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ABSTRACT

Transformers have emerged as the backbone neural network architecture in today’s
AI applications. Due to their high complexity, sparsifying transformers, at both
pre-training and fine-tuning stages, is very attractive for lower the training and
inference costs. In this paper, we propose TranSpa, an efficient structured sparse
training approach for language and vision transformers. Unlike prior works focus-
ing on individual building blocks, TranSpa fully considers the correlation between
the weight matrices and their component rows/columns, and performs the coupled
estimation and coupled sparsification. To achieve that, TranSpa introduces the use
of new granularity when calibrating the importance of structural components in
the transformer and removing the insignificant parts. Evaluations across different
models, in both pre-training and fine-tuning scenarios, demonstrate the effective-
ness of the proposed approach. TranSpa can bring 1.6× size reduction with 0.6
lower perplexity when training GPT-2 model from scratch. It also enables 1.6×
training speedup over the existing sparse pre-training method. For training sparse
LLaMA-1B from scratch, our approach reduces GPU memory usage by 50%,
decreases training time by 21%, and achieves a 1.6× speedup in inference through-
put while maintaining model performance. Experiments of applying TranSpa for
fine-tuning tasks also show significant performance improvement with respect to
model accuracy and pruning cost reduction.

1 INTRODUCTION

Thanks to their excellent performance for sequence modeling and scalability, transformers Vaswani
et al. (2017) have served as the backbone neural network architecture across various important
domains, such as natural language processing (NLP) Vaswani et al. (2017); Devlin et al. (2019);
Wang et al. (2019a); OpenAI et al. (2023); Touvron et al. (2023), computer vision Dosovitskiy et al.
(2020); Liu et al. (2021); Carion et al. (2020) and speech processing Dong et al. (2018); Gulati et al.
(2020); Hsu et al. (2021). However, despite their unprecedented popularity, modern transformers
suffer from high model complexity, causing expensive costs in both training and inference phases.

To alleviate these challenging issues, sparse training, a strategy that originated for optimizing
convolutional neural networks (CNNs), has emerged as an attractive solution for efficient transformers.
In general, given an input model θ, sparse training aims to output a sparse model θs with high task
performance. As illustrated in Fig. 1, when θ is randomly initialized, sparse training serves as an
efficient pre-training method that can reduce the computational and memory costs of the expensive
training-from-scratch process. When θ is a pre-trained high-performance dense model, sparse training
is essentially the well-known pruning technique, which imposes the sparsity on θ in the fine-tuning
process and trims down the inference cost.

Although sparse training has been well studied for slimming CNN models, the fundamentally
different mechanism of transformers, e.g., multi-head self-attention, make the existing CNN-oriented
solutions not suitable for transformers. To date, the efficient sparse transformer training is still
under-explored. More specifically, 1) for applying sparse training at the pre-training stage, Frankle
& Carbin (2018), Chen et al. (2021a;b) propose to train sparse vision and NLP transformers from
scratch, with focus on exploring head-level sparsity. Also Dao et al. (2022) proposes to use specially
structured matrix for sparse transformer training; 2) for applying sparse training at the fine-tuning
stage, Ma et al. (2023); Chen et al. (2021b); Yu et al. (2022) explore the structured sparsity at head
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Figure 1: Our proposed TranSpa is a structured sparse training approach, applicable for both pre-
training and fine-tuning stages.

levels. Observing the potential layer-wise redundancy, Chen et al. (2024); Men et al. (2024) propose
to remove unimportant layers in the transformer architecture. In addition, Ashkboos et al. (2024);
van der Ouderaa et al. (2023) use finer granularity at row and column level for structured pruning,
achieving good compression performance.

Technical Contributions. In this paper, we propose to perform structured sparse transformer training
1 from a new perspective. Unlike prior works focusing on evaluating the importance of individual
components of transformer architecture, e.g., a weight matrix or its component row/column, we
propose to fully consider the inter-matrix and inter-row/column correlation, leading to new mechanism
for importance assessment and structural removal. More specifically, at the coupled estimation step,
we introduce a new granularity, namely, coupled weight matrices, to calibrate the architectural
importance of transformer model, providing more fine-grained measurement via exploring the
inherent coupling effects of weight matrices. Then, at the coupled sparsification step, for the row
and column within those unimportant coupled matrices, we propose to rank and remove them in a
coupled way, maximally preserving the inherent inter-row/column correlation in the weight matrix.

We apply our approach, namely TranSpa, in both pre-training and fine-tuning scenarios. Evaluation
across different model types (e.g., vision transformers, and large language model (LLMs)) show that
TranSpa brings significant performance improvement with respect to training speed, model accuracy,
and cost reduction. For instance, when training the GPT-2 model from scratch, our approach can bring
1.6× size reduction with 0.6 lower perplexity (PPL). It also brings 1.6× training speedup compared
to the existing sparse pre-training methods. For pre-training sparse LLaMA-1B from scratch, our
approach cuts GPU memory usage by half, shortens training time by 21%, and boosts inference
throughput by 1.6×. For training sparse DeiT from scratch, TranSpa brings 0.8% accuracy increase
over the state-of-the-art solutions. Experiments on pruning LLMs also demonstrate the effectiveness
of our approach.

2 BACKGROUND

2.1 PRELIMINARIES

Notation. We represent tensors using boldface calligraphic script, denoted as X . Matrices and
vectors are indicated with boldface capital and lowercase letters, such as X and x, respectively.
Furthermore, non-boldface letters with indices, e.g., X (i1, · · · , id), X(i, j), and x(i), denote the
entries for a d-dimensional tensor X , a matrix X , and a vector x, respectively.

Transformer. For Transformer-based models, the key components include the Multi-Head Attention
(MHA) and Feed-Forward Network (FFN). More specifcally, the MHA operation is defined as
follows:

MHA(XQ,XK ,XV ) = Concat(head1, . . . , headh)W
O, (1)

1In this paper we focus on structured sparsity, which can bring measured speedup on off-the-shelf hardware;
while the unstructured sparsity typically cannot. Though some Nvidia GPUs now provide hardware support for
semi-structured 2:4 sparsity, this feature is only available for the high-end GPUs such as A100 and up, limiting
its practice in many budget-limited resource-limited applications.
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where XQ,XK ,XV ∈ Rl×em are the length-l input sequences, em is the embedding dimension,
and h is the number of attention heads. Here each attention head headi operates as below:

headi = Attention(XQW
Q
i , XKWK

i , XV W
V
i ) = softmax

(
XQW

Q
i (XKWK

i )⊤√
e

)
XV W

V
i ,

(2)
where WQ

i , WK
i ,W V

i ∈ Rem×e, WO ∈ Rem×em , and em = e× h. The FFN consists of two fully
connected layers with a Gaussian Error Linear Unit (GELU) activation function applied in between.
Let X represent the input embeddings, and Win ∈ Rem×d,Wout ∈ Rd×em , bin, bout denote the
weight matrices and bias vectors, respectively. The operation of FFN can be then defined as follows:

FFN(X) = GELU(XWin + bin)Wout + bout. (3)

2.2 RELATED WORKS

Sparse Training for Transformer Pre-training. Applying sparse training at the pre-training stage
is very attractive for reducing the high complexity of the costly train-from-scratch process. However,
unlike the well-studied sparse CNN pre-training, to date sparse transformer pre-training is still
under-explored. Chen et al. (2021a) dynamically extracts and trains sparse sub-networks, either
in unstructured or structured ways, thereby alleviating the training memory bottleneck for Vision
Transformers. Inspired by the Lottery Ticket Hypothesis originated in CNN, Chen et al. (2021b)
performs early detection of the structured winning lottery tickets for transformers, improving the pre-
training efficiency. In Dao et al. (2022), a class of structured matrices, which can closely approximate
the dense weight matrices, are proposed for hardware-efficient sparse pre-training, accelerating the
overall training process. Notice that the methods developed in Chen et al. (2021b;a); Dao et al. (2022)
can also be applied at the fine-tuning stage for transformer pruning.

Sparse Training for LLM Pruning. Due to the high costs of pre-trained LLM models, using sparse
training to trim down LLM size is a promising solution for efficient deployment. In general, pruning
LLM can be performed in either unstructured or structured way. Unstructured pruning Frantar &
Alistarh (2023); Sun et al. (2023); Zhang et al. (2023); Sun et al. (2023); Xia et al. (2023); Malla et al.
(2024) focus on removing unimportant individual weights, achieving high compression performance
but limited computational efficiency due to the unstructured sparsity pattern. Structured pruning
Ma et al. (2023); Xia et al. (2023); Ashkboos et al. (2024); An et al. (2024); Chen et al. (2023b;a);
Zhao et al. (2024a); Yang et al. (2024) aims to sparsify some building components of transformer
architecture, e.g., head, row, layer, etc., offering wall-clock time inference speedup. To guide the
guide the selection of elements to be removed, typical pruning metrics include magnitude-based
Sun et al. (2023); An et al. (2024) and loss-based Ma et al. (2023); van der Ouderaa et al. (2023).
Magnitude-based methods use the absolute values of weights, whereas loss-based approaches assess
the impact of pruning on model loss, often using the gradient information obtained from Taylor
expansion.

Sparse Training for CNN Pre-training/Pruning. Sparse training for CNN, at pre-training and
fine-tuning stages, has been well-studied in the literature. For efficient sparse CNN pre-training,
Mocanu et al. (2018) explores to prune and grow the same amount of weights periodically and
iteratively. Mostafa & Wang (2019) proposes to automatically adjust the sparsity levels, achieving
good scalability and high computational efficiency. Evci et al. (2020) uses the gradient-based criteria
to grow the weights with Erdos-Renyi Kernel initialization, and a memory-economic scheme is
proposed in Yuan et al. (2021) for training on the edge devices. Recently, Chen et al. (2023c)
proposes to automatically sparsify the CNN model from scratch, obtaining a compact model without
iterative fine-tuning. On the other hand, CNN pruning can be roughly categorized to unstructured
pruning (for weights) Han et al. (2015a;b) and structured pruning (for channels/filters) He et al.
(2019); Wang et al. (2019b); Yvinec et al. (2021); Hou et al. (2022); Lin et al. (2020); Dubey et al.
(2018); Sui et al. (2021); Tan & Motani (2020); Luo et al. (2017). Considering the importance of
structured sparsity for inference speedup, most of the state-of-the-art CNN pruning works focus on
structured pruning.
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Figure 2: Key steps of TranSpa: 1) Estimate the importance of coupled weight matrix Wcouple; and
2) Remove the coupled row/column pair in unimportant Wcouple.

3 METHOD

Fig. 2 shows the overall procedure of TranSpa, which consists of two key steps. (1) Coupled Estima-
tion (Section 3.1). This step assesses the importance of the building components of transformers,
using our proposed new calibration granularity at the coupled weight matrix level. (2) Coupled
Sparsification (Section 3.2). Once the unimportant coupled weight matrices are identified, TranSpa
further gauges the fine-grained importance of the coupled row/column pairs in the component matrices
and discards the insignificant ones.

3.1 COUPLED ESTIMATION: COUPLED WEIGHT MATRIX-WISE IMPORTANCE CALIBRATION

As extensively studied in the literature Frantar & Alistarh (2023); Sun et al. (2023); van der Ouderaa
et al. (2023), estimating the unimportant components of neural networks plays a crucial role for
model sparsification. In general, importance estimation can be performed at different granularity
levels, such as weight, neuron, layer, and head. More specifically, when aiming for obtaining the
structured sparse transformers, identifying the insignificant heads and layers is the most common
practice Chen et al. (2021a;b); Men et al. (2024); Ma et al. (2023).

Unlike existing works, we propose to assess the importance of structural components within trans-
formers using a new granularity, namely coupled weight matrix. This idea is motivated by the
observation that the transformer has its unique computing pattern and model topology, and hence
coupling the weight matrices can provide rich information for importance estimation. Next, we
describe the details of our proposal.

Coupled Weight Matrix in MHA. Recall that Eq. 1 and Eq. 2 depict the computations of MHA,
which consists of four types of weight matrices WQ, WK , W V and WO. We propose to estimate
the structural importance of MHA by analyzing the combined effect of these matrices. More
specifically, consider the following mathematical reformulation of Eq. 2:

MHA(XQ,XK ,XV ) =

h∑
i=1

headiW
O
i =

h∑
i=1

softmax(
XQ(Wi

QWK
i

⊤
)XK

⊤
√
e

XV (Wi
V Wi

O),

(4)
where WO

i ∈ Re×em and WO = Concat(WO
1 , . . . ,WO

h ). It is seen that WQK
i = WQ

i WK
i

⊤

and W V O
i = W V

i WO
i , as the combination of two weight matrices, can serve as the structural

components in MHA. Following this perspective, we can then set the granularity of importance
estimation at the level of those coupled weight matrices. We believe this strategy brings two benefits:
i) it provides more fine-grained measurement than the commonly adopted head-level calibration; and
ii) it meanwhile naturally explores the inter-matrix correlation within the attention heads, avoiding
the limitations if only focusing on individual weight matrices.

Coupled Weight Matrix in FFN. Following the same philosophy, we also evaluate the importance
of the building blocks in FFN from the lens of the coupled weight matrix. More specifically, consider
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the FFN computation (Eq. 3) can be reformulated as follows:

FFN(X) = 0.5Y1 ⊙ (1 + erf(Y1/
√
2)Wout

= 0.5XWinWout + 0.5erf(Y1/
√
2)⊙XWinWout,

(5)

where Y1 = XWin, ⊙ is the Hadamard product, and erf(·) denotes the error function as erf(x) =
2√
π

∫ x

0
exp(−t2)dt bounded by [−1, 1]. From Eq. 5 it is seen that the coupled weight matrix

W12 = WinWout contributes a significant portion of the overall computation. Therefore, we
propose to calibrate the importance of this combined matrix, as a good proxy, to identify the
significance of the different structural components of FFN.

Coupled Weight Matrix-wise Importance. After setting the resolution of the importance estimator
with the proposed granularity, we can gauge the structural criticality of MHA and FFN accordingly.
To that end, we calibrate the empirical Fisher information Kunstner et al. (2019) in a coupled weight
matrix-wise way as follows:

Î(Wcouple) =
1

2

2∑
k=1

1

|Wk|
1

|D|
∑
i,j

(
∂L(Wk;D)

∂Wk
)2i,j ,where Wcouple = W1W2. (6)

Here for MHA, {W1,W2} is {WQ
i ,WK⊤

i } and {W V
i ,WO

i }; while for FFN, {W1,W2} is
{Win,Wout}. Also, D is the training data and | · | returns the size of the operand. Notice that
different from prior works Hsu et al. (2022); Sung et al. (2021), the empirical Fisher information is
calculated for the entire coupled weight matrix Wcouple instead of its entries. Smaller Î(Wcouple)
indicates the lower importance of Wcouple when sparsifying the model.

3.2 COUPLED SPARSIFICATION: REMOVING THE COUPLED ROW/COLUMN PAIR

Upon obtaining the importance information of all the coupled weight matrices, the next step is
to sparsify W1 and W2 belonging to those less significant Wcouple. To that end, we perform
row/column-wise sparsification, a strategy with finer granularity than removing the entire Wi,
towards minimizing performance loss and preserving model structuredness. Notice that though
removing the rows/columns in the weight matrices of transformers has been reported in Chen et al.
(2021b;a); van der Ouderaa et al. (2023), we believe those individual weight matrix-oriented methods
are not the best suited in the scenario involved with coupled weight matrices. In other words, the
coupling effect between W1 and W2 should be fully considered and leveraged in the sparsification
process. Aiming at that, we propose coupled sparsification, a solution that removes the coupled
row/column pairs in W1 and W2, with details described as below.

Inspiration from tSVD. The key idea of coupled sparsification is inspired by the philosophy of
truncated singular value decomposition (tSVD). More specifically, recall that a matrix M ∈ Rm×n

can be exactly factorized to two matrices via SVD as:

M = UΣV ⊤ =
(
Um,r Um,(m−r)

)(Σr,r

Σ(m−r),(n−r)

)(
V ⊤
r,n

V ⊤
(n−r),n

)
=
(
Um,rΣ

1/2
r,r Um,(m−r)Σ

1/2
(m−r),(n−r)

)( Σ
1/2
r,r V ⊤

r,n

Σ
1/2
(m−r),(n−r)V

⊤
(n−r),n

)
= M1M2,

(7)

where Σr,r ∈ Rr×r is a diagonal matrix containing r largest singular values σi’s and Σ(m−r),(n−r) ∈
R(m−r)×(n−r) is a diagonal rectangular matrix containing the smallest (min(m,n)− r) σi’s. Then,
consider a rank-r tSVD Wall et al. (2003) for approximating M is performed as:

M ≈ (Um,rΣ
1/2
r,r )(Σ

1/2
r,r V

⊤
r,n) = (M1 ⊙ Smask1)(M2 ⊙ Smask2). (8)

Notice that here Smaski is the binary matrix that essentially removes a sets of rows/columns of
Mi. Meanwhile, it is theoretically proven that tSVD provides the optimal rank-r approximation
for M Wall et al. (2003). Therefore, the row/column-wise sparsification policy for M1 and M2 in
tSVD, by its nature, brings important insights for sparsifying two component matrices with closely
approximating their combination. More specifically, comparing Eq. 7 and Eq. 8, we can see that the
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removed rows/columns are Um,(m−r)Σ
1/2
(m−r),(n−r) and Σ

1/2
(m−r),(n−r)V

⊤
(n−r),n, which exhibit the

following characteristics:

Observation #1 (Small ℓ1 Norm) The removed rows/columns of M1 and M2 typically have smaller
ℓ1 norm, as Σ(m−r),(n−r) only contains very least significant σi’s.

Observation #2 (Aligned Removal) The removed rows in M1 and columns in M2 always have the
same indices, exhibiting the positional alignment of the sparsification.

Sparsifying Coupled Weight Matrices. Considering the mathematical format of Eq. 8 is highly
similar to our desired task of sparsifying the coupled W1 and W2, a natural idea is directly performing
tSVD (Eq. 8) on W = W1W2 to obtain sparse W1 and W2. However, this strategy is mathematically
infeasbile because Eq. 7 is generally not invertible, e.g., we cannot use SVD(W1W2) to reconstruct
W1 or W2. Fortunately, we can still leverage the observations extracted from tSVD process to design
the sparsification policy for W1 and W2. More specifically, we propose to calculate the importance
scores of the row/column vectors of Wi:

υ = [υ1, υ2, . . . , υd] =
∥vec(W1)∥1,col ⊙ ∥vec(W2)∥1,row

∥∥vec(W1)∥1,col ⊙ ∥vec(W2)∥1,row ∥1
, (9)

where ∥vec(·)∥1,col and ∥vec(·)∥1,row represent the column-wise and row-wise ℓ1 norm of a matrix,
respectively, e.g., ∥vec(W1)∥1,col = {

∑m
i=1 |W1(i, j)|, (j = 1, 2, . . . , d)}. And ∥vec(·)∥1 calcu-

lates the ℓ1 norm of a vector. From Eq. 9 it is seen that υi essentially calculates the normalized
combined ℓ1 for the i-th column of W1 and the i-th row of W2, reflecting the two key observations
we obtain from tSVD. Hence we can rank υi’s to determine the important coupled row/column in
W1 and W2, and then remove those insignificant pairs.

Overall Sparse Training Procedure. Algorithm 1 describes the processing scheme of TranSpa.
Here in each epoch, after identifying top-K least significant Wcouple, the importance scores of the
rows/columns in those component weight matrices are calculated. Once the cumulative important
scores exceed the threshold θ, the pair of rows and columns corresponding to the smallest score are
removed. This gradual sparsification process continues till the overall model reaches the target budget
size.

Algorithm 1 Processing Scheme of TranSpa
Input: Random Initialized/Pre-trained model W , Dataset D,

top-K ratio, Target model size c, Cumulative threshold θ

Output: Sparse Model Ŵ
for t in [1, 2, · · · , T ] do

Compute: Loss of W on dataset D
Update: Wt = Wt−1 + δW
if Param(Wt) > c then

Compute: Î(Wcouple),∀Wcouple ∈ W ▷ Eq. 6

Select: top-K Wcouple with smallest Î → {Wcouple}top−K

for Wcouple in {Wcouple}top−K do
Compute: υ of Wcouple ▷ Eq. 9
while

∑
υi > θ do

Remove smallest υi and i-th row/col. of Wcouple

Remove i-th row/col. optimizer moments of Wcouple

4 EXPERIMENTS

4.1 EXPERIMENTS ON PRE-TRAINING (TRAIN FROM SCRATCH)

NLP Transformer (GPT-2): We pre-train sparse NLP transformers by following the training settings
in Zhao et al. (2023). Specifically, we train sparse GPT-2 Radford et al. (2019) models from scratch
on the WikiText-103 dataset Merity et al. (2016), using the AdamW optimizer with an initial learning
rate of 0.001 and a batch size of 512.
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Table 1: Evaluation of training sparse/low-rank GPT-2 models from scratch on WikiText-103.
Validation perplexity is provided, along with memory estimates for total parameters and optimizer
states in FP16 format.

Method PPL Training Time Training
Epochs

# Params.
(M)

# Mem.
(MB)

Inference Throughput
(samples/s)

GPT2-Small (Baseline) 18.5 24.5h, 8×V100 100 124.4 711.8 42.64
In-Rank Zhao et al. (2023) 18.9 22.2h, 8×V100 100 91.2 521.9 -
Monarch Dao et al. (2022) 20.7 - 100 72 412.0 -
Galore Zhao et al. (2024b) 18.3 22.6h, 4×V100 50 124.4 504.9 42.64
TranSpa 18.1 19.6h, 4×V100 50 88.2 504.7 54.79
TranSpa 20.7 21.9h, 4×V100 60 71.3 408.0 61.16

GPT2-Medium (Baseline) 19.5 60.5h, 8×V100 100 354.8 2030.2 19.74
In-Rank Zhao et al. (2023) 19.9 48.6h, 8×V100 100 223.0 1276.0 -
Monarch Dao et al. (2022) 20.3 - 100 165 994.1 -
Galore Zhao et al. (2024b) 19.6 60.4h, 4×V100 50 354.8 1260.9 19.74
TranSpa 19.0 52.1h, 4×V100 50 219.9 1258.3 24.48
TranSpa 19.8 56.8h, 4×V100 60 160.3 917.2 28.46

Table 2: Evaluation of training LLaMA-1B models from scratch on C4 dataset for 100K steps.
Validation perplexity is provided, along with memory estimates for total parameters and optimizer
states in BF16 format. The results for LoRA and ReLoRA are sourced from Zhao et al. (2024b).

Method PPL Training Time
8×A100

# Params.
(M)

# Mem.
(GB)

Inference Throughput
(tokens/s)

Baseline 15.56 51.1h 1339.08 7.80 21786.49
LoRA Hu et al. 19.21 - 1339.08 6.17 21786.49
ReLoRA Lialin et al. (2023) 18.33 - 1339.08 6.17 21786.49
Galore Zhao et al. (2024b) 15.64 60.6h 1339.08 4.38 21786.49
TranSpa 15.60 40.3h 933.94 3.88 35211.27

Large Language Model (LLaMA-1B): For large language models, we follow the training settings in
Zhao et al. (2024b) to train sparse LLaMA-1B from scratch on the C4 dataset. The training employs
the Galore optimizer with an initial learning rate of 0.01 and a batch size of 512.

Vision Transformer (DeiT): We apply our approach to train sparse DeiT models Touvron et al. (2021)
from scratch on the ImageNet-1K dataset Deng et al. (2009). We use the same hyper-parameters as in
Chen et al. (2021a), which include the AdamW optimizer with an initial learning rate of 0.0005 and a
batch size of 512.

4.2 COMPARISON RESULTS

Table 1 compares our approach with the existing sparse and low-rank pre-training works. It is seen that
TranSpa achieves better performance than baseline and prior efforts using only half GPU resources
and less training time. Specifically, our approach can train sparse GPT2-Small and GPT2-Medium
models from scratch, with 1.4× and 1.6× model size reduction, respectively; and meanwhile, it
brings 0.4 and 0.6 lower perplexity over the baseline models. Compared with Dao et al. (2022),
TranSpa achieves the same or lower perplexity with 1.6× training speedup (measured using the
number of epochs). Compared to Galore Zhao et al. (2024b), a method designed for low-rank
compression of optimizer memory, TranSpa delivers better results with faster training speeds under
the same memory consumption and provides 1.2× training speedup and 1.4× inference acceleration.

Table 2 presents the pre-training results for LLaMA-1B. Our approach reduces GPU memory usage
by 50%, decreases training time by 21%, and achieves a 1.6× speedup in inference throughput
without any performance loss. Compared to Galore, our approach reduces memory usage by 10%,
increases training speed by 1.5×, and boosts inference speed by 1.6×. The results for LoRA Hu et al.
and ReLoRA Lialin et al. (2023) are sourced from Zhao et al. (2024b). For low-rank methods, LoRA
Hu et al. (2021) fine-tunes pre-trained models using low-rank adaptors: W = W0+BA, where W0 is
the fixed initial weights and BA is a learnable low-rank adaptor. For pre-training, W0 is the full-rank
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Table 3: Results of training sparse DeiT models from scratch on ImageNet-1k. Results for SSP-Tiny
and SSP-Small are sourced from Chen et al. (2021a). Inference speedup is measured on Nvidia RTX
3090 GPU.

Method # Params.
(M)

# Mem.
(MB)

FLOPs
Saving (%)

Top-1
Acc. (%)

Inference
Speedup

DeiT-Tiny (Baseline) 5.72 32.73 - 71.80 -
SSP-Tiny Bartoldson et al. (2020) 4.21 24.09 23.69 68.59 1.12×
S2ViTE-Tiny Chen et al. (2021a) 4.21 24.09 23.69 70.12 1.12×
TranSpa 3.95 22.60 32.01 70.92 1.20×
DeiT-Small (Baseline) 22.10 126.46 - 79.78 -
SSP-Small Bartoldson et al. (2020) 14.60 83.54 33.13 77.74 1.29×
S2ViTE-Small Chen et al. (2021a) 14.60 83.54 33.13 79.22 1.29×
TranSpa 13.98 79.99 37.30 79.57 1.29×

Table 4: Perplexity of compressed LLaMA2-7B on WikiText-2 with different target model sizes.
SVD-LLM Wang et al. (2024) and SliceGPT Ashkboos et al. (2024) are low-rank based methods.
LLM Surgeon van der Ouderaa et al. (2023) is a pruning method, K-OBD van der Ouderaa et al.
(2023), as a baseline comparison method, uses Kronecker-factored curvature and only prunes without
updating the remaining weights.

Method K-OBD SVD-LLM LLM Surgeon SliceGPT TranSpa

Training Time 16h58m, H100 15m, A100 17h08m, H100 1h07m, H100 1h41m, A100

PPL @
Target Size

80% 9.14 7.94 6.18 6.64 6.36
70% 15.43 9.56 7.83 8.12 7.66
60% 28.03 13.11 10.39 - 10.24
50% 46.64 23.97 15.38 - 14.02

initialization matrix. ReLoRA Lialin et al. (2023) is a variant of LoRA designed for pre-training. It
periodically merges BA into W and reinitializes BA with a reset on optimizer states and learning
rate. TranSpa surpasses these low-rank methods, reducing PPL by 3.6 and 2.7, respectively, while
decreasing memory usage by 37% and offering 1.6× acceleration in inference throughput.

Table 3 lists the performance results of various sparse vision transformer pre-training methods.
TranSpa achieves a 0.8% increase in top-1 accuracy for DeiT-Tiny and a 0.35% increase for DeiT-
Small over state-of-the-art solutions, along with greater model size reduction.

4.3 EXPERIMENTS ON FINE-TUNING LLAMA2-7B (STRUCTURED PRUNING)

Experimental Setting. We evaluate the pruning performance of TranSpa on the pre-trained
LLaMA2 Touvron et al. (2023) models. We use WikiText-2 Merity et al. (2016) as the calibra-
tion dataset and evaluate the perplexity of the pruned model. We follow the same training settings
adopted in van der Ouderaa et al. (2023), use 128 sequences with a sequence length of 2048 tokens
from the training data set, and evaluate perplexity on the standard test split. Additionally, we also
evaluate the performance of the pruned models on downstream zero-shot tasks.

Comparison Results. Table 4 presents a comparison of the perplexity performance between TranSpa
and existing LLM pruning and low-rank factorization methods applied to LLaMA2-7B. Our approach
consistently achieves lower perplexity across various target model size configurations compared
to previous works. Additionally, Table 5 illustrates the zero-shot task performance of the pruned
LLaMA2-7B model. In comparison to SliceGPT Ashkboos et al. (2024), our method demonstrates
improved results across different target model sizes, indicating its effectiveness.

4.4 DISCUSSION & ANALYSIS

Selection of K and θ. As described in Algorithm 1, K determines the percentage of Wcouple’s
that will be sparsified in each epoch, and threshold θ impacts the amount of to-be-removed coupled
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Table 5: Comparison of downstream zero-shot task performance of LLaMA2-7B model when trained
on WikiText2 dataset.

Target Size PIQA WinoGrande HellaSwag ARC-e ARC-c Avg.

LLaMA2-7B 100% 79.11 69.06 75.99 74.58 46.25 69.00

TranSpa
80% 73.78 61.48 67.79 61.62 39.42 60.82
75% 71.93 60.69 64.69 54.38 35.15 57.37
70% 70.18 59.98 60.00 49.16 34.22 54.71

SliceGPT
80% 69.42 65.11 59.04 59.76 37.54 58.18
75% 66.87 63.38 54.16 58.46 34.56 55.48
70% 63.55 61.33 49.62 51.77 31.23 51.50
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Figure 3: Pre-training sparse DeiT-Small model on CIFAR-10 dataset with various K and θ. The
target model size is 11M.
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Figure 4: Fine-tuning Pre-trained sparse BERT-Base model on SQuAD benchmark with various K
and θ. The target model size is 72.6M.

row/column pairs within those unimportant Wcouple’s. As shown in Fig. 3, when applying TranSpa
at the pre-training stage, larger θ brings better training performance, while the model is less sensitive
to the change of K. On the other hand, Fig. 4 shows that it is better to use smaller K at the fine-tuning
stage, while the selection of θ is less significant in this scenario. We hypothesize that such difference
might be due to the existence of a pre-trained model in the fine-tuning process since a pre-trained
model typically has more diverse distribution of Wcouple than the model being sparsely trained from
random initialization, making the identification of unimportant Wcouple more effective. Therefore,
considering K cannot be too small (otherwise, it is challenging to meet the model size budget (see the
change of parameters (dashed curve) in Fig. 4), we set K = 30% and θ = 90% in our experiments.

Importance of Coupled Sparsification. Fig. 5 compares the training performance using different
methods to compress Wcouple. It is seen that our proposed coupled row/column-wise sparsification
scheme achieves the best performance. In particular, it outperforms the uncoupled row/column-based
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Figure 5: Pre-training DeiT-Small model on CIFAR-10 dataset using different Wcouple compression
methods. All the methods remove the same number of parameters within the same Wcouple’s in each
epoch.

solution, demonstrating the importance of removing the row/column of W1 and W2 in a coupled way.
Notice that though our approach is inspired by tSVD, it achieves better performance than directly
applying tSVD on Wcouple. This is because SVD not only changes the structure of the model but
also alters the numerical distribution of the original model weights. Consequently, the optimizers that
keep track of moment information, e.g., Adam Kingma & Ba (2014), cannot work well since they
will not be able to use previously accumulated information, thereby affecting the model performance.

5 CONCLUSION

In this paper, we propose TranSpa, an efficient structured sparse training approach for transformers.
By estimating the coupled weight matrix-wise importance and removing the coupled row/column
pair during training, TranSpa brings a significant reduction in training costs and model complexity
with preserving high task performance. Experiments across various transformer models demonstrate
the superior performance of TranSpa in both pre-training and fine-tuning scenarios.
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A APPENDIX

A.1 FINE-TUNING BERT MODEL ON GLUE AND SQUAD1.1 DATASET

Experimental Setting. We evaluate the pruning performance of TranSpa on the pre-trained BERT De-
vlin et al. (2018) models. For experiments on BERT, the model is pruned and evaluated on
GLUE Wang et al. (2018) and SQuAD Rajpurkar et al. (2016) benchmarks. When performing
fine-tuning on the GLUE benchmark, the learning rate and weight decay are set as 5 × 10−5 and
0, respectively, with 3 training epochs and batch size of 32. The maximum sequence length is
128. For fine-tuning on the SQuAD benchmark, the learning rate is set to 3× 10−5 at the 3-epoch
fine-tuning stage, and the batch size, maximum sequence length, and document stride are 12, 320,
128, respectively. Both training and testing are conducted on a single Nvidia GeForce RTX 3090.
For single-sentence tasks, we include the CoLA Warstadt et al. (2019) task, evaluated based on
Matthew’s correlation, and the SST-2 task, assessed using classification accuracy. For sentence
similarity tasks, we consider three distinct evaluations: MRPC Dolan et al. (2005) evaluated using
F-1 score, STS-B Cer et al. (2017) assessed through Pearson-Spearman correlation, and QQP Chen
et al. (2018) measured in F-1 score. The evaluation also covers three natural language inference tasks:
MNLI Williams et al. (2017), measured in classification accuracy with the average of the matched
and mismatched subsets, and QNLI Rajpurkar et al. (2016), assessed in terms of accuracy. For the
reading comprehension task, SQuAD consists of questions generated by crowd workers based on
a collection of Wikipedia articles. Each question requires extracting an answer, in the form of a
segment of text or span, from the corresponding reading passage.

Table 6: Experimental results on GLUE. ‘Avg." means the average of GLUE tasks. Average training
and inference times are calculated by averaging the time consumption across all tasks, “G" denotes
Generic Knowledge Distillation, where models are compressed, and then knowledge distillation
is conducted on the datasets from English Wikipedia and Toronto Book Corpus Zhu et al. (2015)
before fine-tuning on various task datasets. “G+TS" indicates that a task-specific teacher model is
still utilized during fine-tuning for further knowledge distillation after generic knowledge distillation.
Training times for DitilBERT and MA-DistilBERT are sourced from the Sanh et al. (2019); Ming
et al. (2022), respectively. Average training and inference times are computed by averaging the time
consumption across all tasks.
Method MRPC

F-1
QNLI
Acc.

MNLI
Acc.

STS-B
Corr.

SST-2
Acc.

QQP
F-1

CoLA
Corr. Avg. # Params.

(M)
Knowledge
Distllation

Fine-tuning
Epochs

Avg. Training
Time

Avg. Inference
Time (ms/batch)

BERT-Base (Baseline) 87.4 91.3 84.7 88.5 93 87.8 56.2 84.1 109.5 No 3 1402.7s, 1×RTX3090 118.1
TranSpa 88.2 90.1 83.2 86.5 91.6 87.2 52.9 82.8 75.1 No 2 821.7s, 1×RTX3090 84.3
TranSpa 89.5 89.4 82.7 86.7 92.7 87.3 51.6 82.8 66.1 No 3 1210.7s, 1×RTX3090 70.3
FWSVD Hsu et al. (2022) 88.0 89.5 83.0 87 91.2 87.6 49.4 82.2 66.5 No 4 1548.1s, 1×RTX3090 81.3
FISH Sung et al. (2021) 86.2 93.3 85.3 85.7 94.0 79.3 56.4 82.9 335.8 No 7 - 376.6
EarlyBERT Chen et al. (2021b) - 89.2 81.8 - 90.7 - - - 77.0 No 2.2 - -
DistilBERT Sanh et al. (2019) 88.7 89.3 82.2 86.1 90.4 86.7 49.8 81.9 67.0 Yes 3 3.75d, 8×V100 -
MiniLMv2 Wang et al. (2020) 89.1 90.6 84 88.1 91.4 86.7 43.3 81.9 67.0 Yes 3 - -
MA-DistilBERT Ming et al. (2022) 86.7 88.4 82.3 87.5 90.8 - 51.3 - 67.2 Yes 5-10 3.5d, 1×RTX3090 -

Table 7: Experimental results on SQuAD1.1 for pruning BERT-Base model.
Method # Params. (M) Exact (%) F1-score (%) Training epochs Training Time (s) Inference Speedup

BERT-Base (Baseline) 108.9 81.00 88.30 3 3,834 -
ProxSSI Deleu & Bengio (2021) 90.8 72.30 82.00 3 - 1×
OTOv2 Chen et al. (2023b) 87.2 79.40 87.30 3 - 1.2×
OTOv2 59.9 74.60 83.80 3 - 1.4×
EarlyBERT Chen et al. (2021b) 77.0 - 86.13 2.2 - -
TranSpa 72.3 78.59 86.53 2 2,138 1.5×
TranSpa 86.7 79.92 87.59 3 3,618 1.2×
TranSpa 58.6 75.97 84.64 3 2,939 1.7×

Comparison Results. Table 6 shows the performance results of compressing the BERT-Base model
using different methods. It is seen that TranSpa consistently outperforms existing structured pruning
and knowledge distillation solutions across a set of tasks. Meanwhile, because it does not require
costly knowledge distillation at the fine-tuning stage, our approach enjoys a very fast fine-tuning
speed. Table 7 shows the results on the SQuAD benchmark. It is seen that TranSpa consistently
outperforms the existing structured pruning approaches with significantly higher exact and F-1 scores
(at least 0.52% and 0.29% increase) and smaller model size.
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