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ABSTRACT

Variational Information Pursuit (V-IP) is an interpretable-by-design framework
that makes predictions by sequentially selecting a short chain of user-defined,
interpretable queries about the data that are most informative for the task. The
prediction is based solely on the obtained query answers, which also serve as a
faithful explanation for the prediction. Applying the framework to any task re-
quires (i) specification of a query set, and (ii) densely annotated data with query
answers to train classifiers to answer queries at test time. This limits V-IP’s appli-
cation to small-scale tasks where manual data annotation is feasible. In this work,
we focus on image classification tasks and propose to relieve this bottleneck by
leveraging pretrained language and vision models. Specifically, following recent
work, we propose to use GPT, a Large Language Model, to propose semantic con-
cepts as queries for a given classification task. To answer these queries, we pro-
pose a light-weight Concept Question-Answering network (Concept-QA) which
learns to answer binary queries about semantic concepts in images. We design
pseudo-labels to train our Concept-QA model using GPT and CLIP (a Vision-
Language Model). Empirically, we find our Concept-QA model to be competi-
tive with state-of-the-art VQA models in terms of answering accuracy but with
an order of magnitude fewer parameters. This allows for seamless integration
of Concept-QA into the V-IP framework as a fast-answering mechanism. We
name this method Concept-QA+V-IP. Finally, we show on several datasets that
Concept-QA+V-IP produces shorter, interpretable query chains which are more
accurate than V-IP trained with CLIP-based answering systems. Code available at
https://github.com/adityac94/conceptqa_vip.

1 INTRODUCTION

With the increasing complexity of modern deep network architectures, there is a growing concern
over the unintelligible nature of their decision-making process (Gunning & Aha, 2019). Initial ap-
proaches to explain deep networks were post-hoc, where algorithms were designed to output scores
(attributions) that reflect how “important” a particular input feature is to the network’s prediction
(Selvaraju et al., 2017; Lundberg & Lee, 2017; Ribeiro et al., 2016). However, these methods have
been widely criticized since their explanations are often not aligned with human expectations which
are more in terms of high-level semantic concepts (Koh et al., 2020; Chattopadhyay et al., 2022).
Moreover, the reliability of these methods in faithfully representing the importance of different fea-
tures for prediction has often been questioned (Adebayo et al., 2018; Yang & Kim, 2019).

Consequently, there is a growing need for developing deep learning methods that are interpretable by
design (Koh et al., 2020; Rudin et al., 2022; Chattopadhyay et al., 2022). One line of research in this
direction is based on Information Pursuit (IP) (Chattopadhyay et al., 2022; 2023). In this framework,
the user first defines a set of task-specific image queries, each one having a clear interpretation to
the user as a semantic question about the image. Given a new image xobs, IP then proceeds to select
queries one at a time, until the obtained answers are sufficient to make a prediction Y with high
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confidence. The query-answer sequence obtained upon termination serves as a faithful explanation
for the prediction. This is because, IP never observes the image directly, but only through the
obtained query answers, thereby guaranteeing that the prediction is made entirely on the explanation.
Finally, to achieve short explanations, IP selects queries in order of information gain, that is, in each
iteration the query selected has maximum mutual information with Y (the prediction variable) given
the history of query-answers obtained so far. An illustration of the framework is shown in Figure 1.

Figure 1: Illustration of the IP framework for making interpretable
predictions. The task is image classification. The user-specified
query set Q consists of queries about the presence or absence of
different semantic attributes of objects. Given an image xobs, IP
proceeds by selecting queries from Q in order of information gain
until a prediction can be made with high confidence.

A central challenge in implementing
IP is its reliance on mutual informa-
tion, which is hard to estimate in high
dimensions (Belghazi et al., 2018).
To address this, a variational char-
acterization of IP, called Variational
Information Pursuit (V-IP), was pro-
posed (Chattopadhyay et al., 2023;
Covert et al., 2023). In this approach,
a deep network is trained to directly
learn the most informative next query
from data, bypassing the need to ex-
plicitly estimate mutual information.
A major limitation of V-IP is that it still requires the user to specify the query set that is relevant to
the task (e.g. image classification). Moreover, this also requires datasets manually annotated with
answers to the queries to allow for training classifiers which would be able to infer the answers at
test time. This limits the applicability of V-IP to datasets where such annotations are available.

In this paper, we focus on image classification tasks and seek to address this limitation by employing
large language models (LLMs) to specify interpretable queries for a task and vision-language models
(VLMs) to answer those queries. This would allow us to scale V-IP to any image classification task
without the need to manually specify query sets and their corresponding answers. To achieve this,
we draw inspiration from recent work in concept-based image classification (Oikarinen et al., 2023;
Yang et al., 2023; Menon & Vondrick, 2023), which shows the effectiveness of GPT (Brown et al.,
2020), an LLM, at generating relevant semantic concepts that are discriminative for a given image
classification task. While the semantic concepts proposed by GPT can be seamlessly integrated as
interpretable queries into the V-IP framework, we still need a mechanism to answer these queries.

Prior work on concept-based image classification grounds concepts to images using CLIP (Radford
et al., 2021), a VLM, which computes an ℓ2-normalized dot product between any given image’s
embedding and any given concept’s text embedding as a measure of how strongly the concept is
associated with the image contents, thereby answering the query whether the particular concept is
present/absent in the image. Unfortunately, continuous-valued answers, as provided by CLIP, are
not directly compatible with the V-IP framework since they disrupt the interpretability of the query-
answer chains. As an example, consider the first query q1 in Figure 1. CLIP’s dot product between
the image embedding of xobs and the text embedding for concept “mammal” is about 0.24. It is not
clear from this value if the image is of a mammal or not? This in turn makes it hard to interpret the
rationale behind the selection of subsequent queries which depend on the query-answers obtained so
far. This issue is not resolved by simply thresholding and binarizing the CLIP dot products since, as
we show in Table 1, this results in noisy inaccurate answers when compared with the ground truth.

Our main contribution, is to show that one can effectively train a Concept Question-Answering net-
work (Concept-QA) which produces a binary answer to the question “Is the given concept present
in the image?” by utilizing soft pseudo-labels derived from both GPT and CLIP. We show via exper-
iments that GPT complements concept-image association scores generated by CLIP since GPT has
learnt from large bodies of text what concepts are salient for recognizing a particular class. We find
that on several image classification datasets (via self-annotations), our Concept-QA system is com-
petitive with contemporary pretrained VLM models used for visual question-answering tasks while
being computationally much more efficient. Moreover, we empirically show that V-IP achieves
much shorter query chains with higher accuracy when trained on answers provided by Concept-QA
compared to answers provided by CLIP dot products thereby enhancing interpretability.

Paper Contributions. (1) We propose a methodology to train a concept question-answering system
(called Concept-QA) which given a concept and an image, gives a binary answers as to whether the
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concept is present in the image or not using pseudo-labels provided by GPT and CLIP. In particular,
our method does not require any manually annotated training data grounding concepts to images.
(2) We empirically validate, on multiple datasets, the performance of Concept-QA in faithfully rep-
resenting the true concepts. (3) We show how Concept-QA enables us to extend V-IP’s applicability
to image classification datasets where manually specified query sets and answer annotations are not
a priori available, including ImageNet (Deng et al., 2009). (4) Finally, we demonstrate that V-IP
trained on answers provided by Concept-QA leads to much shorter and more interpretable query-
chains than using the continuous dot products provided by CLIP as answers.

2 RELATED WORK

Here we briefly discuss prior work on other contemprary interpretable-by-design methods and rele-
gate discussion of prior work on large language and vision models used in this work to Appendix §A.

Interpretable-by-design methods without language. In response to the criticisms levied on post-
hoc interpretability methods (Adebayo et al., 2018; Kindermans et al., 2019; Slack et al., 2020;
Shah et al., 2021; Rudin, 2019) many interpretable-by-design methods have been proposed. Bohle
et al. (2021) propose a novel B-cos layers that incentivizes the network weights to align with task-
relevant features of the input. Alvarez Melis & Jaakkola (2018) regularizes the training of deep
networks such that they are locally well-approximated by linear classifiers. Li et al. (2018) proposes
to learn abstract patterns from data, called prototypes, which are then linearly combined to make a
prediction. These methods aim to explain predictions via input features or abstract prototypes. In
sharp contrast, in this work, we seek to ground our explanations in language in terms of queries of
semantic concepts, thus providing a colloquial description of the underlying models’ decisions.

Concept Bottleneck Models (CBMs). This family of models, first introduced by Koh et al. (2020),
seeks to first map a given input to a concept feature space, where every feature value corresponds
to the presence or absence of the given concept. The final prediction is made by a linear classifier
trained on these concept features. Our proposal in this paper to use concepts as queries for classi-
fication tasks was inspired by work on CBMs. However, V-IP and CBMs fundamentally differ in
the nature of the explanations they provide for their predictions. V-IP explains the prediction by
sequentially asking queries about the input in order of information gain. At each step, the selection
of the next query is determined by the history of query-answers observed so far. Moreover, in each
step, the user can inspect how the model’s posterior over the class labels changes as more and more
evidence is accumulated from each new query answer. This provides a progressive and transparent
description of the model’s decision-making process. CBMs on the other hand provide a static expla-
nation by reporting the contribution (as the magnitude of the concept feature value times the weight
assigned by the linear network to that feature) of every concept to the final prediction.

3 METHODS

3.1 BACKGROUND: INFORMATION PURSUIT AND VARIATIONAL INFORMATION PURSUIT

We will use capital letters to denote random variables and lower-case letters for their realizations.

Information Pursuit (IP). IP as an interpretable-by-design framework for making interpretable
predictions for any given task was first introduced by Chattopadhyay et al. (2022). Let X : Ω→ X
and Y : Ω → Y denote the random variables for input data and corresponding labels/outputs, and
Ω be the underlying sample space were all random variables are defined. The user first defines a
query set Q, consisting of task-specific and interpretable queries q : X → A, where q(x) ∈ A is the
answer to the query q ∈ Q evaluated at x ∈ X . Following the specification of Q, the IP algorithm
is described as follows: Given a data point xobs ∈ X , the algorithm sequentially selects queries in
order of information gain, until all remaining queries are nearly uninformative. Specifically,

q1 = argmax
q∈Q

I(q(X);Y ); qk+1 = argmax
q∈Q

I(q(X);Y | q1:k(xobs)). (1)

The symbol I denotes mutual information. Here qk+1 denotes the query selected at step k+1 given
the history of query-answer pairs observed so far, which is defined as

q1:k(x
obs) :=

{
x′ ∈ X |

(
qi, qi(x

obs)
)
1:k

=
(
qi, qi(x

′)
)
1:k

}
(2)
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In other words, the history is the set of all realizations of X that share the same answers to the
first k queries as xobs. The IP algorithm terminates if all the queries in Q have been asked or the
remaining queries are uninformative about Y , conditioned on the history obtained so far. In other
words, IP terminates after L iterations (L depends on xobs) if either L = |Q| or maxq∈Q I(q(X);Y |
q1:L)) ≤ ϵ, where ϵ is a user-defined threshold. The final prediction after termination is given by
argmaxy∈Y P (Y = y | q1:L(xobs)).

Figure 2: Overview of the V-IP algorithm

Variational Information Pursuit
(V-IP). V-IP was introduced by Chat-
topadhyay et al. (2023) as an effi-
cient approach for carrying out IP. V-
IP defines a querier network gη (with
weights η) as a function which maps
arbitrary finite length query-answer
chains, denoted as s, to a query q ∈
Q, and a predictor network fθ (with
weights θ) that maps any given s to a
distribution over the label Y . Now, given any randomly selected query-answer chain S and data
(X,Y ), let the querier output some query q̃ ∈ Q and subsequently the predictor output a distribu-
tion P̃ (Y | S, q̃(X)). The authors show that by minimizing the KL divergence between the true
distribution P (Y | X) and the predicted distribution P̃ (Y | S, q̃(X)) in expectation over the data
and random query-answer chains, one can learn to select the most informative next query given any
history of query-answer pairs. More precisely, the optimal querier and predictor of the described
optimization problem would be:

gη∗(s) = argmax
q∈Q

I(q(X);Y | s); fθ∗(s) = P (Y | S = s), (3)

where s is any given query-answer chain and P (Y | S= s) is the true posterior distribution over Y
given s. At inference time, V-IP makes predictions by using the trained querier gη∗ to recursively
select most informative queries (starting from the empty set at iteration 1), obtain the answer and
append it to the current history of query-answer pairs observed so far. See Figure 2 for a schematic
diagram of this process. The authors proposed two choices for termination, (i) Posterior-based,
which terminates if the posterior is sufficiently peaked, that is, maxy∈YP (y | q1:k(xobs))≥ γ, and
(ii) Stability-based, which terminates if the posterior is stable for some κ number of steps, that is,
for κ consecutive steps, the difference between the entropies of the posterior over Y before and after
asking a question is less than ϵ (γ, κ & ϵ are user-defined). More details on V-IP in Appendix §E.

3.2 GENERATING QUERY SETS USING LANGUAGE MODELS

As discussed in §3.1, applying the V-IP framework to any task requires two ingredients, (i) specify-
ing a set of interpretable task-relevant queries, and (ii) defining a mechanism to answer these queries
for any given image at inference time. This presents a major bottleneck as curating user-defined
query sets and their corresponding answers is a costly time-consuming process. In this paper, we
focus on image classification tasks and seek to liberate the V-IP framework from this bottleneck by:

• Leveraging the zero-shot capabilities of GPT to propose appropriate queries for a given task.
• Training a Concept Question-Answering (Concept-QA) system using pseudo-labels provided by

CLIP and GPT for answering these queries at inference time about a given image.

3.2.1 PROPOSING INTERPRETABLE QUERIES USING GPT

Prior work on concept-based classification methods has shown the effectiveness of GPT at gener-
ating semantic concepts that are predictive for solving image classification tasks (Oikarinen et al.,
2023; Yang et al., 2023; Menon & Vondrick, 2023). These methods involve the following steps:

1. Given an image classification dataset, extract all the class labels.
2. Iteratively, for each class label, prompt GPT to specify concepts useful for describing the class.

For example, if the class label is “ship”, Oikarinen et al. (2023) use the prompt “List the most
important features for recognizing something as a ship”.
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3. The above process generates a large number of candidate concepts relevant to the task. This set
is then pruned to remove redundancies among the concepts. This can be done via handcrafted
filtering rules (Oikarinen & Weng, 2023) or submodular optimization (Yang et al., 2023).

The assumption of these methods is that since GPT has been trained on a large corpus, it understands
which semantic concepts are salient for recognizing a class. These concepts can be used as queries
in the V-IP framework by converting every concept C into a binary question: “Is concept C present
in the given image?”. This ensures every query has a clear interpretation to the user since they are
grounded in language. Thus, we propose to aggregate the final list of concepts (after the pruning
step) and use them as queries for our query set. In this paper, for all datasets employed, we use
the concepts extracted by Oikarinen et al. (2023) as our query set. Refer to Appendix Figure 7
for example extracted concepts. Having specified a procedure for automatically generating a task-
relevant query set, we next discuss mechanisms to answer these queries for a given image.

3.2.2 ANSWERING QUERIES WITH CLIP ADVERSELY AFFECTS V-IP’S EXPLANATIONS

Prior work on concept-based classification methods proposed to use CLIP for grounding the con-
cepts to images. This is achieved by passing the image and the concept text through CLIP’s image
and text encoders respectively to get their embeddings. Then, the ℓ2-normalized dot product be-
tween the two embeddings measures how strongly a particular concept is correlated with the image
contents. Unfortunately, we will show that using CLIP’s dot product as the answer to the query “Is
concept C present in the given image?” hampers the interpretability of V-IP’s reasoning process.

Figure 3: V-IP’s explanation for an image from the Imagenet
validation set using CLIP’s dot products as answers. The in-
put image, xobs, is shown on the left and the query-answer
chain is shown on the right along with the evolution of the
model’s posterior distribution. Every row corresponds to the
posterior distribution over the classes (shown in the x-axis)
given the history of query-answer pairs observed so far. The
y-axis indicates the query asked at that iteration along with
CLIP’s dot product answer. For brevity, we only mention
the concept, instead of the corresponding query “Is the given
concept present in the image?” (best viewed in colour).

Recall that V-IP’s explanation of a predic-
tion is the sequence of query-answer pairs.
The choice of every query depends only
on the prior history of query-answers. In-
terpreting this reasoning process crucially
depends on the interpretation of this his-
tory. We claim that this history (equa-
tion 2) is interpretable to the user only if
given any image, the user can ascertain if
the image belongs to the history. We mo-
tivate this definition using Figure 1. The
first question asked is whether the image
is of a mammal, and the answer is “Yes”.
The user then knows that given any im-
age sampled from the data distribution, if
it contains a mammal, it will belong to the
model’s history. Continuing like this, we
see the model ask several other questions
about different characteristics of mammals
like hair texture, tail shape, etc. before
it concludes it is a bison. Since, at ev-
ery step, the history is interpretable, V-IP’s
reasoning up to the prediction of “bison” is transparent. However, when the answers are continuous-
valued dot products, as supplied by CLIP, the history is no longer interpretable (according to our
definition). We elaborate on this next with an example.

We train V-IP on the Imagenet dataset using the query set described in §3.2.1 and CLIP’s dot prod-
ucts (standardized by subtracting and dividing by the mean and std computed over image-concept
pair from the entire dataset) to answer the queries. In Figure 3, we depict our trained V-IP’s expla-
nation for an image from the Imagenet validation set. Positive and negative dot products are colour
coded as green and red respectively. The first query, “Is the concept ingredients label present in
the image?”, gets an answer of −1.35. According to our definition, the history after obtaining this
answer, q1(xobs), is not interpretable to the user since we do not know what images would give the
same dot product of −1.35 when asking the same question. The choice of the second query about
dorsal fins as well as the remaining queries, are hard to interpret. Moreover, the final query about
“shrimp” makes no sense given the posterior after 11 queries was peaked on “bison”, “bighorn”, and
“Arabian camel”. We argue this is because histories in this context are not interpretable.
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3.2.3 OUR PROPOSAL: CONCEPT QUESTION-ANSWERING NETWORK

One possible solution to solving this interpretability conundrum is to make the query answers dis-
crete, with every answer having a well-defined interpretation to the user. However, in the absence
of data annotated with query answers, how can one learn a classifier that would “accurately” predict
the answer for a given image at test time? To answer this, we rely on the zero-shot capabilities of
GPT and CLIP.

A first attempt at this might be to simply threshold the standardized CLIP dot products and interpret
a positive value as the concept being present in the image. However, as we will empirically show in
§4, such a method results in inaccurate answers (compared with the ground truth) and makes them
difficult to interpret. We thus propose to complement the knowledge CLIP has about image-concept
association with GPT’s knowledge about different concepts that are important for recognizing a
particular class. In particular, we train a Concept Question-Answering network (Concept-QA) using
pseudo-labels (which are our target answers for training Concept-QA) generated from GPT and
CLIP. We first describe the intuition behind these pseudo-answers and then explicitly define them.

In image classification tasks, the class is often the focal point of the image. This means that a
priori before inspecting the image, if we know the class then we can be pretty confident that some
concepts will not be present in the image. For example, if we know the image is of class “Tiger”, we
know that it is unlikely the concept “a garment” will be present in the image. However, answering
a query about a concept like “white” requires inspecting the image contents since some tigers can
have white fur, while others are predominantly orange. We formalize this intuition using GPT and
CLIP. Specifically, for a given image classification dataset, we take every image-label pair in the
corresponding train set and construct image-concept-pseudo-label triplets for all concepts in our
query set in the following manner:

1. For every image-label pair and concept in our query set, we ask GPT if the concept is salient for
recognizing the class label.

2. If GPT responds “No”, we take the pseudo-label for that concept-image pair as “No”.
3. If GPT responds “Yes/Depends”, we use CLIP’s dot product between the concept’s text embed-

ding and the image’s embedding to disambiguate whether the concept is present in the image.
Since CLIP’s dot product is a measure of how strongly the concept is aligned with the image
content, we use it (after suitable normalization which we will describe next) to model the proba-
bility that the concept is present in the image.

Moving forward, we would use the value 1 (0) interchangeably with “Yes” (“No”) to talk about the
answer/prediction for a particular concept query. Now, given image-label pair (x, y) ∈ X × Y and
a binary concept C which corresponds to a query qC ∈ Q, we define the following terms,

PGPT(C = 1 | Y = y) = 1 if GPT responds “Yes” to the above mentioned prompt
= 0 otherwise

PCLIP(C = 1 | X = x) = Φ(I(x)TT (c)),
(4)

where I(x) and T (c) correspond to the ℓ2-normalized image and concept’s text embedding respec-
tively using CLIP’s encoders. Φ(.) is a per image min-max normalization function which ensures
that the concept with the highest dot product with the x is given a probability score of 1, and the
concept with the smallest dot product with x is given a probability score of 0. The two probabilities
from equation 4 are then combined to give the pseudo-label for the pair (x, y) and concept C as,

P̂ (C=1 | X=x, Y =y) = PGPT(C = 1 | Y =y)PCLIP(C=1 | X=x) (5)

P̂ (C=0 | X=x, Y =y) = PGPT(C=0 | Y =y)+PGPT(C=1 | Y =y)PCLIP(C=0 | X=x).

Finally, we propose to train a deep network, called Concept-QA, which takes CLIP’s embeddings
of the image and the concept’s text and makes a binary yes/no prediction to the query “Is the given
concept present in the given image?”. We use the generated pseudo-labels, P̂ , to train our Concept-
QA network using the following loss function for a given concept C (which is reminiscent of the
popular cross-entropy loss when the target labels are one-hot),

Loss(C) = −EX,Y

[ ∑
c∈{0,1}

P̂ (C = c | X,Y ) logPw(C = c | X)
]
, (6)
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Figure 4: Overall pipeline for training and performing inference
on the Concept-QA system. Details about the GPT and CLIP
prompts used in our experiments can be found in Appendix §D.

where w defines the Concept-QA
model weights. Notice our model
predicts whether the concept C is
present in the image purely based
on the image contents (no Y in-
formation is provided), as embodied
in the notation Pw(C=c | X). The
optimization problem is defined as,
minw

∑
C∈Q Loss(C), where the sum-

mation is over all concepts (or their cor-
responding queries) in our given query
set Q. Figure 4 gives an overview of Concept-QA training. More training details in Appendix §D.

After training, for a given image xobs and any concept C, we take the corresponding query’s answer
qC(x

obs) = 1 if Pw(C = 1 | X = xobs) > τ and 0 otherwise. The constant τ is a user-defined
parameter which determines how confident we want the Concept-QA to be in its prediction of 1
before accepting it as the binary answer. We use τ = 0.4 for all datasets considered in this paper
except CIFAR-{10, 100} for which we consider τ = 0.5.

4 EXPERIMENTS

In this section, we empirically evaluate the efficacy of our proposed Concept-QA model in extending
the application of V-IP to image classification tasks where manually specified query sets and answer
annotations are not available. We do so in two complementary directions.

1. Interpretability of query sets. In prior work (Chattopadhyay et al., 2022; 2023) the query sets
were manually specified and every query had a clear interpretation to the user. However, in this
work, we train our Concept-QA model using pseudo-labels to answer different queries. Thus, the
interpretability of our queries depend on how faithfully Concept-QA reflects the ground truth. For
example, if for some query “Is concept ‘stripes’ present in the image?”, Concept-QA erroneously
predicts “1” (corresponding to a “Yes”) when the image has the concept “checkerboard pattern”
in it (but no stripes), then the answer no longer has a clear interpretation to the user.

2. Description length and accuracy of V-IP explanations. Consequently, given an interpretable
query set, V-IP makes predictions by asking a sequence of query-answer pairs about a given
input. This sequence serves as an explanation for the prediction. In accordance with Occam’s
razor, Chattopadhyay et al. (2022) advocate that shorter explanations are preferred over longer
ones if both achieve the same prediction accuracy. Thus, it is important to have query sets that
result in both short and accurate explanations.

Finally, we provide qualitative examples of explanations provided by V-IP using Concept-QA as an
answering mechanism and contrast it with the uninterpretable query-answer chains obtained when
using CLIP dot products as the answering mechanism.

We carry out all our experiments on 5 popular image classification datasets; ImageNet (Deng et al.,
2009), CUB-200 (Wah et al., 2011), Places365 (Zhou et al., 2017), CIFAR-{10,100} (Krizhevsky
et al., 2009). In all our experiments involving CLIP, we used the ViT-B/16 backbone, and for
GPT we used the gpt-3.5-turbo-0613 version, except for CUB-200 where we found GPT-3.5
ineffective due to the domain-specific nature of the dataset and opted to use gpt-4 instead. For
every dataset, the query set employed is the set of concepts extracted by Oikarinen et al. (2023).

Table 1: Results for evaluating the faithfulness of different answer-
ing mechanisms to the true answers. Acc. and F1 refer to accuracy
and F1-score metrics respectively.

Model ImageNet Places365 CUB-200 CIFAR-10 CIFAR-100
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

Concept-QA (Ours) 0.87 0.56 0.83 0.45 0.80 0.54 0.80 0.62 0.80 0.38
CLIP-Binstd 0.55 0.39 0.58 0.42 0.56 0.48 0.58 0.47 0.51 0.21

CLIP-Binnorm 0.50 0.27 0.49 0.26 0.56 0.45 0.66 0.53 0.54 0.24
BLIP2 ViT-g OPT2.7B 0.55 0.31 0.76 0.18 0.53 0.35 0.73 0.13 0.86 0.07

BLIP2 ViT-g FlanT5XL 0.86 0.56 0.87 0.62 0.70 0.40 0.83 0.59 0.87 0.41

Interpretability of query sets. We
evaluate how faithful Concept-QA is
in representing the true answers and
compare its performance with the fol-
lowing baselines: (i) CLIP-Binstd,
which uses the binarized CLIP dot
products (standardized as explained
in §3.2.2) as answers with a posi-
tive/negative value taken as 1/0. (ii)
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CLIP-Binnorm, which obtains answers by thresholding PCLIP(C=1 |X=x) (equation 4) at 0.5. (iii)
BLIP2 ViT-g FlanT5XL & BLIP2 ViT-g OPT2.7B, which are state-of-the-art pre-trained VLMs that
are effective in zero-shot Visual Question-Answering (VQA) tasks (Li et al., 2023).1 Since the
datasets we consider do not come with annotated query answers we randomly sample 2.5K image-
concept pairs from each dataset and self-annotate them with the true answers. Details of the sampling
and annotation process can be found in Appendix §C. For each dataset, we report the accuracy and
F1-score and report the results in Table 1.

We observe that Concept-QA outperforms CLIP-Binstd and CLIP-Binnorm on all 5 datasets on both
metrics, supporting our claim that simply binarizing CLIP dot products based on a threshold will
lead to noisy answers and integrating GPT with CLIP to provide the pseudo-labels enhances the
quality of the supervision signal for training the answering model. Furthermore, compared to the
BLIP2 FlanT5 model, Concept-QA is competitive on the CIFAR datasets and ImageNet. Our model
is considerably better on CUB-200, a fine-grained bird species identification dataset which is too
specific for the general-purpose VQA model to have good zero-shot performance. Finally, BLIP2
FlanT5 performs better on the Places365 dataset which is a scene classification dataset. We hypoth-
esize that this is due to the inability of CLIP’s image encoder at capturing essential image semantics
for this dataset. Table 2 in the Appendix corroborates this, which shows that a linear probe trained
on CLIP’s image embedding achieves a test accuracy of only 55% which is much lower than the
accuracy achieved on all the other datasets.

While being competitive with BLIP2 on most datasets, Concept-QA is much more computationally
efficient than these large VLMs which have billions of parameters. Concretely, ConceptQA is a
lightweight MLP with 70K parameters which operates on top of CLIP resulting in a total of 150M
parameters. The competitive VLM, BLIP2 FlanT5, on the other hand has about 4.1B parameters.
Consequently, our model takes about 0.04 seconds per image per query, while the VLM takes about
1.52 seconds for the same. This makes the latter prohibitive for utilization within the V-IP framework
for training and inference. For example, carrying out one epoch of V-IP training on Imagenet using
BLIP2 Flan-T5 as the answering mechanism would take about 4, 128 GPU hours (evaluated on
NVIDIA RTX A5000 GPU by averaging the time taken to process 100 batches of image-query pairs
and multiplying by the size of the dataset.) which is infeasible. Comparatively, V-IP with Concept-
QA takes just about 0.5 GPU hours to finish one epoch! Similar computational challenges also
plague the use of VLMs to directly provide the pseudo-labels for training the Concept-QA model in
place of our proposed pseudo-labels (equation 5). Refer Appendix §F for a discussion on this.

Figure 5: Trade-off between test accuracy vs. avg. # of
queries (explanation length). View in colour.

Description length and accuracy of V-IP
explanations. Next, we analyze the effec-
tiveness of V-IP in obtaining short and ac-
curate explanations using our query sets
and compare different answering mech-
anisms. Following are the models con-
sidered: (i) V-IP trained with Concept-
QA, Concept-QA+V-IP; (ii) V-IP trained
with CLIP continuous-valued dot prod-
ucts (standardized), CLIP+V-IP; (iii) V-IP
trained with CLIP-Binstd, CLIP-Binstd+V-
IP; (iv) V-IP trained with CLIP-Binnorm,
CLIP-Binnorm+V-IP; and (v) V-IP trained
with BLIP2-FlanT5; BLIP2-FlanT5+V-IP.
For training and architecture details for these models refer to Appendix §E. We report our results in
Figure 5. For each model, the curve was generated by selecting the stopping criterion that yielded
the best results: the stability-based criterion (see Section §3.1) for Concept-QA+V-IP and BLIP2-
FlanT5+V-IP, and the posterior-based criterion for the others.

We see in Figure 6 that Concept-QA+V-IP outperforms CLIP+V-IP (along with its binarized CLIP-
Bin variants) on all datasets in terms of the average number of queries needed to reach a desired
level of accuracy (except on CIFAR-10 for a small “low test accuracy, low avg. number of queries”
regime). As articulated previously, state-of-the-art VLMs are computationally intensive and thus,

1For both these VLMs we use the prompt “Question: Is concept present in the image (Yes/No)? An-
swer:”, where concept is replaced by the name of the concept we are interested in asking the VLM about.
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Figure 6: Example run of the V-IP algorithm on an example image from the validation set of ImageNet. Column
1 shows CLIP+V-IP trajectories, while Column 3 Concept-QA+V-IP trajectories. Refer to the caption of Figure
3 for a description of the heatmaps. The x-axis of every heatmap shows the top-10 classes according to the
posterior after termination. For queries/concepts, a green (red) colour denotes a positive (negative) dot product
in col 1 and a “Yes”(“No”) answer in col 3. View in colour. See Appendix §G for more examples.

inefficient to use for answering queries in V-IP training for large datasets like Imagenet. As a result,
we could only compare with BLIP2-FlanT5 on the three relatively smaller datasets. Our result
indicates that Concept-QA+V-IP outperforms BLIP2-FlanT5+V-IP on CIFAR-10 and CUB-200 (the
latter by a huge margin). On CIFAR-100, our model has a better trade-off for short explanation
lengths but eventually the BLIP2-FlanT5+V-IP gets better results. Interestingly, these observations
correlate well with the results in Table 1 where the answers supplied by Concept-QA are more
faithful to ground truth than the VLM on CUB-200, competitive on Cifar-10 and slightly worse
on Cifar-100. Finally, since interpretability can be seen as a constraint on learning, we discuss in
Appendix §B.1 the gap between V-IP’s performance using query sets to that of a black-box model.

Interpretability of Predictions by V-IP. Having quantitatively established the efficacy of our pro-
posed Concept-QA with V-IP, we now present qualitative examples illustrating example runs of V-IP
(See Figure 6 and more examples in Appendix §G). Our examples show a sharp contrast in inter-
pretable explanations when answers are supplied by Concept-QA vs. uninterpretable explanations
generated when answers are supplied by CLIP continuous-valued dot products.

Observe, in Figure 6 Concept-QA+V-IP starts by asking if the image is of a mammal. This first query
is independent of the image contents (see equation 1). Upon receiving a “No” answer, it proceeds to
ask if it is an animal and if it has scaly skin. Since both these answers were “Yes”, the model knows
the image is of an animal which has scales. The next query asks whether the animal lives near water,
for which the Concept-QA model incorrectly says “No”. This leads Concept-QA+V-IP down the
wrong branch where it asks questions to see if the animal is a snake (which does not necessarily live
near water bodies). After repeated “No” responses, Concept-QA+V-IP circles back and asks if the
animal is a marine animal, which gets a positive response from Concept-QA. Finally, after query 13,
Concept-QA+V-IP knows the image is of a shark and we see the posterior distribution concentrate
all its mass on three different species of sharks. Subsequently, the class “hammerhead” is eliminated
from consideration after asking whether the shark has a hard, spiny shell; a neck extending from the
body and small, beady eyes - all characteristics of a hammerhead shark. Finally, Concept-QA+V-IP
disambiguates between the great white and tiger shark by asking whether the shark has a “stocky
body”, which is a characteristic feature of great white sharks compared with tiger sharks which have
relatively sleekier bodies. Such rich transparent elucidation of the decision-making process in V-IP is
lost when the answers are taken as dot products. This is clear by observing the explanation provided
by CLIP+V-IP for the same image. Since the answers are now dot products, the queries selected by
V-IP are no longer the same. For example, after 8 queries, CLIP+V-IP has all its posterior mass on
great white and tiger sharks. However, the next two queries are about a mahout and a shaggy mane,
neither of which are related to the two shark species in consideration. However, this information is
used by CLIP+V-IP to conclude the image is of a great shark with more than 80% confidence. We
conclude this section by directing the reader to §H (in the Appendix) for a discussion on limitations
of our current approach and potential future directions.
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APPENDIX

A RELATED WORK ON LARGE LANGUAGE AND VISION MODELS

OpenAI’s GPT-3 (Brown et al., 2020) is an LLM trained on large amounts of unlabeled text in a
self-supervised manner. Recent benchmarks have demonstrated that LLMs can perform complex
human tasks, such as passing the Bar Exam (Bommarito II & Katz, 2022) and show signs of general
understanding (Bubeck et al., 2023). Adding other data modalities, CLIP (Radford et al., 2021)
is a VLM pre-trained on millions of image-text pairs. CLIP has been a building block for many
recent VLMs that achieve state-of-the-art zero-shot performance in image classification (Menon &
Vondrick, 2023), Visual Question Answering (Eslami et al., 2021; Parelli et al., 2023; Li et al., 2023),
and Video Question Answering (Ye et al., 2023). Also known as Foundational Models (Bommasani
et al., 2021), LLMs and VLMs have demonstrated strong capabilities to learn complex concepts,
which motivates our proposal to use GPT and CLIP to propose query sets for V-IP.

B EXTENDED RESULTS

B.1 ACCURACY OF CONCEPT-QA+V-IP VS. BLACK-BOX MODELS

We compare the test accuracy obtained by of Concept-QA+V-IP vs. black-box non interpretable
models in Table 2. Recall that V-IP obtains query answer chains by sequentially selecting the most
informative features until a stopping criteria is reached. For every dataset, we use the stability
criterion with parameter γ and κ: the stability criterion is reached when the difference between two
consecutive posterior entropies is below γ for κ consecutive iterations. In practice, the user chooses
the parameters for the stopping criterion by balancing the trade-off between the number of queries
used to explain the prediction and the accuracy of the prediction: a longer query chain can potentially
achieve a better accuracy but at the cost of interpretability due to longer query-answer chains. On the
extreme case, we evaluated the test accuracy of Concept-QA+V-IP with all available query answers
Q(X) are used, which corresponds to the upper limit to how well Concept-QA+V-IP can perform
with respect to using a variable number of queries. Next, we compare Concept-QA+V-IP’s accuracy
with vision-only baselines to ascertain how much accuracy is sacrificed due to the constraint of
interpretability (through query sets). For a fair comparison, we compare with CLIP’s ViT-B/16
image encoder since the Concept-QA network takes as input the image embeddings produced by this
encoder. We evaluate the test accuracy of a using Linear Probe on CLIP’s ViT-B/16 (which solves
a logistic regression problem using image embeddings of images as input features) since this was
the metric reported in the original CLIP paper (Radford et al., 2021). Moreover, we also compare
with the accuracy the ViT-B/16 vision transformer achieves on each of these datasets (supervised
training baseline). Table 2 shows that for all datasets Concept-QA+V-IP is able to achieve a test
accuracy that is close to vision-only baselines, with the exception of CUB-200 where an appreciable
gap remains (about 20%).

Table 2: Test Performance of Concept-QA+V-IP. The second column shows the sizes of the query set. Expla-
nation Length is the number of queries needed on average over all test samples to reach the stopping criterion.
Accuracy of Concept-QA+V-IP’s prediction after the stopping criteria is reached is given in column five. In
column six we report the accuracy of Concept-QA+V-IP using all available query answers Q(X). Accuracy
on pretrained CLIP ViT-B/16 using linear probe is shown in column seven. Finally, we report the supervised
classification accuracy of the ViT-B/16 vision transformer in the last column.

Dataset |Q| Stopping
Criterion (γ, κ)

Explanation
Length

V-IP Acc.
Given (γ, κ)

V-IP Acc.
Given Q(X)

CLIP ViT-B/16
Linear Probe ViT-B/16

CUB-200 208 Stability (0.127, 4) 24.7 67.0 70.8 80.0 90.6 (Demidov et al., 2023)
CIFAR-10 128 Stability (0.127, 4) 5.5 95.6 95.7 96.2 99.0 (Dosovitskiy et al., 2020)
CIFAR-100 824 Stability (0.127, 4) 21.3 77.3 80.2 83.1 91.9 (Dosovitskiy et al., 2020)
ImageNet 4523 Stability (0.127, 10) 49.6 68.2 73.8 80.2 84.2 (Dosovitskiy et al., 2020)
Places365 2207 Stability (0.127, 10) 32.1 46.5 51.5 55.1 58.2 (Singh et al., 2022)

B.2 EXAMPLES OF QUERIES qC

See Figure 7. Recall, for every concept C, the corresponding query qC is “Is concept C present in
the image?”
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1. a blue sheen on the wings
2. all-dark plumage
3. a thin, black bill
4. black cap and white "eyeline”
5. bright golden-yellow plumage
6. fast, erratic flight patterns

7. orange and black wings
8. pale gray or white color
9. red legs
10. yellow tips on the wings
11. black and white plumage
12. a small, black bird

1. a barn
2. a beetle
3. a driver
4. a long neck
5. a seatbelt
6. four legs

7. taillights
8. A living thing
9. A cargo
10. a wet nose
11. Feathers
12. a mosquito

1. a alarm clock
2. a bandit
3. a bathing suit
4. a deer
5. a keypad
6. a jungle

7. a large number of trees
8. a large, rounded bottom
9. a lobster trap
10. a long stem with thorns
11. a mirror
12. a phone book

1. a small, round disk at one end
2. a hitch for towing
3. a sleek, metallic exterior spacecraft
4. a curved or V-shaped bottom
5. a dress
6. a pump

7. a brightly lit interior
8. pipes
9. has a crater at the top
10. a gas cap
11. a sign that says “no dumping”
12. a family of penguins

1. paved with asphalt or concrete
2. a large, cabin-like structure
3. white or light-colored walls
4. Hair
5. a band
6. a tennis court 

7. a buffalo
8. a erect ears
9. protective gear
10. a doctor
11. a large, rotund body
12. a long, snake-like shape

Figure 7: Sampled queries from the query set generated by GPT. Query generation process is discussed in
Appendix D.

C DETAILS OF USER-ANNOTATED QUERY ANSWERS

Survey Creation. Each dataset is given a query set Q and has 1000 images randomly selected
from the test set. For each VQA system, all queries qC ∈ Q are evaluated on the images sampled.
Given the set of all query answers, we sample 250 positive image-query pairs where the VQA
system answers “yes” (qC(x) = 1) and 250 negative image-query pairs where the answer is “no”
(qC(x) = 0). Hence, a given dataset and VQA system should have 500 image-query pairs with equal
number of positive and negative query answers pairs. For evaluation, each VQA system is evaluated
on the 2,000 image-query pairs collectively gathered from the four different VQA systems. Since
the performance of VQA systems may vary query to query, our sampling processing ensures that
the evaluation set does not favor any of the VQA system by oversampling with positive/negative
query-answer pairs from any single system.
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Survey format. Each evaluation requires a sampled image x and a query qC . The evaluator (the
person performing the evaluation) is presented a picture of the plotted image and question “Is the
concept {concept} present in the image?” as title, with {concept} replaced by the concept being
evaluated. The evaluator is asked to answer only in yes or no. Two examples for evaluating ImageNet
are presented in Figure 8.

Figure 8: Two examples of pictures presented to the evaluator to evaluate the presence of a concept C in a given
image x.

Providing Labels. Combining the surveys for each dataset and for each model, there are a total
of 10,000 individual evaluations of to answer. Every evaluation is completed by the authors of this
work over the span of two weeks. On average, each person spends about 20 mintues to perform 500
image-concept evaluations.

D IMPLEMENTATION: CONCEPT-QA

Query Set Generation. To obtain a task-relevant and interpretable query set, we follow the practice
Oikarinen et al. (2023) to prompt GPT. We briefly reiterate the process of prompting GPT and
filtering concepts below:

For a given dataset, we first query GPT-3 with the following prompts:

• List the most important features for recognizing something as a {class}
• List the things most commonly seen around a {class}
• Give superclasses for the word {class}

where {class} is the name of a class. We query GPT with this prompt layout for every class.
Then, a number of filters are applied the the set of concepts generated to improve the interpretability
of the concepts. For instance, concepts with more than 30 characters are removed, and concepts
that are too similar to class names are also removed. For filtering details, please refer directly to
Oikarinen et al. (2023). The resulting sizes for the set of concepts used in our following experiments
can be found in Table 2 (second column to the left).

pseudo-labels from GPT. To obtain pseudo-labels from GPT, we use OpenAI’s API to prompt GPT
with the following lines of text:

Answer yes/no/depends for whether the following concepts are salient
for recognizing a ’{class}’: {concept1}, {concept2}, ..., {conceptN}.
Output format: <concept>: <answer>: <explanation>. Answer as a list.

where {class} is the name of the class, {concept1}, {concept2}, ..., {conceptN}
corresponds to the list of concepts generated, separated by commas, assuming there are a total of N
concepts. We repeat this prompting process for every possible class of a given dataset. The number
of concepts N varies for each dataset.
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Architecture. The network architecture of the Concept-QA is the same for every dataset and a
diagram of its architecture is shown in Figure 9. Inputs to the network are CLIP image embedding
I(x) of a given image x and text embeddings T (C) for a given concept C. The assume that T (x)
and I(C) are ℓ2-normalized. Output of the Concept-QA is a scalar-valued probability, indicating
whether the concept C is present in the image x.

Linear (1024, 512)

Linear (512, 256)

Linear (256, 128)

Linear (256, 128)

Linear (64, 1)

Figure 9: Architecture of Concept-QA. ReLU nonlinearity followed by a BatchNorm are used between each
Linear layer.

Optimization. For each dataset, Concept-QA is optimized using the Binary Cross Entropy ob-
jective. For CIFAR-10, the network is optimized using Stochastic Gradient Descent (SGD) with
learning rate 0.01, momentum 0.9 and weight decay 5 · 10−4. For CIFAR-100, the network is also
optimized using Stochastic Gradient Descent (SGD), but with learning rate 0.1, momentum 0.9 with
Nesterov=True, weight decay 5·10−4. For CUB, the optimizer is the same as CIFAR-10, except
momentum 0.9 with Nesterov=False. For ImageNet and Places365, the network is optimized
with learning rate 10−4, weight decay 0, and amsgrad=True. For learning rate schedulers, each
dataset uses a Cosine Annealing Learning Rate scheduler with T max=200.

E IMPLEMENTATION: V-IP

We specify the details of the the query answers, architectures and optimization methods used for
training Concept-QA+V-IP in Appendix E.4 and training CLIP+V-IP in Appendix E.1. Meanwhile,
the V-IP objective and the way we represent histories are stated below.

Figure 10: Overview of the V-IP algorithm.

V-IP Objective. V-IP was introduced by Chattopadhyay et al. (2023) as a variational approach to IP
which is very efficient in practice. V-IP defines a predictor f : S → P(Y ) and a querier g : S → Q
that map a query-answer chain s ∈ S of any finite length to a distribution over Y (P(Y ) denotes
the set of all possible distributions on Y ) and query q ∈ Q, respectively. Parameterized by deep
networks θ and η, fθ and gη are trained by sampling random query-answer chains and optimizing
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the following V-IP objective:

min
θ,η

EX,S [DKL(P (Y | X)∥Pθ(Y | qη(X), S)] (7)

where qη := gη(S)

Pθ(Y | qη(X), S) := fθ({qη, qη(X) ∪ S}),

where P (Y = y | X = x) is the true posterior over Y given input X . Throughout this paper,
conditioning on event S = s should be understood as the set of all datapoints in X that share the
same answers to queries as in s. Both Concept-QA+V-IP and CLIP+V-IP are learned by solving for
θ and η in the optimization problem stated in equation 7.

Representing and Updating the History S. In V-IP framework, the input to predictor fθ and
querier gη are both histories S. Similar to Chattopadhyay et al. (2023), the history for a sample x,
S(x), is represented as the product of |Q|-dimensional feature vector for all query answers Q(x) and
a binary mask M , i.e. Q(x)⊙M , where⊙ here represents point-wise multiplication, also known as
the Hadamard product. The i-th dimension corresponds to the query answer qi(x). We set Mi to 0
if the qi(x) ̸∈ S and 1 if qi(x) ∈ S. Hence, a history with all query answers has M equal to a vector
of all ones, and an empty history is represented by a mask of all zeros.

Suppose we have a history for sample x of size k, Sk(x) = Q(x) ·Mk. To update the history Sk

with an additional query from the output of the querier gη(Sk), we simply update the mask and the
history by:

Mk+1 ←Mk + gη(Sk) and Sk+1 ← Sk +Q(x)⊙ gη(Sk)

In other words, the new query is mathematically represented as a one-hot vector with dimension |Q|,
hence updating the representation of history is equivalent to updating the binary mask M by setting
i-th position to 1, indicating that the qi(x) is in the updated history Sk+1(x).

E.1 TRAINING CLIP+V-IP

Query Answers Q(X). Query answers are computed using CLIP dot-products. Again, we denote
I(·) and T (·) as the image and text encoder from CLIP. For any task and dataset, we obtain the
image embeddings of all images I(x) ∀x ∈ X and T (q) ∀q ∈ Q. Each embedding is assumed to
be ℓ2-normalized, then the query answer q(x) = I(x) · T (q). We further Z-score standardize each
query answer by subtracting the mean and dividing the standard deviation of query answers from
the training set:

q(x)← q(x)− µ̂

σ̂
, µ̂ =

1

|X ||Q|
∑
x∈X

∑
q∈Q

q(x), σ̂ =

√√√√∑
x∈X

∑
q∈Q

(q(x)− µ̂)2

|X ||Q|
, (8)

which can be computed easily with np.mean and np.std.

For fair comparisons, we use CLIP with ViT-B/16 backbone. Each image is preprocessed with
CLIP’s default preprocess function (Radford et al., 2021).

Architectures. In this work, we only have two design choices for the predictor fθ and querier gη ,
which we will denote them as shallow and deep. shallow is a two-layer fully connected neural
network, and deep is a four-layer fully connected neural network. Diagrams of their architecture
are shown in Figure 11. The shallow architecture is used for medium-scale datasets CIFAR-
10, CIFAR-100, CUB-200. The deep architecture is used for large-scale datasets ImageNet and
Places365. The number of parameters for each experiment is listed in Table 3. The architecture
design is chosen empirically based on the performance of the model. The size of the query set only
affects the final output dimension of the querier gη , and the number of classes affects the final output
dimension of the classifier fθ. In all of our experiments, we do not share the weights between fθ
and gη . We apply Softmax operator to class logits and query scores to obtain probability for each
class and probability for each query.During training, a Straight-through softmax with temperature
parameter τ is used for computing query probabilities. For every experiment, we linear decay τ
from 1.0 to 0.2 for 20 epochs 2. We find V-IP training is rather insensitive to how we anneal τ .

2τ = 1.0 is equivalent to regular Softmax operator, whereas τ → 0 corresponds to argmax(·) operator.
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Linear 2000

Linear 500
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Linear 500
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(a) deep architecture for (left) predictor fθ and (right) querier gη .

Linear 2000

Linear 500

Linear 2000

Linear 500

Linear 1000

Concatenated

Class Logits

shared

shared

Linear 2000

Linear 500

Linear 2000

Linear 500

Linear 1000

Concatenated

Query Scores

shared

shared

(b) shallow architecture for (left) predictor fθ and (right) querier gη .

Figure 11: Architecture designs for shallow and deep. “shared” implies the weights are shared between the
two linear layers. “Concatenated” implies the output from previous layers are concatenated (a ∈ R1×n, b ∈
R1×, concat(a, b) = [a|b] ∈ R1×(n+m)). Every arrow → before the concatenation and after the input layer is
LayerNorm of appropriate dimension, followed by ReLU.
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# of Parameters CUB-200 CIFAR-10 CIFAR-100 ImageNet Places365

CLIP+V-IP 3,051,408 2,596,138 5,773,924 41,659,523 29,441,572

Table 3: The total number of parameters for each dataset.

Optimization. Every CLIP+V-IP experiment for CIFAR-10, CIFAR-100, CUB-200 follow the two-
stage training procedure mentioned in the Chattopadhyay et al. (2023), where we optimize the V-IP
objective for fθ and gη with random histories, by first using the Random Sampling strategy for 4000
epochs with learning rate 0.0001, followed by the Subsequent Biased Sampling strategy for 1500
epochs with learning rate 0.00005. In both stages, we train using Adam Optimizer (Kingma & Ba,
2015) with no weight decay, along with Cosine Annealing learning rate scheduler and hyperparam-
eter T max=100.

Similarly, for large-scale datasets ImageNet and Places365, we also follow the two-stage training
procedure. We use the same optimizer and learning rate scheduler with the same optimizer hyper-
parameter as mentioned above, but we train the Random Sampling stage for 400 epochs, and train
the Subsequent Biased Sampling stage for 40 epochs. In both stages, we also train using Adam
Optimizer (Kingma & Ba, 2015) with no weight decay, but with Cosine Annealing learning rate
scheduler and hyperparameter T max=100.

E.2 TRAINING CLIP-BINSTD+V-IP

The architecture and optimization exactly the same as described in §E.1 with the distinction that the
query answers are now binarized by thresholding the standardized dot products from equation 8 by
0. A positive value indicates a “Yes” answer while a negative value indicates a “No” answer.

E.3 TRAINING CLIP-BINNORM+V-IP

The architecture and optimization exactly the same as described in §E.1 with the distinction that the
query answers are now binarized by thresholding PCLIP(C=1 |X=x) (equation 4) by 0.5. A higher
value indicates a “Yes” answer while a lower value indicates a “No” answer.

E.4 TRAINING CONCEPT-QA+V-IP

Query Answers Q(X). Query answers are computed using a trained Concept-QA. To obtain binary
query answers, we threshold the pre-sigmoid output logit of the Concept-QA, where the query an-
swer is 1 (corresponding to a “Yes”) if logit is above the threshold and 0 (corresponding to a “No”)
if logit is below. The threshold is -0.4 for CUB-200 and Places365 and 0 for others.

Architecture. The network architectures for V-IP with query answers from Concept-QA are shown
in Figure 12. Similar to the querier architecture in Chattopadhyay et al. (2023), the querier is fol-
lowed by a Straight-through Softmax, hence the output is a |Q|-dimensional one-hot vector.

Table 4: Number of training epochs during Random Sampling stage (RS) and Subsequent Biased Sampling
stage (SBS). The maximum lengths of history allowed during SBS (denoted as Max. |S|) are also listed. |Q|
means for that dataset we used the size of the query set as the maximum allowed length of history for SBS.

Dataset RS SBS Max. |S|
CUB-200 200 200 |Q|
CIFAR-10 200 100 |Q|
CIFAR-100 200 200 |Q|
Places365 1500 80 500
ImageNet 600 100 500

Optimization. For every dataset, training Concept-QA+V-IP follows the two-stage procedure as
mentioned in the Chattopadhyay et al. (2023), where we optimize the V-IP objective for fθ and
gη with random histories. In the Random Sampling Stage, the classifier fθ and the querier gη are
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Linear 2000

Linear 500

Class Logits

(a) Classifier fθ

Linear 2000

Linear 500

Query Logits

(b) Querier gη

Figure 12: Architecture for Concept-QA+V-IP. Between each linear layer is ReLU nonlinearity followed by
LayerNorm.

optimized joining using Adam optimizer with learning rate 0.0001 and amdgrad=True, while
learning rate is scheduled using Consine Annealing with T max=200. In the Subsequent Biased
Sampling stage, the classifier fθ is optimized using SGD with learning rate 0.0001, Nesterov’s mo-
mentum 0.9 and weight decay 5·10−4, while learning rate is multi-step scheduled to decay at epochs
with multiples of 30 by a factor of 0.2. On the other hand, querier gη is optimized with Adam with
learning rate 0.0001 and no weight decay, while learning rate is scheduled with Cosine Annealing
with T max=200. Moreover, during Subsequent Biased Sampling, we limit the maximum length
of the history for computational purposes. The number of epochs for each dataset during the two
training phases, as well as the number of maximum length of the history allowed during training is
listed in Table 4.

E.5 TRAINING BLIP2-FLANT5+V-IP

The architecture and optimization exactly the same as described in §E.4 with the distinction that the
query answers are now supplied by the pre-trained Vision-Language Model BLIP2 ViT-g FlanT5XL.

E.6 OBTAINING PGPT FROM LLAMA2

To obtain pseudo-labels from a language model Llama2, we provide the instruction prompt and a
user prompt.

Llama2. We requested and downloaded the open-source weights for Llama model from Meta. We
use the chat llama-2-13b-chat model in a zero-shot fashion (without any finetuning). The
instruction prompt is as follows:

You are a helpful, respectful and honest assistant. Always
answer as helpfully as possible, while being safe. Your answers
should not include any harmful, unethical, racist, sexist, toxic,
dangerous, or illegal content. Please ensure that your responses
are socially unbiased and positive in nature.

whereas the user prompt is the same as that for GPT from Appendix D. For hyperparameters, we set
temperature to 0.6 and top-p probability for nucleus sampling to 0.9.

F EVALUATING THE FAITHFULNESS OF OUR PSUEDO-LABELS

We evaluate the quality of our pseudo-labels by computing their accuracy and F1-score of over the
5 image classification datasets considered in this paper. We also compare with baseline methods
which are state-of-the-art VLMs that present an alternative approach to directly get pseudo-labels
for training the Concept-QA model. Specifically, we compare with InstructBLIP (FlanT5XL) (Dai
et al., 2023) and the LLaVa-1.57B models (Liu et al., 2024). For InstructBLIP (FlanT5XL) we use the
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same prompt as in footnote 1 of the main paper. For LLaVa-1.57B we use the prompt “Is concept
present in the image? Answer only Yes or No.”, where concept is replaced by the name of the
concept we are interested in asking the VLM about. Furthermore, we compare the quality of pseudo-
labels generated when using a different LLM (LLaMa2 (Touvron et al., 2023)) instead of GPT in
equation 5. For more details refer Appendix E.6.

Table 5: Results for evaluating the faithfulness of different pseudo-label gen-
erating mechanisms to the true answers. Acc. and F1 refer to accuracy and
F1-score metrics respectively.

Pseudo-labelling method ImageNet Places365 CUB-200 CIFAR-10 CIFAR-100
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

GPT+CLIP 0.86 0.55 0.82 0.42 0.79 0.53 0.81 0.62 0.79 0.37
LLaMa2+CLIP 0.81 0.46 0.75 0.47 0.62 0.45 0.78 0.61 0.84 0.33

InstructBLIP (FlanT5XL) 0.85 0.58 0.86 0.66 0.68 0.46 0.82 0.62 0.84 0.40
LLaVa-1.57B 0.63 0.41 0.66 0.47 0.49 0.46 0.69 0.52 0.66 0.25

We evaluate all four mod-
els on the same anno-
tated data of image-concept
pairs as used in Table 1.
The results of this experi-
ments are reported in Ta-
ble 5 where “GPT+CLIP”
refers to the pseudo-labels
we used in training our
Concept-QA method in this
work (specifically equa-
tion 5). Similarly, “LLaMa2+CLIP” refers to pseudo-labels generated using equation 5 when
LLaMa2 is used as the LLM in place of GPT. From the results we make two observations. Firstly,
we note that using GPT as the LLM provides far superior pseudo-labels than LLaMa2 on all the 5
datasets employed. Secondly, on all datasets our pseudo-labels (GPT+CLIP) are more faithful at
representing the true ground truth answers than the LLaVa model while being only slightly behind
when compared to InstructBLIP3

However, as discussed in §4 in the main paper, using these VLMs for training Concept-QA model
is infeasible since they are computationally very intensive. For context, Imagenet has about 1.2
million images in its training set and the corresponding query set (obtained from GPT) has about
4.5K queries. In order to generate pseudo-labels for training our Concept-QA model we need to
answer all queries about all images in the training data. This would require about 37K GPU hours
using the InstructBLIP (FlanT5XL) model (evaluated on NVIDIA RTX A5000 GPU, by averaging
the time taken for computing a batch of 100 image-query pairs and then multiplying by the size
of the training set and the query set) which is simply infeasible. In comparison, our GPT + CLIP
methodology to generate psuedolabels (see equation 5) takes about 600 GPU hours. The bulk of this
computation time comes from using GPT, which takes about 1-2 minutes to answer batches of 200
queries per class. Compared to the VLM, this is a massive speed-up! In Table 6 we report the time
taken to generate pseudo-labels using our method vs. the time taken to annotate all image-query
pairs using the InstructBLIP (FlanT5XL) model for all 5 datasets employed. We do not compare
with LLaVa, since our pseudo-labels outperform LLaVa on both metrics on all 5 datasets. However,
since both LLaVa-1.57B and InstructBLIP (FlanT5XL) have the number of parameters of the same
order (7B vs. 4B respectively), their evaluation times are of similar magnitudes.

Table 6: Time taken to annotated the enture training dataset with query answers using different pseudo-label
generating mechanisms. Numbers in GPU hours.

Dataset GPT+CLIP (Ours) InstructBLIP (FlanT5XL)

CIFAR-10 0.2 41
CIFAR-100 12 266
CUB-200 20 6
Places365 83 25,650
ImageNet 600 37,344

3with the exception of CUB-200 and Places365. On CUB-200, our pseudo-labels perform much better due
to the domain-specific nature of this dataset which is too specialized for these general-purpose VLMs to have
good zero-shot performance. On Places365, InstructBLIP achieves a much higher F1-score than our pseudo-
labels. We hypothesize that this is due to CLIP’s image encoder not being able to capture essential image
semantics for this dataset as discussed in §4 (discussion of results for Table 2.)

21



Published as a conference paper at ICLR 2024

G ADDITIONAL EXAMPLES OF QUERY-ANSWER CHAINS

We illustrate more test examples of query-answer chains using ConceptQA+V-IP and CLIP+V-IP
on CUB-200 13, CIFAR-10 17, CIFAR-100 16, ImageNet 14, Places365 15.For datasets with more
than 10 classes, we show only the classes with the top 10 probability class where IP terminates.
For examples using CLIP+V-IP, green/red query (y-axis of the plots) represents whether the query-
answer is above/below 0. For examples using Concept-QA+V-IP, the green/red query represents
whether query-answer is a yes/no. See caption of Figure 3 for a description of the heatmaps.

H LIMITATIONS & FUTURE DIRECTIONS

Following are the limitations of our work.

• Prior work on V-IP required the user to annotate datasets with query-answers which could
be used to supervise the training of classifiers to provide answers at inference time. In
this work, to overcome this data annotation bottleneck we propose to use GPT + CLIP to
provide psuedo-labels to train our answering mechanism (the Concept-QA model). This
inevitably leads to a loss in accuracy since we rely on the zero-shot performance of these
large language models and vision language models. Future work would aim to address this
limitation by exploring a hybrid approach where we manually annotate a small portion of
the data and use it in tandem with the pseudo-labels to train the Concept-QA model.

• The current approach is limited to the problem of image classification due to the assump-
tions involved in deriving our pseudo-labels, that is, the class object is the focal point of the
image (mentioned in Section 3.2.3). Future work would be aimed at exploring other ways
of generating pseudo-labels to extend the application of V-IP to more general vision tasks
such as image captioning, scene segmentation and visual reasoning to name a few.
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CLIP+V-IP: V-IP with CLIP dot products as answers Concept-QA+V-IP with Concept-QA answersInput Image 𝑥!"#

(a) True class: Pine Grosbeak
CLIP+V-IP: V-IP with CLIP dot products as answers Concept-QA+V-IP with Concept-QA answersInput Image 𝑥!"#

(b) True class: Hooded Oriole
CLIP+V-IP: V-IP with CLIP dot products as answers Concept-QA+V-IP with Concept-QA answersInput Image 𝑥!"#

(c) True class: Eastern Towhee
CLIP+V-IP: V-IP with CLIP dot products as answers Concept-QA+V-IP with Concept-QA answersInput Image 𝑥!"#

(d) True Class: Kentucky Warbler

Figure 13: Additional Examples from CUB-200.
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CLIP+V-IP: V-IP with CLIP dot products as answers Concept-QA+V-IP with Concept-QA answersInput Image 𝑥!"#

(a) True class: Armadillo
CLIP+V-IP: V-IP with CLIP dot products as answers Concept-QA+V-IP with Concept-QA answersInput Image 𝑥!"#

(b) True class: Pinwheel
CLIP+V-IP: V-IP with CLIP dot products as answers Concept-QA+V-IP with Concept-QA answersInput Image 𝑥!"#

(c) True class: Studio Couch
CLIP+V-IP: V-IP with CLIP dot products as answers Concept-QA+V-IP with Concept-QA answersInput Image 𝑥!"#

(d) True class: Artichoke

Figure 14: Additional Examples from ImageNet.

24



Published as a conference paper at ICLR 2024

CLIP+V-IP: V-IP with CLIP dot products as answers Concept-QA+V-IP with Concept-QA answersInput Image 𝑥!"#

(a) True class: Baseball Field
CLIP+V-IP: V-IP with CLIP dot products as answers Concept-QA+V-IP with Concept-QA answersInput Image 𝑥!"#

(b) True class: Landing Deck
CLIP+V-IP: V-IP with CLIP dot products as answers Concept-QA+V-IP with Concept-QA answersInput Image 𝑥!"#

(c) True class: Aquarium
CLIP+V-IP: V-IP with CLIP dot products as answers Concept-QA+V-IP with Concept-QA answersInput Image 𝑥!"#

(d) True class: Roch Arch

Figure 15: Additional Examples from Places365.

25



Published as a conference paper at ICLR 2024

CLIP+V-IP: V-IP with CLIP dot products as answers Concept-QA+V-IP with Concept-QA answersInput Image 𝑥!"#

(a) True class: Apple
CLIP+V-IP: V-IP with CLIP dot products as answers Concept-QA+V-IP with Concept-QA answersInput Image 𝑥!"#

(b) True class: Bed
CLIP+V-IP: V-IP with CLIP dot products as answers Concept-QA+V-IP with Concept-QA answersInput Image 𝑥!"#

(c) True class: Chair
CLIP+V-IP: V-IP with CLIP dot products as answers Concept-QA+V-IP with Concept-QA answersInput Image 𝑥!"#

(d) True Class: Skyscraper

Figure 16: Additional Examples from CIFAR-100.
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CLIP+V-IP: V-IP with CLIP dot products as answers Concept-QA+V-IP with Concept-QA answersInput Image 𝑥!"#

(a) True class: Trucks
CLIP+V-IP: V-IP with CLIP dot products as answers Concept-QA+V-IP with Concept-QA answersInput Image 𝑥!"#

(b) True class: Airplanes

Figure 17: Additional Examples from CIFAR-10.
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