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Abstract

Value-based reinforcement learning (RL) methods strive to obtain accurate approxi-1

mations of optimal action-value functions. Notoriously, these methods heavily rely2

on the application of the optimal Bellman operator, which needs to be approximated3

from samples. Most approaches consider only a single Bellman iteration, which4

limits their power. In this paper, we introduce Iterated Deep Q-Network (iDQN), a5

new DQN-based algorithm that incorporates several consecutive Bellman iterations6

into the training loss. iDQN leverages the online network of DQN to build a target7

for a second online network, which in turn serves as a target for a third online8

network, and so forth, thereby taking into account future Bellman iterations. While9

using the same number of gradient steps, iDQN allows for better learning of the10

Bellman iterations compared to DQN. We evaluate iDQN against relevant baselines11

on 54 Atari 2600 games to showcase its benefit in terms of approximation error and12

performance. iDQN outperforms its closest baselines, DQN and Random Ensemble13

Mixture, while being orthogonal to more advanced DQN-based approaches.14

1 Introduction15

Deep value-based Reinforcement Learning algorithms have achieved remarkable success in various16

fields, from nuclear physics (Degrave et al., 2022) to construction assembly tasks (Funk et al., 2022).17

These algorithms aim at learning a function as close as possible to the optimal action-value function,18

on which they can build a policy to solve the task at hand. To obtain an accurate estimate of the19

optimal action-value function, the optimal Bellman operator is used to guide the learning procedure in20

the space of Q-functions (Bertsekas, 2019) through successive iterations, starting from any Q-function21

to the optimal action-value function. In Reinforcement Learning, as opposed to Dynamic Programing,22

the reward function and system dynamics are not assumed to be known (Bertsekas, 2015). This forces23

us to approximate the optimal Bellman operator with an empirical Bellman operator. This problem24

has received a lot of attention from the community (Fellows et al. (2021), Van Hasselt et al. (2016)).25

On top of that, the use of function approximation results in the necessity of learning the projection of26

the empirical Bellman operator’s iteration on the space of approximators. In this work, we focus on27

the projection step.28

We propose a way to improve the accuracy of the learned projection by increasing the number of29

gradient steps and samples that each Q-function estimate has been trained on. This idea, implemented30

in the training loss function, uses the same total number of gradient steps and samples than the31

classical approaches. At a given timestep of the learning process, this new loss is composed of the32

consecutive temporal differences corresponding to the following Bellman iterations needed to be33

learned, as opposed to DQN (Mnih et al., 2015), where only one temporal difference related to the34

first projection step is considered. Each temporal difference is learned by a different neural network,35

making this method part of the DQN variants using multiple Q estimates during learning. Those36
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consecutive temporal differences are computed in a telescopic manner, where the online network of37

the first temporal difference is used to build a target for the second temporal difference and so on.38

This loss implicitly incurs a hierarchical order between the Q estimates by forcing each Q estimate to39

be the projection of the Bellman iteration corresponding to the previous Q estimate, hence the name40

iterated Deep Q-Network (iDQN). In the following, we start by reviewing algorithms built on top of41

DQN, highlighting their behavior in the space of Q-functions. We then introduce a new approach to42

Q-learning that emerges naturally from a graphical representation of DQN. In Section 5, we show43

the benefit of our method on the Arcade Learning Environment benchmark (Bellemare et al., 2013).44

Our approach outperforms DQN and Random Ensemble Mixture (REM, Agarwal et al. (2020)), its45

closest baselines, establishing iDQN as a relevant method to consider when aggregating significant46

advances to design a powerful value-based agent such as Rainbow (Hessel et al., 2018). We also47

perform further experimental studies to bring evidence of the intuition on which iDQN is built. We48

conclude the paper by discussing the limits of iDQN and pointing at some promising follow-up ideas.49

2 Preliminaries50

We consider discounted Markov decision processes (MDPs) defined as M = ⟨S, A, P , R, γ⟩,51

where S is the state space, A is the action space, P : S × A × S → R is the transition kernel of52

the dynamics of the system, R : S × A → R is a reward function, and γ ∈ [0, 1) is a discount53

factor (Puterman, 1990). A deterministic policy π : S → A is a function mapping a state to54

an action, inducing a value function V π(s) ≜ E
[∑+∞

t=0 γ
tR(St, π(St))|S0 = s

]
representing the55

expected cumulative discounted reward starting in state s and following policy π thereafter. Similarly,56

the action-value function Qπ(s, a) ≜ E
[∑+∞

t=0 γ
tR(St, At)|S0 = s,A0 = a,At = π(St)

]
is the57

expected discounted cumulative reward executing action a in state s, following policy π thereafter.58

Q-learning aims to find a function Q from which the greedy policy πQ(s) = argmaxa Q(·, a) yields59

the optimal value function V ∗(·) ≜ maxπ:S→A V π(·) (Puterman, 1990). The (optimal) Bellman60

operator Γ∗ is a fundamental tool in RL for obtaining optimal policies, and it is defined as:61

(Γ∗Q)(s, a) ≜ R(s, a) + γ

∫
S
P(s, a, s′)max

a′∈A
Q(s′, a′)ds′, (1)

for all (s, a) ∈ S ×A. It is well-known that Bellman operators are contraction mappings in L∞-62

norm, such that their iterative application leads to the fixed point Γ∗Q∗ = Q∗ in the limit (Bertsekas,63

2015). We consider using function approximation to represent value functions and denote Θ the64

space of their parameters. Thus, we define QΘ = {Q(·|θ) : S ×A → R|θ ∈ Θ} as the set of value65

functions representable by parameters of Θ.66

3 Related Work67

To provide an overview of the related work, we propose to view the related algorithms from the68

perspective of their behavior in the space of Q-functions, which we denote by Q. Due to the curse of69

dimensionality, covering the whole space of Q-functions with function approximators is practically70

infeasible, as it requires a large number of parameters. Therefore, the space of representable Q-71

functions QΘ only covers a small part of the whole space Q. We illustrate this in Figure 1a by72

depicting the space of representable Q-functions as a subspace of Q. One can deduce two properties73

from this gap in dimensionality. First, the optimal Q-function Q∗ is a priori not representable by any74

chosen function approximator. Second, the same is true for the optimal Bellman operator Γ∗ applied75

to a representable Q-function. That is why in Figure 1a, both functions Q∗ and Γ∗Q are drawn76

outside of QΘ. Additionally, thanks to the contracting property of the optimal Bellman operator77

||Γ∗Q−Q∗||∞ ≤ γ||Q−Q∗||∞, we know that the iterated Q given by Γ∗Q is at least γ closer to78

the optimal Q∗ than the initial Q (Bertsekas, 2015). The goal of most value-based methods is to learn79

a Q-function that is as close as possible to the projection of the optimal Q-function on the space of80

representable Q-functions, shown with a dotted line in Figure 1a.81

This perspective allows us to represent a variety of Q-learning algorithms proposed so far in an82

intuitive way in a single picture. For example, Figure 1a depicts how Deep Q-Network (DQN) by83

Mnih et al. (2015) works. With a target network Q̄0, DQN aims at learning the iterated target network84

Γ∗Q̄0, also called “target”, using an online network Q1. The loss used during training is shown in red.85
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(a) DQN learns the optimal Bellman iteration of the
Q-function represented by the target network Q̄0. It
uses an online network Q1 for that purpose.

lo
ss

(b) DQN updates the target network to make the target
change. This means moving one Bellman iteration
forward in the space of Q-functions.

Figure 1: Graphical representation of DQN in the space of Q-functions.

(a) Two common ways of improving DQN is to develop
a more efficient empirical Bellman operator, noted Γ̃Q̄,
or to modify the space of representable Q-functions,
noted Q̃Θ.

loss

(b) REM uses multiple Q-functions to explore areas
in the space of Q-functions. A random convex com-
bination of the stored Q-functions is sampled at each
gradient step.

Figure 2: Graphical representations of DQN variants in the space of Q-functions.

In the optimal case, after a pre-defined number of training steps, the online network should represent86

the projection of the iterated target network onto the space of representable Q-functions (shown with87

a dotted line). This perspective also gives a way to understand the hyper-parameter related to the88

frequency at which the target network is updated. It is the number of training steps before moving to89

the next Bellman iteration. When the target network is updated, it will be equal to the online network,90

and the next Bellman iteration will be computed from there, as shown in Figure 1b. It is important to91

note that in DQN, the empirical Bellman operator is used instead of the optimal Bellman operator.92

The term included in the loss at every gradient step is a stochastic estimation of the optimal Bellman93

iteration.94

3.1 DQN Variants95

The DQN paper has inspired the community to develop further methods which improve its efficiency.96

A large number of those algorithms focuses on using a better empirical Bellman operator (Van Hasselt97

et al. (2016), Fellows et al. (2021), Sutton (1988)). For instance, double DQN (Van Hasselt et al.,98

2016) uses an empirical Bellman operator designed to avoid overestimating the return. This results99

in a different location of the Bellman iteration, as shown in Figure 2a. Other approaches consider100

changing the space of representable Q-functions (Wang et al. (2016), Osband et al. (2016)). The hope101

is that the projection of Q∗ on the space of representable Q-function is closer than for the classical102

neural network architecture chosen in DQN. It is important to note that adding a single neuron to103

one architecture layer can significantly change the space of representable Q-function. Wang et al.104

(2016) showed that performance can be increased by including inductive bias in the neural network105

architecture. This idea can be understood as a modification of the space of Q-functions, as shown106

in Figure 2a where the new space of representable Q-function is colored in yellow. Furthermore,107

algorithms such as Rainbow (Hessel et al., 2018) leverage both ideas. Other approaches, however,108

such as prioritized replay buffer (Schaul et al., 2015), cannot be represented in the picture.109
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(a) iDQN learns two Bellman iterations at once. It
uses a second target network Q̄1 to learn the second
Bellman iteration. This second target network stays
close to the first online network Q1.

losslo
ss

(b) iDQN updates the online and target networks to
move one Bellman iteration ahead. Each network takes
the value of the network corresponding to the following
iteration.

Figure 3: Graphical representation of iDQN in the space of Q-functions.

3.2 Random Ensemble Mixture110

Among the variants of DQN, ideas involving learning several Q-functions (Osband et al. (2016),111

Agarwal et al. (2020)) are particularly close to our method. Even if they are close, they remain112

orthogonal in the sense that they can be combined with our idea to create a more powerful agent.113

Random Ensemble Mixture (REM, Agarwal et al. (2020)) has been shown to be state-of-the-art for114

DQN variants with several Q-functions. Instead of exploring the space of Q-functions point by point115

as DQN does, REM moves in this space by exploring area by area, where the areas are the convex116

hull of the Q-functions stored in memory. As represented by the red line in Figure 2b, the loss used117

by REM is118

L(θ) = E(s,a,r,s′)∼D [Eα∼∆[l(δ
α(s, a, r, s′|θ))]] ,

with δα(s, a, r, s′|θ) = Qα
1 (s, a|θ)− r − γmax

a′
Q̄α

0 (s
′, a′|θ̄)

where θ denotes the parameters of the online network and θ̄ the target parameters, D is the replay119

buffer, ∆ is the standard simplex and l is the Huber loss (Huber, 1992), and Qα
i =

∑
k αkQ

k
i , i ∈120

{0, 1}. For a Bellman iteration i, the kth learnt Q-function is noted Qk
i . Figure 4a shows how this121

loss is computed with the neural network’s architecture used in REM.122

4 Iterated Deep Q-Networks123

We propose an approach built on top of DQN. The main idea emerges naturally from the representation124

developed in Section 3. In DQN, Figure 1 illustrates that to learn two Bellman iterations, we first125

need to wait until the first iteration is learned, and then we need to update the target before starting to126

learn the second iteration. Conversely, we propose to use a second online network that learns the127

second Bellman iteration while the first Bellman iteration is being learned. The target for the second128

online network is created from a second target network that is frequently updated to be equal to the129

first online network. Figure 3a shows how iDQN behaves in the space of Q-function. It is important130

to understand that in iDQN, both online networks are learned at the same time. This idea can be131

further applied, as more Q-functions can be considered for learning the following Bellman iterations.132

Repeating the same schema, we can learn a following Bellman iteration by adding a new online133

network that would use a new target network set to be equal to the last online network. In Figure 3a,134

it would mean adding an online network Q3, learnt to be the projection of the target Γ∗Q̄2, where Q̄2135

is a target network periodically updated to the value of Q2. This iterative process can be continued136

until memory usage becomes an issue. Once again, the loss can be observed on the representation in137

Figure 3a (see red lines), it writes138

L(s, a, r′, s′|θ) =
K∑

k=1

(
Qk(s, a|θ)− r − γmax

a′
Q̄k−1(s

′, a′|θ̄)
)2

(2)

where θ is the online parameters and θ̄ the target parameters, K is the number of Bellman iterations139

considered at once. The kth learned Q-function corresponds to the kth Bellman iteration and is noted140

Qk. The way the loss is computed from the neural network’s architecture is presented in Figure 4a.141
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(a) Losses and neural networks architectures.

(b) After the same number of gradi-
ent steps, iDQN has already started
to learn the second Bellman itera-
tion, noted Q2.

Figure 4: Understanding the loss of iDQN. In Figure 4a, the dotted lines link the outputs of the neural
networks to the mathematical objects they represent. The flash signs stress how the information
flows from the target(s) Γ̂Q̄, considered fixed, to the online network(s) Q, on which the optimization
is being done. For any Q-function Q, Γ̂Q = Es,a,s′ [R(s, a) + γmaxa′ Q(s′, a′)] is the empirical
Bellman operator.

In iDQN, updating the target networks does not bring the target parameters to the next Bellman142

iteration like in DQN. It simply refines their positions to be closer to the online networks to allow143

better estimates of the iterated Q-functions. To be able to go further in the Bellman iterations, we144

periodically consider a new online Q-function to learn and discard the first online and target network,145

as shown in Figure 3b. For this example, Q3 is now considered and Q1 and Q̄0 are left aside. We call146

this procedure a rolling step. In practice, the rolling step is simple to implement. A new head to the147

neural network of Figure 4a is added, with the index K + 1 and the first head is removed. It leads us148

to introduce a new hyper-parameter that indicates at which frequency the rolling step is performed. It149

is worth noticing that if K is set to 1 and if the rolling step frequency is synchronized with the target150

update frequency in DQN, then we recover DQN, i.e., iDQN with K = 1 is equal to DQN.151

In DQN, the actions are drawn from the online network. For iDQN, one needs to choose from which152

of the multiple online networks to sample. One could stick to DQN and choose the first online153

network. One could also use the last online network since it is supposed to be the one that is closer154

to the optimal Q-function, or one could pick an online neural network at random as it is done in155

Bootstrapped DQN (Osband et al., 2016). We do not consider taking the mean as REM proposes156

because the online Q-functions are expected to follow a specific arrangement in space. Taking their157

mean could lead to unwanted behavior. We investigate these sampling strategies in Section 5.1. One158

can see how iDQN uses the same algorithm as DQN through its pseudo-code shown in Algorithm 1159

in the supplementary material. The only two changing parts are the behavioral policy and the loss.160

4.1 Understanding the Loss of iDQN161

The crucial advantage of iDQN is coming from the loss. In addition to the loss used in DQN, it162

contains K − 1 more terms. Those terms concern the future Bellman iterations, hence the fact that163

iDQN allows for a better learning of the Bellman iterations. In practice, each Bellman iteration164

is learned with K times more gradient steps than in DQN while having the same overall number165

of gradient steps. This means that each selected sample is used K times more or, in other words,166

that each network sees K times more samples. As mentioned earlier, updating the target in DQN167

moves the learning procedure one Bellman iteration further. The same goes for the rolling step for168

iDQN. From the fact that each Bellman iteration is learned with K times more gradient steps than in169

DQN, we can allow iDQN to perform the rolling step more frequently than DQN updates the target,170

which means that iDQN will do more Bellman iterations at the end of the training, while still learning171

each iteration better than DQN. Figure 4b pinpoints the advantage of iDQN with K = 2 over DQN.172

There we assume that the update target frequency of DQN is equal to the rolling step frequency in173
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iDQN. When DQN updates its target network Q0 to Q̄1, the new online network Q2 is located at Q̄1.174

When the rolling step is performed for iDQN, Q̄1 is located at the same position as the Q̄1 of DQN1175

but Q2 has already been learnt and is closer to the optimal Q-function than the Q2 of DQN. This176

phenomenon is even stronger when K increases. Another way to understand iDQN is to see iDQN as177

a way to pre-train the next online Q-functions instead of taking them equal to the online network as it178

is done in DQN.179

5 Experiments180

We evaluate our proposed algorithm on 54 Atari 2600 Games (Bellemare et al., 2013)2. Many181

implementations of Atari environments along with classical baselines are available online (Castro182

et al. (2018), D’Eramo et al. (2021), Raffin et al. (2021), Huang et al. (2022)). We choose to mimic183

the implementation choices made in Dopamine (Castro et al., 2018) since it is the only one to release184

the evaluation metric for all relevant baselines to our work and the only one to use the evaluation185

metric recommended by Machado et al. (2018). Namely, we use the game over signal to terminate186

an episode instead of the life signal. The input given to the neural network is a concatenation of 4187

frames in gray scale of dimension 84 by 84. To get a new frame, we sample 4 frames from the Gym188

environment (Brockman et al., 2016) configured with no frame skip, and we apply a max pooling189

operation on the 2 last gray scale frames. We use sticky actions to make the environment stochastic190

(with p = 0.25). The training performance is the one obtained during learning. By choosing an191

identical setting as Castro et al. (2018) does, we can take the baselines’ training performance of192

Dopamine without the need to train them again ourselves. To certify that the comparison is fair,193

we compared our version of DQN to their version and concluded positively (see Figure A of the194

supplementary material).195

Hyperparameter tuning. The hyperparameters shared with DQN are kept untouched. The two196

additional hyperparameters (rolling step frequency and target parameters update frequency) were197

set to follow our intuition on their impact on the performance. As a reminder, the frequency at198

which the rolling step is performed is comparable to the target update frequency in DQN. Since199

iDQN allows more gradient steps per iteration, we set this hyperparameter to be 25% lower than200

the target update frequency in DQN (6000 compared to 8000). To further ensure that our code201

is trustworthy, Figure A in the supplementary material shows that DQN achieves similar training202

performances than iDQN with K = 1 and the rolling step frequency is set to be equal to the target203

update frequency of DQN. It is important to note that decreasing the target parameters update results204

in a more stable training but also a higher delay with the online networks which can harm the overall205

performance. We set it to 30, allowing 200 target updates per rolling step. We choose K = 5. This206

choice is further discussed in Section 5.1. To make the experiments run faster, we designed the207

Q-functions to share the convolutional layers. Additionally, we consider the first layers of the neural208

network useful for extracting a feature representation of the state space. This is why this choice can209

potentially be beneficial to our algorithm. Further details about the hyperparameters can be found in210

the supplementary material.211

Performance metric. As recommended by Agarwal et al. (2021), we choose the interquartile212

mean (IQM) of the human normalized score to report the results of our experiments with shaded213

regions showing pointwise 95% percentile stratified bootstrap confidence intervals. IQM is a trade-off214

between the mean and the median where the tail of the score distribution is removed on both sides to215

consider only 50% of the runs. 5 seeds are used for each game.216

Main result. iDQN greatly outperforms DQN (Adam) on the aggregation metric, proposed in217

Agarwal et al. (2021). Figure 5a shows the IQM human normalized score over 54 Atari games218

according to the number of frames sampled during the training. In the last millions of frames, iDQN219

reaches a higher IQM human normalized score than DQN (Adam). iDQN performs better than REM220

as well, showing that our approach should be preferred when using multi-head Q networks. We do not221

consider other variants of DQN to be relevant baselines to compare with. The ideas used in Rainbow,222

IQN or Munchausen DQN (Vieillard et al., 2020) can be included in iDQN algorithm to build an223

1The loss in iDQN is additive and includes the DQN loss. Thus both Q1 are located at the same position.
2We excluded the game Atlantis due to the significantly higher training time.
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(a) Training performance.
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(b) Performance profile.

Figure 5: iDQN outperforms DQN (Nature), DQN (Adam), C51 and REM. DQN (Nature) uses the
RMSProp optimizer (Tieleman et al., 2012) while DQN (Adam) uses Adam (Kingma & Ba, 2015).
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Figure 6: 5 Atari games where different behaviors can be observed.

even more powerful agent. We further discuss it in Section 5.1. To visualize the distribution of final224

scores, we plot the performance profile in Figure 5b. It shows the fraction of runs with a higher final225

score than a certain threshold given by the X axis. In some ranges of human normalized score, iDQN226

statistically dominates DQN. For example, there are more games in which iDQN achieves 1.5 times a227

human performance (τ = 1.5) than DQN. It is harder to distinguish iDQN and REM because the gap228

in final performance between iDQN and REM is smaller than between iDQN and DQN. In Figure 6,229

we selected 5 games where different behaviors can be observed. On some games like BankHeist and230

Enduro, iDQN overtakes all its baselines. Interestingly, in ChopperCommand, DQN (Adam) and231

REM fail at outperforming DQN (Nature), while iDQN is comparable with C51 in performance. This232

shows that efficiently learning the Bellman iterations plays an important role in some environments.233

In Frostbite, REM is more efficient than DQN (Adam). iDQN outperforms both algorithms in this234

game, being the only one achieving superhuman performances. Finally, in Skiing, REM and C51235

failed to be better than a random agent, while iDQN sticks to the performance of DQN (Adam). We236

believe this behavior comes from the fact that iDQN is close to DQN in principle, which minimizes237

the risk of failing when DQN succeeds. We present the training performance of all the remaining238

games in Figure B of the supplementary material.239

5.1 Ablation Studies240

We perform several ablation studies to showcase the different behaviors of iDQN. We first investigate241

the importance of the number of Bellman iterations K taken into account in the loss. As shown in242

Figure 7 for the games Asteroids and Asterix, increasing K to 10 iterations could be beneficial. In243

Qbert, the gain seems not certain. We believe further tuning of hyperparameters should bring iDQN244

with K = 10 to yield better performances than iDQN with K = 5. We insist that no hyperparameter245

tuning has been performed to generate this plot. In order to have the same number of gradient steps246

per Bellman iteration for K = 5 and K = 10, we simply halved the frequency at which the rolling247

step is performed for K = 10, bringing it to 3000 since we doubled K. Interestingly, the performance248
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Figure 7: Ablation study on the number of Bellman iterations K taken into account in the loss.
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Figure 8: Ablation study on the way actions are sampled to interact with the environment. Actions
can be sampled from an online Q-function taken at random (in blue), from the first online Q-function
(in green), or from the last Q-function (in pink).

never drops in the 3 considered games. Therefore, we recommend increasing K as much as the249

computational resources allow it.250

In Section 4, we mentioned several sampling strategies. Figure 8 illustrates the different possibilities251

mentioned earlier: sampling from a uniform online Q-function, sampling from the first online Q-252

function like DQN does, or sampling from the last online Q-function, it is supposed to be the closest253

to the optimal Q-function. No significant difference exists except for the game Asteroids, where254

sampling from a uniform online Q-function seems to yield better performance throughout the training.255

We believe that the increase in performance comes from the fact that the online Q-functions generate256

a wider variety of samples compared to only sampling from the first or last online Q-function. We257

recommend sampling actions from an online Q-function chosen at random.258

iDQN heavily relies on the fact that the learned Q functions are located at different areas in the space259

of Q-functions. We computed the standard deviation of the output of the learned Q-functions during260

the training in Figure 9 to verify this assumption. The figure shows that the standard deviation among261

the Q-function is indeed greater than zero across the 3 studied games. Furthermore, we can observe262

that the standard deviation decreases during training, hinting that they become increasingly closer.263

This matches the intuition that at the end of the training, the Q-functions should be close to the264

projection of the optimal Q-function, hence being close to each other.265

6 Discussion266

In Figure 10, we compare iDQN with other powerful baselines to show the gap between those267

baselines and our approach, which does not use the benefit of a prioritized replay buffer and a n-step268

return. The curves for other algorithms shown in Figure 10 depict the publicly available metrics for269

those algorithms.3 The training performance of IQN and Munchausen DQN without the n-step return270

would be interesting to analyze, but our limited resources do not allow us to run those baselines.271

The major improvement of Rainbow over C51 is made by using a prioritized replay buffer and272

3Often different metrics are used for different algorithms, making the comparison not straightforward.
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Figure 10: Training performance (left) and performance profile (right) of iDQN and other orthogonal
methods. QR-DQN (Dabney et al., 2018) and DQN (Adam) have been removed from the performance
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adding a 3-step return which gives hope for following works to study the potential strength of any273

Rainbow-like iDQN approach. The training performances of iDQN on 54 Atari games along with274

those more advanced methods are available in Figure C of the supplementary materials.275

Our approach introduces two new hyperparameters, rolling step frequency and target parameters276

update frequency, that need to be tuned. However, we provide a thorough understanding of their277

effects to mitigate this drawback. While extreme values of some hyperparameters were found to be278

harmful to the performance of DQN, e.g., changing the target update frequency, little variation of279

the presented values was found to have only a small impact on the overall performance. Regarding280

the resources needed to train an iDQN agent, more computations are required to get the gradient of281

the loss compared to DQN. Thanks to the ability of JAX (Bradbury et al., 2018) to parallelize the282

computation, iDQN with K = 5 only requires 1 to 2 times more time to run. With the released code283

base, each run presented in this paper can be run under 3 days on an NVIDIA RTX 3090.284

7 Conclusion285

In this paper, we have presented a way to learn the Bellman iterations more efficiently than DQN.286

The underlying idea of iDQN comes from an intuitive understanding of DQN’s behavior in the space287

of Q-functions. It allows each Q estimate to be learned with more gradient steps without increasing288

the overall number of gradient steps. iDQN outperforms its closest baselines, DQN and REM, on the289

Atari 2600 benchmark. While we proposed an approach to Q-learning that focuses on the projection290

step of the Bellman iterations, an interesting direction for future work would be to investigate which291

other past improvements of DQN, in combination with iDQN, would lead to a new state-of-the-art292

for value-based methods.293
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