
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TRANSPA: TOWARDS EFFICIENT STRUCTURED
SPARSE TRAINING FOR TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformers have emerged as the backbone neural network architecture in today’s
AI applications. Due to their high complexity, sparsifying transformers, at both
pre-training and fine-tuning stages, is very attractive for lower the training and
inference costs. In this paper, we propose TranSpa, an efficient structured sparse
training approach for language and vision transformers. Unlike prior works focus-
ing on individual building blocks, TranSpa fully considers the correlation between
the weight matrices and their component rows/columns, and performs the coupled
estimation and coupled sparsification. To achieve that, TranSpa introduces the use
of new granularity when calibrating the importance of structural components in
the transformer and removing the insignificant parts. Evaluations across different
models, in both pre-training and fine-tuning scenarios, demonstrate the effective-
ness of the proposed approach. TranSpa can bring 1.6× size reduction with 0.6
lower perplexity when training GPT-2 model from scratch. It also enables 1.6×
training speedup over the existing sparse pre-training method. For training sparse
LLaMA-1B from scratch, our approach reduces GPU memory usage by 50%,
decreases training time by 21%, and achieves a 1.6× speedup in inference through-
put while maintaining model performance. Experiments of applying TranSpa for
fine-tuning tasks also show significant performance improvement with respect to
model accuracy and pruning cost reduction.

1 INTRODUCTION

Thanks to their excellent performance for sequence modeling and scalability, transformers Vaswani
et al. (2017) have served as the backbone neural network architecture across various important
domains, such as natural language processing (NLP) Vaswani et al. (2017); Devlin et al. (2019);
Wang et al. (2019a); OpenAI et al. (2023); Touvron et al. (2023), computer vision Dosovitskiy et al.
(2020); Liu et al. (2021); Carion et al. (2020) and speech processing Dong et al. (2018); Gulati et al.
(2020); Hsu et al. (2021). However, despite their unprecedented popularity, modern transformers
suffer from high model complexity, causing expensive costs in both training and inference phases.

To alleviate these challenging issues, sparse training, a strategy that originated for optimizing
convolutional neural networks (CNNs), has emerged as an attractive solution for efficient transformers.
In general, given an input model θ, sparse training aims to output a sparse model θs with high task
performance. As illustrated in Fig. 1, when θ is randomly initialized, sparse training serves as an
efficient pre-training method that can reduce the computational and memory costs of the expensive
training-from-scratch process. When θ is a pre-trained high-performance dense model, sparse training
is essentially the well-known pruning technique, which imposes the sparsity on θ in the fine-tuning
process and trims down the inference cost.

Although sparse training has been well studied for slimming CNN models, the fundamentally
different mechanism of transformers, e.g., multi-head self-attention, make the existing CNN-oriented
solutions not suitable for transformers. To date, the efficient sparse transformer training is still
under-explored. More specifically, 1) for applying sparse training at the pre-training stage, Frankle
& Carbin (2018), Chen et al. (2021a;b) propose to train sparse vision and NLP transformers from
scratch, with focus on exploring head-level sparsity. Also Dao et al. (2022) proposes to use specially
structured matrix for sparse transformer training; 2) for applying sparse training at the fine-tuning
stage, Ma et al. (2023); Chen et al. (2021b); Yu et al. (2022) explore the structured sparsity at head

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Coarse-grained Pruning

Fine-tune / Retrain
Knowledge distillation

Ø Structured Pruning

MHA

FFN

Pruning attention head/
Transformer block

Pre-trained (e.g., BERT, LLaMA)

MHA

FFNScenario 2:
 Fine-tuning

MHA

FFN

Randomly Initialized

Scenario 1:
Pre-training TranSpa: Structured Sparse Training

Remove Coupled Row/Col.
of 𝑾&'()*+

Estimate coupled
weight matrix-wise

importance

Estimate Importance
 5𝑰(𝑾&'()*+)

Faster Inference

Faster Training

Smaller Model

Figure 1: Our proposed TranSpa is a structured sparse training approach, applicable for both pre-
training and fine-tuning stages.

levels. Observing the potential layer-wise redundancy, Chen et al. (2024); Men et al. (2024) propose
to remove unimportant layers in the transformer architecture. In addition, Ashkboos et al. (2024);
van der Ouderaa et al. (2023) use finer granularity at row and column level for structured pruning,
achieving good compression performance.

Technical Contributions. In this paper, we propose to perform structured sparse transformer training
1 from a new perspective. Unlike prior works focusing on evaluating the importance of individual
components of transformer architecture, e.g., a weight matrix or its component row/column, we
propose to fully consider the inter-matrix and inter-row/column correlation, leading to new mechanism
for importance assessment and structural removal. More specifically, at the coupled estimation step,
we introduce a new granularity, namely, coupled weight matrices, to calibrate the architectural
importance of transformer model, providing more fine-grained measurement via exploring the
inherent coupling effects of weight matrices. Then, at the coupled sparsification step, for the row
and column within those unimportant coupled matrices, we propose to rank and remove them in a
coupled way, maximally preserving the inherent inter-row/column correlation in the weight matrix.

We apply our approach, namely TranSpa, in both pre-training and fine-tuning scenarios. Evaluation
across different model types (e.g., vision transformers, and large language model (LLMs)) show that
TranSpa brings significant performance improvement with respect to training speed, model accuracy,
and cost reduction. For instance, when training the GPT-2 model from scratch, our approach can bring
1.6× size reduction with 0.6 lower perplexity (PPL). It also brings 1.6× training speedup compared
to the existing sparse pre-training methods. For pre-training sparse LLaMA-1B from scratch, our
approach cuts GPU memory usage by half, shortens training time by 21%, and boosts inference
throughput by 1.6×. For training sparse DeiT from scratch, TranSpa brings 0.8% accuracy increase
over the state-of-the-art solutions. Experiments on pruning LLMs also demonstrate the effectiveness
of our approach.

2 BACKGROUND

2.1 PRELIMINARIES

Notation. We represent tensors using boldface calligraphic script, denoted as X . Matrices and
vectors are indicated with boldface capital and lowercase letters, such as X and x, respectively.
Furthermore, non-boldface letters with indices, e.g., X (i1, · · · , id), X(i, j), and x(i), denote the
entries for a d-dimensional tensor X , a matrix X , and a vector x, respectively.

Transformer. For Transformer-based models, the key components include the Multi-Head Attention
(MHA) and Feed-Forward Network (FFN). More specifcally, the MHA operation is defined as
follows:

MHA(XQ,XK ,XV) = Concat(head1, . . . , headh)W
O, (1)

1In this paper we focus on structured sparsity, which can bring measured speedup on off-the-shelf hardware;
while the unstructured sparsity typically cannot. Though some Nvidia GPUs now provide hardware support for
semi-structured 2:4 sparsity, this feature is only available for the high-end GPUs such as A100 and up, limiting
its practice in many budget-limited resource-limited applications.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

where XQ,XK ,XV ∈ Rl×em are the length-l input sequences, em is the embedding dimension,
and h is the number of attention heads. Here each attention head headi operates as below:

headi = Attention(XQW
Q
i , XKWK

i , XV W
V
i) = softmax

(
XQW

Q
i (XKWK

i)⊤√
e

)
XV W

V
i ,

(2)
where WQ

i , WK
i ,W V

i ∈ Rem×e, WO ∈ Rem×em , and em = e× h. The FFN consists of two fully
connected layers with a Gaussian Error Linear Unit (GELU) activation function applied in between.
Let X represent the input embeddings, and Win ∈ Rem×d,Wout ∈ Rd×em , bin, bout denote the
weight matrices and bias vectors, respectively. The operation of FFN can be then defined as follows:

FFN(X) = GELU(XWin + bin)Wout + bout. (3)

2.2 RELATED WORKS

Sparse Training for Transformer Pre-training. Applying sparse training at the pre-training stage
is very attractive for reducing the high complexity of the costly train-from-scratch process. However,
unlike the well-studied sparse CNN pre-training, to date sparse transformer pre-training is still
under-explored. Chen et al. (2021a) dynamically extracts and trains sparse sub-networks, either
in unstructured or structured ways, thereby alleviating the training memory bottleneck for Vision
Transformers. Inspired by the Lottery Ticket Hypothesis originated in CNN, Chen et al. (2021b)
performs early detection of the structured winning lottery tickets for transformers, improving the pre-
training efficiency. In Dao et al. (2022), a class of structured matrices, which can closely approximate
the dense weight matrices, are proposed for hardware-efficient sparse pre-training, accelerating the
overall training process. Notice that the methods developed in Chen et al. (2021b;a); Dao et al. (2022)
can also be applied at the fine-tuning stage for transformer pruning.

Sparse Training for LLM Pruning. Due to the high costs of pre-trained LLM models, using sparse
training to trim down LLM size is a promising solution for efficient deployment. In general, pruning
LLM can be performed in either unstructured or structured way. Unstructured pruning Frantar &
Alistarh (2023); Sun et al. (2023); Zhang et al. (2023); Sun et al. (2023); Xia et al. (2023); Malla et al.
(2024) focus on removing unimportant individual weights, achieving high compression performance
but limited computational efficiency due to the unstructured sparsity pattern. Structured pruning
Ma et al. (2023); Xia et al. (2023); Ashkboos et al. (2024); An et al. (2024); Chen et al. (2023b;a);
Zhao et al. (2024a); Yang et al. (2024) aims to sparsify some building components of transformer
architecture, e.g., head, row, layer, etc., offering wall-clock time inference speedup. To guide the
guide the selection of elements to be removed, typical pruning metrics include magnitude-based
Sun et al. (2023); An et al. (2024) and loss-based Ma et al. (2023); van der Ouderaa et al. (2023).
Magnitude-based methods use the absolute values of weights, whereas loss-based approaches assess
the impact of pruning on model loss, often using the gradient information obtained from Taylor
expansion.

Sparse Training for CNN Pre-training/Pruning. Sparse training for CNN, at pre-training and
fine-tuning stages, has been well-studied in the literature. For efficient sparse CNN pre-training,
Mocanu et al. (2018) explores to prune and grow the same amount of weights periodically and
iteratively. Mostafa & Wang (2019) proposes to automatically adjust the sparsity levels, achieving
good scalability and high computational efficiency. Evci et al. (2020) uses the gradient-based criteria
to grow the weights with Erdos-Renyi Kernel initialization, and a memory-economic scheme is
proposed in Yuan et al. (2021) for training on the edge devices. Recently, Chen et al. (2023c)
proposes to automatically sparsify the CNN model from scratch, obtaining a compact model without
iterative fine-tuning. On the other hand, CNN pruning can be roughly categorized to unstructured
pruning (for weights) Han et al. (2015a;b) and structured pruning (for channels/filters) He et al.
(2019); Wang et al. (2019b); Yvinec et al. (2021); Hou et al. (2022); Lin et al. (2020); Dubey et al.
(2018); Sui et al. (2021); Tan & Motani (2020); Luo et al. (2017). Considering the importance of
structured sparsity for inference speedup, most of the state-of-the-art CNN pruning works focus on
structured pruning.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Step 1: Estimate 5𝑰(𝑾&'()*+)
Min Max

𝑾#$,𝑾%&'𝑾(,𝑾) 𝑾* ,𝑾+

𝒉𝒆𝒂𝒅𝟏
𝒉𝒆𝒂𝒅𝟐
𝒉𝒆𝒂𝒅𝟑

𝑾𝑸 𝑾50
𝑾67 𝑾89:

Step 2: Remove Coupled
Row/Col. (FFN)

Step 2: Remove Coupled
Row/Col. (MHA)

𝒆

𝒆𝒎

𝒆𝒎

𝒆
𝒉𝒆𝒂𝒅𝟏 𝒉𝒆𝒂𝒅𝟐 𝒉𝒆𝒂𝒅𝟑

𝑾&'()*+ Sparsify 𝑾&'()*+

Figure 2: Key steps of TranSpa: 1) Estimate the importance of coupled weight matrix Wcouple; and
2) Remove the coupled row/column pair in unimportant Wcouple.

3 METHOD

Fig. 2 shows the overall procedure of TranSpa, which consists of two key steps. (1) Coupled Estima-
tion (Section 3.1). This step assesses the importance of the building components of transformers,
using our proposed new calibration granularity at the coupled weight matrix level. (2) Coupled
Sparsification (Section 3.2). Once the unimportant coupled weight matrices are identified, TranSpa
further gauges the fine-grained importance of the coupled row/column pairs in the component matrices
and discards the insignificant ones.

3.1 COUPLED ESTIMATION: COUPLED WEIGHT MATRIX-WISE IMPORTANCE CALIBRATION

As extensively studied in the literature Frantar & Alistarh (2023); Sun et al. (2023); van der Ouderaa
et al. (2023), estimating the unimportant components of neural networks plays a crucial role for
model sparsification. In general, importance estimation can be performed at different granularity
levels, such as weight, neuron, layer, and head. More specifically, when aiming for obtaining the
structured sparse transformers, identifying the insignificant heads and layers is the most common
practice Chen et al. (2021a;b); Men et al. (2024); Ma et al. (2023).

Unlike existing works, we propose to assess the importance of structural components within trans-
formers using a new granularity, namely coupled weight matrix. This idea is motivated by the
observation that the transformer has its unique computing pattern and model topology, and hence
coupling the weight matrices can provide rich information for importance estimation. Next, we
describe the details of our proposal.

Coupled Weight Matrix in MHA. Recall that Eq. 1 and Eq. 2 depict the computations of MHA,
which consists of four types of weight matrices WQ, WK , W V and WO. We propose to estimate
the structural importance of MHA by analyzing the combined effect of these matrices. More
specifically, consider the following mathematical reformulation of Eq. 2:

MHA(XQ,XK ,XV) =

h∑
i=1

headiW
O
i =

h∑
i=1

softmax(
XQ(Wi

QWK
i

⊤
)XK

⊤
√
e

XV (Wi
V Wi

O),

(4)
where WO

i ∈ Re×em and WO = Concat(WO
1 , . . . ,WO

h). It is seen that WQK
i = WQ

i WK
i

⊤

and W V O
i = W V

i WO
i , as the combination of two weight matrices, can serve as the structural

components in MHA. Following this perspective, we can then set the granularity of importance
estimation at the level of those coupled weight matrices. We believe this strategy brings two benefits:
i) it provides more fine-grained measurement than the commonly adopted head-level calibration; and
ii) it meanwhile naturally explores the inter-matrix correlation within the attention heads, avoiding
the limitations if only focusing on individual weight matrices.

Coupled Weight Matrix in FFN. Following the same philosophy, we also evaluate the importance
of the building blocks in FFN from the lens of the coupled weight matrix. More specifically, consider

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

the FFN computation (Eq. 3) can be reformulated as follows:

FFN(X) = 0.5Y1 ⊙ (1 + erf(Y1/
√
2)Wout

= 0.5XWinWout + 0.5erf(Y1/
√
2)⊙XWinWout,

(5)

where Y1 = XWin, ⊙ is the Hadamard product, and erf(·) denotes the error function as erf(x) =
2√
π

∫ x

0
exp(−t2)dt bounded by [−1, 1]. From Eq. 5 it is seen that the coupled weight matrix

W12 = WinWout contributes a significant portion of the overall computation. Therefore, we
propose to calibrate the importance of this combined matrix, as a good proxy, to identify the
significance of the different structural components of FFN.

Coupled Weight Matrix-wise Importance. After setting the resolution of the importance estimator
with the proposed granularity, we can gauge the structural criticality of MHA and FFN accordingly.
To that end, we calibrate the empirical Fisher information Kunstner et al. (2019) in a coupled weight
matrix-wise way as follows:

Î(Wcouple) =
1

2

2∑
k=1

1

|Wk|
1

|D|
∑
i,j

(
∂L(Wk;D)

∂Wk
)2i,j ,where Wcouple = W1W2. (6)

Here for MHA, {W1,W2} is {WQ
i ,WK⊤

i } and {W V
i ,WO

i }; while for FFN, {W1,W2} is
{Win,Wout}. Also, D is the training data and | · | returns the size of the operand. Notice that
different from prior works Hsu et al. (2022); Sung et al. (2021), the empirical Fisher information is
calculated for the entire coupled weight matrix Wcouple instead of its entries. Smaller Î(Wcouple)
indicates the lower importance of Wcouple when sparsifying the model.

3.2 COUPLED SPARSIFICATION: REMOVING THE COUPLED ROW/COLUMN PAIR

Upon obtaining the importance information of all the coupled weight matrices, the next step is
to sparsify W1 and W2 belonging to those less significant Wcouple. To that end, we perform
row/column-wise sparsification, a strategy with finer granularity than removing the entire Wi,
towards minimizing performance loss and preserving model structuredness. Notice that though
removing the rows/columns in the weight matrices of transformers has been reported in Chen et al.
(2021b;a); van der Ouderaa et al. (2023), we believe those individual weight matrix-oriented methods
are not the best suited in the scenario involved with coupled weight matrices. In other words, the
coupling effect between W1 and W2 should be fully considered and leveraged in the sparsification
process. Aiming at that, we propose coupled sparsification, a solution that removes the coupled
row/column pairs in W1 and W2, with details described as below.

Inspiration from tSVD. The key idea of coupled sparsification is inspired by the philosophy of
truncated singular value decomposition (tSVD). More specifically, recall that a matrix M ∈ Rm×n

can be exactly factorized to two matrices via SVD as:

M = UΣV ⊤ =
(
Um,r Um,(m−r)

)(Σr,r

Σ(m−r),(n−r)

)(
V ⊤
r,n

V ⊤
(n−r),n

)
=
(
Um,rΣ

1/2
r,r Um,(m−r)Σ

1/2
(m−r),(n−r)

)(Σ
1/2
r,r V ⊤

r,n

Σ
1/2
(m−r),(n−r)V

⊤
(n−r),n

)
= M1M2,

(7)

where Σr,r ∈ Rr×r is a diagonal matrix containing r largest singular values σi’s and Σ(m−r),(n−r) ∈
R(m−r)×(n−r) is a diagonal rectangular matrix containing the smallest (min(m,n)− r) σi’s. Then,
consider a rank-r tSVD Wall et al. (2003) for approximating M is performed as:

M ≈ (Um,rΣ
1/2
r,r)(Σ

1/2
r,r V

⊤
r,n) = (M1 ⊙ Smask1)(M2 ⊙ Smask2). (8)

Notice that here Smaski is the binary matrix that essentially removes a sets of rows/columns of
Mi. Meanwhile, it is theoretically proven that tSVD provides the optimal rank-r approximation
for M Wall et al. (2003). Therefore, the row/column-wise sparsification policy for M1 and M2 in
tSVD, by its nature, brings important insights for sparsifying two component matrices with closely
approximating their combination. More specifically, comparing Eq. 7 and Eq. 8, we can see that the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

removed rows/columns are Um,(m−r)Σ
1/2
(m−r),(n−r) and Σ

1/2
(m−r),(n−r)V

⊤
(n−r),n, which exhibit the

following characteristics:

Observation #1 (Small ℓ1 Norm) The removed rows/columns of M1 and M2 typically have smaller
ℓ1 norm, as Σ(m−r),(n−r) only contains very least significant σi’s.

Observation #2 (Aligned Removal) The removed rows in M1 and columns in M2 always have the
same indices, exhibiting the positional alignment of the sparsification.

Sparsifying Coupled Weight Matrices. Considering the mathematical format of Eq. 8 is highly
similar to our desired task of sparsifying the coupled W1 and W2, a natural idea is directly performing
tSVD (Eq. 8) on W = W1W2 to obtain sparse W1 and W2. However, this strategy is mathematically
infeasbile because Eq. 7 is generally not invertible, e.g., we cannot use SVD(W1W2) to reconstruct
W1 or W2. Fortunately, we can still leverage the observations extracted from tSVD process to design
the sparsification policy for W1 and W2. More specifically, we propose to calculate the importance
scores of the row/column vectors of Wi:

υ = [υ1, υ2, . . . , υd] =
∥vec(W1)∥1,col ⊙ ∥vec(W2)∥1,row

∥∥vec(W1)∥1,col ⊙ ∥vec(W2)∥1,row ∥1
, (9)

where ∥vec(·)∥1,col and ∥vec(·)∥1,row represent the column-wise and row-wise ℓ1 norm of a matrix,
respectively, e.g., ∥vec(W1)∥1,col = {

∑m
i=1 |W1(i, j)|, (j = 1, 2, . . . , d)}. And ∥vec(·)∥1 calcu-

lates the ℓ1 norm of a vector. From Eq. 9 it is seen that υi essentially calculates the normalized
combined ℓ1 for the i-th column of W1 and the i-th row of W2, reflecting the two key observations
we obtain from tSVD. Hence we can rank υi’s to determine the important coupled row/column in
W1 and W2, and then remove those insignificant pairs.

Overall Sparse Training Procedure. Algorithm 1 describes the processing scheme of TranSpa.
Here in each epoch, after identifying top-K least significant Wcouple, the importance scores of the
rows/columns in those component weight matrices are calculated. Once the cumulative important
scores exceed the threshold θ, the pair of rows and columns corresponding to the smallest score are
removed. This gradual sparsification process continues till the overall model reaches the target budget
size.

Algorithm 1 Processing Scheme of TranSpa
Input: Random Initialized/Pre-trained model W , Dataset D,

top-K ratio, Target model size c, Cumulative threshold θ

Output: Sparse Model Ŵ
for t in [1, 2, · · · , T] do

Compute: Loss of W on dataset D
Update: Wt = Wt−1 + δW
if Param(Wt) > c then

Compute: Î(Wcouple),∀Wcouple ∈ W ▷ Eq. 6

Select: top-K Wcouple with smallest Î → {Wcouple}top−K

for Wcouple in {Wcouple}top−K do
Compute: υ of Wcouple ▷ Eq. 9
while

∑
υi > θ do

Remove smallest υi and i-th row/col. of Wcouple

Remove i-th row/col. optimizer moments of Wcouple

4 EXPERIMENTS

4.1 EXPERIMENTS ON PRE-TRAINING (TRAIN FROM SCRATCH)

NLP Transformer (GPT-2): We pre-train sparse NLP transformers by following the training settings
in Zhao et al. (2023). Specifically, we train sparse GPT-2 Radford et al. (2019) models from scratch
on the WikiText-103 dataset Merity et al. (2016), using the AdamW optimizer with an initial learning
rate of 0.001 and a batch size of 512.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Evaluation of training sparse/low-rank GPT-2 models from scratch on WikiText-103.
Validation perplexity is provided, along with memory estimates for total parameters and optimizer
states in FP16 format.

Method PPL Training Time Training
Epochs

Params.
(M)

Mem.
(MB)

Inference Throughput
(samples/s)

GPT2-Small (Baseline) 18.5 24.5h, 8×V100 100 124.4 711.8 42.64
In-Rank Zhao et al. (2023) 18.9 22.2h, 8×V100 100 91.2 521.9 -
Monarch Dao et al. (2022) 20.7 - 100 72 412.0 -
Galore Zhao et al. (2024b) 18.3 22.6h, 4×V100 50 124.4 504.9 42.64
TranSpa 18.1 19.6h, 4×V100 50 88.2 504.7 54.79
TranSpa 20.7 21.9h, 4×V100 60 71.3 408.0 61.16

GPT2-Medium (Baseline) 19.5 60.5h, 8×V100 100 354.8 2030.2 19.74
In-Rank Zhao et al. (2023) 19.9 48.6h, 8×V100 100 223.0 1276.0 -
Monarch Dao et al. (2022) 20.3 - 100 165 994.1 -
Galore Zhao et al. (2024b) 19.6 60.4h, 4×V100 50 354.8 1260.9 19.74
TranSpa 19.0 52.1h, 4×V100 50 219.9 1258.3 24.48
TranSpa 19.8 56.8h, 4×V100 60 160.3 917.2 28.46

Table 2: Evaluation of training LLaMA-1B models from scratch on C4 dataset for 100K steps.
Validation perplexity is provided, along with memory estimates for total parameters and optimizer
states in BF16 format. The results for LoRA and ReLoRA are sourced from Zhao et al. (2024b).

Method PPL Training Time
8×A100

Params.
(M)

Mem.
(GB)

Inference Throughput
(tokens/s)

Baseline 15.56 51.1h 1339.08 7.80 21786.49
LoRA Hu et al. 19.21 - 1339.08 6.17 21786.49
ReLoRA Lialin et al. (2023) 18.33 - 1339.08 6.17 21786.49
Galore Zhao et al. (2024b) 15.64 60.6h 1339.08 4.38 21786.49
TranSpa 15.60 40.3h 933.94 3.88 35211.27

Large Language Model (LLaMA-1B): For large language models, we follow the training settings in
Zhao et al. (2024b) to train sparse LLaMA-1B from scratch on the C4 dataset. The training employs
the Galore optimizer with an initial learning rate of 0.01 and a batch size of 512.

Vision Transformer (DeiT): We apply our approach to train sparse DeiT models Touvron et al. (2021)
from scratch on the ImageNet-1K dataset Deng et al. (2009). We use the same hyper-parameters as in
Chen et al. (2021a), which include the AdamW optimizer with an initial learning rate of 0.0005 and a
batch size of 512.

4.2 COMPARISON RESULTS

Table 1 compares our approach with the existing sparse and low-rank pre-training works. It is seen that
TranSpa achieves better performance than baseline and prior efforts using only half GPU resources
and less training time. Specifically, our approach can train sparse GPT2-Small and GPT2-Medium
models from scratch, with 1.4× and 1.6× model size reduction, respectively; and meanwhile, it
brings 0.4 and 0.6 lower perplexity over the baseline models. Compared with Dao et al. (2022),
TranSpa achieves the same or lower perplexity with 1.6× training speedup (measured using the
number of epochs). Compared to Galore Zhao et al. (2024b), a method designed for low-rank
compression of optimizer memory, TranSpa delivers better results with faster training speeds under
the same memory consumption and provides 1.2× training speedup and 1.4× inference acceleration.

Table 2 presents the pre-training results for LLaMA-1B. Our approach reduces GPU memory usage
by 50%, decreases training time by 21%, and achieves a 1.6× speedup in inference throughput
without any performance loss. Compared to Galore, our approach reduces memory usage by 10%,
increases training speed by 1.5×, and boosts inference speed by 1.6×. The results for LoRA Hu et al.
and ReLoRA Lialin et al. (2023) are sourced from Zhao et al. (2024b). For low-rank methods, LoRA
Hu et al. (2021) fine-tunes pre-trained models using low-rank adaptors: W = W0+BA, where W0 is
the fixed initial weights and BA is a learnable low-rank adaptor. For pre-training, W0 is the full-rank

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Results of training sparse DeiT models from scratch on ImageNet-1k. Results for SSP-Tiny
and SSP-Small are sourced from Chen et al. (2021a). Inference speedup is measured on Nvidia RTX
3090 GPU.

Method # Params.
(M)

Mem.
(MB)

FLOPs
Saving (%)

Top-1
Acc. (%)

Inference
Speedup

DeiT-Tiny (Baseline) 5.72 32.73 - 71.80 -
SSP-Tiny Bartoldson et al. (2020) 4.21 24.09 23.69 68.59 1.12×
S2ViTE-Tiny Chen et al. (2021a) 4.21 24.09 23.69 70.12 1.12×
TranSpa 3.95 22.60 32.01 70.92 1.20×
DeiT-Small (Baseline) 22.10 126.46 - 79.78 -
SSP-Small Bartoldson et al. (2020) 14.60 83.54 33.13 77.74 1.29×
S2ViTE-Small Chen et al. (2021a) 14.60 83.54 33.13 79.22 1.29×
TranSpa 13.98 79.99 37.30 79.57 1.29×

Table 4: Perplexity of compressed LLaMA2-7B on WikiText-2 with different target model sizes.
SVD-LLM Wang et al. (2024) and SliceGPT Ashkboos et al. (2024) are low-rank based methods.
LLM Surgeon van der Ouderaa et al. (2023) is a pruning method, K-OBD van der Ouderaa et al.
(2023), as a baseline comparison method, uses Kronecker-factored curvature and only prunes without
updating the remaining weights.

Method K-OBD SVD-LLM LLM Surgeon SliceGPT TranSpa

Training Time 16h58m, H100 15m, A100 17h08m, H100 1h07m, H100 1h41m, A100

PPL @
Target Size

80% 9.14 7.94 6.18 6.64 6.36
70% 15.43 9.56 7.83 8.12 7.66
60% 28.03 13.11 10.39 - 10.24
50% 46.64 23.97 15.38 - 14.02

initialization matrix. ReLoRA Lialin et al. (2023) is a variant of LoRA designed for pre-training. It
periodically merges BA into W and reinitializes BA with a reset on optimizer states and learning
rate. TranSpa surpasses these low-rank methods, reducing PPL by 3.6 and 2.7, respectively, while
decreasing memory usage by 37% and offering 1.6× acceleration in inference throughput.

Table 3 lists the performance results of various sparse vision transformer pre-training methods.
TranSpa achieves a 0.8% increase in top-1 accuracy for DeiT-Tiny and a 0.35% increase for DeiT-
Small over state-of-the-art solutions, along with greater model size reduction.

4.3 EXPERIMENTS ON FINE-TUNING LLAMA2-7B (STRUCTURED PRUNING)

Experimental Setting. We evaluate the pruning performance of TranSpa on the pre-trained
LLaMA2 Touvron et al. (2023) models. We use WikiText-2 Merity et al. (2016) as the calibra-
tion dataset and evaluate the perplexity of the pruned model. We follow the same training settings
adopted in van der Ouderaa et al. (2023), use 128 sequences with a sequence length of 2048 tokens
from the training data set, and evaluate perplexity on the standard test split. Additionally, we also
evaluate the performance of the pruned models on downstream zero-shot tasks.

Comparison Results. Table 4 presents a comparison of the perplexity performance between TranSpa
and existing LLM pruning and low-rank factorization methods applied to LLaMA2-7B. Our approach
consistently achieves lower perplexity across various target model size configurations compared
to previous works. Additionally, Table 5 illustrates the zero-shot task performance of the pruned
LLaMA2-7B model. In comparison to SliceGPT Ashkboos et al. (2024), our method demonstrates
improved results across different target model sizes, indicating its effectiveness.

4.4 DISCUSSION & ANALYSIS

Selection of K and θ. As described in Algorithm 1, K determines the percentage of Wcouple’s
that will be sparsified in each epoch, and threshold θ impacts the amount of to-be-removed coupled

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Comparison of downstream zero-shot task performance of LLaMA2-7B model when trained
on WikiText2 dataset.

Target Size PIQA WinoGrande HellaSwag ARC-e ARC-c Avg.

LLaMA2-7B 100% 79.11 69.06 75.99 74.58 46.25 69.00

TranSpa
80% 73.78 61.48 67.79 61.62 39.42 60.82
75% 71.93 60.69 64.69 54.38 35.15 57.37
70% 70.18 59.98 60.00 49.16 34.22 54.71

SliceGPT
80% 69.42 65.11 59.04 59.76 37.54 58.18
75% 66.87 63.38 54.16 58.46 34.56 55.48
70% 63.55 61.33 49.62 51.77 31.23 51.50

0 50 100
(a) Epochs

20

30

40

50

60

70

To
p-

1
Ac

cu
ra

cy
 (

%
)

K=10%, =50%
K=30%, =50%
K=50%, =50%
Baseline

0 50 100
(b) Epochs

K=10%, =70%
K=30%, =70%
K=50%, =70%
Baseline

0 50 100
(c) Epochs

K=10%, =90%
K=30%, =90%
K=50%, =90%
Baseline

#Params #Params

1.2

1.4

1.6

1.8

2.0

2.2

#
Pa

ra
m

s
(1

0M
)

1e7
#Params

Figure 3: Pre-training sparse DeiT-Small model on CIFAR-10 dataset with various K and θ. The
target model size is 11M.

0 2500 5000 7500
(a) Training Steps

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 L
os

s K=10%, =50%
K=30%, =50%
K=50%, =50%
Baseline

0 2500 5000 7500
(b) Training Steps

K=10%, =70%
K=30%, =70%
K=50%, =70%
Baseline

0 2500 5000 7500
(c) Training Steps

K=10%, =90%
K=30%, =90%
K=50%, =90%
Baseline

#Params #Params

0.7

0.8

0.9

1.0

1.1

#
Pa

ra
m

s
(1

00
M

)

1e8

#Params

Figure 4: Fine-tuning Pre-trained sparse BERT-Base model on SQuAD benchmark with various K
and θ. The target model size is 72.6M.

row/column pairs within those unimportant Wcouple’s. As shown in Fig. 3, when applying TranSpa
at the pre-training stage, larger θ brings better training performance, while the model is less sensitive
to the change of K. On the other hand, Fig. 4 shows that it is better to use smaller K at the fine-tuning
stage, while the selection of θ is less significant in this scenario. We hypothesize that such difference
might be due to the existence of a pre-trained model in the fine-tuning process since a pre-trained
model typically has more diverse distribution of Wcouple than the model being sparsely trained from
random initialization, making the identification of unimportant Wcouple more effective. Therefore,
considering K cannot be too small (otherwise, it is challenging to meet the model size budget (see the
change of parameters (dashed curve) in Fig. 4), we set K = 30% and θ = 90% in our experiments.

Importance of Coupled Sparsification. Fig. 5 compares the training performance using different
methods to compress Wcouple. It is seen that our proposed coupled row/column-wise sparsification
scheme achieves the best performance. In particular, it outperforms the uncoupled row/column-based

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Epoch

40

60

80

To
p-

1
Ac

c(
%

)

Baseline
Head-level
Low-Rank
Uncoupled Row/Col.
Ours 1.6

1.7

1.8

1.9

2.0

2.1

#
Pa

ra
m

s
(1

0M
)

1e7

#Params

Figure 5: Pre-training DeiT-Small model on CIFAR-10 dataset using different Wcouple compression
methods. All the methods remove the same number of parameters within the same Wcouple’s in each
epoch.

solution, demonstrating the importance of removing the row/column of W1 and W2 in a coupled way.
Notice that though our approach is inspired by tSVD, it achieves better performance than directly
applying tSVD on Wcouple. This is because SVD not only changes the structure of the model but
also alters the numerical distribution of the original model weights. Consequently, the optimizers that
keep track of moment information, e.g., Adam Kingma & Ba (2014), cannot work well since they
will not be able to use previously accumulated information, thereby affecting the model performance.

5 CONCLUSION

In this paper, we propose TranSpa, an efficient structured sparse training approach for transformers.
By estimating the coupled weight matrix-wise importance and removing the coupled row/column
pair during training, TranSpa brings a significant reduction in training costs and model complexity
with preserving high task performance. Experiments across various transformer models demonstrate
the superior performance of TranSpa in both pre-training and fine-tuning scenarios.

REFERENCES

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-based adaptive structured
pruning for large language models. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 10865–10873, 2024.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024.

Brian Bartoldson, Ari Morcos, Adrian Barbu, and Gordon Erlebacher. The generalization-stability
tradeoff in neural network pruning. Advances in Neural Information Processing Systems, 33:
20852–20864, 2020.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In European conference on computer
vision, pp. 213–229. Springer, 2020.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. Semeval-2017 task
1: Semantic textual similarity-multilingual and cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055, 2017.

Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, and Zhangyang Wang. Chasing sparsity
in vision transformers: An end-to-end exploration. Advances in Neural Information Processing
Systems, 34:19974–19988, 2021a.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Tianyi Chen, Tianyu Ding, Badal Yadav, Ilya Zharkov, and Luming Liang. Lorashear: Efficient large
language model structured pruning and knowledge recovery. arXiv preprint arXiv:2310.18356,
2023a.

Tianyi Chen, Luming Liang, Tianyu DING, Zhihui Zhu, and Ilya Zharkov. OTOv2: Automatic,
generic, user-friendly. In The Eleventh International Conference on Learning Representations,
2023b. URL https://openreview.net/forum?id=7ynoX1ojPMt.

Tianyi Chen, Luming Liang, Tianyu Ding, Zhihui Zhu, and Ilya Zharkov. Otov2: Automatic, generic,
user-friendly. arXiv preprint arXiv:2303.06862, 2023c.

Xiaodong Chen, Yuxuan Hu, and Jing Zhang. Compressing large language models by streamlining
the unimportant layer. arXiv preprint arXiv:2403.19135, 2024.

Xiaohan Chen, Yu Cheng, Shuohang Wang, Zhe Gan, Zhangyang Wang, and Jingjing Liu. Earlybert:
Efficient bert training via early-bird lottery tickets. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pp. 2195–2207, 2021b.

Zihan Chen, Hongbo Zhang, Xiaoji Zhang, and Leqi Zhao. Quora question pairs, 2018.

Tri Dao, Beidi Chen, Nimit S Sohoni, Arjun Desai, Michael Poli, Jessica Grogan, Alexander Liu,
Aniruddh Rao, Atri Rudra, and Christopher Ré. Monarch: Expressive structured matrices for
efficient and accurate training. In International Conference on Machine Learning, pp. 4690–4721.
PMLR, 2022.

Tristan Deleu and Yoshua Bengio. Structured sparsity inducing adaptive optimizers for deep learning.
arXiv preprint arXiv:2102.03869, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423.

Bill Dolan, Chris Brockett, and Chris Quirk. Microsoft research paraphrase corpus. Retrieved March,
29(2008):63, 2005.

Linhao Dong, Shuang Xu, and Bo Xu. Speech-transformer: a no-recurrence sequence-to-sequence
model for speech recognition. In 2018 IEEE international conference on acoustics, speech and
signal processing (ICASSP), pp. 5884–5888. IEEE, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Abhimanyu Dubey, Moitreya Chatterjee, and Narendra Ahuja. Coreset-based neural network com-
pression. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 454–470,
2018.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In International Conference on Machine Learning, pp. 2943–2952.
PMLR, 2020.

11

https://openreview.net/forum?id=7ynoX1ojPMt
https://aclanthology.org/N19-1423

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo
Wang, Zhengdong Zhang, Yonghui Wu, et al. Conformer: Convolution-augmented transformer for
speech recognition. arXiv preprint arXiv:2005.08100, 2020.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015a.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015b.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median for
deep convolutional neural networks acceleration. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 4340–4349, 2019.

Zejiang Hou, Minghai Qin, Fei Sun, Xiaolong Ma, Kun Yuan, Yi Xu, Yen-Kuang Chen, Rong
Jin, Yuan Xie, and Sun-Yuan Kung. Chex: Channel exploration for cnn model compression.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12287–12298, 2022.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov,
and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked
prediction of hidden units. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
29:3451–3460, 2021.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
compression with weighted low-rank factorization. arXiv preprint arXiv:2207.00112, 2022.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Frederik Kunstner, Philipp Hennig, and Lukas Balles. Limitations of the empirical fisher approx-
imation for natural gradient descent. Advances in neural information processing systems, 32,
2019.

Vladislav Lialin, Sherin Muckatira, Namrata Shivagunde, and Anna Rumshisky. Relora: High-
rank training through low-rank updates. In The Twelfth International Conference on Learning
Representations, 2023.

Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang, Yonghong Tian, and Ling
Shao. Hrank: Filter pruning using high-rank feature map. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 1529–1538, 2020.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In Proceedings of the IEEE international conference on computer vision,
pp. 5058–5066, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

Srikanth Malla, Joon Hee Choi, and Chiho Choi. Copal: Continual pruning in large language
generative models. arXiv preprint arXiv:2405.02347, 2024.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Neo Wei Ming, Zhehui Wang, Cheng Liu, Rick Siow Mong Goh, and Tao Luo. Ma-bert: Towards
matrix arithmetic-only bert inference by eliminating complex non-linear functions. In The Eleventh
International Conference on Learning Representations, 2022.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connectivity
inspired by network science. Nature communications, 9(1):2383, 2018.

Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural networks
by dynamic sparse reparameterization. In International Conference on Machine Learning, pp.
4646–4655. PMLR, 2019.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, and et al. Gpt-4 technical report, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Yang Sui, Miao Yin, Yi Xie, Huy Phan, Saman Aliari Zonouz, and Bo Yuan. Chip: Channel
independence-based pruning for compact neural networks. Advances in Neural Information
Processing Systems, 34:24604–24616, 2021.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
large language models. arXiv preprint arXiv:2306.11695, 2023.

Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks.
Advances in Neural Information Processing Systems, 34:24193–24205, 2021.

Chong Min John Tan and Mehul Motani. Dropnet: Reducing neural network complexity via iterative
pruning. In International Conference on Machine Learning, pp. 9356–9366. PMLR, 2020.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Herve
Jegou. Training data-efficient image transformers & distillation through attention. In International
Conference on Machine Learning, volume 139, pp. 10347–10357, July 2021.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Tycho FA van der Ouderaa, Markus Nagel, Mart Van Baalen, Yuki M Asano, and Tijmen Blankevoort.
The llm surgeon. arXiv preprint arXiv:2312.17244, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Michael E Wall, Andreas Rechtsteiner, and Luis M Rocha. Singular value decomposition and
principal component analysis. In A practical approach to microarray data analysis, pp. 91–109.
Springer, 2003.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F Wong, and Lidia S Chao.
Learning deep transformer models for machine translation. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pp. 1810–1822, 2019a.

Wenhui Wang, Hangbo Bao, Shaohan Huang, Li Dong, and Furu Wei. Minilmv2: Multi-head
self-attention relation distillation for compressing pretrained transformers. arXiv preprint
arXiv:2012.15828, 2020.

Wenxiao Wang, Cong Fu, Jishun Guo, Deng Cai, and Xiaofei He. Cop: Customized deep model com-
pression via regularized correlation-based filter-level pruning. arXiv preprint arXiv:1906.10337,
2019b.

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value
decomposition for large language model compression. arXiv preprint arXiv:2403.07378, 2024.

Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability judgments.
Transactions of the Association for Computational Linguistics, 7:625–641, 2019.

Adina Williams, Nikita Nangia, and Samuel R Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv preprint arXiv:1704.05426, 2017.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. arXiv preprint arXiv:2310.06694, 2023.

Yifei Yang, Zouying Cao, and Hai Zhao. Laco: Large language model pruning via layer collapse.
arXiv preprint arXiv:2402.11187, 2024.

Shixing Yu, Tianlong Chen, Jiayi Shen, Huan Yuan, Jianchao Tan, Sen Yang, Ji Liu, and Zhangyang
Wang. Unified visual transformer compression. arXiv preprint arXiv:2203.08243, 2022.

Geng Yuan, Xiaolong Ma, Wei Niu, Zhengang Li, Zhenglun Kong, Ning Liu, Yifan Gong, Zheng
Zhan, Chaoyang He, Qing Jin, et al. Mest: Accurate and fast memory-economic sparse training
framework on the edge. Advances in Neural Information Processing Systems, 34:20838–20850,
2021.

Edouard Yvinec, Arnaud Dapogny, Matthieu Cord, and Kevin Bailly. Red: Looking for redundancies
for data-freestructured compression of deep neural networks. Advances in Neural Information
Processing Systems, 34:20863–20873, 2021.

Yuxin Zhang, Lirui Zhao, Mingbao Lin, Yunyun Sun, Yiwu Yao, Xingjia Han, Jared Tanner, Shiwei
Liu, and Rongrong Ji. Dynamic sparse no training: Training-free fine-tuning for sparse llms. arXiv
preprint arXiv:2310.08915, 2023.

Bowen Zhao, Hannaneh Hajishirzi, and Qingqing Cao. Apt: Adaptive pruning and tuning pretrained
language models for efficient training and inference. arXiv preprint arXiv:2401.12200, 2024a.

Jiawei Zhao, Yifei Zhang, Beidi Chen, Florian Schäfer, and Anima Anandkumar. Inrank: Incremental
low-rank learning. 2023.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024b.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and
Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching
movies and reading books. In Proceedings of the IEEE international conference on computer
vision, pp. 19–27, 2015.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 FINE-TUNING BERT MODEL ON GLUE AND SQUAD1.1 DATASET

Experimental Setting. We evaluate the pruning performance of TranSpa on the pre-trained BERT De-
vlin et al. (2018) models. For experiments on BERT, the model is pruned and evaluated on
GLUE Wang et al. (2018) and SQuAD Rajpurkar et al. (2016) benchmarks. When performing
fine-tuning on the GLUE benchmark, the learning rate and weight decay are set as 5 × 10−5 and
0, respectively, with 3 training epochs and batch size of 32. The maximum sequence length is
128. For fine-tuning on the SQuAD benchmark, the learning rate is set to 3× 10−5 at the 3-epoch
fine-tuning stage, and the batch size, maximum sequence length, and document stride are 12, 320,
128, respectively. Both training and testing are conducted on a single Nvidia GeForce RTX 3090.
For single-sentence tasks, we include the CoLA Warstadt et al. (2019) task, evaluated based on
Matthew’s correlation, and the SST-2 task, assessed using classification accuracy. For sentence
similarity tasks, we consider three distinct evaluations: MRPC Dolan et al. (2005) evaluated using
F-1 score, STS-B Cer et al. (2017) assessed through Pearson-Spearman correlation, and QQP Chen
et al. (2018) measured in F-1 score. The evaluation also covers three natural language inference tasks:
MNLI Williams et al. (2017), measured in classification accuracy with the average of the matched
and mismatched subsets, and QNLI Rajpurkar et al. (2016), assessed in terms of accuracy. For the
reading comprehension task, SQuAD consists of questions generated by crowd workers based on
a collection of Wikipedia articles. Each question requires extracting an answer, in the form of a
segment of text or span, from the corresponding reading passage.

Table 6: Experimental results on GLUE. ‘Avg." means the average of GLUE tasks. Average training
and inference times are calculated by averaging the time consumption across all tasks, “G" denotes
Generic Knowledge Distillation, where models are compressed, and then knowledge distillation
is conducted on the datasets from English Wikipedia and Toronto Book Corpus Zhu et al. (2015)
before fine-tuning on various task datasets. “G+TS" indicates that a task-specific teacher model is
still utilized during fine-tuning for further knowledge distillation after generic knowledge distillation.
Training times for DitilBERT and MA-DistilBERT are sourced from the Sanh et al. (2019); Ming
et al. (2022), respectively. Average training and inference times are computed by averaging the time
consumption across all tasks.
Method MRPC

F-1
QNLI
Acc.

MNLI
Acc.

STS-B
Corr.

SST-2
Acc.

QQP
F-1

CoLA
Corr. Avg. # Params.

(M)
Knowledge
Distllation

Fine-tuning
Epochs

Avg. Training
Time

Avg. Inference
Time (ms/batch)

BERT-Base (Baseline) 87.4 91.3 84.7 88.5 93 87.8 56.2 84.1 109.5 No 3 1402.7s, 1×RTX3090 118.1
TranSpa 88.2 90.1 83.2 86.5 91.6 87.2 52.9 82.8 75.1 No 2 821.7s, 1×RTX3090 84.3
TranSpa 89.5 89.4 82.7 86.7 92.7 87.3 51.6 82.8 66.1 No 3 1210.7s, 1×RTX3090 70.3
FWSVD Hsu et al. (2022) 88.0 89.5 83.0 87 91.2 87.6 49.4 82.2 66.5 No 4 1548.1s, 1×RTX3090 81.3
FISH Sung et al. (2021) 86.2 93.3 85.3 85.7 94.0 79.3 56.4 82.9 335.8 No 7 - 376.6
EarlyBERT Chen et al. (2021b) - 89.2 81.8 - 90.7 - - - 77.0 No 2.2 - -
DistilBERT Sanh et al. (2019) 88.7 89.3 82.2 86.1 90.4 86.7 49.8 81.9 67.0 Yes 3 3.75d, 8×V100 -
MiniLMv2 Wang et al. (2020) 89.1 90.6 84 88.1 91.4 86.7 43.3 81.9 67.0 Yes 3 - -
MA-DistilBERT Ming et al. (2022) 86.7 88.4 82.3 87.5 90.8 - 51.3 - 67.2 Yes 5-10 3.5d, 1×RTX3090 -

Table 7: Experimental results on SQuAD1.1 for pruning BERT-Base model.
Method # Params. (M) Exact (%) F1-score (%) Training epochs Training Time (s) Inference Speedup

BERT-Base (Baseline) 108.9 81.00 88.30 3 3,834 -
ProxSSI Deleu & Bengio (2021) 90.8 72.30 82.00 3 - 1×
OTOv2 Chen et al. (2023b) 87.2 79.40 87.30 3 - 1.2×
OTOv2 59.9 74.60 83.80 3 - 1.4×
EarlyBERT Chen et al. (2021b) 77.0 - 86.13 2.2 - -
TranSpa 72.3 78.59 86.53 2 2,138 1.5×
TranSpa 86.7 79.92 87.59 3 3,618 1.2×
TranSpa 58.6 75.97 84.64 3 2,939 1.7×

Comparison Results. Table 6 shows the performance results of compressing the BERT-Base model
using different methods. It is seen that TranSpa consistently outperforms existing structured pruning
and knowledge distillation solutions across a set of tasks. Meanwhile, because it does not require
costly knowledge distillation at the fine-tuning stage, our approach enjoys a very fast fine-tuning
speed. Table 7 shows the results on the SQuAD benchmark. It is seen that TranSpa consistently
outperforms the existing structured pruning approaches with significantly higher exact and F-1 scores
(at least 0.52% and 0.29% increase) and smaller model size.

15

	Introduction
	Background
	Preliminaries
	Related Works

	Method
	Coupled Estimation: Coupled Weight Matrix-wise Importance Calibration
	Coupled Sparsification: Removing the Coupled Row/Column Pair

	Experiments
	Experiments on Pre-training (Train from Scratch)
	Comparison Results
	Experiments on Fine-tuning LLaMA2-7B (Structured Pruning)
	Discussion & Analysis

	Conclusion
	Appendix
	Fine-tuning BERT model on GLUE and SQuAD1.1 dataset

