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Abstract
Inspired by the Kolmogorov-Arnold representa-
tion theorem, KANs offer a novel framework for
function approximation by replacing traditional
neural network weights with learnable univari-
ate functions. This design demonstrates signif-
icant potential as an efficient and interpretable
alternative to traditional MLPs. However, KANs
are characterized by a substantially larger num-
ber of trainable parameters, leading to challenges
in memory efficiency and higher training costs
compared to MLPs. To address this limitation,
we propose to generate weights for KANs via a
smaller meta-learner, called MetaKANs. By train-
ing KANs and MetaKANs in an end-to-end differ-
entiable manner, MetaKANs achieve comparable
or even superior performance while significantly
reducing the number of trainable parameters and
maintaining promising interpretability. Extensive
experiments on diverse benchmark tasks, includ-
ing symbolic regression, partial differential equa-
tion solving, and image classification, demon-
strate the effectiveness of MetaKANs in improv-
ing parameter efficiency and memory usage. The
proposed method provides an alternative tech-
nique for training KANs, that allows for greater
scalability and extensibility, and narrows the train-
ing cost gap with MLPs stated in the original
paper of KANs. Our code is available at https:
//github.com/Murphyzc/MetaKAN.

1. Introduction
With the rapid development of deep learning, artificial in-
telligence (AI) has achieved remarkable progress in vari-
ous fields (Brown et al., 2020; Jumper et al., 2021). This
progress is largely due to advancements of various neu-
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ral network architectures, ranging from MLP (Cybenko,
1989) to CNN (LeCun et al., 1989), RNN (Elman, 1990),
LSTM (Hochreiter & Schmidhuber, 1997), and Transformer
(Brown et al., 2020) architectures. While these architectures
generally use fixed activation functions, which limit their
interpretability and flexiblity.

Recently, Kolmogorov-Arnold Networks (KANs)(Liu et al.,
2024), inspired by the Kolmogorov-Arnold representation
theorem(Kolmogorov, 1957), introduced a novel neural ar-
chitecture. Rather than employing traditional fixed activa-
tion functions, KANs utilize learnable, spline-parametrized
univariate functions on edges, enabling a more flexible and
interpretable framework for function approximation. Re-
cent research on KANs has focused on modifying the B-
spline functions to improve their performance. For instance,
Chebyshev KAN (SS et al., 2024), GramKAN, and KALN
used Chebyshev polynomials, Gram polynomials, and Leg-
endre polynomials, respectively, to enhance the non-linear
function approximation capabilities. Similarly, (Bozorgasl
& Chen, 2024) used wavelet basis functions to improve the
model’s ability of capturing both high- and low-frequency
components of data. Additionally, (Yang & Wang, 2024)
and (Li, 2024) replaced B-splines with rational polynomi-
als and radial basis functions to improve the computational
speed of KANs. To enhance KANs’ capability in image clas-
sification tasks, (Bodner et al., 2024) proposed ConvKAN,
while (Drokin, 2024) extended ConvKAN to more convo-
lutional structures. Although these KAN variants improve
approximation and computational efficiency, the presence
of learnable activation functions leads to a large number
of trainable parameters. This design significantly impacts
memory efficiency and increases training costs, posing chal-
lenges for addressing larger datasets and complex tasks.

To address these challenges, we propose MetaKANs, a
memory-efficient framework that improves training effi-
ciency for KANs through meta learning. Our approach
builds on the key observation: KANs decompose high-
dimensional functions into dimension-wise univariate func-
tions (learnable, spline-parametrized activation functions),
while these univariate functions follow a common functional
class F , in which they share the same trainable parameters
setting rule. Inspired by current meta learning (Kong et al.,
2020; Shu et al., 2023) and in-context learning (Brown
et al., 2020; Garg et al., 2022) techniques, we propose to
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Figure 1. Overview of the architectures for KANs and MetaKANs. The connections marked red means trainable. The trainable parameters
are w

(l)
i,j for KANs and θ, z

(l)
i,j for MetaKANs.
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Figure 2. Parameter-accuracy tradeoff comparison between KANs
and MetaKANs across six benchmark datasets. Marker color
indicates dataset, shape represents model type (circle: KANs,
square: MetaKANs). MetaKANs demonstrates superior memory
efficiency while maintaining competitive performance. The arrow
indicates that MetaKANs not only reduce the number of parameters
but also maintain performance.

use a smaller meta-learner to simulate the shared parameter
generation rule, and thus the large number of trainable pa-
rameters for activation functions reduce to the parameters
of the smaller meta-learner. Specifically, the parameters of
MetaKANs consists of two parts: (1) learnable input vari-
able (i.e., prompts) serving as the unique identifier for each
activation function and (2) the parameters of meta-learner
learning the shared weight setting rule for dimension-wise
univariate functions. The diagram is shown in Figure 1.

In a nutshell, we make the following contributions:

(1) We propose a novel memory efficiency training method
for KANs, called MetaKANs, which generates weights of
KANs via a smaller meta-learner instead of directly optimiz-
ing parameters of KANs. As shown in Figure 2, proposed
method achieves comparable or even better performance
with only 1/3 to 1/9 parameters of the number of trainable
parameters for KANs.

(2) Proposed method is model-agnostic, which could be
applied to various KAN variants. The memory efficiency
improvements upon FastKAN (Li, 2024), ConvKAN (Bod-
ner et al., 2024), and WavKAN (Bozorgasl & Chen, 2024)
demonstrate the universal applicability for MetaKANs.

(3) We experimentally demonstrate that MetaKANs improve
training efficiency in terms of reducing memory load across
various benchmarks, including symbolic regression, solv-
ing PDEs, and image classification. Experimental results
substantiate the capability of MetaKANs on enhancing the
scalability and extensibility of KANs.

2. Related Work
2.1. Kolmogorov-Arnold Networks (KANs)

KANs (Liu et al., 2024) introduce a novel network structure
by replacing fixed activation functions in traditional MLP
networks with learnable activation functions. This provides
a more flexible and interpretable framework for function ap-
proximation tasks. Recent studies on KANs can be broadly
categorized into three research directions: parameterization
strategies of basis functions, domain-specific applications,
and theoretical foundations.

To enhance expressivity and computational efficiency, di-
verse basis functions have been explored beyond the origi-
nal B-spline formulation. These include polynomial bases
such as Chebyshev, Legendre, and Gram polynomials (SS
et al., 2024), rational functions (Aghaei, 2024), radial basis
functions (Li, 2024), wavelets (Bozorgasl & Chen, 2024).
Besides, KANs have been integrated into diverse architec-
tures and tasks. In computer vision, ConvKAN (Bodner
et al., 2024) and KAT (Yang & Wang, 2024) enhance CNNs
and Transformers, respectively. For time-series, frequency-
aware models like TIMEKAN (Huang et al., 2025) and
memory-augmented variants (Genet & Inzirillo, 2024) im-
prove long-term forecasting. U-KAN (Li et al., 2024) ap-
plies KANs to U-Net for medical imaging, while KAN-
ODEs (Koenig et al., 2024) model dynamical systems. In
graphs, KA-GNNs (Bresson et al., 2024) and Kolmogorov-
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Arnold Attention (Fang et al., 2025) boost expressive ca-
pacity. Other extensions include continual learning classi-
fiers (Hu et al., 2025) and generative modeling via learned
Schrödinger bridges (Qiu et al., 2025). Theoretical work has
begun to formalize KANs’ capacity and generalization prop-
erties. (Zhang & Zhou, 2024) established generalization
bounds, quantifying KAN complexity based on activation
properties. While expressiveness studies show that KANs
can outperform standard MLPs under large-grid regimes and
exhibit weaker spectral bias—suggesting better modeling
of high-frequency components (Wang et al., 2024).

Although these developments have advanced KANs signifi-
cantly, the presence of learnable activation functions results
in a large number of trainable parameters and challenges in
memory efficiency than MLP network, posing challenges
for addressing larger datasets and complex tasks. Unlike
these prior works, our proposed MetaKANs leverage a meta-
learner and learnable prompts corresponding to activation
functions, achieving a trainable parameter count comparable
to that of MLPs with similar structures.

2.2. HyperNetworks

HyperNetworks use a smaller auxiliary network to generate
the weights of a larger main network, offering a mechanism
to reduce trainable parameter counts while maintaining com-
petitive performance. First introduced in (Ha et al., 2017),
hypernetworks achieved comparable accuracy to typical
CNNs and RNNs with significantly fewer parameters, lay-
ing the foundation for a broad range of follow-up research.
Recently, Mahabadi et al. (2021) applied hypernetworks to
Transformers for efficient fine-tuning across multiple tasks

In meta-learning, (Zhao et al., 2020) reformulated the
template-sharing mechanism as a hypernetwork guided by
learnable input vectors. (Navon et al., 2021) extended this
idea to multi-objective settings, using task embeddings to
condition a shared hypernetwork, allowing task-specific
weight generation without duplicating full networks. Hy-
pernetworks have also been tailored to specific domains.
For instance, (Alaluf et al., 2022) adapted the concept to
StyleGAN, enabling efficient, real-time image editing by
modulating generator weights with compact hypernetworks.

Prior work typically employs heuristic parameter generation
strategies, such as using shared hypernetworks for entire lay-
ers (Ha et al., 2017) or task-agnostic templates (Savarese &
Maire, 2019). In contrast, propsoed MetaKANs is grounded
in the understanding of working mechanism of KANs, in
which the weights learning could be regarding as the multi-
task basis representation learning from a shared functional
family. Instead of heuristically predicting weights through
hypernetworks, we explicitly model the shared weight gen-
eration rules through a meta-learner, where the learnable
prompts as the identifiers for activation functions.

3. Methods
3.1. Preliminary

3.1.1. KOLMOGOROV-ARNOLD REPRESENTATION
THEOREM

The KA representation theorem (Kolmogorov, 1957) states
that any multivariate continuous function can be decom-
posed into a finite sum of univariate functions. Specifi-
cally, for a continuous function on f : [0, 1]n → R , there
exist continuous univariate functions ϕoutq : R → R and
ϕinq,p : [0, 1]→ R such that:

f(x) = f(x1, ..., xn) =

2n+1∑
q=1

ϕoutq

(
n∑

p=1

ϕinq,p(xp)

)
. (1)

This theorem could be formulated as follows:

f(x) = Φout ◦ Φin ◦ x,

where Φin and Φout are defined as:

Φin =

 ϕin1,1(·) · · · ϕin1,n(·)
...

. . .
...

ϕin2n+1,1(·) · · · ϕin2n+1,n(·)

 ,
Φout =

[
ϕout1 (·) · · · ϕout2n+1(·)

]
.

3.1.2. KOLMOGOROV-ARNOLD NETWORKS

KANs implement the KA representation theorem using a
parameterized neural network. Each activation function in
KANs is represented by a basis function and its associated
parameters. In practice, Liu et al. (2024) explicitly parame-
terize each univariate function ϕ(·) as a B-spline curve, with
learnable coefficients of local B-spline basis functions,

ϕ(t;w) = wbSiLU(t) +

G+k∑
i=1

ciBi(t), (2)

where SiLU(t) = t
1+e−t , w = [wb, c1, ..., cG+k]

⊤, and
{Bi(t), i ∈ [G + k]} is the B-spline basis functions de-
termined by the grid size G, spline order k. The param-
eters wb controls the overall magnitude of the activation
function, while ci are trainable coefficients. We denote
B(t) = [SiLU(t), B1(t), ..., BG+k(t)]

T , so the learnable
univariate activation function can be written as:

ϕ(t;w) = w⊤B(t). (3)

The general KANs consist of L layers, with the structure
[n0, n1, . . . , nL], where nl denotes the number of nodes in
the l-th layer. The outputs of l-th KAN layer is defined as

x(l+1) =

[
nl∑
i=1

ϕi,1(x
(l)
i ;w

(l)
i,1), . . . ,

nl∑
i=1

ϕi,nl+1
(x

(l)
i ;w

(l)
i,nl+1

)

]
,

= Φ
(l)

W(l) ◦ x(l), (4)
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Table 1. Comparison of parameter number among different models with the architecture [n0, n1, ..., nL].

ARCHITECTURES # PARAMS.

MLP
∑L−1

l=0 (nl × nl+1)

KAN
∑L−1

l=0 (nl × nl+1)×(G+ k + 1)

METAKAN
∑L−1

l=0 (nl × nl+1)+C × (dhidden + 1)× (G+ k + 1)

FASTKAN
∑L−1

l=0 (nl × nl+1)×c

METAFASTKAN
∑L−1

l=0 (nl × nl+1)+(dhidden + 1)× c

WAVKAN
∑L−1

l=0 (nl × nl+1)×3

METAWAVKAN
∑L−1

l=0 (nl × nl+1)+(dhidden + 1)× 3

where x(l) ∈ Rnl is the input of l-th layer, and Φ
(l)

W(l) is an
activation matrix consisting of nl+1×nl activation functions
ϕi,j(·;w(l)

i,j), which is given by:

Φ
(l)

W(l) =


ϕ1,1(·;w(l)

1,1) · · · ϕ1,nl
(·;w(l)

1,nl
)

...
. . .

...
ϕnl+1,1(·;w

(l)
nl+1,1

) · · · ϕnl+1,nl
(·;w(l)

nl+1,nl)

 .
The l-th KAN layer is parameterized by W(l) = {w(l)

α , α ∈
Il}. Here we denote [n] = {1, ..., n} and the index set
for the activation functions as Il = [nl] × [nl+1] for l ∈
[L] − 1. Thus KAN with structure [n0, n1, . . . , nL] has a
set of parameters denoted by:

W =

L−1⋃
l=0

W(l) =

L−1⋃
l=0

{
w(l)

α ∈ RG+k+1
∣∣ α ∈ Il }. (5)

Given an input vector x ∈ Rn0 , the output of the KAN is

KAN(x;W) = Φ
(L−1)

W(L−1) ◦ · · ·Φ
(1)

W(1) ◦ Φ
(0)

W(0)(x). (6)

It can be seen that the KA representation theorem in Eq. (1)
corresponds to a 2-layer KAN with shape [n, 2n+ 1, 1].

KANs have been demonstrated superiority in fucntion fit-
ting than MLP network (Liu et al., 2024). Suppose the
target function is f(x), then the learning objective can be
formulated as

W∗ = argmin
W

Ex∼P (x)ℓ(KAN(x;W), f(x)), (7)

where ℓ denoted the loss function, and we set MSE for
regression and cross-entropy loss for classification.

3.1.3. MEMORY INEFFICIENCY

KANs differ from MLPs by placing learnable coefficients in
each activation function, while MLPs place fixed activation
function in the architecture design. This could increase the
number of parameters compared with MLPs, especially as
the growth of network’s width and depth.

From the above, it can be concluded that for KANs with
the structure [n0, n1, . . . , nL], a B-spline function of order
k with G grid points require parametersW as presented in

Eq.(5). These parameters collectively account for the total
number of learnable parameters in KANs, which can be
expressed by

∑L−1
l=0 (nl × nl+1)× (G+ k + 1).

For comparison, the forward computation in an MLP can be
expressed as follows

MLP(x) =
(
W(L−1) ◦ σ ◦ · · ·W(1) ◦ σ ◦W(0)

)
x.

where W(l) ∈ Rnl+1×nl represents the linear transforma-
tion, and σ denotes the nonlinear fixed activation func-
tion. Thus an MLP with the same structure requires only∑L−1

l=0 (nl × nl+1) parameters. This shows that the param-
eter count for a KAN is approximately (G + k)× larger
than that of an MLP (refer to Table 1). Such an increase in
parameter count introduces challenges for KANs, including
greater memory usage and potential scalability issues.

3.2. Improving Memory Efficiency via Meta Learning

3.2.1. UNDERSTANING WORKING MECHANISM OF
2-LAYER KANS

Consider an n-dimensional input x = (x1, . . . , xn) and
a target function f(x) represented by the Eq. (1) accord-
ing the KA representation theorem. Thus f(x) could be
approximated by 2-Layer KANs with shape [n, 2n+ 1, 1]

f(x) =

2n+1∑
j=1

ϕ
(1)
j

(
n∑

i=1

ϕ
(0)
i,j (xi)

)

≈
2n+1∑
j=1

ϕ
(1)
j

(
n∑

i=1

ϕ
(0)
i,j (xi;w

(0)
i,j );w

(1)
j

)
= KAN(x;W).

Here we could understand the learning of weights W =
W(0)∪W(1) as a multi-task learning problem. Specifically,
for the 1-layer weights W(0), the weights learning is to learn
n× (2n+ 1) regression tasks belonging to the shared func-
tion classF1 = {f |f(x(0)) = w⊤B(x(0)),w ∈ RG+k+1};
and the learning of 2-layer weights W(1) is to learn
(2n+ 1)× 1 regression tasks belonging to the shared func-
tion class F2 = {f |f(x(1)) = w⊤B(x(1)),w ∈ RG+k+1},
where B(·) is defined in Section 3.1.2. In fact, each regres-
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sion task could be expressed by

M : T → RG+k+1, (8)

where T denotes the task information to identify which
activation function it is, and the output w ∈ RG+k+1 corre-
sponds to the learnable coefficients for the activation func-
tion. The regular learning of KANs in Eq.(7) overlooks the
underlying common weights learning rule, and optimize the
weights in a brute-force way. This learning strategy signifi-
cantly impacts the computation and memory efficiency of
KANs, posing challenges of KANs for addressing larger
datasets and complex tasks compared with MLP network.

3.2.2. PROPOSED METAKANS FRAMEWORK

To improve the memory efficiency of KANs, the key insight
is to delicately employ the commom weights learning rules
in Eq.(8). To this aim, we proposed a Meta-KANs frame-
work as shown in Figure 1 to directly predict weights of
KANs inspired by current advances on meta-learning (Kong
et al., 2020; Shu et al., 2018; 2023) and in-context learning
(Brown et al., 2020; Xu et al., 2024). Specifically, we design
a meta-learner to parameterize the weights learning rules in
Eq.(8) as follows

Mθ : R→ RG+k+1, z 7→ w. (9)

Here we use learnable task prompt z ∈ R to identify which
activation function it is as popular studied in current large
language models (Brown et al., 2020), andMθ is formulated
as a two-layer MLP with hidden dim equals to dhidden. This
choice is motivated by the MLP’s capability as a universal
function approximator, as used in previous meta-learning
methods (Ha et al., 2017; von Oswald et al., 2020; Shu et al.,
2019) and its simplicity and computational efficiency.

Based on this formulation, the learnable activation function
in Eq. (3) now becomes:

ϕ (t; z, θ) =Mθ(z)
⊤B(t), (10)

and then the 2-layer KAN in Eq. (8) now becomes:

MetaKAN(x;Z, θ) =
2n+1∑
j=1

ϕ
(1)
j

(
n∑

i=1

ϕ
(0)
i,j

(
xi;Mθ(z

(0)
i,j )
)
;Mθ(z

(1)
j )

)
.

Note that the learnable parameters w in activation function
of KANs are converted into the parameters (Z, θ) of the
meta-learner, where Z is defined as (see Sec.4.4)

Z =

L−1⋃
l=0

{
z(l)α ∈ R

∣∣ α ∈ Il }, Il = [nl]× [nl+1]. (11)

This definition corresponds to the general case of a L-layer
KAN, and the previously discussed case with L = 2 is a

Algorithm 1 The MetaKANs Algo. for Shallow KANs
Input: Training dataset Dtr, batch size n, max iterations
T , KAN and MetaKAN models,
Output: Updated meta-learner parameters θ(T ) and
prompts Z(T )

Initialize meta-learner parameters θ(0) and learnable
prompts Z(0)

for t = 0 to T − 1 do
Sample a mini-batch {xb,yb} from Dtr of size n
Compute the output of MetaKAN using Eq. (3.2.2)
Compute training loss with Eq. (12)
Update θ(t+1) and Z(t+1) via gradient descent

end for

special instance. Thus the number of trainable parameters
of MetaKANs is

|Z|+ |θ| =
L−1∑
l=0

(nl×nl+1)+(dhidden +1)× (G+k+1).

To obtain the meta-learner, we can optimize the following
objective function derived from Eq.(7):

Z⋆, θ⋆ = argmin
Z,θ

Ex∼P (x) [ℓ(MetaKAN(x;Z, θ)− f(x))] .
(12)

During the training process, both the parameters of the meta-
learner θ and the learnable prompts Z are updated simulta-
neously by gradient descent algorithm. The overall training
algorithm for MetaKANs is formulated in Algorithm.1.

3.2.3. SCALING TO DEEP KANS

Based on the analysis in Section 3.2.1, we could further
understand the weights learning for a multi-layer KAN de-
fined in Eq. (6). Specifically, for the l-layer weights W(l),
the weights learning is to learn nl × nl+1 regression tasks
belonging to the shared function class Fl = {f |f(x(l)) =
w⊤B(x(l)),w ∈ RG+k+1}. In other words, the weights
learning of deep layer of KANs is akin to that of the shallow
layer, while the input task information is shift and evolution-
ary accross different layers. This mismatch task distribution
makes the weighting learning rule in Eq.(8) different across
layers. Though we introduce the learnable prompts Z as
input information for each task, it is hard to mine the proper
layer information use a shared meta-learner, and thus bring
inferior performance as demonstrated in Table 9.

To address this issue, a straightforward way is to assign
different meta-learners for every layer. This design allows
the meta-learnerM (l)

θ for l-th layer to effectively capture the
layer-dependent task information, which could potentially
help extract proper weights learning rules for different layers.
However, such setup would introduce significant parameter
overhead because that the total parameters are scaling with
the number of layers L, which tends to further raise their
memory inefficiency for deep KANs with many layers.
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Algorithm 2 Clusters Determination Algo. for Deep KANs
1: Input: Output-channel sizes n = [n1, . . . , nL−1]; num-

ber of clusters C
2: Output: Intervals

{
(lcstart, l

c
end)
}C
c=1

3: labels← KMEANS(n, C)
4: for c = 1 to C do
5: Lc ← { l | labels[l] = c}
6: lstart

c ← minLc, lend
c ← maxLc

7: end for
8: return

{
(lstart
c , lend

c )
}C
c=1

To make a balance between expressive capacity and memory
efficiency, we extend the MetaKANs framework by parti-
tioning the deep KAN’s L layers into C distinct clusters,
{L1, . . . , LC}, each assigned a dedicated meta-learnerM(c).
This partitioning is guided by the input and output channels
of the layers, a strategy that typically groups consecutive
layers Lc = [lstart

c , lend
c ] which exhibit similar channel dimen-

sion, as illustrated for a ConvKAN in Sec. C.4. The detailed
algorithm please refer to Algorithm 2.

Based on this novel formulation, the parameters in Eq. (5)
are generated with proposed MetaKANs:

w(l)
α =Mθ(c)

(
z(l)α

)
, ∀ l ∈ Lc, α ∈ Il (13)

where θ(c) represents the cluster-specific meta-learener pa-
rameters. And we will validate this design in Sec. C.4. Then
the output of the l-th KAN layer in Eq. (4) is given by:

x(l+1) = Φ
(l)

z(l),θ(c)
◦ x(l)

=

[
nl∑
i=1

ϕi,1(x
(l)
i ;Mθ(c)(z

(l)
i,1)), . . . ,

nl∑
i=1

ϕi,nl+1
(x

(l)
i ;Mθ(c)(z

(l)
i,nl+1

))

]
, l ∈ Lc.

(14)

The forward procedure of MetaKANs now becomes:

MetaKAN(x;Z,Θ) = Φ
(L−1)

z(L−1),θ(C)
◦ · · · ◦ Φ(0)

z(0),θ(1)
(x),

where Θ = {θ(c)}Cc=1, and the objective function is

Z⋆,Θ⋆ =

argmin
Z,Θ

Ex

[
(MetaKAN(x;Z,Θ)− f(x))2

]
.

(15)

The overall training algorithm for MetaKANs to predict
weights of deep KANs is formulated in Algorithm.3.

Memory efficiency analysis. The number of learnable
parameters in MetaKANs for deep KANs with the structure
[n0, n1, ..., nL] is given by:

|Z|+|Θ| =
L−1∑
l=0

(nl×nl+1)+C×(dhidden+1)×(G+k+1).

Algorithm 3 The MetaKANs Algo. for Deep KANs
1: Input: Training dataset Dtr; KANs with L layers ar-

chitecture and MetaKANs; Layer clustering {Lc}Cc=1

obtained using Algorithm 2, where Lc = [lstart
c , lend

c ];
Batch size n; Max iterations T

2: Output: Updated meta-learner parameters Θ(T ) ={
θ
(T )
(c)

}C

c=1
and prompts Z(T )

3: Initialize meta-learner parameters Θ(0) =
{
θ
(0)
(c)

}C

c=1

and learnable prompts Z(0)

4: for t = 0 to T − 1 do
5: Sample a mini-batch {xb,yb} from Dtr of size n
6: for l = 0 to L− 1 do
7: Generate weights for l-th layer using Eq.(13)
8: Propagate through l-th KAN layer via Eq. (14)
9: end for

10: Compute training loss with Eq. (15)
11: Update Θ(t+1) and Z(t+1) via gradient descent
12: end for

Compared with case for shallow KANs, the increased num-
ber of learnable parameters for deep KANs attributes to the
additional number of meta-learners (C = 1 degenerates
to the case discussed in Section 3.2.2). Their parameters
C × (dhidden +1)× (G+ k+1) may remain constant due
to the fixed architecture of meta-learners Mθ(c)(z), c ∈ [C].
While the term

∑L−1
l=0 (nl × nl+1), which accounts for the

learnable prompts Z , will grow with the size of the KANs’s
architecture. Then the total parameter count of MetaKANs
is approximately by

|Z|+ |Θ| ≈
L−1∑
l=0

(nl × nl+1),

which is equivalent to that of a standard MLP network with
the same structure. The detailed comparison of the number
of trainable parameter among KAN, MLP and MetaKAN
is shown in Table 1. And thus the proposed MetaKANs
framework is potentially promising in improving memory
efficiency of training KANs, and reduced memory cost ap-
proximating to MLP network. In Section 4, we experimen-
tally demonstrate that proposed MetaKANs could achieve
competitive performance than orginal KANs.

3.3. Extension to Other KANs Variants

It is worth emphasizing that proposed MetaKANs frame-
work is model-agnostic, which is capable of applying to
recent KANs variants, e.g., WavKAN(Bozorgasl & Chen,
2024), FastKAN(Li, 2024) and ConvKAN(Drokin, 2024),
etc. To illustrate this, we propose MetaKAN variants that
apply our meta-learning framework (Section 3.2) to these
architectures including MetaWavKAN, MetaFastKAN, and
MetaConvKAN. Detailed descriptions and technical details
are provided in Appendix A. And we empirically verify the
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Table 2. Performance Comparison Between KANs and MetaKANs on Feynman Dataset with Different Grids.

NAME STRUCTURE G = 5 G = 20

KANS METAKANS KANS METAKANS

MSE # PARAM MSE # PARAM MSE # PARAM MSE # PARAM

I.6.20A [1,2,1,1] 5.94× 10−4 58 3.88× 10−4 218 1.01× 10−2 134 5.48× 10−3 653
I.6.20 [2,2,1,1] 6.44× 10−3 76 2.67× 10−3 210 6.00× 10−3 193 4.15× 10−4 439
I.6.20B [3,5,5,5,1] 4.16× 10−3 646 3.68× 10−3 1083 3.79× 10−2 1976 3.04× 10−2 1,798
I.8.4 [4,5,5,1] 1.30× 10−2 979 3.76× 10−3 461 1.16× 10−1 1,461 8.33× 10−2 1,994
I.9.18 [6,5,5,5,1] 2.39× 10−3 781 1.70× 10−3 993 1.62× 10−2 2,556 4.00× 10−3 2,029
I.12.2 [4,3,3,1] 2.83× 10−3 223 1.84× 10−3 480 1.19× 10−2 751 2.03× 10−3 672
I.12.4 [3,3,2,1] 1.87× 10−3 70 1.04× 10−3 159 4.55× 10−3 550 6.13× 10−4 665
I.12.5 [2,2,1] 1.32× 10−3 57 1.16× 10−4 30 2.97× 10−2 201 2.24× 10−2 330
I.10.7 [3,4,4,1,1] 6.96× 10−3 307 5.98× 10−3 115 9.77× 10−3 1,132 4.00× 10−3 1,329
I.12.11 [5,2,2,1] 8.73× 10−2 149 8.55× 10−2 85 2.58× 10−1 565 1.35× 10−1 1,312
I.13.4 [4,2,1,1] 4.22× 10−3 103 3.52× 10−3 55 1.84× 10−1 400 1.21× 10−1 1,955
I.13.12 [5,4,4,1] 3.41× 10−3 369 2.83× 10−3 100 1.77× 10−2 1,489 3.09× 10−3 1,336
I.14.3 [3,2,1] 4.53× 10−3 75 4.01× 10−3 40 4.66× 10−3 307 5.73× 10−3 332
I.14.4 [2,2,1,1] 1.27× 10−3 67 2.08× 10−4 35 1.16× 10−2 277 1.69× 10−2 319
I.15.3X [4,3,3,1] 1.57× 10−2 223 5.38× 10−3 80 2.59× 10−1 967 2.33× 10−1 181
I.15.10 [3,3,2,1] 8.45× 10−3 159 7.79× 10−3 70 7.93× 10−3 703 8.38× 10−3 1,313
I.18.4 [4,4,3,1] 2.21× 10−3 287 1.55× 10−3 90 4.63× 10−3 1,310 8.19× 10−3 189

effectiveness of MetaWavKAN (Table 7), MetaFastKAN
(Table 6), and MetaConvKAN (Table 3), indicating the uni-
versal applicability of MetaKANs framework.

Memory efficiency analysis. For a general KANs model,
the additional parameter count arises from the learnable
univariate functions ϕ(x;w), with the total parameters for
a network structure [n0, n1, . . . , nL] given by:

∑L−1
l=0 (nl ×

nl+1)× dim(w), where dim(w) = G+ k+ 1 for standard
KANs. With meta-learner, the parameter count for KAN
variants is reduced by approximately 1/dim(w). For exam-
ple, the dimensionality dim(w) is c for FastKAN and 3 for
WavKAN. The meta-learner generates activation parame-
ters, reducing the total parameter count to approximately
as in Eq.(3.2.3) which is comparable to that of an MLP.
This makes MetaKANs and its variants significantly more
memory efficient while retaining their flexibility and perfor-
mance. Detailed comparisons are provided in Table 1.

3.4. More Discussion on the Memory Efficiency

It’s important to understand the conditions that MetaKANs
improve memory efficiency of KANs. KAN’s parameters
scale as

∑L−1
l=0 (nl × nl+1)× (G+ k + 1), reflecting total

number of activations multiplied by the number of param-
eters per spline. MetaKANs generate these spline param-
eters with one prompt per activation (

∑L−1
l=0 (nl × nl+1)

total) but adds a fixed meta-learner cost (≈ C(dhidden +
1)(G+ k+1)). Parameter reduction occurs when this fixed
cost is less than the total spline parameters saved. This
advantage is more pronounced for larger and deeper net-
works. By simple computation, we roughly require that
dhidden ≳ G+k

G+k+1

∑L−1
l=0 (nl × nl+1) to ensure the mem-

ory efficiency of MetaKANs (see Figure 4). Consequently,
for very small KANs in Table 2 with few total activations,
the meta-learner’s fixed cost can cause MetaKANs to have

slightly more parameters than KAN, despite MetaKANs
often maintain competitive performance.

4. Experiments
We conduct extensive experiments to evaluate the per-
formance of our method, including function fitting tasks
in both low-dimensional (Sec.4.1) and high-dimensional
scenarios (Sec.C.1), solving partial differential equations
(Sec.C.3), and image classification tasks using KANs with
both fully-connected (Sec.C.2) and convolutional architec-
tures (Sec.4.2). Additionally, we provide the analysis of
memory usage in Sec.4.3, and perform ablation study in
Sec.C.4 to demonstrate the scalability of our approach with
respect to prompt dimensions and layers of KANs.

4.1. Function Fitting Task

4.1.1. EXPERIMENTAL SETUP

To demonstrate that MetaKANs reduce the overall number
of trainable parameters without compromising the inter-
pretability and function-fitting capabilities of the original
KANs model, we conducted a function-fitting task on the
Feynman dataset (Udrescu & Tegmark, 2020) as done in the
original KAN paper. The comparison focused on the Mean
Squared Error (MSE) performance.

In the experiments, we employed the LBFGS optimizer with
an initial learning rate set to 1, consistent with the original
paper. Additionally, to better balance fitting performance
and model complexity, the hidden layer nodes of the meta-
learner of MetaKANs were set to 32, 64. The number of
grid points in set to G = 5, 20. The architecture of the
KANs, including its depth and width, was designed based
on the complexity and characteristics of each target function,
following the principles outlined in (Liu et al., 2024).
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Table 3. Performance Comparison on MNIST, CIFAR10, and CIFAR100 (4 and 8 Layers).∗ on 8-layer MetaKANConv and MetaFastKAN-
Conv means we set the dimension of learnable prompts to 2 and 4 respectively and using the multiple meta-learners.

MODEL MNIST CIFAR-10 CIFAR-100

# PARAM ACC. # PARAM ACC. # PARAM ACC.

4 LAYERS
KANCONV 3,489,774 98.43± 0.46 3,494,958 41.92± 1.87 3,518,088 7.69± 0.34
METAKANCONV 391,255 96.03± 1.15 392,887 45.97± 6.22 416,017 9.71± 1.02
FASTKANCONV 3,489,292 99.36± 0.02 3,494,480 68.12± 2.85 3,517,610 34.64± 5.02
METAFASTKANCONV 391,829 98.54± 0.51 392,409 66.69± 1.61 415,539 32.11± 2.98
KALNCONV 1,940,330 85.64± 4.28 1,943,210 32.98± 4.25 1,966,340 10.48± 0.61
METAKALNCONV 391,119 97.64± 1.82 391,919 42.46± 11.00 416,393 11.78± 3.08
KAGNCONV 1,940,346 99.15± 0.11 1,943,226 72.08± 0.69 1,966,356 36.61± 0.49
METAKAGNCONV 391,359 99.21± 0.11 392,383 73.49± 0.95 415,513 35.54± 2.49

8 LAYERS
KANCONV 40,694,018 99.50± 0.08 40,696,610 67.24± 3.41 40,742,780 35.97± 2.84
METAKANCONV 4,532,170 99.46± 0.08 9,053,531 72.20± 2.97 9,099,371 44.17∗ ± 3.19
FASTKANCONV 40,693,052 99.71± 0.02 40,695,648 79.84± 0.46 40,741,818 50.80± 0.17
METAFASTKANCONV 4,539,652 99.42 ± 0.08 9,051,033 78.73± 1.59 18,142,821 52.02∗ ± 1.07
KALNCONV 22,611,642 69.02± 10.54 22,613,082 29.14± 1.67 22,659,252 9.10± 0.41
METAKALNCONV 4,529,727 99.53± 0.05 4,530,015 70.23± 2.43 4,576,185 21.94± 5.69
KAGNCONV 22,611,674 99.58± 0.06 22,613,114 84.69± 0.74 22,659,284 56.41± 0.32
METAKAGNCONV 4,543,682 99.46± 0.20 4,530,495 84.25± 0.36 4,576,665 57.76± 0.50

(a) KANs (b) MetaKANs
Figure 3. Function fitting on I.12.5 (f(x1, x2) = x1x2). KANs
learn the formula by f(x1, x2) = −(x1−x2)

2+(−x1−x2)
2 =

2x1x2, while MetaKANs learn the formula by f(x1, x2) =
(−x1 − x2)

2 − (x2
1 + x2

2) = 2x1x2.

4.1.2. RESULTS

The comprehensive evaluation in Table 2 demonstrates
MetaKANs’ significant advantage in balancing parameter
efficiency and approximation accuracy. Across 16 Feynman
equations, MetaKANs consistently outperform the baseline
KANs model under identical grid configurations while us-
ing substantially fewer parameters. At G = 5, MetaKAN
achieves lower MSE in 11 out of 17 functions with train-
able parameter reductions ranging from 21% to 47%. A
notable example is the I.12.5 equation(f(x1, x2) = x1x2),
where MetaKANs attains an order-of-magnitude improve-
ment in MSE (1.16×10−4 vs 1.32×10−3) while requiring
only 30 parameters compared to 57 parameters of KANs
(learned symbolic functions refer to Fig. 3). The results
persist at higher grid resolutions, with MetaKANs main-
taining superior accuracy in 13/16 cases at G = 20 despite
using 18% fewer parameters on average. To further illus-
trate the insight behind our meta-learner design, we also
visualize the parameters’ inner dot similiarity matrix of
each activation function for KANs and MetaKANs (with

structure [4, 5, 5, 1]) respectively on fitting the function
f(x) = exp

(
1
2

(
sin
(
π
(
x21 + x22

))
+ sin

(
π
(
x23 + x24

))))
in Figure 9. From the figure, we observe that the functional
class learned by MetaKANs is significantly more compact
compared to that learned by KANs. This indicates that fit-
ting the target function requires a much smaller function
space, whereas KANs learn a larger and redundant func-
tion space, leading to memory inefficiency. More detailed
analysis please refers to Section B.

4.2. Convolutional Architecture Experiments

4.2.1. EXPERIMENTAL SETUP

Extending the framework from (Drokin, 2024), we imple-
ment four core modules: KANConv, FastKANConv, KAG-
NConv, and KALNConv. The baseline architecture contains
two configurations: 4-layer (shallow) and 8-layer (deep) net-
works. Channel progression follows [32, 64, 128, 512] for
4-layer and [2, 64, 128, 512, 1024, 1024, 1024, 1024] for 8-
layer architectures, with 3×3 kernels, stride 1, and padding
1. And for 8-layer MetaKANConv and MetaFastKANConv,
we set the dimension of learnable prompts to 2 and 4 respec-
tively and using the multiple meta-learners. The details of
clustering meta-learner is stated in Sec. C.4.

The optimization strategy employs three AdamW optimiz-
ers: learnable prompts (η = 10−4), meta-learner (η =
10−3), and main network (η = 10−4). Training details in-
clude random horizontal flipping and cropping for CIFAR
datasets, exponential decay learning rate scheduling, and
Dropout (p = 0.2) regularization.
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(a) Memory usage vs. number of connections

(b) Memory usage vs. grid sizes
Figure 4. Memory efficiency of MetaKANs compared to KANs.
Peak memory allocation (MB) vs. network connections for grid
size G = 5 (Top) and vs. grid sizes for hidden dim dhidden = 64
(Bottom). MetaKANs show substantial memory savings.

4.2.2. EXPERIMENTAL RESULTS

The convolutional architecture comparisons (shown in Ta-
ble 3) reveal significant parameter efficiency gains while
maintaining competitive accuracy across datasets. For 4-
layer models, MetaKANConv achieves 45.86% accuracy
on CIFAR-10 with 89% parameter reduction (392,887 vs
3,494,958 parameters), outperforming the baseline by 6.03
percentage points. MetaFastKANConv demonstrates partic-
ularly strong results on CIFAR-100, attaining 34.81% accu-
racy (vs 28.84% baseline) using only 12% of original param-
eters (415,539 vs 3,517,610). The 8-layer configurations
show enhanced performance scaling, with MetaFastKAN-
Conv reaching 81.53% on CIFAR-10 while reducing param-
eters by 78% (9,051,033 vs 40,695,648).

4.3. Benefits to Memory Usage

A primary goal of MetaKANs is reducing KAN’s high
training costs, particularly peak GPU memory consump-
tion. Figure 4 shows the peak memory usage of MetaKANs
and KANs under different network sizes and grid settings.
This demonstrates that MetaKANs are significantly more
memory-efficient, especially as the size of network grows
larger or grid size increases. MetaKANs scale better and
keep memory consumption lower compared to KANs.

Its effectiveness in saving memory is particularly pro-

nounced for KANs with large grid sizes, such as G = 80
and above. In these high-resolution scenarios, MetaKANs
provide substantial memory savings compared to standard
KANs, even when the MetaKANs use larger hidden di-
mensions for the meta-learner. This makes it well-suited
for developing scalable, high-resolution KANs model. For
KANs with medium grid sizes, roughly G = 20 to G = 50,
MetaKANs can also effectively reduce memory, especially
if the meta-learner is configured with a small to moderate
hidden dimension, like 16 or 32. Similarly, in settings with
small grid sizes, such as G = 5 to G = 15, memory savings
are achievable if a meta-learner with a very small hidden
dimension (e.g., 16) is employed. Therefore, MetaKANs
offer a valuable strategy for making KANs more memory-
efficient, particularly for high grid resolution. For a practical
suggestion, the hidden dimension of the meta-learner should
be chosen in consideration of the KAN’s grid size.

4.4. Physical Meaning of Learned Prompt Embedding

Figure 10 visualizes the learned task prompt Z defined in
Eq.(11) to understand whether Z can distinguish activation
functions with different task properties for basis functions.
The heatmap (right) shows the similarity of different task
prompts z(l)α , α ∈ [nl] × [nl+1] (left). We can see that
learned task prompts for similar activation functions are
more similar (darker regions in the heatmap) than that for
dissimilar activation functions. This suggests that learnable
task prompt could identify which activation function it is,
validating the rationality for the design of the meta-learner.
This further supports that proposed MetaKANs are capable
of learning proper weighting learning rules for KANs, and
thus improving memory efficiency.

5. Conclusion
In this paper, we introduced MetaKANs, a memory-efficient
framework for training KANs through meta-learning. By
leveraging a smaller meta-learner to generate weights for
KANs, MetaKANs significantly reduce the number of train-
able parameters while maintaining or even improving per-
formance. Our experiments across various benchmark tasks,
including symbolic regression, partial differential equa-
tion solving, and image classification, demonstrate that
MetaKANs achieve comparable or superior performance
with only a fraction of the parameters required by tradi-
tional KANs. Furthermore, MetaKANs are model-agnostic,
making them applicable to a wide range of KAN variants,
such as FastKAN, ConvKAN, and WavKAN. In conclusion,
MetaKANs provide a promising direction for improving the
training efficiency of KANs, enabling their application to
larger datasets and more complex tasks. Besides, how to
transfer the weights prediction rules for helping improve
memory efficiency of novel KANs training tasks is a poten-
tially valuable future research direction.
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A. Extension to Other KAN Variants
A.1. WavKAN

In WavKAN, (Bozorgasl & Chen, 2024) propose replac-
ing the activation functions in KAN with mother wavelet
functions. This modification aims to enhance the model’s
multi-scale resolution capability, allowing it to effectively
capture features across different scales. Additionally, the
use of wavelet functions reduces the overall parameter count
compared to traditional KAN, as the wavelet basis functions
inherently introduce sparsity and compactness into the rep-
resentation.

Specifically, taking the Mexican hats wavelet function as an
example, it follows as:

ψ(t;σ) =
2

π1/4
√
3σ

(
t2

σ2
− 1

)
exp

(
−t2

2σ2

)
. (16)

where σ shows the adjustable standard deviation of Gaus-
sian. As for each activation function

ϕ(t;w) = wψ(t− µ;σ) (17)

where w is a learnable scaling factor controlling the ampli-
tude of the wavelet function, and µ represents the translation
parameter that adjusts the center of the wavelet. The param-
eters are compactly represented as w = [w, µ, σ]T . Thus,
each activation function in WavKAN is parameterized by
just three learnable parameters w ∈ R3. For the WavKAN,
it is easily to replace the activation function in Eq. (2) with
the ϕ(t;w) = wψ(t− µ;σ).

As a result, the parameter count for WavKAN is
significantly reduced compared to KAN. Specifi-
cally, for structure [n0, n1, ..., nL], WavKAN requires
O
(
3×

∑L−1
l=0 (nl × nl+1)

)
parameters, which is approxi-

mately 3× the parameter count of a standard MLP with the
same structure.

Although WavKAN reduces the parameter count compared
to KAN, it still introduces additional parameters relative
to MLPs, especially when the network structure becomes
more complex. To address this, we propose meta-learner,
referred to as MetaWavKAN, to generate the parameters
of WavKAN, further reducing the overall parameter count.
Specifically, the meta-learner Mθ(z) : R → R3 gener-
ates the three learnable parameters w(z, θ) = [w, µ, σ]T =
M(z; θ) for each activation function with one learnable
scalar z. The meta-learner Mθ(z) is the same two-layer
MLP used in MetaKANs. Consequently, MetaWavKAN
maintains the same total parameter count as MetaKAN, as
described in Sec. (3.2.3).

A.2. FastKAN

FastKAN (Li, 2024) proposes an efficient approximation
method for B-splines of order k with G intervals by em-
ploying a Radial Basis Function (RBF) network. An RBF
network approximates a target function using a weighted
sum of radial basis functions centered at specific points. The
general form of an RBF network can be expressed as:

f(x;w) =

G+k∑
i=1

wiϕ (∥x− ci∥) = wTB(x) (18)

where w = [w1, ..., wG+k]
⊤, and B(x) =

[ϕ (∥x− c1∥) , ..., ϕ (∥x− cG+k∥)]⊤.

Gaussian RBF is specifically chosen as the basis function
due to its smoothness and universal approximation capabili-
ties. The Gaussian RBF is defined as:

ϕ(r) = exp

(
− r2

2h2

)
,

where r is the radial distance, and h is a parameter that
controls the width or spread of the function.

By selectingG+k centers for the Gaussian RBFs, FastKAN
efficiently approximates a series of B-spline basis functions,
offering both computational efficiency and strong function
approximation capabilities. For the consistency of the for-
mulation, B-spline basis function in Eq. (2) could be substi-
tuted with Eq. (18).

Although FastKAN improves computation efficiency via
RBF approximation, it still requires (G + k)× parame-
ters count compared with MLP. Thus similar to MetaKAN
and MetaWavKAN, we propose using meta-learner, named
MetaFastKAN, to generate parameters w in the Eq. 18.

A.3. ConvKAN

Kolmogorov-Arnold convolutions, introduced by (Bod-
ner et al., 2024) and extended by (Drokin, 2024),
which replace traditional convolutional activation functions
with Kolmogorov-Arnold-based transformations, such as
spline (2), RBF (18), or wavelet (17).

Unlike conventional convolution kernels, Kolmogorov-
Arnold (KA) kernels consist of a set of univariate non-
linear learnable activation functions. Given an image in-
put X ∈ Rc×h×w and a KA kernel K ∈ RN×M , the KA
convolution operation can be expressed as:

yij =

c∑
d=1

k−1∑
a=0

k−1∑
b=0

ϕa,b,d(xd,i+a,j+b;wa,b,d), (19)

where ϕ represents a univariate non-linear learnable func-
tion with trainable parameters w. This function can take
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forms such as B-splines (KANConv), wavelet functions
(WavKANConv), or Gaussian RBFs (FastKANConv), de-
pending on the chosen architecture. However, similar to
conventional convolutions, the inclusion of additional pa-
rameters w leads to inefficiency in parameter storage.

To address this inefficiency, we propose introducing a meta-
learner to in-context learn the function class and generate the
parameters. Specifically, the learnable parameters consist of
prompts Z for each layer, as well as the kernel size and the
number of input and output channels.

For a ConvKAN with L layers structured as
[n0, n1, . . . , nL], we introduce a set of prompts Z
for each layer, denoted as:

Z =

L−1⋃
l=1

{
z(l)α

∣∣ α = (i, j, a, b) ∈

[nl]× [nl+1]× [Kl]
2
} (20)

where Kl represents the kernel size of the l-th layer, and a
and b are the kernel indices. These prompts z(l) are used
by the meta-learner to generate the weights w for each
convolutional layer. The number of learnable parameters
depends on the kernel size Kl and the input-output channel
dimensions.

Specifically, for each layer, the weight generation process is
formulated as:

W(Z, θ) =
L−1⋃
l=0

{
w(l)

α =Mθ(z
(l)
α )

∣∣ α ∈ Il}, (21)

where Il = [nl] × [nl+1] × [Kl]
2, l ∈ [L] − 1. The

hypernetworkMθ maps the embedding scalars z(l)i,j,a,b to the

corresponding convolution kernel parameters w(l)
i,j,a,b.

As discussed in Section 3.3, the parameter count of Meta-
ConvKAN can be reduced by a factor of 1/dim(w) com-
pared to KANConv, resulting in a parameter efficiency ap-
proximately equivalent to that of standard convolutional
networks. If we set the dimension of the z from 1 to
dim(z), the parameter count can be reduced by a factor
of dim(z)/dim(w) compared to KANConv.

B. Illustration of the Learned Function Class
We train KANs and MetaKANs (with structure
[4, 5, 5, 1]) respectively on fitting the function
f(x) = exp

(
1
2

(
sin
(
π
(
x21 + x22

))
+ sin

(
π
(
x23 + x24

))))
and the parameter inner dot similarity matrices are
represented in Figure 9. From the figure, we observe that
the function class learned by MetaKANs is significantly
more compact compared to that learned by KANs. This
indicates that MetaKANs require a smaller set of function
class to fit the target function, whereas KANs learn a

relatively larger and redundant function class, leading to
memory inefficiency.

For KANs, it achieves the MSE error 4.58e − 02, while
MetaKANs achieve MSE error 3.54e− 02. After applying
node pruning and symbolic regression as introduced in (Liu
et al., 2024), we can formulate the learned symbolic function.
For KANs, the result is

KAN(x;W) = −0.0311
(
− x3 + 0.2892x4 + 0.6304

)2
− 0.0118

(
x3 + 0.4825x4 − 0.3973

)2
+ 0.6505

(
0.0509x3 − 0.0147x4

− 0.3847 sin(0.996x3 − 7.7876)

− 0.1353 sin(2.0286x4 − 1.5882)

− sin
(
2.281 sin(1.4001x1 + 1.576)

− 2.2739 sin(1.4004x2 − 1.572) + 7.5942
)

+ 0.6822 sin(−0.0424x1 + 0.04x2

− 0.1144x3 + 0.0639x4 + 8.2417)− 0.8938
)2

+ 0.3489 sin(1.4001x1 + 1.576)

− 0.3478 sin(1.4004x2 − 1.572)

− 0.6128 sin(0.996x3 − 7.7876)

− 0.2155 sin(2.0286x4 − 1.5882)

+ 0.322 sin(−0.0424x1 + 0.04x2

− 0.1144x3 + 0.0639x4 + 7.8417)− 0.4717,

while the result of MetaKAN is

MetaKAN(x;W) = 1.019 sin

(
0.5264 sin(

3.1711(0.0002− x4)2

+ 3.1753(0.0004− x3)2 − 12.5921
)

+ 0.525 sin
(
3.1597(0.0004− x2)2

+ 3.1578(0.0005− x1)2 − 12.5819
)

− 9.8227

)
− 1.8769.

The results demonstrate that MetaKAN not only achieves
better accuracy but also learns a more compact and inter-
pretable representation of the target function. Specifically,
MetaKAN’s formula is significantly simpler, with fewer
terms and a clearer structure. This highlights MetaKAN’s
advantage in learning concise and generalizable representa-
tions, which is crucial for both interpretability and memory
efficiency.
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Table 4. Parameter counts and MSE for KANs and MetaKANs at various dimensions for three different functions.
FUNCTION f1(x) = exp

(
1
n

∑
sin2

(
πx
2

))
f2(x) =

∑
x2 + x3 f3(x) = exp

(
− 1

n

∑
x2

)
DIMENSION KAN METAKAN KAN METAKAN KAN METAKAN

STRUCTURE [N,1,1] # PARAM MSE # PARAM MSE # PARAM MSE # PARAM MSE # PARAM MSE # PARAM MSE

10 101 5.92E-4 97 5.85E-4 191 3.11E-3 119 7.06E-4 101 1.47E-4 97 3.39E-4
20 191 4.63E-4 108 4.97E-4 371 2.63E-3 141 2.26E-4 191 1.11E-5 108 3.42E-5
50 461 5.52E-4 130 1.40E-3 911 NA 185 1.15E-3 461 3.46E-4 174 3.19E-4
100 911 7.00E-3 229 1.45E-3 1811 1.74 361 1.16E-2 911 5.12E-4 229 6.47E-4
500 4,511 2.46E-1 339 4.62E-3 9011 1.83E+2 889 5.52E-2 4,511 3.69E-2 669 8.83E-3
1000 9,011 4.14E-1 713 1.48E-2 18,011 1.68E+2 1329 1.43E-1 9,011 9.70E-2 2,759 3.94E-3

C. Extended Experiments
C.1. High Dimensional Function

C.1.1. EXPERIMENT SETUP

In this experiment, we evaluated the performance of the
KANs and MetaKANs models on three different high-
dimensional functions. The target functions were defined as
follows:

f1(x) = exp

(
1

n

∑
sin2

(πx
2

))
f2(x) =

∑
x2 + x3

f3(x) = exp

(
− 1

n

∑
x2
)

For each function, the models were evaluated at six dif-
ferent dimensions: n = 10, 20, 50, 100, 500, 1000. Ex-
periments span dimensions n = 10 to 1000 using a min-
imal [n, 1, 1] architecture. For MetaKAN, the hypernet-
work’s hidden layer width was systematically explored
from 2 to 64 neurons through grid search, with optimal
widths selected as {8, 16, 32, 32, 64, 64} corresponding to
dimensions {10, 20, 50, 100, 500, 1000} respectively. This
controlled expansion ensures the hypernetwork’s capacity
grows proportionally with input dimension while maintain-
ing parameter efficiency.

The training was conducted using the LBFGS optimizer,
and the results were measured in terms of parameter count
and MSE. The tables display the parameter counts and corre-
sponding MSE values for both KAN and MetaKAN models
across all dimensions for each function.

C.1.2. RESULTS

Table 4 demonstrates MetaKAN’s superiority in high-
dimensional function approximation across three key as-
pects. Across all function types and dimensions, MetaKAN
demonstrates superior accuracy with significantly fewer pa-
rameters. For the cubic function f2 at 500 dimensions,
MetaKAN achieve a 330× lower MSE (5.52 × 10−2 vs
1.83×102) while using only 10% of KAN’s parameters (889
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Figure 5. Function f1: Accuracy and trainable parameter count
under different dimension

Figure 6. Training and test Loss comparison for KANs and
MetaKANs on SVHN dataset (G = 5)

vs 9,011). This efficiency advantage amplifies with dimen-
sionality - for the radial function f3, MetaKAN’s parameter
count grows 28× from 10D to 1000D (97 to 2,759) versus
KAN’s 89× increase (101 to 9,011), enabling MetaKAN to
limit error growth to 26.8× compared to KAN’s 658×MSE
escalation. Critical limitations emerge for KAN: failure to
converge for f2 at 50 dimensions, and error amplification to
1.68× 102 MSE at 1000D with 18,011 parameters, versus
MetaKAN’s stable 1.43× 10−1 MSE using 1,329 parame-
ters. These patterns are visually corroborated in Figure 5,
demonstrating MetaKANs consistently perform better on
different dimension settings while require less parameter
count than KANs.
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Table 5. Classification accuracies and parameter counts for KAN and MetaKAN models across different settings.
G=3 G=5 G=10

DATASET HIDDEN KAN METAKAN KAN METAKAN KAN METAKAN

# PARAM ACC. # PARAM ACC. # PARAM ACC. # PARAM ACC. # PARAM ACC. # PARAM ACC.

SVHN 32 529,130 51.16 77,376 78.34 680,298 52.35 78,144 75.35 831,466 59.67 79,424 63.46
FMNIST 32 177,898 84.59 27,456 87.28 228,714 85.59 27,968 87.73 355,754 85.65 29,248 86.7
KMNIST 32 177,898 77.64 27,456 83.93 228,714 78.28 27,968 82.82 355,754 73.52 29,248 73.22
MNIST 32 177,898 94.11 27,456 96.3 228,714 93.60 27,968 96.69 355,754 92.76 29,248 95.43
CIFAR-10 32 529,130 39.36 77,632 47.98 680,298 36.75 78,144 49.67 1,058,218 39.86 79,424 48.36
CIFAR-100 32 549,380 4.45 80,512 21.09 706,308 8.75 81,024 20.85 1,098,628 5.66 82,304 19.35

SVHN 32,32 536,330 60.31 78,656 78.10 689,546 62.54 79,168 77.01 1,072,586 58.71 80,448 59.51
FMNIST 32,32 185,098 85.91 28,480 87.6 237,962 86.12 28,992 86.16 370,122 86.73 30,272 85.81S
KMNIST 32,32 185,098 80.46 28,480 84.26 237,962 80.23 28,992 83.44 370,122 81.44 30,272 80.07
MNIST 32,32 185,098 93.80 28,480 95.91 237,962 91.22 28,992 94.43 370,122 93.32 30,272 94.87
CIFAR-10 32,32 536,330 42.16 78,656 49.75 689,546 47.15 79,168 49.4 1,072,586 43.79 80,448 44.6
CIFAR-100 32,32 556,580 2.95 81,536 20.49 715,556 8.8 82,048 14.42 1,112,996 6.48 83,328 18.23

(a) KAN (b) MetaKAN
Figure 7. T-SNE visualization on the SVHN test datset. The
MetaKAN performs clearer classification boundaries

C.2. Fully Connected Architecture Experiments

C.2.1. EXPERIMENTAL SETUP

We systematically evaluated three base architectures (KAN,
WavKAN, and FastKAN) along with their meta-learning
variants. The network architecture employs single-hidden-
layer (32 neurons) and double-hidden-layer (32×32 neu-
rons) configurations. For activation function configura-
tion: KAN uses B-spline basis functions with grid points
G ∈ {3, 5, 10} and polynomial order k = 3; WavKAN
adopts three mother wavelet functions (Mexican Hat, Mor-
let, and Derivative of Gaussian); FastKAN sets the number
of centers c ∈ {6, 8, 13} to align with the B-spline basis
count in KAN.

The meta-learner design involves hidden layer dimensions
selected from {32, 64, 128} through grid search. Out-
put dimension adaptation follows specific rules: for KAN,
dout = (G+k+1); for WavKAN, dout = 3 corresponding
to the three wavelet bases; for fastkan, dout = c + 1. To
training MetaKANs , we use separate AdamW optimizers
for the meta-learner M (η1 ∈ {10−4, 10−3}) and learn-
able prompts (η2 ∈ {10−3, 10−2}). Training configuration
employs cosine annealing for learning rate scheduling and
batch size 128.

C.2.2. RESULTS

The comparative results across different architectures reveal
consistent patterns in parameter efficiency and performance
gains. For standard KANs (Table 5), MetaKANs achieve
85 ∼ 94% parameter reduction while maintaining compet-
itive accuracy, particularly evident in SVHN (78.34% vs
51.16% at G = 3) and FMNIST (87.28% vs 84.59%). We
visualize the training procedure on the SVHN (Figure 6)
and the t-SNE visualization (Figure 7).

The dual-hidden-layer configuration (32,32) demonstrates
improved performance on complex datasets, with MetaKAN
reaching 49.75% accuracy on CIFAR-10 compared to
42.16% for baseline KAN at G = 3.

The FastKAN experiments (Table 6) demonstrate
MetaFastKAN’s parameter efficiency with 84-92%
reduction across configurations while maintaining or
improving accuracy. For CIFAR-100 with dual hidden
layers (32,32), MetaFastKAN achieves 23.17% accuracy
at c = 13 using only 8.3% of baseline parameters (92,565
vs 1,117,867). The architecture shows particular strength
in simpler datasets, attaining 96.31% accuracy on MNIST
(c = 6) versus baseline’s 94.99% with 15.7% parameter
load. Notably, the dual-hidden-layer configuration achieves
superior results on complex tasks, improving SVHN
accuracy to 79.52% at c = 13 (vs 75.51% baseline)
while maintaining 91.7% parameter reduction. Shallow
architectures (single hidden layer) preserve competitive
efficiency, reaching 88.29% accuracy on FMNIST (c = 6)
with 16% of original parameters.

Wavelet-based architectures (Table 7) demonstrate mother
function-dependent performance, with Mexican Hat wavelet
achieving 73.62% accuracy on SVHN compared to 66.13%
for DoG wavelet in MetaWavKAN. The dual-hidden-layer
configuration improves generalization on CIFAR-10, where
MetaWavKAN reaches 49.52% accuracy versus 46.34% in
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Table 6. Classification accuracies and parameter counts for FastKAN and MetaFastKAN models across different settings.
C=6 C=8 C=13

DATASET HIDDEN FASTKAN METAFASTKAN FASTKAN METAFASTKAN FASTKAN METAFASTKAN

# PARAM ACC. # PARAM ACC. # PARAM ACC. # PARAM ACC. # PARAM ACC. # PARAM ACC.

SVHN 32 533,910 72.94 81,523 77.00 685,082 66.19 81,081 73.19 1,063,012 70.24 82,440 70.27
FMNIST 32 179,542 86.64 28,211 88.29 230,362 87.41 29,881 87.93 357,412 88.9 35,272 88.44
KMNIST 32 179,542 75.99 28,211 81.67 230,362 80.38 29,881 81.02 357,412 82.87 35,272 84.22
MNIST 32 179,542 92.98 28,211 96.29 230,362 95.16 27,769 95.31 357,412 94.82 29,128 95.72
CIFAR-10 32 533,910 47.99 82,675 51.73 685,082 47.05 83,193 50.77 1,063,012 50.57 81,523 50.27
CIFAR-100 32 554,160 22.28 87,859 23.19 711,092 22.36 88,889 23.5 1,103,422 21.56 87,368 22.26

SVHN 32,32 541,180 72.43 82,617 77.20 694,402 71.25 82,881 74.69 1,077,457 75.51 89,685 79.52
FMNIST 32,32 186,812 87.13 32,761 88.13 239,682 88.71 29,569 87.92 371,857 88.9 30,229 87.96
KMNIST 32,32 186,812 82.62 29,305 82.96 239,682 85.82 33,793 85.46 371,857 85.04 36,373 84.9
MNIST 32,32 186,812 94.99 29,305 96.31 239,682 96.37 29,569 95.99 371,857 95.47 30,229 96.37
CIFAR-10 32,32 541,180 48.78 83,769 51.55 694,402 48.32 87,105 49.38 1,077,457 50.57 89,685 51.16
CIFAR-100 32,32 561,430 18.5 86,649 22.6 720,412 17.87 89,985 22.47 1,117,867 21.08 92,565 23.17

Table 7. Classification accuracies and parameter counts for WavKAN and MetaWavKAN models across different settings.
DOG WAVELET MORLET WAVELET MEXICAN HAT WAVELET

DATASET HIDDEN WAVKAN METAWAVKAN WAVKAN METAWAVKAN WAVKAN METAWAVKAN

# PARAM ACC. # PARAM ACC. # PARAM ACC. # PARAM ACC. # PARAM ACC. # PARAM ACC.

SVHN 32 226,836 45.65 76,951 66.13 226,836 19.08 76,311 25.69 226,836 67.05 76,951 73.62
FMNIST 32 76,308 83.86 26,775 87.66 76,308 83.11 26,135 82.1 76,308 87.13 25,815 87.23
KMNIST 32 76,308 77.61 26,775 78.76 76,308 77.08 25,815 79.98 76,308 83.37 25,731 82.17
MNIST 32 76,308 94.58 26,775 95.3 76,308 93.14 25,815 96.17 76,308 96.78 30,531 95.9
CIFAR-10 32 226,836 33.33 76,951 46.34 226,836 13.48 76,311 23.11 226,836 47.17 75,991 48.09
CIFAR-100 32 235,656 11.11 80,011 20.96 235,656 1.5 79,371 5.71 235,656 20.51 83,587 21.27

SVHN 32,32 306,580 46.27 78,039 69.42 229,972 19.47 77,079 55.20 229,972 60.83 81,731 76.55
FMNIST 32,32 79,444 83.72 27,863 84.73 79,444 76.34 27,223 80.02 79,444 86.52 27,863 86.81
KMNIST 32,32 79,444 79.87 27,863 80.63 79,444 28.44 26,903 82.89 79,444 84.59 31,555 84.11
MNIST 32,32 79,444 96.44 36,678 96.74 79,444 26.25 26,903 96.8 79,444 96.65 36,678 96.74
CIFAR-10 32,32 229,972 49.12 78,039 49.19 229,972 10.67 77,399 26.94 229,972 44.81 77,399 49.52
CIFAR-100 32,32 238,792 21.86 84,611 21.97 238,792 1.09 80,459 4.08 238,792 16.4 81,099 20.87

single-hidden-layer setups. Parameter compression remains
effective across wavelet types, maintaining 87-91% reduc-
tion while preserving accuracy margins.

A cross-architecture analysis reveals consistent in-context
learning advantages: 1) Average parameter savings of
89%±4 across all variants; 2) Accuracy improvements of
3.2-14.6 percentage points on small-to-large datasets. These
outcomes validate meta-learner’s capability to achieve ef-
fective balance between parameter reduction and accuracy
maintenance across varied basis function implementations
(B-spline basis, wavelet and RBF) and architectural depths.

C.3. Solving PDEs

C.3.1. EXPERIMENTAL SETUP

We first introduce the exact solution for the PDEs following
the (Hu et al., 2024):

uexact(x) =
(
1− ∥x∥22

) d−1∑
i=1

ci sin(xi+cos(xi+1)+xi+1 cos(xi)),

where ci ∼ N(0, 1), and x ∈ Bd (the unit ball).

Next, we define the three PDEs.

Poisson Equation: The first PDE is the Poisson equation,
defined as:

∆u(x) = g(x), x ∈ Bd, (22)

where g(x) = ∆uexact(x).

Allen-Cahn Equation: The second PDE is the Allen-Cahn
equation, defined as:

∆u(x) + u(x)− u(x)3 = g(x), x ∈ Bd, (23)

where g(x) = ∆uexact(x) + uexact(x)− uexact(x)
3.

Sine-Gordon Equation: The third PDE is the Sine-Gordon
equation, defined as:

∆u(x) + sin(u(x)) = g(x), x ∈ Bd, (24)

where g(x) = ∆uexact(x) + sin(uexact(x)).
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Table 8. Relative ℓ2 error and parameters for KANs and MetaKANs at different dimensions.
DIM POISSON ALLEN-CAHN SINE-GORDON

KAN METAKAN KAN METAKAN KAN METAKAN

MSE PARAM MSE PARAM MSE PARAM MSE PARAM MSE PARAM MSE PARAM

20 D 5.24E-4 24,480 2.96E-3 4,137 1.36E-3 24,480 3.66E-3 4,137 2.66E-1 24,480 2.69E-1 4,137
50 D 2.14E-3 33,120 4.85E-3 5,097 2.36E-3 33,120 6.10E-3 5,097 6.08E-2 33,120 5.88E-2 5,097
100 D 3.77E-3 47,520 4.59E-3 6,697 6.53E-3 47,520 3.37E-3 47,520 1.91E-2 47,520 2.60E-2 6,697

Table 9. Ablation study of embedding dimensions and the number of meta-learner (C) on CIFAR-100 dataset.
METAKAN

C=1 C=3 C=5 C=7

DIM Z ACC #PARAM ACC #PARAM ACC #PARAM ACC #PARAM

1 29.90± 7.27 4,578,565 32.03± 4.30 4,584,215 37.75± 2.01 4,579,305 38.00± 3.60 4,580,731
2 40.40± 6.11 9,097,397 34.58 ± 6.02 9,097,799 39.34± 2.90 9,098,585 44.17± 3.19 9,099,371
4 44.13 ± 2.33 18,139,285 44.37± 3.89 18,139,751 41.85± 5.53 18,140,665 42.04 ± 7.87 18,141,579

METAFASTKAN

C=1 C=3 C=5 C=7

DIM Z ACC #PARAM ACC #PARAM ACC #PARAM ACC #PARAM

1 40.44± 7.68 4,575,139 37.56± 1.48 4,575,861 46.05± 0.41 4,576,583 44.16± 1.01 4,576,073
2 38.62± 1.93 9,096,051 40.03± 3.46 9,096,837 46.10± 1.85 9,097,623 49.23± 2.23 9,098,409
4 42.09± 6.33 18,137,875 42.38± 1.53 18,138,789 49.03± 1.52 18,139,703 52.02± 1.07 18,140,617

These three PDEs are solved using the KAN and MetaKAN
models. We apply the exact solution uexact(x) for the exper-
iments, where the boundary conditions are set to u = 0 on
∂Bd.

Both KAN and MetaKAN models have the structure [n,
32,32,32,1]. During training, the same number of initial
points, boundary points, and interior points are used.

We use a physics-informed loss function based on PINNs,
formulated as:

losspde = αlossint + lossbnd,

where lossint represents the residual loss at interior points,
which is discretized and evaluated at Ni sampled points.
Similarly, lossbnd denotes the boundary constraint loss,
which is discretized and evaluated at Nb sampled points.
The weighting factor α is used to balance the contributions
of these two losses in the overall loss function. Following
(Zeng et al., 2022), Ni is set to 2000, 4000, 8000, 12000
for different dimensions d ∈ {20, 50, 100}, while Nb is
set to 100 points per boundary, resulting in a total of 100d
boundary points. α is set to 0.01.

C.3.2. EXPERIMENTAL RESULTS

Table 8 summarizes the performance of the KANs and
MetaKANs for solving the Poisson, Allen-Cahn, and Sine-
Gordon equations at different dimensions. The table reports
the relative ℓ2 error and parameter count for various dimen-
sions. These results suggest that MetaKANs can maintain

(a) KANs (b) MetaKANs
Figure 8. The relative ℓ2 point-wise error visualization for Allen-
Cahn equation (d = 100).

competitive accuracy while significantly reducing the train-
able parameter count. The relative ℓ2 error visualization for
Allen-Cahn equation (d = 100) is shown in Figure 8.

C.4. Ablation Study

We conduct ablation study on 8-layer MetaKANConv and
MetaFastKANConv architectures to systematically analyze
the effects of prompt dimensions and meta-learner configu-
ration on CIFAR-100 dataset. Based on channel dimension
patterns in different layers, we cluster the 8 layers into
C = 1, 3, 5, 7 groups for meta-learner assignment with Al-
gorithm2.

Table 9 demonstrates that increasing dim z generally en-
hances accuracy, with optimal gains at dim z=4 for both
architectures. While larger dim z increases parameters
(e.g., +13.5M from dim z=1 to 4 at N=1), the accuracy
improvements justify this tradeoff. More significantly, ex-
panding the number of meta-learners (C) yields substantial
performance gains across both architectures. For MetaKAN,
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increasing C from 1 to 3 at dim z=4 improves accuracy
from 44.13% to 44.37%, while at dim z=2, scaling C from
1 to 7 delivers even more pronounced gains (40.40% to
44.17%). The performance progression is particularly re-
markable for MetaFastKAN: at dim z=4, accuracy increases
steadily from 42.09% (C=1) to 52.02% (C=7), representing
a 23.6% relative improvement. This consistent positive cor-
relation between meta-learner count and accuracy highlights
the importance of specialized meta-learner for distinct layer
clusters.

These results validate our layer clustering strategy in
Sec. 3.2.3, demonstrating that task-specific meta-learners
(C > 1) with sufficient prompt dimensions consistently
outperform single meta-learner baselines. The observed per-
formance scaling with C underscores the effectiveness of
our grouped meta-learner approach, where dedicated meta-
learner for different layer clusters progressively enhance
model capacity. MetaFastKAN in particular shows near-
linear improvement with increasing C, achieving its optimal
configuration at C=7 and dim z=4 with 52.02% accuracy,
while MetaKAN reaches peak performance at C=3 and dim
z=4 (44.37%). The minimal parameter overhead (typically
¡0.01%) during thisC scaling further confirms the efficiency
of our approach.
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(a) KAN

(b) MetaKAN

Figure 9. Comparion of (a) KANs and (b) MetaKANs in terms of learned activation functions (left) and cosine similarity of
learned spline coefficient vectors (Right). They are learned for KANs with the structure [4,5,5,1] trained to fit the function
f(x) = exp

(
1
2

(
sin

(
π
(
x2
1 + x2

2

))
+ sin

(
π
(
x2
3 + x2

4

))))
. The LHS shows the actual shapes of activation functions learned by

KANs and MetaKANs, visualized from the weights of KANs learned by original KANs and predicted by the trained meta-learner of
MetaKANs. The RHS displays the cosine similarity between these generated spline coefficient vectors to reveal structural similarities in
the learned function shapes. The different color (positive sign or negative sign) can be used to group the activation functions into different
classes. We can see that MetaKANs could extract more compact structure of the learned function class spaned by fewer B-spline basis
functions, while KANs learn a relatively redundant function class.
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Figure 10. Visualization of learned task prompt embedding similarities. Left: Schematic of the hierarchical model structure with illustrative
function shapes at different layers. Right: Heatmap depicting pairwise absolute distances between the learned scalar embeddings (labeled
z
(l)
α , α ∈ [nl] × [nl+1]) corresponding to the univariate functions. Darker regions indicate smaller distances (higher similarity in

embedding values). KANs fit the function f(x) = exp
(
1
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+ sin
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with structure [4, 2, 1, 1].
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