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Abstract

The support vector machine (SVM) and minimum Euclidean norm least squares
regression are two fundamentally different approaches to fitting linear models,
but they have recently been connected in models for very high-dimensional data
through a phenomenon of support vector proliferation, where every training ex-
ample used to fit an SVM becomes a support vector. In this paper, we explore the
generality of this phenomenon and make the following contributions. First, we
prove a super-linear lower bound on the dimension (in terms of sample size) re-
quired for support vector proliferation in independent feature models, matching the
upper bounds from previous works. We further identify a sharp phase transition in
Gaussian feature models, bound the width of this transition, and give experimental
support for its universality. Finally, we hypothesize that this phase transition occurs
only in much higher-dimensional settings in the ℓ1 variant of the SVM, and we
present a new geometric characterization of the problem that may elucidate this
phenomenon for the general ℓp case.

1 Introduction

The support vector machine (SVM) and ordinary least squares (OLS) are well-weathered approaches
to fitting linear models, but they are associated with different learning tasks: classification and
regression. In this paper, we study the case in which the models return exactly the same hypothesis
for sufficiently high-dimensional data.

The hard-margin SVM is a linear classification model that finds the separating hyperplane
that maximizes the minimum margin of error for every training sample. If the training data
(x1, y1), . . . , (xn, yn) ∈ Rd × {±1} are linearly separable, then the resulting linear classifier is
x 7→ sign (xTwSVM), where wSVM is the solution to the following optimization problem:

wSVM = argmin
w∈Rd

∥w∥2 such that yiw
Txi ≥ 1, ∀i ∈ [n]. (1)

An example xi is a support vector if the corresponding constraint is satisfied with equality, and the
optimal solution wSVM is a linear combination of these support vectors.

Ordinary least squares regression finds the linear function that best fits the training data
(x1, y1), . . . , (xn, yn) ∈ Rd × R according to the sum of squared errors. When the solution is
not unique, it is natural to take the solution of minimum Euclidean norm; this is the convention we
adopt. Taking X := [x1| . . . |xn]

T ∈ Rn×d and y := (y1, . . . , yn), the solution is the hypothesis
x 7→ wT

OLSx where wOLS is the solution to the following: wOLS = argminw∈Rd ∥w∥2 such that
XTXw = XTy. In many high-dimensional settings (e.g., where X has full row rank), the solution
may in fact interpolate the training data, i.e.,

wOLS = argmin
w∈Rd

∥w∥2 such that wTxi = yi, ∀i ∈ [n]. (2)
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Although the optimization problems in (1) and (2) are very different, they have been observed to
coincide in very high-dimensional regimes. The study of this support vector proliferation (SVP)
phenomenon—in which every training example is a support vector—was recently initiated by
Muthukumar et al. [35] and Hsu et al. [23]. Roughly speaking, they show that SVP occurs when
d = Ω(n log n) for a broad class of sample distributions, and that SVP does not occur when d = O(n)
in an idealized isotropic Gaussian case.

SVP is a phenomenon that connects linear classification and linear regression, topics that have received
renewed attention due to the break-down of classical analyses of these methods in high-dimensions.
For instance, some analyses of SVM that are based on the number of support vectors become vacuous
when this number becomes large [e.g., 19, 20, 44]. Similarly, overparameterized linear regression is
typically only studied in noisy settings with explicit regularization. It was not until recently that SVM
and OLS have been meaningfully analyzed in these regimes (see Section 1.2), and the connection
between the two approaches via SVP has played an important analytical role [9, 35, 46].

In this work, we further examine support vector proliferation with the goal of broadly understanding
when and why SVMs and OLS coincide. We pose and study the following questions:

1. How general is the SVP phenomena? What relationship between d and n determines if the
solutions to (1) and (2) coincide?

We close the log n gap from the prior work of Hsu et al. [23] by showing that d ≳ n log n is
necessary for SVP to occur under a model of independent subgaussian features, even with constant
probability. Our lower-bounds hold for a broad class of distributions over xi, and they match
the upper-bounds from [23]. This demonstrates that SVP is extremely unlikely to occur in the
much-studied d = Θ(n) setting.

2. Is there a sharp threshold separating the occurrence and non-occurrence of this phenomenon? Is
this threshold universal across all “reasonable” distributions over each xi?

We hypothesize that a sharp phase transition occurs at d = 2n log n. We rigorously prove this
hypothesis for isotropic Gaussian features and quantitatively bound the width of the transition.
We experimentally observe the same transition for a wide range of other distributions.

3. Is support vector proliferation specific to the ℓ2 SVM problem? If (1) and (2) are generalized to
instead minimize ℓp norms, does this still occur at the same rate?

We re-frame this question with a geometric characterization of the dual of the SVM optimization
problem for ℓp norms. We conjecture that a similar phase transition occurs for ℓ1, but also that it
requires much larger dimension d; this is supported by preliminary experiments.

1.1 Outline of our results

Section 2 introduces the SVM and OLS approaches in full generality, our λ-anisotropic subgaussian
data model, and prior results about SVP. Several equivalent characterizations of SVP are established
(Proposition 1) for use in subsequent sections.

Section 3 characterizes when SVP does not occur for a broad range of distributions (Theorem 3). Our
lower-bound on the dimension required for SVP matches the upper-bounds from [23] in the isotropic
Gaussian setting, resolving the open question from that work, and also gives new lower-bounds
for anisotropic cases. The proof works by tightly controlling the spectrum of the Gram matrix and
establishing anti-concentration via the Berry-Esseen Theorem.

Section 4 establishes a sharp threshold of d = 2nlog n for SVP in the case of isotropic Gaussian
samples, and also characterize the width of the phase transition (Theorem 4).

Section 5 provides empirical evidence that the sharp threshold observed in Section 4 holds for a
wide range of random variables. Rigorous statistical methodology inspired by Donoho and Tanner
[16] is used to test our “universality hypothesis” that the probability of SVP does not depend on the
underlying sample distribution as d and n become large.

Section 6 asks the questions about SVP from the preceding sections in the context of ℓ1-SVM and
minimum ℓ1-norm interpolation. Specifically, the SVP threshold for ℓ1 is conjectured to occur for
d = ω(n log n). Evidence for this conjecture is provided in a simulation study and in geometric
arguments about random linear programs.
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1.2 Related work

Prior works connecting SVP and generalization. Muthukumar et al. [35] initiate the study of
SVP in part to facilitate generalization analysis of the SVM in very high-dimensional settings. Their
work, as well as the contemporaneous work of Chatterji and Long [10], shows that the SVM enjoys
low test error in certain regimes where classical learning-theoretic analyses would otherwise yield
vacuous error bounds. (In fact, one of the settings in [10] requires polynomially-higher dimension
than is typically studied: d = Ω(n2 log n).) The coincidence between SVM and OLS identified by
Muthukumar et al. was also more recently used by Wang and Thrampoulidis [46] and Cao et al. [9]
for analyses of linear classification in very high dimensions under different data distributions.

The generalization analysis of Muthukumar et al. concerns a data model inspired by the spiked
covariance model of Wang and Fan [47]. They identify a regime of overparameterization where the
hard-margin SVM classifier has good generalization (i.e., classification risk going to 0) even when all
the training samples are supoort vectors. Our new lower bound can be regarded as establishing a limit
on this approach to the analysis of SVM; specifically, if the (effective) dimension is not sufficiently
large, the OLS and SVM solutions may not coincide.

Prior analyses of number of support vectors. Besides its relevance to generalization analysis, the
number of support vectors in an SVM model is an interesting quantity to study in its own right. Hsu
et al. [23] sharpen and extend the analysis of Muthukumar et al. [35] about SVP in the independent
features model that we also adopt. They prove that SVM on n samples with d independent subgaussian
components coincides with OLS when d = Ω(n log n) with probability tending to 1. They also give
a converse result stating that the coincidence fails with constant probability when d = O(n) in the
isotropic Gaussian feature model. (We give these results here as Theorems 1 and 2 respectively.)
Our results generalize and tighten the latter bound to tell an asymptotically sharp story about the
phase transition for both isotropic and anisotropic random vectors with subgaussian components. Our
specific analysis for the isotropic Gaussian case gives the exact point of the phase transition.

The number of support vectors is also studied in the context of variants of SVM [3, 39], including the
soft-margin SVM [12] and the ν-SVM [37]. In these cases, the asymptotic number of support vectors
is shown to be related to the noise rate in the problem. The setups we study are linearly separable,
which makes it possible to study the hard-margin SVM (without regularization). The hard-margin
SVM is also of interest because it captures the implicit bias of gradient descent on the logistic loss
objective for linear predictors [25, 38].

Phase transitions have been studied in the context of linear classification [8, 13, 27, 40], and SVMs
in particular [7, 14, 28, 30], but most study qualitative changes in behavior other than support vector
proliferation. The most relevant is the study of Buhot and Gordon [7], who employ techniques from
statistical physics to show the existence of phase transitions for the generalization error, margin size,
and number of support vectors as n and d = Θ(n) become arbitrarily large. While they characterize
the fraction of samples that are support vectors, they do not address our question about when all
samples are support vectors, not just a large fraction. Indeed, our results demonstrate that their regime
where d grows linearly with n will not exhibit support vector proliferation when n and d in the limit.

Overparameterized linear regression. There has been a recent flurry of analyses of overparame-
terized linear regression models [e.g., 4, 5, 21, 24, 29, 32–35, 47, 48]. Many of these analyses are
carried out in the d = Θ(n) asymptotic regime, whereas our work studies a phase transition that
occurs in a much higher-dimensional regime. The notions of effective dimensions we use are present
in the analyses of Bartlett et al. [4] and Muthukumar et al. [35], and the latter work identifies regimes
where SVM and OLS coincide and enjoy good performance for both classification and regression.

High-dimensional geometry and universality. Our conjecture about support vector proliferation
for ℓ1-SVMs derives inspiration from studies of high-dimensional geometric phase transitions,
particularly those by [1, 2, 15]. These results consider the geometry of random polytopes. Amelunxen
and Bürgisser [1] establish phase transitions on the feasibility and boundedness of the solutions to
random linear programs, Amelunxen et al. [2] extend these results to characterize when ℓ1-norm
minimizing solutions to sparse recovery problems are exactly correct, and Donoho and Tanner [15]
bound the number of faces of random polytopes. We also borrow heavily from [16] when designing
our experiments in Section 5 to test the universality hypothesis.
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2 Preliminaries

This section introduces notation, as well as the optimization problems and data models we consider.
We also define support vector proliferation and prove the equivalence of different formulations.

2.1 Notation

For λ ∈ Rd
+, we define the ℓ2 and ℓ∞ dimension proxies as d2 := ∥λ∥21/∥λ∥22 and d∞ := ∥λ∥1/∥λ∥∞

Let [n] := {1, . . . , n}. For some vector w ∈ Rn and matrix A ∈ Rn×d, we let wi and Ai

denote the ith element of w and row of A respectively; likewise, we let A·,j ∈ Rn represent
the jth column of A. We abuse notation to let w\i = (w1, . . . , wi−1, wi+1, . . . , wn) ∈ Rn−1,
w[m] = (w1, . . . , wm) ∈ Rm, w\[m] = (wm+1, . . . , wn) ∈ Rn−m, and w[m]\i = (w[m])\i ∈ Rm−1

for i ∈ [m] and m ∈ [n]. Analogous notation holds for A\i, A[m], A\[m], and A[m]\i. We frequently
consider the Gram matrix K := XXT ∈ Rn×n for feature matrix X ∈ Rn×d; for these matrices, we
let K\i = X\iX

T

\i ∈ R(n−1)×(n−1) and analogously define K[m], K\[m], and K[m]\i. Let µmax(A)

and µmin(A) represent the largest and smallest eigenvalues of the matrix A respectively, and let ∥A∥
be the operator norm of A. For some vector y ∈ Rn, we let diag(y) ∈ Rn×n be a diagonal matrix
with (diag(y))i,i = yi. Throughout, boldface characters refer to random variables.

2.2 Optimization problems

We consider the hard-margin support vector machine (SVM) optimization problem and ask under
what conditions one may expect all the slackness conditions to be satisfied. We consider training
samples (x1, y1), . . . , (xn, yn) ∈ Rd×{±1} in a high-dimensional regime where d ≫ n with design
matrix X := [x1| . . . |xn]

T ∈ Rn×d and Gram matrix K = XXT ∈ Rn×n. In full generality, the
separating hyperplane corresponding to the ℓp-SVM problem for some p ≥ 1 is the solution to the
following optimization problem:

min
w∈Rd

∥w∥p such that yiw
Txi ≥ 1, ∀i ∈ [n]. (SVM Primal)

Our results in Sections 3–5 concern p = 2, and we discuss p = 1 in Section 6. It is worth mentioning
that feasibility is not a concern in the settings we consider.1 An example (xi, yi) is called a support
vector if it lies exactly on the margin defined by separator w, or equivalently if yiwTxi = 1. It is
well-known that w can be represented as a non-negative linear combination of all yixi where xi is a
support vector [43].

We contrast the weights of the classifier returned by SVM Primal with the weights of minimum
ℓp-norm that satisfy the normal equations of ordinary least squares (OLS). In the case where the
training data can be linearly interpolated, this optimization problem is:

min
w∈Rd

∥w∥p such that yiw
Txi = 1, ∀i ∈ [n]. (Interpolation Primal)

Per the convention mentioned in the introduction, the solution of (Interpolation Primal) when p = 2
is referred to as ordinary least squares. Feasibility is ensured as long as the feature vectors xi are
linearly independent.

2.3 Equivalent formulations of SVP

We study the phenomenon of support vector proliferation (SVP), i.e., the occurrence in which every
example xi is a support vector. Because xi is a support vector if yiwTxi = 1, this occurs if and only if
the solution of (SVM Primal) coincides exactly with that of (Interpolation Primal). Here, we analyze
those formulations to show equivalent conditions needed for SVP, which we give in Proposition 1.
Before presenting the proposition, we introduce the notation needed to use the alternate formulations.

1When d ≥ n, we are always able to find a separating hyperplane since the features are linearly independent
with high probability. In fact, a theorem of Cover [13] shows that feasibility holds with high probability under
mild distributional assumptions even for d > n/2.
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We translate the relationship between the two primal optimization problems into the dual space.
Taking A = diag(y)X ∈ Rn×d, the dual of the optimization problem (Interpolation Primal) is:

max
α∈Rn

n∑
i=1

αi such that ∥ATα∥q ≤ 1. (Interpolation Dual)

The dual of (SVM Primal) is (Interpolation Dual) with an additional constraint that α ∈ Rn
+.

Let T = {
∑n

i=1 aiAi :
∑n

i=1 ai = 1} denote the affine plane passing through the rows of A, and
let T+ = {

∑n
i=1 aiAi :

∑n
i=1 ai = 1, ai ≥ 0} be the convex hull of the rows of A. In addition, for

i ∈ [n], let T\i = {
∑

i′ ̸=i ai′Ai′ :
∑

i′ ̸=i ai′ = 1}. We denote ΠT(0) as the ℓq-norm projection of
the origin onto T, which is uniquely defined for 1 < q < ∞.
Proposition 1. Let 1 < p < ∞ and q = (1− 1/p)−1, and consider any (X, y) ∈ Rn×d × {±1}n.
Suppose K is invertible. Then, the following are equivalent:

(1) SVP occurs for ℓp-SVM.
(2) The solutions w to (SVM Primal) and (Interpolation Primal) are identical.
(3) The optimal solution to (Interpolation Dual) lies within the interior of Rd

+.
(4) ΠT(0) ∈ T+.

Moreover, if p = 2, then properties (1)–(4) are also equivalent to the following:

(5) For all i ∈ [n], yiyT

\iK
−1
\i X\ixi = yiΠT\i(0)

Txi/∥ΠT\i(0)∥22 < 1.

This dual framework in (3) and (4) gives an alternative geometric structure to consider for this
problem. For the ℓ2-case, this formulation draws from the fact that the separating hyperplane obtained
from an SVM is represented as a linear combination of support vectors. Although the ℓ1 case is not
technically covered by Proposition 1 (due to the non-strict convexity of ℓ1 norm), our analysis still
gives useful insights, and we explore this case specifically in Section 6.

We prove Proposition 1 in Appendix A. The equivalence between (1) and (5) in the p = 2 case was
proved by Hsu et al. [23, Lemma 1]. Our alternative proof is based on establishing the equivalence of
(4) and (5) and draws heavily from our geometric formulation of SVP.

2.4 Data model

We use the data model of Hsu et al. [23], where every labeled sample (xi, yi) has xi drawn from an
anisotropic subgaussian distribution with independent components and arbitrary fixed labels yi.
Definition. For some λ ∈ Rd

≥0, we say (X, y) ∈ Rn×d × {±1}n (as well as (X,Z, y) ∈ Rn×d ×
Rn×d × {±1}n) is a λ-anisotropic subgaussian sample if: y = (y1, . . . , yn) ∈ {±1}n are fixed
(non-random) labels; Z := [z1| . . . |zn]T ∈ Rn×d is a matrix of independent 1-subgaussian random
variables with E[zi,j ] = 0 and E[z2i,j ] = 1; and X := [x1| . . . |xn]

T = Z diag(λ)1/2 ∈ Rn×d. We
say (X, y) is an isotropic subgaussian sample if it is λ-anisotropic for λ = (1, . . . , 1). Finally, we
say (X, y) is an isotropic Gaussian sample if it is isotropic subgaussian and each xi ∼ N (0, Id).

We only consider fixed labels y that do not depend on X. However, we do not consider this to be
a major limitation of this work. As discussed before, Cover [13] shows that linear separability is
overwhelmingly likely in the high-dimensional regimes we consider. Moreover, our results can be
extended to a setting where yi = sign (vTxi) for some fixed weight vector v.

2.5 Previous results

We tighten and generalize the characterization of the SVP threshold by Hsu et al. [23]. We give
versions of their results that are directly comparable to our results in Sections 3 and 4.
Theorem 1 (Theorem 1 of [23]). Consider a λ-anisotropic subgaussian sample (X, y) and any
δ ∈ (0, 1). If d∞ = Ω(n log(n) log( 1δ )), then SVP occurs for ℓ2-SVM with probability at least 1− δ.
Theorem 2 (Theorem 3 of [23]). Consider an isotropic Gaussian sample (X, y). For some constant
δ ∈ (0, 1), if d = O(n), then SVP occurs for ℓ2-SVM with probability at most δ.
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They note the logarithmic separation between Theorems 1 and 2 and the limitations of the data model
used in Theorem 2. The authors pose an improvement in generality and asymptotic tightness to their
lower-bound as an open problem, which we resolve in the subsequent sections.

3 SVP threshold for anisotropic subgaussian samples

We closely characterize when support vector proliferation does and does not occur through the
following theorem, which serves as a converse to Theorem 1.
Theorem 3 (Lower-bound on SVP threshold for anisotropic subgaussians). Consider a λ-anisotropic
subgaussian sample (X, y) and any δ ∈ (0, 1

2 ). For absolute constants C1, C2, C3, C4, assume that
λ and n satisfy

n ≥ C1

(
log

1

δ

)2

, d2 ≤ C2n log n, d∞ ≥ C3n log
1

δ
, and d2∞ ≥ C4d2n. (3)

Then, SVP occurs for ℓ2-SVM with probability at most δ.
Remark 1. If each xi is drawn from a Gaussian distribution, then we could instead permit xi to
have any positive semi-definite covariance matrix Σ ∈ Rd×d with eigenvalues λ1, . . . , λd due to
rotational invariance.
Remark 2. In addition, the result can be generalized to subgaussian xi with general variance proxies
γ ≥ 1. We present the current version for the sake of simplicity and note that the generalization is
straightforward.

In the case where (X, y) is an isotropic subgaussian sample, Theorem 3 and Theorem 1 (from [23])
together establish that the threshold for SVP occurs at d = Θ(n log n). Theorem 3 sharpens and
generalizes the partial converse of [23] given in Theorem 2.

Theorem 3 does not depend explicitly on the ambient dimension d; instead, it only involves the
effective dimension proxies d2 and d∞, which can be finite even if d is infinite. Thus, the result
readily extends to infinite-dimensional Hilbert spaces.

We prove the theorem in Appendix B and briefly summarize the techniques here. By Proposition 1, it
suffices to show that with probability 1− δ, K is invertible and

max
i∈[n]

yiy
T

\iK
−1
\i X\ixi ≥ 1, (4)

where K\i := X\iX
T

\i. This same equivalence underlies the proof of Theorem 2 in [23]. However,
their application of this equivalence is limited because they avoid issues of dependence between
random variables by instead lower-bounding the probability that y1yT

\1K
−1
\1 X\1x1 ≥ 1. This forces

their bound to hold only when d = O(n). We obtain a tighter bound by separating the first m
samples (denoted X[m]) for some carefully chosen m and relating the term to the maximum of m
independent random variables. To do so, we lower-bound the left-hand side of (4) with the following
decomposition:

max
i∈[m]

[
yiy

T

\i

(
K−1

\i − 1

∥λ∥1
In−1

)
X\ixi +

1

∥λ∥1
yiy

T

[m]\iX[m]\ixi +
1

∥λ∥1
yiy

T

\[m]X\[m]xi

]
.

We prove that this decomposition (and hence, also (4)) is at least 1 with probability 1− δ by lower-
bounding the three terms with Lemmas 1, 3, and 4 (given in Appendix B). We bound the first two
terms for all i ∈ [m] by employing standard concentration bounds for subgaussian and subexponential
random variables and by tightly controlling the spectrum of K\i. To bound the third term, we relate
the quantity for each i ∈ [m] to an independent univariate Gaussian with the Berry-Esseen theorem
and apply standard lower-bounds on the maximum of m independent Gaussians.

The assumptions in (3) are all intuitive and necessary for our arguments. The first assumption ensures
that enough samples are drawn for high-probability concentration bounds to exist over collections of
n variables. The second assumption guarantees the sub-sample size m is sufficiently large to have
predictable statistical properties; this is asymptotically tight with its counterpart in Theorem 1 up to a
factor of log 1

δ . The third ensures that the variance of each yiy
T

\iK
−1
\i X\ixi term is sufficiently small.

The fourth assumption rules out λ-anisotropic subgaussian distributions with ∥λ∥22 ≪ ∥λ∥2∞n, where
a single component of each xi is disproportionately large relative to others and causes unfavorable
anti-concentration properties.
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4 Exact asymptotic threshold for Gaussian samples

Section 3 shows the existence of a change in model behavior when d = Θ(n log n) without identifying
a precise threshold where this phase transition appears. Here, we refine that analysis for the isotropic
Gaussian case to find such an exact threshold. That is, if d = 2τn log n, as n becomes large, SVP will
occur when τ > 1 and will not occur when τ < 1. Roughly speaking, this phenomenon stems from
the fact that terms in (4) are weakly correlated, which causes (4) to behave similarly to a maximum of
independent Gaussians. Furthermore, we characterize the rate at which the phase transition sharpens.
The following theorem shows that if the convergence τ → 1 is slow enough, then the asymptotic
probabilities of SVP are degenerate and the width of the transition is bounded.

Theorem 4 (Sharp SVP phase transition). Let (X, y) be an isotropic Gaussian sample. Let (ϵn)n≥1

be any sequence of positive real numbers such that lim supn→∞ ϵn < 2− c1 for some c1 > 0 and
lim infn→∞ ϵn

√
log n > C2 for some C2 > 0 depending only on c1. Then,

lim
n→∞

P[SVP occurs for ℓ2-SVM] =

{
0 if d = (2− ϵn)nlog n,

1 if d = (2 + ϵn)nlog n.

Remark 3. Theorem 4 characterizes the width of the phase transition: the difference wn between the
values of d where the probability of SVP is (say) 0.9 and 0.1 satisfies wn = O(n

√
log n).

It remains an open problem to determine if this transition width estimate is sharp. Specifically, the
bound can be sharpened by exhibiting some sequence ϵn for which the asymptotic probability of
support-vector proliferation is non-degenerate.

The proof of Theorem 4 is given in Appendix C. In the case where d = (2− ϵn)nlog n, the proof
mirrors that of Theorem 3, but deviates in the final step by using the limiting distribution of the
maximum of independent Gaussians. When d = (2 + ϵn)nlog n, we follow the basic argument in
the proof of Theorem 1 from [23], but we sharpen the analysis by taking advantage of Gaussianity to
find the limiting probability as n → ∞.

5 Experimental validation of SVP phase transition and universality

While Theorem 4 identifies the exact SVP phase transition for only isotropic Gaussian samples,
we demonstrate experimentally that a similarly sharp cutoff occurs for a broader category of data
distributions. These experiments suggest that the phase transition phenomenon extends beyond the
distributions with independent subgaussian components considered in Theorem 3, and that it occurs
at the same location (d = 2n log n), with the transition sharpening as n → ∞.

Our simulation procedure is as follows. We generate data sets (X, y) ∈ Rn×d × {±1}n, where
y ∈ {±1}n is a fixed vector of labels with exactly n/2 positive labels, and x1, . . . ,xn ∼i.i.d. D⊗d

where D is one of six sample distributions on R. For each data set, we check for SVP by solving the
problem in (Interpolation Primal), and checking if its solution additionally satisfies the constraints
from (SVM Primal). Let p̂ := p̂(n, d;D,M) denote the observed frequency of SVP in M = 400
independent trials when X ∈ Rn×d is generated using D. (Full details are given in Appendix D.1.)

Figure 1 shows a heat map of p̂(n, d;D,M) with M = 400. The striking similarity across the
distributions suggests that SVP is a universal phenomenon for a broad class of sample distributions
that vary qualitatively in different aspects: biased vs. unbiased, continuous vs. discrete, bounded
vs. unbounded, and subgaussian vs. non-subgaussian. Moreover, the boundary at which the sharp
transition occurs is visibly indistinguishable across the different sample distributions.

We also investigate the universality of SVP using statistical methodology inspired by Donoho and
Tanner [16]. Specifically, we model p̂ using Probit regression to test our universality hypothesis: that
the occurrence of SVP for ℓ2-SVM on data with independent features matches the behavior under
Gaussian features as n and d grow large. Our model is M · p̂ ∼ Binom(p(n, d;D),M), where

p(n, d;D) = Φ
(
µ(0)(n,D) + µ(1)(n,D)× τ + µ(2)(n,D)× log τ

)
with µ(i)(n,D) = µ

(i)
0 (D) +

µ
(i)
1 (D)√

n
.
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Figure 1: The fraction of M = 400 trials where support vector proliferation occurs for n samples,
d features, and six different sample distributions D. All distributions demonstrate sharp phase
transitions near the theoretical boundary n 7→ 2n log n, illustrated by the red curve.

Here, Φ(t) is the standard normal distribution function, τ = d/(2n log n), and the model parameters
are µ

(i)
0 (D) and µ

(i)
1 (D) for i ∈ {0, 1, 2} and the six different distributions D (shown in Table 1 in

Appendix D.1). Figure 2 visualizes the fitted Probit function p for fixed n and τ and demonstrates
that the model provides a very accurate approximation of p̂.

The universality hypothesis corresponds to the model in which the parameters µ
(i)
0 (D) are “tied

together” (i.e., forced to be the same) for all distributions D. That is, only the parameters scaled down
by a factor of

√
n, µ(i)

1 (D), are allowed to vary with D. The scaling ensures that their effect tends to
zero as n → ∞. The alternative (non-universality) hypothesis corresponds to the model in which all
parameters (both µ

(i)
0 (n,D) and µ

(i)
1 (n,D) for each i) are allowed to vary with D. We compare the

models’ goodness-of-fit using analysis of deviance [22]. Our main finding is that the experimental
data are consistent with the universality hypothesis (and also that we can reject a null hypothesis in
which all parameters are “tied together” for all D). The details and model diagnostics are given in
Appendix D.2.

Finally, in Appendix D.3, we provide empirical support for the generality of Remark 3, namely that
the transition width is roughly n

√
log n for data models other than Gaussian ensembles.

6 SVP phase transition for ℓ1-SVMs?

Because both the SVM and linear regression problems can be formulated for general ℓp-norms, we
can ask similar questions about when their solutions coincide. Here, we examine the ℓ1 case: the
coincidence of SVM with an ℓ1-penalty and ℓ1-norm minimizing interpolation (also called Basis
Pursuit [11]). Linear models with ℓ1 regularization are often motivated by the desire for sparse weight
vectors [e.g., 11, 34, 36, 41].

Based on experimental evidence and the differences in high-dimensional geometry between ℓ∞ and
ℓ2 balls, we conjecture that SVP for ℓ1-SVMs only occurs in a much higher-dimensional regime.

Conjecture 1. Let (X, y) ∈ Rn×d × Rn be an isotropic Gaussian sample. Then, the probability of
SVP occurring for an ℓ1-SVM with X and y undergoes a phase transition around d = f(n), for some
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Figure 2: Visualizations of SVP frequencies for constant slices of n and τ for d = 2τn log n. Left
panel (a): The points are (τ, p̂) from the Gaussian samples, for fixing n ∈ {50, 70, 90}. The black
vertical line corresponds to τ = 1. The Probit model’s predictions are overlaid, and shaded regions
correspond to τ for which the model’s predicted probabilities are between 0.1 and 0.9. Right panel
(b): The points show (n,Φ−1(p̂)) from a Gaussian distribution, fixing τ to lie in one of 12 different
intervals. The Probit model’s predictions (averaged over all τ within an interval) are overlaid.
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Figure 3: The observed probabilities of support vector proliferation for ℓ1- and ℓ2-SVMs for d-
dimensional isotropic Gaussian samples of size n.

f(n) = ω(n log n). Formally, there exist positive constants c and c′ with c ≤ c′ such that

lim
n→∞

P [SVP occurs for ℓ1-SVM] =

{
0 if d < cf(n),

1 if d > c′f(n).

Conjecture 1 is consistent with our preliminary experimental findings, summarized in Figure 3. It
shows larger values of d relative to n are needed to ensure SVP for ℓ1-SVMs and that the transition
appears to be less sharp. Indeed, the experiments indicate that the true phase transition may occur
when d is asymptotically much larger than n log n. They do not rule out the possibility that the
transition may even require d = exp(Ω(n)). Further experimental details are given in Appendix E.1.

Answering whether support vector proliferation occurs in the ℓ1 case is equivalent to determining
whether the optimal solution α∗ to (Interpolation Dual) problem lies in the positive orthant Rn

+.2 In
the ℓ1 case, we have q = ∞, so solving the problem amounts to characterizing the solutions to the

2While Proposition 1 does not imply this equivalence for ℓ1-SVMs for arbitrary data, the results of the
proposition are valid for isotropic Gaussian samples, because the corresponding ℓ∞ projection ΠT(0) in those
cases is well-defined almost surely.
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following linear program for data matrix A = diag(y)X ∈ Rn×d:

max
α∈Rn

n∑
i=1

αi s.t. − 1 ≤ ATα ≤ 1. (Dual L1)

There is a line of work that gives high probability guarantees about whether related random linear
programs are feasible and where their solutions reside [1, 2]. Similar analyses of random linear
programs may be useful for understanding how large d must be to have α∗ ∈ Rn

+, and we carry out a
preliminary characterization in Appendix E.

Conjecture 1 and the other questions raised in this work point to a broader scope of investigations
about high-dimensional phenomena and universality concerning optimization problems commonly
used in machine learning and statistics. Our results, along with those from prior works, provide new
analytic and empirical approaches that may prove useful in tackling these questions.
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