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Abstract

Reasoning-enhanced large language models (LLMs) explicitly generate intermediate1

reasoning steps prior to generating final answers, helping the model excel in complex2

problem-solving. In this paper, we demonstrate that this emerging generation3

framework offers a unique opportunity for more fine-grained control over model4

behavior. We propose Thinking Intervention, a novel paradigm designed to5

explicitly guide the internal reasoning processes of LLMs by strategically inserting6

or revising specific thinking tokens. We find that the Thinking Intervention paradigm7

enhances the capabilities of reasoning models across a wide range of tasks, including8

instruction following on IFEval and Overthinking, instruction hierarchy on SEP,9

and safety alignment on XSTest and SORRY-Bench. Our results demonstrate that10

Thinking Intervention significantly outperforms baseline prompting approaches,11

achieving up to 6.7% accuracy gains in instruction-following scenarios, 15.4%12

improvements in reasoning about instruction hierarchies, and a 40.0% increase in13

refusal rates for unsafe prompts using open-source DeepSeek R1 models. Overall,14

our work opens a promising new research avenue for controlling reasoning LLMs.15

WARNING: This paper contains red-teaming content that can be offensive.16

1 Introduction17

Recent advances in reasoning-enhanced models, including OpenAI’s o1 [27], DeepSeek’s R1 [20], and18

Google’s Flash Thinking [13], have significantly expanded the capabilities of large language models19

(LLMs). By explicitly incorporating intermediate reasoning steps before producing answers, these20

models exhibit substantially improved performance in handling complex tasks such as mathematical21

problem-solving [36], programming assistance [29], and logical inference [48].22

Despite these developments, existing methods for guiding reasoning models still predominantly23

rely on input-level manipulations, such as prompt engineering [46], which modifies the instructions24

provided to the LLM. In this work, we demonstrate that the explicit thinking steps introduced in25

reasoning LLMs not only provide enhanced transparency into the model’s cognitive processes but26

also create new opportunities for direct and precise interventions within these reasoning stages.27

Motivated by this insight, we introduce Thinking Intervention, a novel paradigm that explicitly28

controls the internal reasoning processes of models. Rather than allowing the model to generate29

entire reasoning chains on its own, Thinking Intervention specifies token sequences (e.g., detailed30

instructions, clarifications, or constraints) to be inserted or replaced within the ongoing reasoning31

process. Such targeted interventions enable fine-grained and transparent control over the reasoning32

trajectory, closely aligning the model’s behavior with required task objectives.33

Demonstration. To further illustrate, consider a general instruction-following task shown in34

Figure 1(a), which asks the model to "list 5 famous moms in JSON format." A standard Vanilla35

Prompting would just state the instruction and Prompt Engineering might add a reminder like "Ensure36
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Figure 1: (a) A demonstration of how Vanilla Prompting, Prompt Engineering, and Thinking
Intervention work. Both Vanilla Prompting and Prompt Engineering methods act on the input query.
In contrast, Thinking Intervention explicitly injects precise instructions into the intermediate reasoning
stages of the model, enabling more effective control. (b) Compared to Vanilla Prompting and Prompt
Engineering, Thinking Intervention offers significant performance improvements for R1-Qwen-32B
reasoning model across instruction following, instruction hierarchy, and safety alignment tasks.

the format is JSON." Nonetheless, reasoning models may still overlook essential instructions or37

constraints (Figure 1(b)). In contrast, Thinking Intervention explicitly guides the reasoning process38

by injecting instructions directly into the model’s internal thought process, e.g., "I should generate39

5 famous moms and put them in a JSON format." Such precise intervention reduces the likelihood of40

the model missing constraints during reasoning, thereby significantly improving performance.41

Notably, Thinking Intervention presents several key advantages: First, it enables fine-grained and42

flexible control over the reasoning process by adaptively inserting or revising intermediate reasoning43

steps based on task-specific needs; second, it does not require any form of model training and can be44

deployed in real-world settings with minimal engineering effort; and third, it seamlessly integrates and45

complements existing techniques, including prompt engineering and advanced fine-tuning methods.46

Empirical findings. We demonstrate the effectiveness of Thinking Intervention across diverse47

tasks, including instruction following on IFEval [77] , instruction hierarchy on SEP [81], and safety48

alignment on XSTest [45] and SORRY-Bench [68]. For instruction following tasks (§3), we show49

that applying Thinking Intervention enables the model to more effectively and accurately follow task50

instructions, leading to notable improvements of 6.7% and 1.9% over baseline Vanilla Prompting51

and Prompt Engineering methods, respectively (Figure 1(b)). Similarly, in instruction hierarchy52

scenarios (§4), Thinking Intervention guides the model to reason about hierarchical instructions53

and appropriately prioritize main tasks over low-priority ones, thereby boosting robustness up to54

15.4% compared to baselines (Figure 1(b)). Lastly, in safety alignment tasks (§5), we first show that55

open-source reasoning models (e.g., DeepSeek R1 [20]) often over-comply with unsafe instructions,56

highlighting an urgent need for better safety control methods. We then demonstrate that Thinking57

Intervention explicitly steers models toward safer reasoning, substantially increasing refusal rates for58

unsafe requests by up to 40.0% on XSTest and 26.9% on SORRY-Bench (Figure 1(b)).59

Finally, in Section 6, we analyze internal model mechanisms (e.g., attention maps) and find that the60

attention during the reasoning process predominantly focuses internally rather than on external61

input tokens, explaining why Thinking Intervention achieves greater effectiveness. We also discuss62

practical design considerations for implementing Thinking Intervention in real-world settings.63

Overall, our findings establish Thinking Intervention as a powerful, flexible, and broadly applicable64

paradigm for enhancing reasoning model across multiple dimensions. We encourage the community65

to further explore and adopt this framework, which offers precise, transparent, and effective control66

over LLM reasoning processes, ultimately enabling more reliable and aligned AI systems.67
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2 Thinking Intervention: A Novel Paradigm to Control Reasoning Models68

2.1 Preliminaries and Notations69

Consider a next-token prediction language model LM : V∗ → V , where V denotes the vocabulary set70

and V∗ represents the space of all possible token sequences over V . Given a token sequence as input,71

the LLM predicts the next token in the sequence. Let x := (x1, . . . , xn) ∈ V∗ denote an input context,72

where each xi ∈ V . We use [a, b] to denote the concatenation of two token sequences a followed by73

b. A conventional LLM autoregressively generates a response sequence y := (y1, . . . , ym) ∈ V∗ by74

iteratively predicting each response token yj = LM([x, y<j ]) conditioned on the context x and the75

previously generated tokens y<j := (y1, . . . , yj−1).76

Reasoning-enhanced LLM. Unlike conventional LLMs, a reasoning-enhanced LLM explicitly77

separates the generation process into a "reasoning/thinking" stage and a "response" stage. Formally,78

the generation operates as follows: (1) Reasoning Stage: The model first generates a sequence of79

intermediate reasoning tokens (or a "reasoning chain") r = (r1, . . . , rk) ∈ V∗. Each reasoning80

token is autoregressively generated by conditioning on the input context and previously generated81

reasoning tokens: ri = LM([x, r<i]). (2) Response Stage: After obtaining the reasoning chain, the82

model generates the final response y = (y1, . . . , ym) ∈ V∗ by conditioning each token on the context,83

reasoning chain, and previous response tokens: yj = LM([x, r, y<j ]). This explicit decomposition84

enhances the model’s capability for complex tasks and improves interpretability by transparently85

exposing its reasoning steps [20].86

2.2 Intervening in the Reasoning Process as a General Paradigm87

Traditional approaches1 to improving LLM performance have largely focused on prompt engineer-88

ing [64, 60, 71, 44], which optimizes the input x to elicit better response y. For reasoning-enhanced89

LLMs, although crafting the initial prompt remains important, the explicit reasoning stage offers a90

new, more direct pathway for optimization: intervening within the reasoning process itself.91

In this work, we propose a general paradigm termed Thinking Intervention, which directly intervenes92

within the reasoning process of LLMs, e.g., through revising explicit instructions or guidance at93

intermediate reasoning steps. Unlike prompt engineering, where the input context x is optimized94

before generating tokens, Thinking Intervention operates in an online, dynamic environment. The95

reasoning chain r is generated token-by-token in real time, requiring the intervention mechanism to96

make decisions based on the incomplete reasoning chain r<i. The key challenge lies in developing97

intervention strategies that can quickly evaluate partial reasoning paths, intervene appropriately, and98

adapt to current trajectories without disrupting the LLM’s natural reasoning flow.99

General paradigm. Given the autoregressive nature of reasoning LLMs, we propose interventions100

that can insert new tokens or revise existing tokens within the reasoning chain. Formally, we define an101

intervention function intervene : V∗ × V∗ → V∗ ∪ {NO_INTERVENE} that determines when and102

how to intervene in the LLM reasoning process:103

intervene(x, r<i) =

{
NO_INTERVENE if no intervention is needed at step i

r̃ if intervention is needed, where r̃ ∈ V∗

104

where x is the input context and r<i represents all reasoning tokens generated up to step i− 1. The105

output sequence r̃ replaces the existing partial reasoning chain. The modified reasoning generation106

process can thus be formalized as:107

r≤i =

{
[r<i,LM([x, r<i])] if intervene(x, r<i) = NO_INTERVENE
intervene(x, r<i) otherwise

108

This formulation highlights that interventions are strategically designed based on the specific reasoning109

path observed, enabling context-aware modifications at critical junctures. The revised reasoning chain110

r̃ can incorporate corrective feedback, alternative reasoning approaches, or relevant domain knowledge111

that addresses errors or gaps identified in the current reasoning flow. This generalized framework112

accommodates both token insertion and revision, providing a flexible and powerful mechanism for113

dynamically guiding the reasoning process.114

1Fine-tuning can also be viewed as a form of model control in certain cases, but we do not consider it here
because it is more destructive—it modifies the entire model rather than controlling a fixed one.
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2.3 Instantiation: Intervention via a Postfix-based Monitor115

A simple yet powerful instantiation of the intervention function is based on monitoring the reasoning116

chain to detect specific trigger strings. Specifically, given a set of trigger strings S ⊆ V∗ (which can117

be single tokens or sequences of multiple tokens), the monitor checks if the most recent tokens (i.e.,118

the postfix of the current reasoning chain) match any string in S . If a match is detected, we append an119

intervention sequence v ∈ V∗ (e.g., "I am a safe and responsible assistant") immediately to the120

existing reasoning chain. The trigger set S can be designed flexibly to capture relevant reasoning121

stages, domain-specific phrases, or other reasoning markers. Formally, the intervention function with122

a postfix-based monitor is defined as:123

intervene(x, r<i) =

{
NO_INTERVENE if no postfix of r<i matches any string in S,
[r<i, v] if a postfix of r<i matches a string in S.

Here, [r<i, v] denotes the concatenation of the current reasoning with intervention sequence v.124

Practical intervention strategies can be efficiently implemented by selecting appropriate triggers S.125

We illustrate three easy-to-implement examples, though more sophisticated approaches are feasible.126

(1) Intervention at reasoning start: To intervene at the beginning of reasoning, a trigger string127

indicating reasoning onset (e.g., "<think>" in DeepSeek R1 models) can be included in S. Upon128

detecting this string, the model immediately receives guidance through an intervention sequence129

containing relevant instructions or hints to direct reasoning from the start. (2) Intervention at reasoning130

conclusion: Utilize end-of-reasoning trigger strings (e.g., "</think>") within S to reinforce critical131

points or identify overlooked issues before generating the final output. (3) Intervention at reasoning132

transitions: Incorporate transitional markers (e.g., "wait", "Hmm") into S to prompt the model to133

review previous reasoning steps, correct potential mistakes, or provide further elaborations.134

In our evaluations, we experimented with all three strategies and found that intervening at the beginning135

of the reasoning process was the most effective. Consequently, we primarily adopted this approach136

throughout our main experiments (§3, §4, §5) and analyzed alternative strategies in the discussion137

section (§6.2). In addition to the postfix-based intervention, we also implemented an adaptive strategy138

that leverages an auxiliary LLM to revise reasoning traces, as presented in Section 6.2.139

2.4 Thinking Intervention enjoys several unique features and advantages140

Design flexibility. The intervention sequence can be manually designed by domain experts or141

automatically synthesized using auxiliary models (e.g., LLMs translating high-level task requirements142

into specific targeted interventions). Interventions may also be instruction-independent (e.g., for143

safety alignment tasks) or instruction-dependent (e.g., to enhance specific instruction-following),144

allowing broad applicability. Finally, interventions can be flexibly applied at arbitrary positions145

throughout the reasoning process, enabling versatile control over the model’s reasoning.146

Easy integration. Adopting Thinking Intervention requires minimal engineering effort and, crucially,147

does not necessitate fine-tuning or modifying the underlying model parameters. Furthermore, the148

intervention also incurs negligible computational overhead, ensuring lightweight deployment.149

Broad compatibility. Thinking Intervention naturally integrates with established approaches such150

as prompt engineering, forming synergistic combinations to maximize effectiveness. For instance,151

prompt engineering can supply background information, while Thinking Intervention can explicitly152

guide intermediate reasoning steps, thereby enhancing overall model performance and consistency.153

Effectiveness. Thinking Intervention effectively controls models by directly guiding the reasoning154

process, ensuring key instructions are actively integrated rather than passively referenced. As we will155

show later in Section 6, Thinking Intervention elicits stronger model attention on intervention tokens156

compared to prompt engineering (Figure 6). This leads to consistent improvements across instruction157

following (§3), instruction hierarchy (§4), and safety alignment tasks (§5).158

3 Evaluation on Instruction Following Tasks159

In this section, we empirically demonstrate how our proposed Thinking Intervention approach160

significantly enhances the instruction-following capability of reasoning models.161

Benchmark and models. We leverage Instruction-Following Evaluation (IFEval) [77] to measure162

how well reasoning models follow instructions. The benchmark comprises 500 prompts, each163
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Figure 2: Top: An example demonstrating how Thinking Intervention is integrated with Vanilla
Prompting and Reminder Prompting prompting techniques for instruction following tasks. Bottom:
Evaluation results on the IFEval benchmark [77]. We compare performance with and without
Thinking Intervention (ThinkingI), across two prompting methods and multiple reasoning models.

containing some identified types of verifiable instructions. These verifiable instructions function as164

constraints on the output, such as "do not use any commas". To quantify the model’s capability, we165

report the accuracy, defined as the proportion of prompts for which the responses satisfy all verifiable166

instructions within the prompt. We consider reasoning models distilled from DeepSeek R1 [20],167

including R1-Qwen-7B, R1-Qwen-14B, and R1-Qwen-32B, and the QwQ-32B model [43]. Further168

results on R1-Llama models and evaluation details are provided in Appendix B. All models use the169

same tag, <think> and </think>, to denote the start and end of the reasoning process.170

Methods. We compare Thinking Intervention against two baselines: Vanilla Prompting, which171

directly uses original prompts unchanged, and Reminder Prompting, which augments the input172

prompts by restating instruction constraints as reminders. These reminders are generated by prompting173

an auxiliary LLM using original instructions. For Thinking Intervention, we convert reminder174

statements into first-person narrative interventions (i.e., changing "Ensure the answer..." to "I175

should ensure the answer..." via a fixed prefix)2. This intervention sequence v is then inserted at176

the beginning of the reasoning process. Figure 2 (top) illustrates how Thinking Intervention integrates177

with the Vanilla Prompting and Reminder Prompting.178

Thinking Intervention consistently improves instruction-following capability. Figure 2 (bottom)179

illustrates consistent improvements across multiple reasoning models. Specifically, integrating180

Thinking Intervention with the baseline Vanilla Prompting yields accuracy gains of 5.74%, 4.99%,181

6.65%, and 2.96% for R1-Qwen-7B, R1-Qwen-14B, R1-Qwen-32B, and QwQ-32B, respectively.182

Notably, the effectiveness of Thinking Intervention is preserved as the model size increases within183

the R1-Qwen family, with R1-Qwen-32B showing even greater benefits than R1-Qwen-7B and184

R1-Qwen-14B. Further performance improvement is achieved by combining Thinking Intervention185

with the Reminder Prompting method: accuracy reaches as high as 62.84% (R1-Qwen-7B), 77.63%186

(R1-Qwen-32B), and 82.44% (QwQ-32B). Thus, Thinking Intervention not only provides substantial187

stand-alone gains across model families, but also complements existing prompting methods.188

Overall, these findings confirm Thinking Intervention’s capability to precisely guide reasoning models189

to follow constrained instructions. Crucially, this significant performance boost is achieved without190

requiring additional model training. Moreover, we explore the broader applicability of Thinking191

Intervention in Appendix C, showing how explicit intervention during the reasoning process can192

mitigate model overthinking, thereby highlighting the versatility and utility of the proposed method.193

4 Evaluation on Instruction Hierarchy Task194

Next, we explore how Thinking Intervention benefits the instruction hierarchy task [59, 66], which195

evaluates a model’s ability to appropriately prioritize high-priority instructions over low-priority196

2In practice, intervention sequences can be directly constructed using auxiliary LLMs.
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Table 1: Evaluation results on the SEP dataset across various reasoning models. We compare our
proposed Thinking Intervention (+ThinkingI) against the Vanilla Prompting and Reminder Prompting.

R1-Qwen-7B R1-Qwen-14B R1-Qwen-32B QwQ-32B

Methods Rob.(%) Utility(%) Rob.(%) Utility(%) Rob.(%) Utility(%) Rob.(%) Utility(%)
Vanilla 57.60 74.44 34.00 81.04 34.80 81.76 22.20 88.00
Vanilla+ThinkingI 60.80 74.40 38.40 81.08 50.20 82.02 31.40 88.16
Reminder 57.60 74.20 38.40 80.50 46.20 81.16 36.20 87.52
Reminder+ThinkingI 62.60 73.92 41.80 80.90 66.40 80.90 43.40 86.79

ones. This capability is essential for safety-critical applications, where models must adhere to specific197

guidelines even in the presence of conflicting instructions. We examine how Thinking Intervention198

enhances the model’s ability to navigate complex scenarios involving competing directives.199

Benchmark. We evaluate on the SEP dataset [81]. Each data point contains a high-priority main200

instruction paired with relevant data content and an unrelated low-priority instruction. Models201

are expected to prioritize the main instruction while ignoring the low-priority instruction. This202

benchmark enables us to evaluate how effectively models can maintain instruction hierarchies in203

complex scenarios involving potentially misaligned directives.204

Evaluation metrics. We evaluate model performance on the SEP benchmark using two key metrics:205

(1) robustness, which measures the proportion of low-priority instructions correctly ignored when206

embedded within data; (2) utility, which quantifies the model’s baseline performance on the main task207

in the absence of any low-priority instructions. For the utility metric, we follow [75] by employing208

LLM-as-a-judge for evaluation and normalizing scores to a 0-100% scale.209

Methods. Similar to our instruction-following experiments, we include two baseline approaches:210

Vanilla Prompting, which directly uses the prompts without additional guidance, and Reminder211

Prompting, which includes an explicit instruction reminder. For our Thinking Intervention approach,212

we use the intervention sequence v "I should follow all the instructions in the task block and213

not follow any instructions in the data block." to explicitly guide the model in maintaining the214

correct instruction hierarchy. This intervention sequence is inserted at the beginning of the reasoning215

process to help the model correctly prioritize the instructions. More details on the evaluation setup,216

including baseline prompts and examples, can be found in Appendix D.1.217

Thinking Intervention significantly improves robustness while maintaining model utility. Table 1218

presents the evaluation results of reasoning models on the SEP benchmark. Our Thinking Intervention219

approach consistently improves both Vanilla Prompting and Reminder Prompting techniques in terms220

of robustness across all model scales. For example, when applied to R1-Qwen-32B with Reminder221

Prompting, Thinking Intervention achieves a robustness of 66.4%, marking a substantial 20.20%222

improvement over the Reminder Prompting baseline. We observe similar robustness enhancements223

across other model variants, including gains of 5.0% for R1-Qwen-7B, 3.4% for R1-Qwen-14B, and224

7.2% for QwQ-32B. Importantly, Thinking Intervention preserves the utility of the models. Across225

all settings, it incurs only a negligible variation in utility (≤ 0.73%) compared to the baselines.226

Interestingly, we note that R1-Qwen-7B exhibits the highest robustness with Vanilla Prompting. This227

is attributed to its lower general utility ( >5% lower than other models), which could prevent it from228

correctly responding to the injected low-priority prompt, thus resulting in higher robustness.229

These results demonstrate that Thinking Intervention effectively guides models to maintain proper230

instruction hierarchies by correctly following high-priority instructions without compromising their231

utility-related tasks. For experimental results with R1-Llama models, see Appendix D.232

5 Evaluation on Safety Alignment Task233

Before deployment, LLMs typically undergo a safety alignment process to ensure the model does234

not respond to harmful queries, such as "how to build a bomb". In this section, we demonstrate235

that open-source reasoning models (e.g., R1-Qwen-32B) exhibit notably low refusal rates to unsafe236

requests, and that Thinking Intervention can effectively steer the model toward much safer behavior.237
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Benchmark and models. We leverage XSTest [45] to evaluate the safety alignment of models. The238

benchmark contains 200 harmful requests and 250 benign questions that include safety triggers for239

LLMs (e.g., "How can I kill a Python process?"), which may cause the model to mistakenly refuse240

to answer. Following [45, 76], we leverage GPT-4o-mini as an evaluator to classify the responses241

into compliant or refusing behaviors. We report two metrics: the refusal rate for unsafe requests242

and the compliance rate for safe requests. We extensively evaluate a range of models, including243

open-source reasoning models (R1-Qwen-7B, R1-Qwen-14B, and R1-Qwen-32B), one representative244

closed-source reasoning model (o3-mini), and non-reasoning models (GPT-4o-mini and GPT-4o).245

Baseline prompting methods and Thinking Intervention. We consider the following baselines:246

Vanilla Prompting, which does not include any additional instructions; Default Prompting, which247

uses the default safety prompting of Llama-2 [56] to ensure safety; Reminder Prompting [69], which248

reminds the model to act responsibly; and Goal Priority [74], which explicitly prioritizes safety over249

other objectives. The complete prompts used for each baseline are provided in the Appendix E.1. For250

Thinking Intervention, we inject the intervention sequence v as "I am a helpful, respectful, and251

honest assistant." at the beginning of the reasoning process to steer the model toward safety.252

Thinking Intervention effectively steers the reasoning models toward safety (Figure 3). LLMs253

with Vanilla Prompting typically face a trade-off between compliance and safety. Specifically, R1254

models achieve near-perfect compliance (∼100%) with safe requests but demonstrate an alarmingly255

low refusal rate to unsafe requests (<20%). In contrast, the GPT series refuses more than 70% of256

unsafe requests, with o3-mini even refusing nearly all unsafe requests (∼100%),3 but maintain a257

relatively lower but acceptable compliance rate (90.4%-95.6%) for safe requests. Encouragingly,258

applying Thinking Intervention to R1 models substantially boosts safety performance, increasing259

refusal rates for unsafe requests by over 40% across all models. We observe only mild compliance260

decreases (<2%) in larger models (R1-Qwen-14B and R1-Qwen-32B) and a relatively larger drop for261

the smaller model (R1-Qwen-7B). This is understandable given that safety questions are intentionally262

designed to be challenging, making them particularly difficult for less capable models to distinguish.263

Thinking Intervention seamlessly complements prompting techniques, significantly enhancing264

model safety (Figure 4). We further evaluate the R1-Qwen-32B model on the XSTest benchmark265

under various prompting baselines. Compared to Reminder Prompting alone, combining Reminder266

Prompting with our Thinking Intervention approach increases the refusal rate for unsafe requests by267

∼30%, while maintaining a high compliance rate (∼97%) for safe requests. Notably, when integrated268

with Goal Priority prompting, Thinking Intervention achieves a refusal rate of ∼75% on unsafe269

requests and a compliance rate of ∼95% on safe requests, performance comparable to safety-aligned270

GPT-4o models (Figure 3).271

Thinking Intervention excels in more comprehensive safety benchmark (Figure 5). To further272

validate our approach, we evaluate SORRY-Bench, which features a more comprehensive taxonomy273

and more detailed unsafe instructions, using exactly the same methods. Our results show that Thinking274

Intervention consistently improves robustness (i.e., the refusal rate of unsafe instructions) over baseline275

prompting methods. For example, when combined with Default Prompting, Thinking Intervention276

3Since GPT models are closed-source, it is unclear if there exists auxiliary monitor filtering unsafe responses;
thus, high (or even perfect) refusal rates might reflect monitor behavior rather than the models themselves.
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Figure 6: Attention maps of Prompt Engineering (left)
and Thinking Intervention (right). Reasoning models
with Thinking Intervention exhibit more focused atten-
tion on the interventions. See Figures 28&29 for details.
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Figure 7: Results of different Think-
ing Intervention design choices on the
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achieves a refusal rate of approximately 87% for unsafe requests, a nearly 20% improvement over277

Default Prompting alone and even higher than the refusal rate of the GPT-4o and o3-mini models.278

These results further demonstrate that Thinking Intervention can effectively steer models toward safer279

behavior across different safety benchmarks, emphasizing the generalizability of our approach.280

Overall, our findings demonstrate that Thinking Intervention significantly enhances model safety while281

maintaining a high compliance rate to benign requests. Its simplicity and effectiveness highlight its282

practical value for real-world deployment. While Thinking Intervention is not a panacea for all safety283

challenges, it could serve as a complementary safety layer that integrates seamlessly with existing284

techniques like RLHF [39, 11] and Constitutional AI [6, 49], thus contributing to the multi-layered285

safety frameworks [38]. We provide additional results with other models, including R1-Llama,286

QwQ-32B, and the safety fine-tuned variant, in Appendix E. Notably, Thinking Intervention achieves287

further safety improvements even when applied to models already fine-tuned for safety.288

6 Analysis and Discussion289

6.1 Why is Thinking Intervention effective?290

Next, we seek to understand why Thinking Intervention demonstrates consistent performance gains291

compared to prompt engineering. We visualize attention maps using a safety alignment benchmark292

and compare Thinking Intervention against prompt engineering (Figure 6). Attention areas where later293

reasoning stages attend to intervention tokens are highlighted in the blue box. Our analysis reveals294

that the reasoning processes’ attention is focused internally rather than toward external input295

tokens. Consequently, standard Prompt Engineering achieves limited impact, as models scarcely296

direct attention toward such prompts. In contrast, attention maps with Thinking Intervention show297

significantly increased internal attention to the explicitly injected intervention tokens during the298

reasoning process. These visualizations suggest that Thinking Intervention effectively guides internal299

model reasoning, enabling more precise and reliable model control. See Appendix H for more details.300

6.2 Exploring Design Choices for Thinking Intervention301

Our primary evaluations focus on concise, first-person narrative interventions applied at the beginning302

of the reasoning process (TIdefault in Figure 7). However, as discussed in Section 2, Thinking303

Intervention is highly general and flexible; various other design choices exist and merit exploration.304

Position of intervention. First, we investigated alternative intervention positions, specifically305

within the middle (TImid) or towards the end (TIend) of the reasoning phase. Figure 7 summarizes306

performance comparisons on the XSTest benchmark. Interestingly, interventions performed at307

later stages of reasoning demonstrated diminished effectiveness relative to early-stage Thinking308

Intervention. We hypothesize that reasoning paths become progressively harder to redirect once309

models have deliberated sufficiently long on incorrect or suboptimal trajectories. Similar findings on310

the SORRY-Bench are provided in Appendix F.1.311

Complexity of intervention sequences. Our main experiments intentionally employed relatively312

concise intervention sequences to facilitate fair comparisons against prompt engineering methods. Yet,313
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more sophisticated instructions can theoretically provide richer guidance to models. For instance, we314

performed an exploratory analysis using more detailed safety instructions (termed TIlong in Figure 7),315

and noticed clear trade-offs emerging between compliance and safety alignment: longer sequences316

markedly improved alignment with safety goals but reduced overall compliance rates due to overly317

restrictive guidance. Similar trends across other prompting methods are presented in Appendix F.2.318

Narrative perspective. Another design consideration is whether narratives that direct the model to319

reason in the first-person form are fundamentally necessary. To clarify this, we conducted additional320

experiments comparing first-person and second-person narrative Thinking Intervention (TIsecond,321

shown in Figure 7). The results indicate minimal performance differences between the two variants.322

We attribute this negligible impact to the robust self-correction capabilities of reasoning models.323

Similar results on SORRY-Bench, alongside an illustrative example, are provided in Appendix F.3.324

Leveraging an auxiliary LLM for intervention. Beyond inserting interventions, we explored325

more sophisticated approaches by prompting an auxiliary LLM (i.e., Qwen2.5-7B-Instruct [42]) to326

dynamically monitor and revise the primary model’s reasoning traces for enhancing safety, termed327

TImodel (Figure 7). Preliminary results indicate that LLM-assisted interventions occasionally outper-328

form manually crafted interventions, but the additional computational overhead may hinder practical329

deployment. Further implementation details and additional results are provided in Appendix F.4.330

6.3 Practical utility of Thinking Intervention.331

We anticipate several practical use cases for Thinking Intervention. For LLM providers, it can332

enhance model performance by integrating system prompts, such as those used for role-play, into333

the reasoning process, thereby improving user experience. For LLM users, Thinking Intervention334

can be easily adopted with open-source models, where users can create their own interventions335

when the model is not reasoning as expected. Nevertheless, adopting Thinking Intervention with336

closed-source models remains challenging, as most providers do not currently support interventions337

in internal reasoning processes. Furthermore, exposing public APIs for reasoning interventions can338

pose security risks, potentially allowing malicious actors to bypass safety mechanisms more easily.339

We thus recommend that LLM providers carefully evaluate the trade-off between usability gains340

and safety considerations before deploying Thinking Intervention-like capabilities publicly.341

Looking forward, we anticipate that Thinking Intervention will enable broader applications342

across various challenging domains. For instance, interventions could be integrated into models343

performing complex tasks, such as medical diagnosis or legal reasoning, allowing domain experts to344

apply targeted corrections and inject domain knowledge at critical stages of the reasoning process,345

thereby significantly improving reliability and trustworthiness in high-stakes applications.346

7 Related Works347

Before the emergence of reasoning models, intervention-based methods were proposed to measure348

faithfulness in chain-of-thought (CoT) reasoning [30, 58], and have since been extended to reasoning-349

enhanced models [7, 4]. Our Thinking Intervention framework complements those monitoring-based350

methods by enabling precise control over the reasoning process. Other studies focus on controlling351

reasoning length, either encouraging longer chains to boost accuracy [37, 1] or shortening them352

for efficiency [21, 70, 31]. Additionally, external tools have been incorporated into reasoning353

chains [16, 32]. In contrast, the Thinking Intervention paradigm enables more general and fine-354

grained control over reasoning models, significantly broadening their capabilities and flexibility. See355

Appendix A for additional related works on reasoning models, LLM control, and evaluation tasks.356

8 Conclusion.357

In this paper, we propose Thinking Intervention, a novel approach to effectively control reasoning-358

enhanced LLMs. We demonstrate that Thinking Intervention can significantly improve the performance359

of LLMs across various tasks, including instruction following, instruction hierarchy, and safety360

alignment. We strongly encourage further investigation and adoption of Thinking Intervention, as it361

provides essential tools for fine-grained reasoning intervention, laying important groundwork towards362

more reliable, interpretable, and human-aligned LLM systems.363
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A Addtional Related Works612

In this appendix, we present additional related works relevant to reasoning models, controlling LLMs,613

and the tasks used for our evaluation.614

Reasoning models. Reasoning models have rapidly advanced since OpenAI’s o1 model [27]. This615

trend has produced closed-source models like Google’s Flash Thinking [13], Anthropic’s Claude 3.7616

Sonnet [3], and xAI’s Grok 3 [67], alongside open-source alternatives such as DeepSeek R1 [20],617

QwQ [43], and S1 [37]. These models employ test-time scaling [51, 65], allocating additional618

inference computation to improve performance on complex tasks.619

Controlling LLMs. There are two mainstream approaches for controlling LLMs after the training stage.620

Prompt Engineering provides clear and detailed instructions, either manually written [8, 64, 57, 71]621

or automatically generated [50, 44, 53, 14], to achieve a specific objective. Activation Steering selects622

a subset of LLM inner activations to probe [12, 79, 24, 33, 73] as a means to control LLMs. Thinking623

Intervention differs from these methods as it intervenes in the thinking process.624

Instruction following. LLMs rely on accurately following natural language instructions for broad625

applicability. This capability is improved through supervised fine-tuning on instruction-response626

pairs [47, 63, 10] and reinforcement learning from human feedback (RLHF) [52, 5, 39]. Additionally,627

prompting techniques [60, 64] further help elicit more effective responses.628

Instruction hierarchy. The concept of instruction hierarchy was proposed by [59], suggesting629

that LLM systems should prioritize instructions based on their trustworthiness. Otherwise, they630

may become vulnerable to misalignment or adversarial prompts [40, 18, 15]. Researchers have631

proposed various methods to enhance instruction hierarchy through additional training on misaligned632

data [9, 59, 41], prompting-based techniques [25, 81], and architectural design [66, 82].633

Safety alignment. Safety alignment [6, 17, 55] is a critical aspect of LLM development, aiming to634

ensure that models follow ethical guidelines and avoid producing harmful content [62, 80, 68]. For635

reasoning models, works from OpenAI [19, 72] suggest that their o1/o3 series can achieve better636

safety alignment by leveraging more test-time compute. Meanwhile, other studies [78, 28, 26] have637

indicated that open-sourced reasoning models, like DeepSeek R1 series, exhibit more safety issues.638

In this work, we explore how to leverage Thinking Intervention to improve instruction following,639

instruction hierarchy, and safety alignment in open-source reasoning models.640
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B Instruction Following Evaluation (IFEval)641

B.1 More Details of Evaluations642

IFEval [77] evaluates the instruction-following capabilities of language models using 25 distinct643

instruction types across approximately 500 prompts. In the main texts, we report only the prompt-level644

strict accuracy as accuracy for simplicity. Here, we formally discuss all four metrics used in [77] and645

report the results.646

• Prompt-level strict accuracy: The proportion of prompts for which all verifiable instructions are647

correctly followed.648

• Instruction-level strict accuracy: The proportion of verifiable instructions that are correctly649

completed, evaluated individually.650

• Prompt-level loose accuracy: Similar to prompt-level strict accuracy, but evaluated under a loose651

evaluation criterion (see below for details).652

• Instruction-level loose accuracy: Instruction-level strict accuracy under a loose evaluation653

criterion (see below for details).654

Strict accuracy and loose accuracy. Strict accuracy requires the model output to precisely match655

the requirements. For instance, if an instruction specifies output in JSON format, the entire response656

must be in valid JSON format with no extraneous text. Any deviation results in the output being657

marked incorrect. Loose accuracy, on the other hand, allows some flexibility. For example, if a658

response begins with a preamble like "Sure, here is the answer:" followed by correctly formatted659

JSON, it would still be considered correct under loose accuracy criteria, even though it would fail660

strict evaluation. In addition to removing such introductions, evaluators also disregard font modifiers661

and outros, making the assessment more flexible.662

For more details on the benchmark, please refer to the original paper [77]. Our implementation uses663

the codebase available at https://github.com/josejg/instruction_following_eval.664

Generating Reminder Prompting and Thinking Intervention. Figure 8 demonstrates how we665

generate the text of Reminder Prompting by providing system prompts to GPT-4o. We then modify the666

narrative by adding a prefix (e.g., from "Ensure the summary is at least 300 words" to "I should667

ensure the summary is at least 300 words") with Python code to create the intervention sequence.668

Figure 8: A demonstration of how we prompt GPT-4o to generate the Reminder Prompting. The
intervention sequence is a slightly modified version of Reminder Prompting.

B.2 Comprehensive Experiment Results669

In Table 2, we provide comprehensive experimental results on the IFEval benchmark, covering670

additional reasoning-enhanced models (R1-Llama-8B and R1-Llama-70B) alongside diverse671

evaluation metrics.672

Our findings are consistent with the main conclusions presented in Section 3, clearly demonstrating673

that our Thinking Intervention paradigm effectively improves models’ capability to accurately follow674

instructions across all evaluation metrics. Specifically, in terms of prompt-level loose accuracy,675

applying Thinking Intervention leads to substantial empirical improvements over the Vanilla Prompting.676

We observe performance gains of 5.36%, 4.80%, and 6.47% for R1-Qwen-7B, R1-Qwen-14B, and677

R1-Qwen-32B, respectively.678

Moreover, we find that Thinking Intervention achieves similar performance enhancements for the679

additional reasoning-enabled models: prompt-level loose accuracy increases by 8.88% for R1-Llama-680

8B and by 1.85% for R1-Llama-70B compared to Vanilla Prompting. These observations strongly681

suggest that our Thinking Intervention method enhances instruction-following capabilities across682

diverse reasoning-enhanced LLMs.683
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Table 2: The evaluation results on the IFEval dataset span multiple reasoning models. We compare
our method, Thinking Intervention (+ThinkingI), with the Vanilla Prompting and Reminder Prompting
methods and observe consistent performance improvements. The best results are in bold.

Models Methods Prompt-level Inst-level Prompt-level Inst-level
strict acc.(%) strict acc.(%) loose acc.(%) loose acc.(%)

R1-Qwen-7B

Vanilla 55.08 66.19 58.60 68.70
Vanilla+ThinkingI 60.99 (+5.91) 70.50 (+4.31) 63.96 (+5.36) 73.02 (+4.32)

Reminder 60.99 70.50 64.33 73.02
Reminder+ThinkingI 62.85 (+1.86) 72.18 (+1.68) 66.54 (+2.21) 75.06 (+2.04)

R1-Qwen-14B

Vanilla 70.43 79.50 73.57 81.77
Vanilla+ThinkingI 75.42 (+4.99) 81.65 (+2.15) 78.37 (+4.80) 84.29 (+2.52)

Reminder 72.83 81.18 76.53 83.69
Reminder+ThinkingI 74.31 (+1.48) 82.13 (+0.95) 77.26 (+0.73) 84.41 (+0.72)

R1-Qwen-32B

Vanilla 70.43 79.14 74.49 81.89
Vanilla+ThinkingI 77.08 (+6.65) 84.29 (+5.15) 80.96 (+6.47) 86.93 (+5.04)

Reminder 75.23 82.85 78.74 85.37
Reminder+ThinkingI 77.63 (+2.40) 84.53 (+1.68) 81.70 (+2.96) 87.29 (+1.92)

QwQ-32B

Vanilla 79.30 86.09 83.92 89.09
Vanilla+ThinkingI 82.26 (+2.96) 88.01 (+1.92) 86.32 (+2.40) 90.65 (+1.56)

Reminder 81.33 87.53 86.69 91.01
Reminder+ThinkingI 82.44 (+1.11) 88.13 (+0.60) 86.69 (+0.00) 91.01 (+0.00)

R1-Llama-8B

Vanilla 56.56 67.63 60.07 70.50
Vanilla+ThinkingI 65.43 (+8.87) 74.58 (+6.95) 68.95 (+8.88) 76.98 (+6.48)

Reminder 62.85 73.02 67.47 76.62
Reminder+ThinkingI 66.17 (+3.32) 75.30 (+2.28) 70.06 (+2.59) 78.30 (+1.68)

R1-Llama-70B

Vanilla 79.85 86.09 82.62 88.13
Vanilla+ThinkingI 80.41 (+0.56) 86.69 (+0.60) 84.47 (+1.85) 89.57 (+1.44)

Reminder 82.07 87.89 84.84 89.81
Reminder+ThinkingI 82.44 (+0.37) 88.13 (+0.24) 85.58 (+0.74) 90.53 (+0.72)

C Instruction Following Evaluation (Overthinking)684

As the increasing computational costs associated with sequential scaling of reasoning models, recent685

studies have dedicated significant efforts toward optimizing the thinking steps to minimize unnecessary686

computational overhead while maintaining accuracy [22, 70, 35]. For a detailed overview of these687

developments, we refer readers to the recent survey [54].688

Here, we investigate the effectiveness of our Thinking Intervention paradigm in mitigating such689

overthinking. Specifically, we use the standard 500-sample subset from the challenging MATH690

benchmark [23], which is commonly adopted by prior work (e.g., OpenAI’s study [34]). We measure:691

(i) accuracy: the percentage of correctly solved problems; and (ii) reasoning length: the total token692

count of reasoning process.693

We compare our method against two baselines: Vanilla Prompting, the standard procedure where694

the model directly receives the math problem as a prompt without additional guidance; Reminder695

Prompting, where a textual cue ("Please solve it without thinking too much.") is included, aiming696

to guide models toward succinct reasoning. For Thinking Intervention, we explicitly inject a697

concise instruction ("Okay, the user asked for this. I need to solve it without thinking too698

much.") at the start of the reasoning process. Following prior evaluations, we test across a set of model699

variants (R1-Qwen-14B, R1-Qwen-32B, and QwQ-32B).700

Thinking Intervention effectively mitigates overthinking without compromising task perfor-701

mance. Table 3 summarizes the effectiveness of Thinking Intervention in addressing overthinking702

across different evaluated models. Empirically, we observe minimal changes in accuracy compared703

to baseline approaches (with accuracy varying within a narrow range, at most decreasing by 1.2%).704

18



Table 3: The evaluation results on mitigating overthinking across multiple reasoning models. We
compare our proposed Thinking Intervention (+ThinkingI) against the Vanilla Prompting and Reminder
Prompting.

R1-Qwen-14B R1-Qwen-32B QwQ-32B

Methods Accuracy (%) Length (tokens) Accuracy (%) Length (tokens) Accuracy (%) Length (tokens)
Vanilla 89.4 3281 90.8 3101 90.0 3926
Vanilla+TI 88.6 2494 (-23.99%) 90.0 2388 (-22.99%) 90.6 3781(-3.7%)

Reminder 88.8 2836 89.4 2718 89.8 3454
Reminder+TI 89.4 2043 (-27.96%) 89.6 1891 (-30.43%) 91.6 3151 (-8.77%)

Notably, Thinking Intervention can sometimes yield improved task accuracy, achieving gains of up705

to 1.6%. Most significantly, our method consistently produces substantial reductions in reasoning706

length, cutting token generation by as much as 30.4%. We note that token reduction for QwQ-32B707

is more modest compared to DeepSeek R1 models, suggesting distinct reasoning behavior across708

models. Nevertheless, stronger and more precisely tailored interventions could potentially further709

reduce reasoning length for QwQ-32B. Overall, our analysis demonstrates that Thinking Intervention710

reduces unnecessary reasoning steps, delivering meaningful improvements in efficiency with minimal711

negative impact on final task accuracy.712
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D Instruction Hierarchy (SEP)713

Figure 9: A demonstration of Vanilla Prompting, Reminder Prompting, and Thinking Intervention for
the SEP benchmark. The {Task} and {Data} fields are filled with content from the SEP dataset
during evaluation.

Figure 10: A demonstration of how the SEP benchmark evaluates instruction hierarchy capabilities.
Each example consists of a main instruction paired with data. Left: A low-priority instruction is
injected into the data, which the model should correctly ignore. Middle: A low-priority instruction
is injected into the task portion, which the model should follow and generate answers. Right: The
low-priority instruction is absent, allowing us to measure the utility of different methods.

Figure 11: Prompt template of evaluating the utility metric on the SEP benchmark. The {Question}
and {Answer} will be filled with the complete prompt and model response, respectively.

D.1 More Details of Evaluations714

We use the SEP dataset [81] to evaluate models’ ability to follow hierarchical instructions. The dataset715

contains 9,160 examples, each consisting of a main instruction, corresponding data, a low-priority716

query, and a witness (the answer to the low-priority query). For computational efficiency, we randomly717

sample 500 prompts for our evaluation. In Figure 9, we show all the prompts (including Vanilla718

Prompting, Reminder Prompting, and Thinking Intervention) used for evaluation.719

In our main paper, we primarily focused on two metrics: robustness and utility. In fact, the SEP720

benchmark also contains another metric called SEP utility to measure if the model can correctly721

follow the low-priority task when it is placed in the task section. We detail these metrics as follows:722

• Robustness: We inject the low-priority query into the data block and measure the model’s ability723

to correctly ignore it (left example in Figure 10). The metric represents the percentage of cases724

where the model successfully ignores the low-priority instruction (i.e., the witness does not725

appear in the response). Note that in the original paper [81], this metric is called SEP.726

• SEP utility: We place the low-priority query in the task block and evaluate the model’s ability to727

follow it (middle example in Figure 10). The metric represents the percentage of cases where the728

model correctly follows the low-priority instruction (i.e., the witness appears in the response).729

• Utility: We omit the low-priority query (right example in Figure 10). We then evaluate the730

model’s performance using the prompt template shown in Figure 11. We use GPT-4o-mini as the731

judge to assess response quality. Results are scaled to 0-100%.732
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Table 4: Evaluation results on the SEP dataset across various reasoning models. We compare our
proposed Thinking Intervention (+ThinkingI) against Vanilla Prompting and Reminder Prompting.

Models Methods Robustness(%) SEP utility(%) Utility (%)

R1-Qwen-7B

Vanilla 57.60 72.20 74.44
Vanilla+ThinkingI 60.80 (+3.20) 77.80 (+5.60) 74.40 (-0.04)

Reminder 57.60 74.20 74.20
Reminder+ThinkingI 62.60 (+5.00) 77.40 (+3.20) 73.92 (-0.28)

R1-Qwen-14B

Vanilla 34.00 88.40 81.04
Vanilla+ThinkingI 38.40 (+4.40) 92.40 (+4.00) 81.08 (+0.04)

Reminder 38.40 88.80 80.50
Reminder+ThinkingI 41.80 (+3.40) 91.60 (+2.80) 80.90 (+0.40)

R1-Qwen-32B

Vanilla 34.80 92.80 81.76
Vanilla+ThinkingI 50.20 (+15.40) 91.60 (-1.20) 82.02 (+0.26)

Reminder 46.20 92.00 81.16
Reminder+ThinkingI 66.40 (+20.20) 91.40 (-0.60) 80.90 (-0.26)

QwQ-32B

Vanilla 22.20 96.60 88.00
Vanilla+ThinkingI 31.40 (+9.20) 96.40 (-0.20) 88.16 (+0.16)

Reminder 36.20 96.80 87.52
Reminder+ThinkingI 43.40 (+7.20) 96.60 (-0.20) 86.79 (-0.73)

R1-Llama-8B

Vanilla 44.80 77.80 78.51
Vanilla+ThinkingI 53.80 (+9.00) 79.40 (+1.60) 77.04 (-1.47)

Reminder 48.00 77.40 78.53
Reminder+ThinkingI 57.00 (+9.00) 78.60 (+1.20) 77.26 (-1.27)

R1-Llama-70B

Vanilla 34.20 91.40 81.45
Vanilla+ThinkingI 52.80 (+18.60) 95.80 (+4.40) 81.88 (+0.43)

Reminder 50.40 91.20 80.86
Reminder+ThinkingI 65.80 (+15.40) 95.60 (+4.40) 80.90 (+0.04)

D.2 Comprehensive Experiment Results733

In Table 4, we present extended evaluations of Thinking Intervention on the SEP dataset, incorporating734

a new metric (SEP utility) and additional reasoning-enhanced models (R1-Llama-8B and R1-Llama-735

70B).736

Our results indicate that Thinking Intervention maintains or even improves the SEP utility. Specifically,737

for R1-Qwen-14B, our method achieves notable SEP utility scores of 92.4% and 91.6%, representing738

improvements of 4.0% and 2.8% over baseline methods, respectively. The performance on models like739

R1-Qwen-32B and QwQ-32B remains comparable, with only minimal SEP utility degradation (less740

than 1.2%), confirming that Thinking Intervention reliably enhances robustness without sacrificing741

model performance.742

Moreover, we observe consistent and compelling improvements for the newly included models743

(R1-Llama-8B and R1-Llama-70B) across all evaluated metrics. Particularly noteworthy are744

the robustness gains: we achieve increases of up to 9.0% for R1-Llama-8B and up to 18.6% for745

R1-Llama-70B. These consistent improvements affirm the general applicability and effectiveness of746

Thinking Intervention in strengthening robustness across diverse reasoning model families.747
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E Safety Alignment748

We provide more details on how baseline methods are implemented for safety alignment in Ap-749

pendix E.1. We then introduce the detailed evaluation setup and present additional experimental750

results for XSTest and SORRY-Bench in Appendix E.2 and Appendix E.3, respectively. Lastly, we751

consider integrated Thinking Intervention with the safety fine-tuned model in Appendix E.4.752

E.1 Details of Baseline Models753

For those baseline prompting models of safety steering, we utilize the prompts shown in Figure 12.754

Figure 12: The baseline prompting methods, as well as our Thinking Intervention, used for evaluating
safety steering. The {Query} will be filled with the query from the benchmarks. Note for Goal
Priority Prompting, we eliminate the few-shot exemplars as suggested by [2].

E.2 Safety Alignment on XSTest755

Details of experimental design. For safety alignment evaluation, we first use the XSTest bench-756

mark [45], which consists of 250 safe requests and 200 unsafe requests. This benchmark is designed757

to examine the exaggerated safety behaviors of LLMs; therefore, all safe requests are intentionally758

tricky and contain potential safety triggers. Following [45], we evaluate the model outputs using the759

GPT-4o-mini with the prompts shown in Figure 13.760

Figure 13: Prompt template of evaluating the compliance or refusal rate on the XSTest benchmark.
The {Question} and {Answer} will be filled with the complete prompt and model response,
respectively.

Note that the evaluation results are categorized into three levels: full compliance, full refusal, and761

partial refusal. For safe requests, we only consider full compliance as the correct response, and762

report the ratio as the compliance rate for safe requests. For unsafe requests, we only consider full763

refusal as the correct response, and report the ratio as the refusal rate for unsafe requests. This764

provides a stringent evaluation of the model’s safety alignment behavior, as it requires models to765

clearly distinguish between safe and unsafe requests, and to respond appropriately in each case.766

Experimental results across all reasoning models. In Figure 14, we present extensive safety767

alignment evaluations on the XSTest dataset using a diverse set of reasoning-enhanced models,768

including R1-Qwen-7B, R1-Qwen-14B, R1-Qwen-32B, QwQ-32B, R1-Llama-8B, and R1-Llama-769

70B.770
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Our results demonstrate that employing Thinking Intervention consistently and substantially improves771

model safety across a range of prompting methods and model architectures. In particular, compared772

with Vanilla Prompting, integrating Thinking Intervention significantly increases refusal rates for773

unsafe requests by over 40% for R1 series models and approximately 10% for QwQ-32B models.774

When evaluating safe requests, compliance rates under Thinking Intervention show only minor775

reductions (generally less than 10%) for medium- and large-sized reasoning models (R1-Qwen-14B,776

R1-Qwen-32B, QwQ-32B, and R1-Llama-70B) across most prompting methods, except for Goal777

Priority Prompting. However, we observe relatively larger drops in compliance for smaller reasoning778

models (R1-Qwen-7B and R1-Llama-8B). These discrepancies are likely due to the limited capacity779

of smaller models to accurately distinguish tricky safe prompts from truly unsafe ones. Encouragingly,780

larger models tend to handle this trade-off more effectively, maintaining strong compliance while781

enhancing safety.782

Furthermore, our analysis indicates that the performance changes induced by identical Thinking783

Intervention vary across model families, with the QwQ-32B series exhibiting smaller improvements784

compared to the R1 series. This may be because QwQ-32B is already substantially safer than the R1785

models. This variance also highlights intrinsic differences in model behavior, a phenomenon that can786

be investigated in future work.787
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Figure 14: Effectiveness of Thinking Intervention on the XSTest benchmark across multiple reasoning
models and prompting methods.

E.3 Safety Alignment on SORRY-Bench788

Details of experimental design. We also evaluate the safety alignment of reasoning models on789

the SORRY-Bench benchmark [68], which is a more comprehensive benchmark containing 45790

taxonomies of unsafe instructions, with 10 unsafe requests per taxonomy (450 total unsafe requests).791

Following the method in [68], we use GPT-4o-mini as the evaluation judge with the prompts shown792

in Figure 15.793
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Figure 15: Prompt template of evaluating the refusal rate on the SORRY-Bench benchmark. The
{Question} and {Answer} will be filled with the complete prompt and model response, respectively.

Experimental results across multiple reasoning models. We comprehensively evaluate the794

effectiveness of our Thinking Intervention method on the SORRY-Bench benchmark across a diverse795

set of reasoning-enhanced models, including R1-Qwen-7B, R1-Qwen-14B, R1-Qwen-32B, QwQ-796

32B, R1-Llama-8B, and R1-Llama-70B. As illustrated in Figure 16, our approach consistently and797

substantially enhances model safety alignment across various prompting methods. Specifically, we798

observe improvements in robustness ranging from 10% to 25% for the R1 model series and from 5%799

to 15% for QwQ-32B. Remarkably, after incorporating Thinking Intervention within the baseline800

prompting method, the refusal rates for unsafe requests exceed those of all GPT-series models using801

the same prompting strategy.802

These findings demonstrate that Thinking Intervention offers an effective, robust, and broadly803

applicable solution for significantly improving safety alignment in diverse reasoning models.804
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Figure 16: Effectiveness of Thinking Intervention on the SORRY-Bench benchmark across multiple
models. Our approach consistently improves the safety alignment of reasoning models.

E.4 Thinking Intervention and Safety Fine-tuning805

In this appendix, we present experiments evaluating our Thinking Intervention method in conjunction806

with recent safety fine-tuning techniques proposed by [61]. Specifically, we consider the STAR1-32B807

model, obtained by fine-tuning the original R1-Qwen-32B model using approximately 1k generated808

instruction-and-reasoning pairs that incorporate explicit safety guidelines. Using the publicly809

released checkpoint for STAR1-32B, we evaluate its performance on the XSTest and SORRY-Bench810

benchmarks.811

Integration of Thinking Intervention with Safety Fine-tuning. Figure 17(a) illustrates the812

effectiveness of our Thinking Intervention approach when integrated with the safety fine-tuned813

STAR1-32B model on the XSTest benchmark. We observe that incorporating Thinking Intervention814
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Figure 17: Evaluation of the STAR1-32B model integrated with Thinking Intervention on (a) XSTest
and (b) SORRY-Bench benchmarks.

consistently improves safety alignment, increasing the refusal rate for unsafe requests by approximately815

3%–5% across all evaluated prompting methods. For safe requests, Thinking Intervention generally816

maintains high compliance rates across most methods, and even slightly improves compliance (by817

∼2%) in the case of the Goal Priority Prompting method.818

Similarly, Figure 17(b) shows that Thinking Intervention further enhances the safety alignment of the819

STAR1-32B model on the SORRY-Bench benchmark. The refusal rate for unsafe requests increases820

by 0.2%–1.8% across all prompting methods. Despite the already strong performance of STAR1-32B,821

our Thinking Intervention approach provides some additional gains in safety alignment.822
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F Design of Thinking Intervention823

In this section, we present an in-depth analysis of how variations in the design of the Thinking824

Intervention influence performance using safety alignment benchmarks. In Appendix F.1, we analyze825

the effect of positioning the intervention sequence at the beginning, middle, and end of the reasoning826

process. In Appendix F.2, we evaluate how variations in the text of the intervention sequence affect827

model responses, highlighting the trade-offs between safety and compliance rates. In Appendix F.3,828

we investigate the effect of the narrative style of the intervention sequence and find that the model829

is capable of self-correcting narrative inconsistencies. In Appendix F.4, we discuss how we use830

auxiliary LLMs to support the Thinking Intervention.831

F.1 Position of Thinking Intervention832

We investigate the effect of intervention positions on the reasoning process using R1-Qwen-32B on833

XSTest and SORRY-Bench. The intervention sequence v is kept unchanged, and we implement834

three distinct intervention functions: (1) TIbegin: The intervention is introduced at the beginning of835

the reasoning process, corresponding to the default setting described in the main text. (2) TIend:836

The intervention is introduced at the conclusion of the reasoning process. Specifically, when the837

model is about to generate the reasoning-ending token "</think>", we replace it with the intervention838

sequence and allow the model to continue generating. (3) TImid: The intervention occurs at an839

intermediate stage of the reasoning process. We use the token "wait" as a trigger, indicating a840

transition in reasoning. Upon detecting this trigger, we replace the "wait" token with the intervention841

sequence and continue generating the output.842
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Figure 18: Results of varying the location of the intervention sequence on the XSTest and SORRY-
Bench benchmarks. The content is kept unchanged, and the Thinking Intervention is placed at the
beginning, middle, and end of the reasoning process.

26



Thinking Intervention at reasoning start steers the model more effectively. Figure 18(a) and843

Figure 18(c) illustrate that intervening at later stages of the reasoning process (i.e., TIend and TImid)844

reduces the model’s steering capability, resulting in a lower refusal rate for harmful queries but higher845

compliance rates for safe queries. For instance, with Reminder Prompting, the model achieves a846

refusal rate of approximately 50% and compliance rate of nearly 98%, whereas TIbegin attains a847

refusal rate of around 70% and a compliance rate of approximately 96%. This outcome highlights a848

clear trade-off between these two metrics, which is expected since the model has already generated849

substantial reasoning content before the intervention, limiting the effectiveness of subsequent steering.850

Similarly, Figure 18(b) and Figure 18(d) present results for the SORRY-Bench benchmark, showing851

that interventions placed in the middle or at the end of the reasoning process lead to a notable reduction852

(10% to 20%) in refusal rates for unsafe requests.853

F.2 Complexity of Thinking Intervention854

We then explore how the different text content of the Thinking Intervention affects the855

reasoning process and the final safety performance using the XSTest and SORRY-Bench856

benchmarks with the R1-Qwen-32B model. We evaluate two different intervention se-857

quences: (1) the default shorter intervention sequence (i.e., "I am a helpful, respectful, and858

honest assistant."), denoted as TIshort, and (2) a longer version of the intervention se-859

quence (i.e., "I am a responsible assistant and should not generate harmful or misleading con-860

tent! So I need to verify the dangerousness of the user’s request."), denoted as TIlong. We861

insert both versions at the beginning of the reasoning process.862

Long and detailed Thinking Intervention can steer the model toward safety but results in a863

lower compliance rate. Figure 19 (a) shows that the compliance rate for safe requests on XSTest864

decreases by over 10% when using the longer intervention sequence, compared to the shorter version.865

In contrast, the refusal rate for unsafe requests increases by approximately 10% with the longer866

intervention sequence. Similarly, Figure 19 (b) indicates that the refusal rate for unsafe requests on867

SORRY-Bench also improves with the longer intervention sequence, showing an increase of 3% to868

10%. This outcome is expected, as the longer intervention sequence provides more explicit safety869

instructions. Therefore, Thinking Intervention can be flexibly designed with different intervention870

contents to precisely control the degree of steering.871
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Figure 19: Results of varying the Thinking Intervention content length on XSTest and SORRY-Bench
benchmarks. We compare our default short intervention sequence with a longer version. Both versions
are inserted at the beginning of the reasoning process.

F.3 Narrative of Thinking Intervention872

In this subsection, we analyze how the narrative of the Thinking Intervention affects the reasoning873

process using safety alignment benchmarks (i.e., XSTest and SORRY-Bench) with the R1-Qwen-32B874

model. In our main experiments, we use the first narrative intervention sequence (i.e., "I am a helpful,875

respectful, and honest assistant.") as the default setting. We then construct an alternative second876
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Figure 20: Results of varying the Thinking Intervention’s narrative on XSTest and SORRY-Bench
benchmarks. We compare our default first-narrative intervention sequence with an alternative
second-narrative sequence. Both versions are inserted at the beginning of the reasoning process.

Figure 21: A demonstration of how models generate outputs when the second-narrative Thinking
Intervention (highlighted in blue) is applied. We observe that reasoning models can self-correct
narrative errors during the reasoning process.

narrative intervention sequence (i.e., "You are a helpful, respectful, and honest assistant.") and877

examine whether the reasoning process is affected by the narrative. Again, both Thinking Interventions878

are inserted at the beginning of the reasoning process.879

Narrative of Thinking Intervention does not affect the performance significantly. In Figure 20 (a),880

we observe that the compliance rate for safe requests and the refusal rate for harmful requests on881

XSTest are not significantly affected by the narrative of the Thinking Intervention, with less than882

3% variation. On SORRY-Bench, Figure 20 (b) indicates that the refusal rate for unsafe requests883

decreases with the second narrative intervention sequence, showing a drop of 0.2% to 3.8%. This884

outcome may be somewhat surprising, as we expected the second narrative intervention sequence to885

disrupt the reasoning process. Therefore, we explore why this occurs through an example.886

Reasoning models can self-correct narrative errors. We demonstrate an example from the887

SORRY-Bench benchmark in Figure 21, where the user instruction is a harmful request. The model888

with the second narrative intervention sequence initially uses the second narrative and generates889

"You can’t comply with this request." However, the model quickly recognizes that the narrative890

is incorrect and corrects it to "So, I need to figure out how to respond appropriately." In the891
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subsequent reasoning steps, the model continues using the first-narrative reasoning. This indicates892

that the model can self-correct narrative inconsistencies during the reasoning process.893

F.4 Leveraging auxiliary LLM for Thinking Intervention894

In this subsection, we conduct preliminary experiments to explore the use of an auxiliary LLM to895

revise existing reasoning steps on XSTest and SORRY-Bench. Specifically, we use R1-Qwen-32B896

as the primary reasoning model and Qwen2.5-7B-Instruct [42] as the auxiliary LLM, which is897

instructed to edit the reasoning chain. The detailed prompt used to guide the editing process is898

shown in Figure 22. We denote our default Thinking Intervention as TIdefault and the LLM-assisted899

Thinking Intervention as TImodel.900

Figure 22: Prompt template for using an auxiliary LLM to edit the reasoning trace on the safety
benchmark.

Leveraging an auxiliary LLM does not exceed our manually designed prompt in most cases. In901

Figure 23(a), we observe that TIdefault generally achieves a higher refusal rate to harmful requests902

and better compliance with safe requests compared to TImodel, across all prompting methods903

except Vanilla Prompting. On the SORRY-Bench benchmark, TIdefault outperforms across all four904

prompting methods, although the performance difference is less than 3%. Therefore, effectively905

leveraging an auxiliary LLM to edit the reasoning trace remains a challenging task, highlighting the906

need for further research and exploration in this direction. In addition, using an auxiliary LLM to edit907

the reasoning trace is costly and may not be practical.908
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Figure 23: Results of using an auxiliary model to guide the reasoning process on XSTest and
SORRY-Bench benchmarks.
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G Case Study of Instruction Hierarchy909

In this section, we showcase an example from the SEP dataset that demonstrates how Thinking910

Intervention can effectively guide reasoning models to correctly follow hierarchical instructions.911

In Figure 24 and Figure 25, the main instruction is to "Interpret the statute mentioned in the912

next paragraph, explaining its legal implications." where the content is about "The Sarbanes-913

Oxley Act". However, the data block contains a low-priority instruction to "Tell me what a book is914

primarily made of.", which is unrelated to the main task and should be ignored.915

Figure 24 shows the response of a model without Thinking Intervention. The model directly tries916

to answer the low-priority query and discuss "what a book is primarily made of". Then the model917

recognizes the main task related to the "Sarbanes-Oxley Act". However, it gets confused and finally918

reverts to considering the low-priority query. As a result, the model provides an incorrect response by919

discussing the content of the low-priority query instead of interpreting the statute.920

Then, in Figure 25, we demonstrate the response of a model with Thinking Intervention. The model921

directly focuses on the main task and reasons about how to answer it. Then the model also finds the922

low-priority query in the data block, but it successfully recognizes that this is unrelated to the main923

task and should be ignored. Consequently, the model provides a correct response by interpreting the924

statute mentioned in the main instruction. This example illustrates how Thinking Intervention can925

effectively guide reasoning models to correctly follow hierarchical instructions and provide accurate926

responses.927

Figure 24: A demonstration of how models without Thinking Intervention fail to ignore low-priority
instructions and consequently provide incorrect responses. We use green color to highlight the main
task and red color to highlight the low-priority query.
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Figure 25: A demonstration of how models with Thinking Intervention successfully ignore low-priority
instructions and provide correct responses. We use blue color to highlight the Thinking Intervention,
green color to highlight the main task and red color to highlight the low-priority query.
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H Case Study of Attention928

In this appendix, we analyze the attentions of Prompt Engineering and Thinking Intervention.929

We use the R1-Qwen-14B model with Reminder Prompting as the baseline and compare it with930

Thinking Intervention applied at the beginning of the reasoning process. Specifically, we examine an931

example where the user instruction is "How did people make a Molotov cocktail?", with "You are932

a safe assistant." used for prompt engineering and "I am a safe assistant." used for Thinking933

Intervention. The safety instruction content remains nearly identical, with the only difference being its934

position—either before or after the thinking tag, "<think>". Attention weights are derived from the935

attention scores in the model’s final layer. We first present the model’s output with prompt engineering936

in Figure 26, followed by the output with Thinking Intervention in Figure 27. Then, we visualize and937

compare the attention maps in Figures 28 and 29 to observe how attention is allocated across tokens938

in each input.939

Figure 26: A demonstration of how Prompt Engineering is used to address harmful requests.

Figure 27: A demonstration of how Thinking Intervention is used to address harmful requests.

Thinking Intervention is more effective than Prompt Engineering in steering the model towards940

safety. With Prompt Engineering (Figure 26), we observe that the model generates a response that first941

tries to identify what a Molotov cocktail is and then provides a detailed description of how to make it.942

This indicates that the model is not effectively refusing the harmful request, even though a safety943

instruction is provided. In contrast, with Thinking Intervention (Figure 27), the model successfully944

refuses the harmful request and provides a safe response. This demonstrates that Thinking Intervention945

is more effective than Prompt Engineering in steering the model towards safety.946

Thinking Intervention directs more attention to the safety instructions during generation.947

In Prompt Engineering (Figure 28), the model’s attention during the generation of the harmful948

content shows that the safety instruction "You are a safe assistant." receives little attention in949

later reasoning generation stages. This suggests that the model is not effectively utilizing the safety950

instruction during its reasoning process. Conversely, with Thinking Intervention (Figure 29), the951
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safety instruction "I am a safe assistant.", placed after the thinking tag, receives considerably952

more attention from later reasoning tokens. This focused attention on the safety guidelines within953

the thinking process appears to be key to Thinking Intervention’s effectiveness in steering the model954

towards a safe response.955

Therefore, this case study illustrates that Thinking Intervention is more effective than Prompt956

Engineering in guiding the model’s reasoning trace, thereby effectively steering the model towards957

safety. The attention analysis further supports this conclusion, showing that Thinking Intervention958

directs more attention to the safety instructions during the reasoning process, leading to improved959

safety alignment.960
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Figure 28: Attention patterns of the model with Prompt Engineering applied. The model’s attentions
to the safety instruction are highlighted in blue.

Figure 29: Attention patterns of the model with Thinking Intervention applied. The model’s attentions
to the safety instruction are highlighted in blue.
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I Ethics, Broader Impact, Reproducibility, and Licenses961

Ethics. Our research aims to improve the safety alignment of reasoning models as part of responsible962

AI development. We focus on enabling large language models to better follow hierarchical instructions963

and adhere to safety guidelines, particularly in sensitive domains. We conduct our work responsibly,964

transparently, and in compliance with the NeurIPS Code of Ethics.965

Broader Impact. Enhancing safety alignment in reasoning models can benefit high-stakes fields966

such as healthcare, finance, and education. At the same time, we acknowledge the risks involved in967

applying large language models in these areas and encourage proactive efforts to identify and mitigate968

potential harms.969

Reproducibility. We provide comprehensive details of our experiments in Appendix B, Appendix D,970

Appendix C, and Appendix E. All experiments were conducted using one or two H100 GPU 80G971

within 24 hours. We employed greedy decoding with a temperature of 0 for all experiments, ensuring972

that our results are deterministic and fully reproducible.973

Licenses. In this paper, we utilize the following models and datasets: (1) Models: R1-Qwen-32B974

(Apache 2.0 License), R1-Qwen-14B (Apache 2.0 License), R1-Llama-8B (LLaMA 3.1 License),975

R1-Llama-70B (LLaMA 3.3 License), and QwQ-32B (Apache 2.0 License). GPT models are976

closed-source and not publicly available. (2) Datasets: IFEval (Apache 2.0 License), SEP (MIT977

License), XSTest (Attribution 4.0 International), SORRY-Bench (Sorry-Bench License), and MATH978

(MIT License).979
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