Finetune steps Finetune steps

@
3

Figure 12: OfficeHome: Source validation accuracies. The validation accuracy saturates by 20000
steps, which corresponds to number of steps in Long Training(Section 5.1 of the main paper). Train-
ing length used in prior works is denoted as a red line, and the training is not yet converged.

E REPRODUCIBILITY

We provide code in a zip file along with this supplementary, and will open-source the code upon
acceptance.

E.1 INFRASTRUCTURE
We train on a heterogeneous cluster, primarily on NVIDIA A6000 GPU’s. Each experiment is

conducted on a single GPU with 4 CPUs. A single run could range from 12-48 hours, depending on
number of steps trained.

E.2 TRAINING DETAILS

We follow the DomainBed (Gulrajani & Lopez-Paz| |2020) training procedure and add additional
components from ERM++. In particular, we use the default hyper-parameters from DomainBed
(Gulrajani & Lopez-Paz, [2020), e.g. , a batch size of 32 (per-domain), a learning rate of 5e-5, a
ResNet dropout value of 0, and a weight decay of 0. We use the ADAM optimizer (Kingma & Ba,
optimizer with 3 and e values set default values from Pytorch 1.12. Unless we specify that the
“Long Training” component is added, we train models for 15000 steps on DomainNet (following

21

Under review as a conference paper at ICLR 2024

art_painting cartoon photo sketch

1
g

98

9%

9

Validation top-1 accuracy

Validation top-1 accuracy
©
8

Validation top-1 accuracy
©

Validation top-1 accuracy

92

905 5000 10000 15000 20000 9% 5000 10000 15000 20000 905 5000 10000 15000 20000 907 5000 10000 15000 20000

Finetune steps Finetune steps Finetune steps Finetune steps
Figure 13: PACS: Source validation accuracies. The validation accuracy saturates by 20000 steps,
which corresponds to number of steps in Long Training(Section 5.1 of the main paper).Training
length used in prior works is denoted as a red line, and the training is not yet converged.

painting clipart info real quickdraw sketch

©
38
©
8
9
3
©
s
9
8
©
8

@
©
&
©
©
&
©
&
©
&

S
3 8
S
3 8
S
3 8
5
-]
S
3 8
S @
3 8

a
&
&
&
&
a
&

~
3

Validation top-1 accuracy
g 3

Validation top-1 accuracy
3

Validation top-1 accuracy
3

Validation top-1 accuracy
3

Validation top-1 accuracy
3

Validation top-1 accuracy
LR
3

Y
G 8
v oo o
G 3
v oo oo
G 8
o)
g
PRy
3

)
G

0% 20000 40000 60000 *° 0 20000 40000 60000 °° 0 20000 40000 60000 °° 0 20000 40000 60000 00 20000 40000 60000 °° 0 20000 40000 60000

Finetune steps Finetune steps Finetune steps Finetune steps Finetune steps Finetune steps
Figure 14: DomainNet: Source validation accuracies. The validation accuracy saturates by 60000
steps, which corresponds to number of steps in Long Training(Section 5.1 of the main paper). Train-
ing length used in prior works is denoted as a red line, and the training is not yet converged.

SWAD(Cha et al.,|2021))) and 5000 steps for other datasets, which corresponds to a variable number
of epochs dependent on dataset size. If Long Training is used, we extend training by 4x. We train on
all source domains except for one, validate the model on held-out data from the sources every 300
steps(20% of the source data), and evaluate on the held-out domain. If using Full Data we retrain
using the full data. We use the same data augmentation techniques as ERM (Gulrajani & Lopez-Paz,
2020). An annotated algorithm is provided in Algorithm I}

Model Parameter Averaging details: If we use Model Parameter Averaging(MPA), we begin to
keep a running average at the 100th step. If we additionally use warm-start, we only optimize the
classification head for the first 500 steps, and start MPA 100 steps after that. For the Specialist Model
Parameter Averaging(SMPA) experiments (Table 6 of main paper), we first train a generalist model
for 15000 steps , then train an independent model for each domain for another 1500 steps. At the
end, we average parameters and re-compute batch norm running statistics. This recomputing of BN
stats makes sure the averaged model has accurately computed batch norm statistics which may not
be a simple average of experts, due to the non-linearity of neural nets.

Batch Normalization details: With unfrozen batch normalization(UBN), we update the evaluation
model BN statistics by averaging the model iterates first (from MPA), then then forward propagating
the current batch at each step through the evaluation model. In this way, the BN running statistics
and model used for inference match.

Sources of pre-trained weights: We use torchvision 0.13.1 for vanilla ResNet-50 initialization. For

augmix and ResNet-A1 initialized weights, we leverage TIMM (Wightman), 2019) .

A note on hyper-parameter search: In this work, we focus on methodological improvements that
do not depend on expensive hyper-parameter tuning, and as a result we use default learning rate,
weight decay, etc. We demonstrate state-of-the-art performance despite this, and greatly reduce the
computational cost of training as a result. However, we believe there is substantial headroom for
improvement with further hyper-parameter tuning.

! Augmix Weights thttps://github.com/rwightman/pytorch-image-models/
releases/download/v0.l-weights/resnet50_ram-a26f946b.pth
“ResNet-Al Weights thttps://github.com/rwightman/pytorch-image-models/

releases/download/v0.l-rsb-weights/resnet50_al_0-14fe96dl.pth

22

https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50_ram-a26f946b.pth
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50_ram-a26f946b.pth
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_a1_0-14fe96d1.pth
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_a1_0-14fe96d1.pth

Under review as a conference paper at ICLR 2024

100.0 caltech101 1000 labelme 1000 sun09 1000 voc2007
o 975 2 975 > 975 > 975
e c c c
S 950 5 950 5 950 5 950
g 3 3 3
o S o S
© 925 ® 925 ® 925 © 925
brd = = =
a a a a
g %o § 0 § w0 § %00
5 875 5 875 5 875 5 875
8 850 8 850 8 850 8 850
8 825 8 825 8 825 8 825
80075 5000 10000 15000 20000 %o 5000 10000 15000 20000 %00 5000 10000 15000 20000 %o 5000 10000 15000 20000
Finetune steps Finetune steps Finetune steps Finetune steps

Figure 15: VLCS: Source validation accuracies. The validation accuracy saturates by 20000 steps,
which corresponds to number of steps in Long Training(Section 5.1 of the main paper).Training
length used in prior works is denoted as a red line. In the case of VLCS, it seems like longer training
is not so helpful, and this is reflected in our ablations (TableE[)

1000 location_100 1000 location_38 1000 location_43 100.0 location_46
o 975 2 975 2 975 2 975
e e e e
3 950 3 950 3 950 3 950
o S S S
© 925 © 925 © 925 © 925
by by by by
g 90.0 E 90.0 E 90.0 E‘ 90.0
5 875 5 875 5 87.5 5 875
8 850 8 850 8 850 8 850
8 825 8 825 8 825 8 825
8007 5000 10000 15000 20000 %o 5000 10000 15000 20000 %o 5000 10000 15000 20000 %o 5000 10000 15000 20000
Finetune steps Finetune steps Finetune steps Finetune steps

Figure 16: Terralncognita: Source validation accuracies. The validation accuracy saturates by
20000 steps, which corresponds to number of steps in Long Training(Section 5.1 of the main paper).
Training length used in prior works is denoted as a red line, and the training is not yet converged.

MIRO Implementation: We directly follow the MIRO implementation and borrow the lambda
weights values from (Cha et al.,2022) when we combine MIRO with ERM++ in Table 2 of the main
paper. ERM++ substantially improves the performance of MIRO.

DIWA Implementation: We follow a simplified version of the DIWA (Rame et al.,2022)) algorithm
due to computational reasons; we average the parameters of the three seeds of ERM++, with shared
initialization of the linear classifier. The authors of DIWA show that about half of the performance
boost comes from the first few models averaged (Figure 4 of (Rame et al.,|2022)), therefore this is
a reasonable approximation of the method.

CORAL Implementation: We add the CORAL penalty term with a A value of 0.1, following Cha
et al.|(2022).

23

Under review as a conference paper at ICLR 2024

Algorithm 1 ERM++: Components of ERM++ are annotated in the algorithm comments. We run
this training loop in two passes, the first to set training length by using a validation set split from the
source domains. In the second pass we train on the combination of train and val data.

ModelW eights < AugmizWeights > Strong init
while steps # LongTrainSteps do > Long Train
X, Y < next(FullDatalterator) > Full Data
if steps < 500 then
Update linear classifier > Warmstart
else
Update linear classifier and backbone
end if
if steps > 600 then
ModelW eightsAvg < Update > Weight Reg.
ModelW eightsAvgBN <+ BN stats > UBN
end if
end while

24

	Introduction
	Related Work
	Revisiting training procedures to create ERM++ for Domain Generalization
	Improved Data Utilization
	Initializing Model Weights
	Weight-Space Regularization
	ERM++ Computational Cost

	Experimental Settings
	Results
	Data Utilization
	Pretrained Model Weight Usage
	Weight Space Regularization
	Generalizing Beyond Web-scraped Datasets

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Appendix
	Additional Results
	Regularization effects of unfreezing batch norm.
	Per-dataset details
	Validation-Set Accuracy Curves

	Dataset Visualizations
	Runtime Comparisons
	Reproducibility
	Infrastructure
	Training details

