

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TOWARDS FAITHFUL REASONING IN COMICS FOR SMALL MLLMs

Anonymous authors

Paper under double-blind review

ABSTRACT

Comic-based visual question answering (CVQA) poses distinct challenges to multimodal large language models (MLLMs) due to its reliance on symbolic abstraction, narrative logic, and humor, which differ from conventional VQA tasks. Although Chain-of-Thought (CoT) prompting is widely used to enhance MLLM reasoning, surprisingly, its direct application to CVQA often degrades performance, especially in small-scale models. Our theoretical and empirical analyses reveal that standard CoT in CVQA suffers from state entanglement, spurious transitions, and exploration inefficiency, with small models particularly vulnerable in resource-constrained settings. To address these issues, we propose a novel comic reasoning framework, designed to produce more faithful and transferable reasoning chains in small MLLMs. Specifically, our framework combines modular CoT generation with GRPO-based reinforcement fine-tuning and a novel structured reward. Experiments on three comic VQA benchmarks show that our method outperforms state-of-the-art models by an average of **10.4%** (up to **15.2%**). When used as a plug-in component, it further yields an average improvement of **12.1%** across different MLLMs.

1 INTRODUCTION

Comics require layered reasoning over symbolic cues, cultural references, and narrative flow, making comic-based visual question answering (CVQA) substantially more challenging than conventional VQA. While multimodal large language models (MLLMs) achieve strong results on standard benchmarks, recent studies show that their performance on CVQA remains limited (Hu et al., 2024; Yang et al., 2024; Zhang et al., 2025; Liu et al., 2024), particularly for small-scale models that are widely used in practice. This gap underscores the need for methods that can strengthen reasoning under such challenging settings.

Chain-of-Thought (CoT) prompting (Wei et al., 2022) has emerged as a popular technique to enhance reasoning by encouraging intermediate steps (Wang et al., 2025; Li et al., 2025). However, in symbolically rich and context-dependent domains like CVQA, its effectiveness is far from guaranteed. Our experiments on CII-Bench (Zhang et al., 2025) reveal a counterintuitive result: *naive CoT prompting often degrades performance*, with small MLLMs suffering the most severe drop (Figure 1(A)). Since such lightweight models are central to resource-constrained deployments, this work focuses on understanding and improving the reasoning behavior of small MLLMs.

To shed light on why naive CoT degrades small MLLMs, we conduct a case study on Qwen2.5-VL-3B (Team, 2025b), a representative model. Our findings show that three undesirable patterns often emerge: 1). satirical target confusion—misidentifying the object of satire, 2). symbolic misalignment—misinterpreting culturally loaded symbols, and 3). salient cue omission—overlooking critical visual signals (Figure 2). These findings indicate that CoT can produce linguistically well-formed yet semantically unfaithful reasoning, echoing the phenomenon of verbal overshadowing (Liu et al., 2025), where explicit verbalization impairs perceptual judgment. As discussed in (Sprague et al., 2025), CoT mainly benefits formal symbolic reasoning tasks but can harm context-dependent, non-symbolic reasoning such as CVQA.

These observations raise a central question:

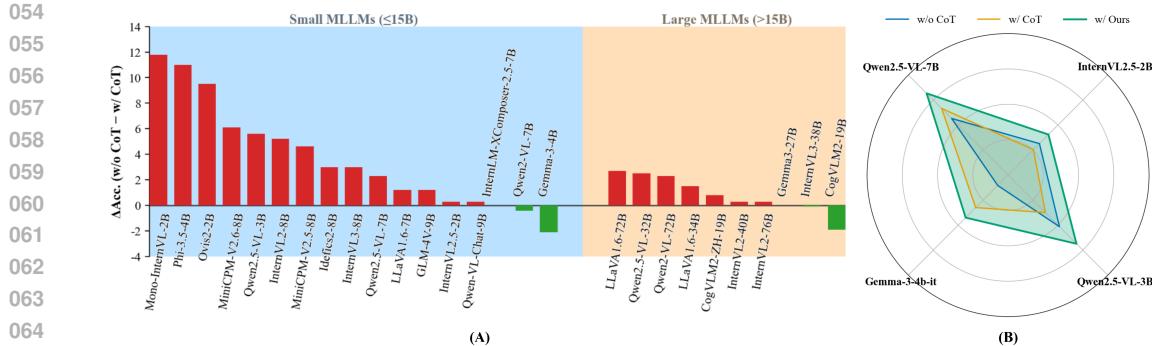


Figure 1: (A) Accuracy change with CoT prompting on CII-Bench, where naive CoT consistently degrades performance, with small MLLMs suffering larger drops and greater instability. The complete numerical results are provided in Appendix D. (B) Our plug-in consistently improves accuracy across small MLLMs on DEEPEVAL, compared with both w/ CoT and w/o CoT baselines.

why does standard CoT, which succeeds in many reasoning tasks, fail so dramatically for small MLLMs in comic-based VQA?

In Sect. 2.1.1, we model reasoning as a sequential decision process and show that standard CoT suffers from three structural flaws: **state entanglement**, **spurious transitions**, and **exploration inefficiency**. **Small MLLMs are especially vulnerable**, since their limited capacity magnifies entanglement and makes them less robust to spurious trajectories—explaining the pronounced degradation observed in Figure 1. These insights motivate our proposed comic reasoning framework, which explicitly mitigates these flaws by enforcing modular reasoning and aligning optimization objectives with task-specific rewards, thereby producing more faithful and transferable CoTs.

Our contributions are threefold: (1) We provide the first systematic analysis of why standard CoT fails in comic VQA, bridging empirical failure patterns with a formal sequential decision perspective; (2) We introduce a new framework consisting of a modular and task-aligned CoT framework that enhances both faithfulness and transferability of reasoning in small MLLMs; (3) We achieve state-of-the-art results on three challenging comic-VQA benchmarks, with our 3B model outperforming baselines up to 7B, while our plug-in experiments further demonstrate model-agnostic gains across small MLLMs (Figure 1(B)).

2 METHOD

To address the limitations of standard CoT in comic VQA, we propose a novel two-stage framework: (i) **Modular Chain-of-Thought** generation (**MoCoT**) and (ii) reinforcement fine-tuning with **Verifiable Enhanced RewArd** (**VERA**), implemented via Group Relative Policy Optimization (GRPO (Shao et al., 2024)). MoCoT produces high-quality rationales, which are then used to supervise MLLM fine-tuning under VERA-guided reinforcement.

2.1 MODULAR CHAIN-OF-THOUGHT REASONING FOR VISUAL COMICS

We denote a CVQA instance as $\mathcal{I} = (I, Q)$, where I is a comic image and Q is the associated question. A reasoning trajectory is represented as $\tau = (z_1, \dots, z_T)$, where each $z_t \in \mathcal{Z}$ is a latent reasoning state (e.g., grounding a visual cue, interpreting a symbolic reference, or inferring narrative flow). Reasoning is modeled as a policy π over the state space \mathcal{Z} : $z_t \sim \pi(z_t \mid \mathcal{I}, z_{<t})$, $z_t \in \mathcal{Z}$.

2.1.1 WHY STANDARD CoT FAILS IN COMIC VQA

Motivation. Unlike conventional VQA, CVQA requires reasoning over symbolic abstraction, narrative coherence, and humor. This makes reasoning chains highly context-dependent and error-prone. Naive CoT reasoning is subject to three structural flaws, which are summarized below.

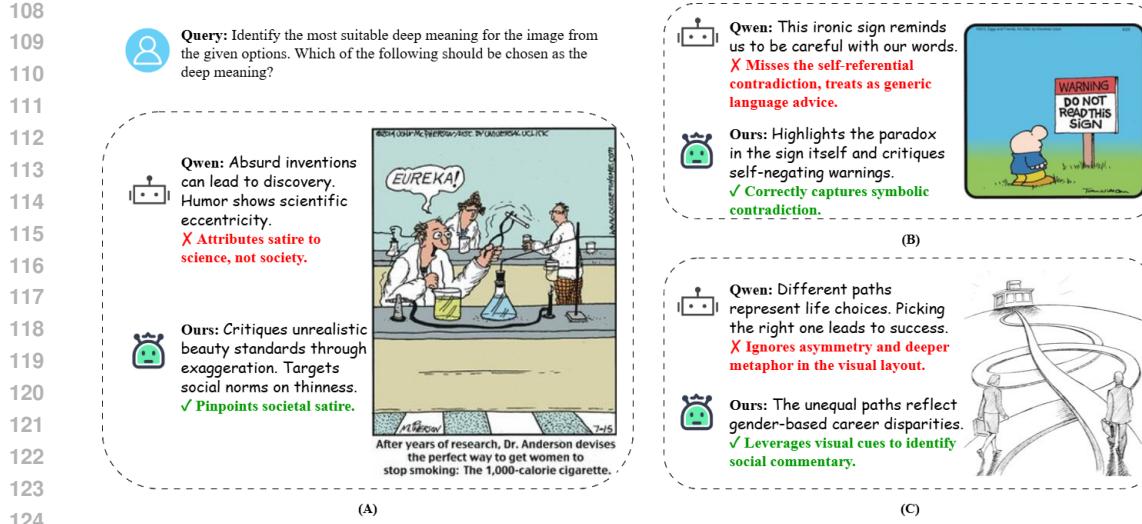


Figure 2: Representative failure cases of Qwen2.5-VL-3B (shown as Qwen in the figure) under naive CoT prompting. Typical errors include (A) satirical target confusion, (B) symbolic misalignment, and (C) salient cue omission, which directly lead to performance degradation. Our approach mitigates all the three factors.

Proposition 2.1 (Limitations of Naive CoT). *Given a trajectory $\tau = (z_1, \dots, z_T)$, naive CoT in CVQA exhibits: (i) **State entanglement**, each z_t jointly encodes perceptual and abstract variables, preventing separation of error sources; (ii) **Spurious transitions**, since π assigns non-zero probability to irrelevant symbolic states in \mathcal{Z} ; and (iii) **Exploration inefficiency**, as the trajectory space $|\mathcal{T}| = |\mathcal{Z}|^T$ grows exponentially in T , making valid reasoning paths exponentially rare.*

Remark. These flaws are more evident in small MLLMs: their limited capacity amplifies entanglement, reduces robustness to spurious paths, and makes inefficient exploration particularly harmful—consistent with the empirical degradation observed in Figure 1(A). A complete proof is provided in Appendix B.1.

Human Intuition. When humans read comics, before consolidating them into a coherent judgment, we naturally factorize our reasoning into visual grounding, symbolic decoding, and narrative inference. MoCoT mirrors this strategy by enforcing modular reasoning steps that are auditable and verifiable.

2.1.2 MoCoT PIPELINE OVERVIEW

MoCoT instantiates this idea as a three-stage *plan–execute–verify* pipeline (Figure 3):

Step 1: Subgoal Planning. A planner \mathcal{P} decomposes (I, Q) into K typed sub-questions: $\mathcal{Q}_{\text{sub}} = \{(q_k, t_k)\}_{k=1}^K$, $t_k \in \{\text{VISUAL}, \text{SYMBOLIC}, \text{NARRATIVE}\}$. Typing restricts the reasoning state space $\mathcal{Z}_{t_k} \subseteq \mathcal{Z}$, yielding focused sub-problems.

Step 2: Localized Execution. Each executor \mathcal{E}_k independently solves its sub-question: $(r_k, a_k) = \mathcal{E}_k(I, q_k; t_k)$, producing localized rationales r_k and provisional answers a_k . This results in a pool of sub-results $\mathcal{C}_{\text{sub}} = \{(r_k, a_k, t_k)\}_{k=1}^K$.

Step 3: Meta-Reasoning and Verification. A meta-reasoner consolidates the evidence into a diagnostic rationale (DTR) and a final inference rationale (FIR): $\text{DTR} = \text{Diagnose}(\mathcal{C}_{\text{sub}}, I, Q)$, $(\text{FIR}, A_o) = \text{Infer}(I, Q; \text{DTR})$. A symbolic checker \mathcal{V} then validates entailment: $A'_o = \mathcal{V}(\text{FIR})$, accept iff $A'_o = A_o$.

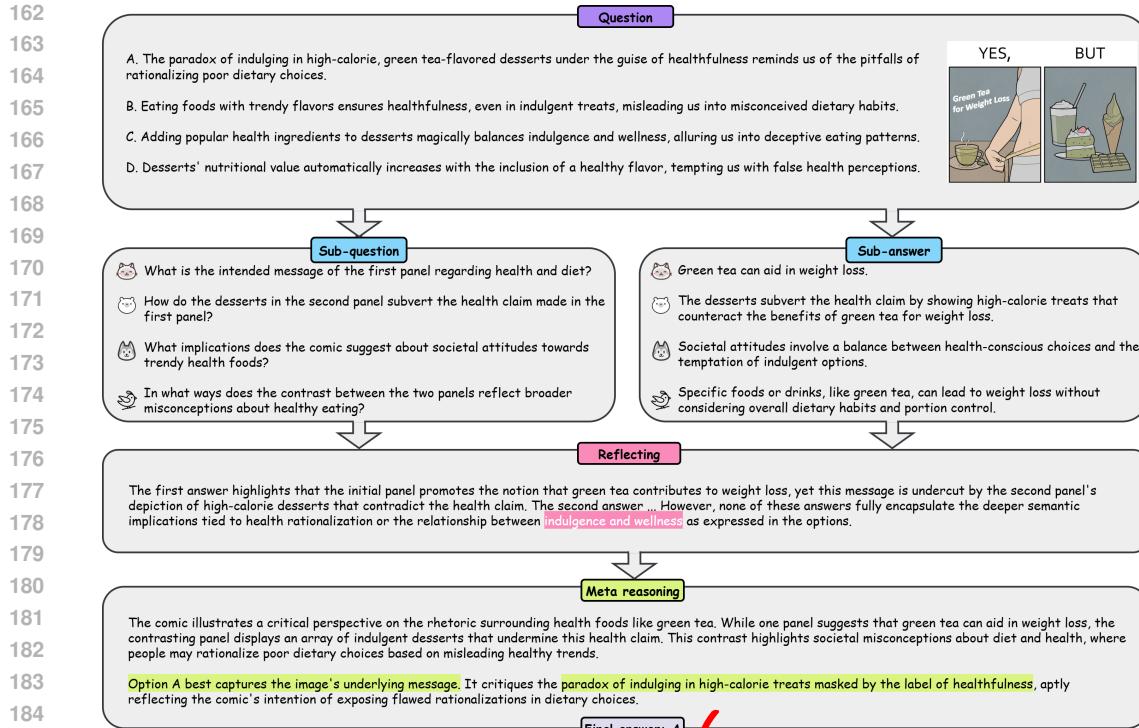


Figure 3: Our proposed MoCoT pipeline decomposes comic-based VQA tasks into structured sub-questions and sub-answers, followed by reflective reasoning and meta-level verification to guide final answer selection.

2.1.3 WHY MoCoT WORKS IN CVQA

MoCoT explicitly decomposes reasoning into K sub-trajectories $\{\tau^{(k)}\}_{k=1}^K$, naturally aligning with the compositional structure of comic understanding.

Definition 2.2 (Weak Subgoal Coupling). Consider a modular decomposition into K sub-trajectories $\{\tau^{(k)}\}_{k=1}^K$, each governed by sub-policy π_k over subspace $\mathcal{Z}_k \subseteq \mathcal{Z}$. We say subgoals are *weakly coupled* if $\max_{i \neq j} D_{KL}(p(\tau^{(i)} | \tau^{(j)}, \mathcal{I}) \| p(\tau^{(i)} | \mathcal{I})) \leq \epsilon$, for some small $\epsilon > 0$.

Proposition 2.3 (Value Decomposition of MoCoT). *Under modular reasoning and weak coupling, the global value approximately factorizes as $V(\mathcal{I}) \approx \sum_{k=1}^K V^{(k)}(s_0^{(k)})$, where $V^{(k)}$ is the expected reward of module k from its initial state $s_0^{(k)}$.*

Remark. This modular factorization mitigates the three drawbacks of naive CoT: **(i) Reduced entanglement**, since perception and abstraction are handled by distinct modules; **(ii) Fewer spurious transitions**, as each π_k explores only within its designated \mathcal{Z}_k ; **(iii) Improved exploration efficiency**, reducing search from $O(|\mathcal{Z}|^T)$ to $O(\sum_{k=1}^K |\mathcal{Z}_k|^{T_k})$. Formal proofs are elaborated in Appendix B.2.

2.2 REINFORCEMENT FINE-TUNING WITH VERA

We adopt Group Relative Policy Optimization (GRPO) as the underlying reinforcement learning algorithm and introduce a verifiable alignment reward, VERA, to align model reasoning with the unique demands of comic VQA.

2.2.1 GROUP RELATIVE POLICY OPTIMIZATION (GRPO)

GRPO (Shao et al., 2024) estimates advantages by comparing the relative rewards of multiple outputs for the same input, thus eliminating the need for an explicit value function. This is particularly

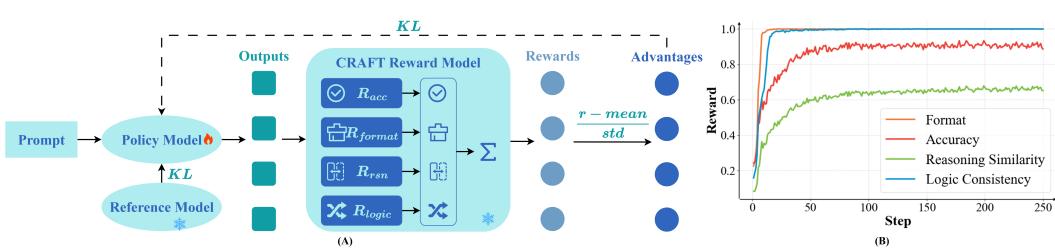


Figure 4: (A) Overview of GRPO with our proposed VERA reward function. Given a prompt, the policy model generates multiple outputs, which are scored by the VERA reward model. Rewards are normalized into group-relative advantages, and KL regularization ensures stability with respect to the reference model. (B) Our VERA reward trajectory during GRPO fine-tuning.

effective in tasks with sparse or delayed rewards, such as multi-step reasoning in CVQA. The clipped objective further regularizes towards a reference policy, ensuring stability while encouraging higher-reward outputs (Figure 4).

2.2.2 VERA: A STRUCTURED REWARD FOR VERIFIABLE REASONING

We propose **VERA**, which decomposes the reward into four interpretable dimensions: format correctness, answer accuracy, reasoning similarity, and logic consistency.

Definition 2.4 (VERA Reward). For a generated output o , the structured reward is

$$R(o) = \lambda_1 R_{format}(o) + \lambda_2 R_{acc}(o) + \lambda_3 R_{rsn}(o) + \lambda_4 R_{logic}(o),$$

where R_{format} checks structural compliance, R_{acc} checks exact answer match, R_{rsn} measures rationale similarity (activated only if $R_{acc} = 1$), and R_{logic} enforces coherence between reasoning and conclusion.

Remark. VERA provides a balanced and interpretable training signal: R_{format} enforces structural discipline, R_{acc} ensures correctness, R_{rsn} rewards semantically meaningful rationales, and R_{logic} guarantees logical coherence. Together, these yield verifiable alignment, complementing MoCoT’s modular reasoning.

Overall, our framework integrates two complementary innovations: (i) **MoCoT**, a modular reasoning pipeline that disentangles perceptual, symbolic, and narrative inference; and (ii) **VERA**, a structured reward that enforces verifiable reasoning. Their synergy enables small MLLMs to perform robustly on CVQA, addressing both reasoning efficiency and alignment. The complete pseudocode is provided in Appendix C.

3 EXPERIMENTS

3.1 EXPERIMENT SETTINGS

3.1.1 DATASETS AND BENCHMARKS

To comprehensively evaluate our model’s ability in comic-based reasoning, we employ three multiple-choice (MCQ) datasets: **DeepEval**, **YesBut v2** (referred to as **YESBUT**), and **CII-Bench**. DEEPEVAL (Yang et al., 2024) is designed to assess deep semantic understanding in comics, emphasizing high-level inference beyond surface-level recognition. YESBUT (Liang et al., 2025) extends the original YesBut benchmark (Hu et al., 2024) by introducing question samples constructed from semantically related panel pairs, where humor arises through contradictions or narrative twists. It covers a broad spectrum of reasoning complexity, ranging from literal comprehension to pragmatic inference. CII-BENCH (Zhang et al., 2025), by contrast, focuses on Chinese-language comics and culturally grounded visual-semantic understanding. It presents additional challenges due to linguistic differences and the prevalence of culturally specific humor rooted in Chinese society.

To construct data for MoCoT generation, we randomly sample 80% of the DEEPEVAL and YESBUT training sets (792 and 1,009 samples, respectively) to construct 930 high-quality CoT trajectories. Of

270	271	Model		DEEPEVAL	YESBUT	CII-BENCH											
		Name	#Params			Overall	Life	Art	Soc.	Pol.	Env.	CTC	Pos.	Neg.	Neu.		
						7B Scale MLLMs											
273	274	LLaVA-1.6	7B	✗	✓	17.1 29.7	56.9 54.9	30.2 29.0	23.4 21.7	37.5 34.6	28.1 30.3	29.2 29.4	50.0 44.4	29.6 28.2	26.1 25.6	30.2 30.2	33.8 30.8
275	276	XComposer-2.5	7B	✗	✓	34.2 36.2	50.2 45.5	32.6 32.6	26.8 30.3	36.8 32.4	35.7 34.6	25.0 33.3	42.6 40.7	31.1 30.4	31.6 31.6	35.5 35.1	30.5 30.8
277	278	Qwen2.5-VL	7B	✗	✓	58.3 63.3	68.8 70.4	48.1 45.8	41.1 39.0	52.2 45.6	51.4 50.8	58.3 45.8	53.7 57.4	47.4 45.9	47.9 44.4	47.2 46.0	49.3 46.6
279	280	InternVL3	8B	✗	✓	70.9 67.8	65.6 66.4	50.7 47.7	45.9 42.9	48.5 46.3	57.8 55.1	45.8 37.5	51.9 57.4	46.6 45.2	52.5 46.2	52.6 47.9	48.9
281	282	<u>≤4B Scale MLLMs</u>															
283	284	Mono	2B	✗	✓	14.1 20.1	48.2 32.8	22.5 10.7	17.8 8.6	22.8 13.2	21.1 7.0	29.2 12.5	27.8 13.0	28.9 15.6	23.1 11.1	21.1 8.7	23.3 12.4
285	286	Ovis2	2B	✗	✓	31.7 32.2	53.8 50.6	36.3 26.8	32.0 22.1	33.1 28.7	43.8 35.1	37.5 37.5	48.2 35.2	31.9 16.3	35.5 23.1	34.7 28.3	38.7 28.6
287	288	InternVL2.5	2B	✗	✓	45.7 42.7	45.5 48.2	33.6 33.3	27.3 33.3	36.8 37.5	37.3 35.7	41.7 29.2	40.7 29.6	31.9 28.2	30.8 32.5	34.7 30.6	35.0 36.8
289	290	Qwen2.5-VL	3B	✗	✓	55.8 48.7	55.7 57.7	41.8 36.2	32.5 31.2	39.0 33.8	44.3 34.6	54.2 37.5	53.7 50.0	50.4 43.7	39.7 37.2	41.5 31.7	44.0 39.9
291	292	Phi-3.5	4B	✗	✓	35.7 30.7	56.9 51.0	33.1 22.1	26.8 14.7	39.0 31.6	32.4 21.1	45.8 29.2	44.4 27.8	31.9 23.0	26.5 22.2	37.4 20.8	34.6 23.3
293	294	Gemma-3	4B	✗	✓	35.2 46.2	51.0 47.0	30.5 32.6	26.8 29.0	34.6 37.5	31.4 31.9	45.8 25.0	35.2 40.7	26.7 32.6	23.5 26.9	34.3 32.1	32.7 38.0
295	296	Ours	3B	–	✓	64.3 (+15.2%)	62.9 (+9.0%)	44.7 (+6.9%)	35.9	44.1	49.2	50.0	55.6	48.9	41.0	44.9	47.7

Table 1: Overall accuracy (%) of different MLLMs (with **✓** and without **✗** CoT) and our method across three benchmarks: DEEPEVAL, YESBUT, and CII-BENCH¹ (evaluated by domains and emotions). The best and second-best results among ≤ 4 B models are highlighted in **bold** and underlined, respectively.

these, 745 are used for GRPO fine-tuning, and 185 for validation. The remaining 20% of questions from DEEPEVAL (199 samples) and YESBUT (253 samples) are reserved for evaluation. The entire CII-BENCH dataset is used exclusively for validation.

3.1.2 IMPLEMENTATION DETAILS

All experiments are conducted on 4 NVIDIA A800 GPUs with 40GB of memory for each. For the MoCoT stage, all components are implemented using gpt-4o-mini (Hurst et al., 2024), except for the generation of diverse sub-answers, which is handled by Qwen2.5-VL-7B-Instruct (Team, 2025b).

For the GRPO stage, we adopt the EasyR1 (Zheng et al., 2025) framework with Qwen2.5-VL-3B-Instruct (Team, 2025b) as the base model. Fine-tuning is performed for 250 steps with a global batch size of 64. The rollout batch size is set to 256, with a tensor parallel size of 1. The VERA reward incorporates four components with empirically chosen weights: $\lambda_1 = 0.05$, $\lambda_2 = 0.6$, $\lambda_3 = 0.2$, and $\lambda_4 = 0.15$. The complete prompt design is provided in Appendix E.

1

3.2 MAIN RESULTS

Benchmark Evaluation. We first evaluate CVQA across three benchmarks—DEEPEVAL, YESBUT, and CII-BENCH—under two regimes: w/o CoT (direct answering) and w/ CoT (reasoning-first). Table 1 reports all results.

Given the limited availability of established MLLM baselines for comic reasoning, we compare against a diverse set of strong models: (1) **LLaVA-v1.6-Mistral-7B** (Liu et al., 2023), (2) **InternLM-XComposer2.5-7B** (Zhang et al., 2024), (3) **Qwen2.5-VL-7B-Instruct** (Team, 2025b), (4) **InternVL3-8B** (Zhu et al., 2025), (5) **Mono-InternVL-2B** (Luo et al., 2024), (6) **Ovis2-2B** (Lu et al., 2024), (7) **InternVL2.5-2B** (Chen et al., 2024), (8) **Qwen2.5-VL-3B-Instruct** (Team, 2025b), (9) **Phi-3.5-Vision-Instruct** (Abdin et al., 2024), and (10) **Gemma-3-4b-it** (Team, 2025a).

¹Soc.=Society, Pol.=Politics, Env.=Environment, CTC=Chinese Traditional Culture, Pos.=Positive, Neg.=Negative, Neu.=Neutral.

324 Across DEEPEVAL and YESBUT, our method consistently outperforms all ≤ 4 B models under both
 325 w/ CoT and w/o CoT. Our 3B system attains 64.3% on DEEPEVAL—exceeding the 7B Qwen2.5-VL
 326 (63.3%)—and remains close to the 8B InternVL3 on YESBUT (ours 62.9% vs. 66.4%).
 327

328 On CII-BENCH, which provides a finer-grained assessment by topical domains and sentiment, our
 329 approach achieves the best ≤ 4 B overall accuracy (44.7%), ranks the first in 4/6 domains (Life, Art,
 330 Society, Environment), and leads in all three sentiment classes (Positive, Negative, Neutral), while
 331 remaining competitive on Politics and Chinese Traditional Culture.
 332

333 From these results, it can be observed that both DEEPEVAL and CII-BENCH are more challenging
 334 than YESBUT, leading to lower absolute accuracies. Nevertheless, our framework maintains
 335 strong competitiveness, especially on CII-BENCH, where no training data was used—highlighting
 336 the potential of our method to generalize to unseen, fine-grained benchmarks. These results indicate
 337 that modular reasoning with reward-guided optimization scales robustly to diverse evaluation
 338 axes—even when built on compact models.
 339

340 Backbone-Agnostic Module

341 **Evaluation.** To further test
 342 the generality of our module, we
 343 attach it to four representative
 344 backbones (InternVL2.5-2B,
 345 Qwen2.5-VL-3B, Gemma-
 346 3-4B, Qwen2.5-VL-7B) and
 347 evaluate three settings on the
 348 DEEPEVAL dataset: w/o CoT,
 349 w/ CoT, and w/ Ours. For each
 350 backbone, the relative gain
 351 ($\Delta\%$) is computed against the
 352 *stronger* baseline between w/o and w/ CoT.
 353

354 As shown in Table 2, our method delivers consistent gains across 2–7B backbones. Averaged over
 355 the four models, it yields a **+12.1%** relative improvement. Concretely, the 3B backbone rises from
 356 55.8/48.7 to 64.3 (+15.2%), the 7B backbone reaches 70.9 (+12.0%), and the 2B/4B backbones ob-
 357 tain +10.1% and +11.0% gains, respectively. These results underscore that our module is particularly
 358 effective in the low-parameter regime while remaining complementary to CoT prompting.
 359

360 3.3 FURTHER ANALYSIS

361 3.3.1 QUALITATIVE COMPARISON

362 We present qualitative comparisons between our method and the baseline (Qwen2.5-VL-3B-
 363 Instruct) across three representative cases, each corresponding to a common failure pattern in comic
 364 reasoning. Complete qualitative examples are provided in Appendix F.
 365

366 **(1) Symbolic Misalignment.** This failure pattern refers to the model’s inability to interpret ab-
 367 abstract metaphors or symbolic cues correctly. In a cartoon where a sign reads “DO NOT READ THIS
 368 SIGN,” the baseline interprets the humor as a generic cautionary message, failing to recognize the
 369 self-referential contradiction. In contrast, our method successfully identifies the paradox and inter-
 370 preted the cartoon as a critique of performative or contradictory warnings, demonstrating stronger
 371 symbolic reasoning. (Corresponding to Figure 2(B))
 372

373 **(2) Salient Visual Cue Omission.** This pattern captures cases where the model ignores or mis-
 374 reads critical objects or narrative signals in the image. For example, a cartoon shows two individuals
 375 taking divergent paths toward a tower, with clear visual asymmetry suggesting unequal difficulty.
 376 The baseline overlooks this and offers a vague interpretation about life choices. Our method, how-
 377 ever, grounds its reasoning in the visual layout and correctly infers a commentary on gender-based
 378 disparity, highlighting better use of salient visual cues. (Corresponding to Figure 2(C))
 379

380 **(3) Satirical Target Confusion.** This refers to the model detecting the presence of satire but
 381 misidentifying its intended target. In a cartoon featuring a “1,000-calorie cigarette,” the baseline
 382

Model	w/o CoT	w/ CoT	w/ Ours
InternVL2.5-2B	45.7	42.7	50.3 (+10.1%)
Qwen2.5-VL-3B	55.8	48.7	64.3 (+15.2%)
Gemma-3-4B	35.2	46.2	51.3 (+11.0%)
Qwen2.5-VL-7B	58.3	63.3	70.9 (+12.0%)

383 Table 2: Backbone-agnostic evaluation. Accuracy (%) under w/o
 384 and w/ CoT, and after adding our module. $\Delta\%$ is computed
 385 against the stronger baseline.
 386

378 attributes the humor to scientific absurdity, missing the deeper social critique. Our method correctly
 379 identifies the satire as a commentary on body image norms and gendered expectations, showing
 380 improved alignment with the cartoon’s intended message. (Corresponding to Figure 2(A))

381 These cases illustrate that our approach better handles abstract symbolism, visual-grounded reasoning,
 382 and satire localization—three key aspects of deep comic understanding.

384 3.3.2 ABLATION STUDY

386 We conduct ablation experiments on the DEEPEVAL dataset to evaluate the impact of each
 387 component in our framework, including: (a) directly prompting the MLLM to generate CoTs and answers;
 388 (b) using only supervised fine-tuning (SFT) with MoCoT-generated data; (c) applying GRPO-based reinforcement
 389 fine-tuning directly on the MLLM with accuracy and format rewards; (d) GRPO fine-tuning with the VERA reward but without CoT supervision (i.e., removing the reasoning-similarity term); (e) GRPO fine-tuning with MoCoT data but using accuracy-only rewards; (f) our full framework, which applies GRPO fine-tuning with MoCoT data and the complete VERA reward.

401 As shown in Table 3, removing modular CoT generation (a) leads to a sharp performance drop, confirming the crucial role of structured CoTs. Omitting RL fine-tuning (b) also substantially hurts
 402 performance, with SFT accuracy close to direct prompting, showing that supervised learning alone
 403 cannot capture the complexities of comic reasoning. GRPO without CoT supervision (c) brings
 404 only limited gains, while adding the VERA reward (d) yields further improvements, highlighting the
 405 value of multi-dimensional rewards. Using MoCoT with GRPO but only accuracy-based rewards
 406 (e) performs better than SFT or accuracy-free GRPO, yet still lags behind the full model. The
 407 complete framework (f) achieves the best results, validating the complementary contributions of
 408 CoT supervision, reinforcement optimization, and structured reward design.

410 3.3.3 EFFECTIVENESS OF THE REWARD FUNCTION

412 To validate the effectiveness of our reward design, we track the evolution of each reward component
 413 throughout GRPO on the CVQA task.

415 As shown in Figure 4(B), all components exhibit consistent upward trends, demonstrating their
 416 effectiveness in shaping model behavior. Accuracy increases rapidly in the early stages, driven by
 417 its dominant weight, enabling the model to efficiently learn to produce correct answers. Reasoning
 418 similarity, which encourages alignment with human-authored CoTs, steadily improves from 0.08
 419 to over 0.67, indicating enhanced capacity for structured and faithful inference. Meanwhile, logic
 420 consistency and format correctness also improve in tandem, promoting coherence and fluency in the
 421 generated reasoning chains.

422 These results confirm that our reward function effectively optimizes both factual correctness and
 423 reasoning quality, which are essential for success in complex multimodal tasks like comic under-
 424 standing.

425 4 RELATED WORK

428 **CoT Reasoning in LLMs.** Chain-of-Thought (CoT) prompting has become a core technique for
 429 improving multi-step reasoning in large language models (LLMs). Early work introduced few-shot
 430 prompting using hand-crafted examples (Wei et al., 2022), but relied heavily on prompt engineering.
 431 Zero-shot CoT (Kojima et al., 2022) mitigated this by using simple trigger phrases (e.g., “Let’s
 think step by step”) to elicit reasoning without examples. Recent efforts have enhanced reasoning

432 quality and faithfulness. Multiagent Debate (Du et al., 2023) improved factual accuracy via inter-
 433 agent critique, while Process Supervision (Lightman et al., 2023) provided step-level feedback to
 434 train reward models. Question Decomposition (Radhakrishnan et al., 2023) improved robustness by
 435 solving sub-problems and linking them to final conclusions. Metacognitive Prompting (Bai et al.,
 436 2025) further integrated planning and reflection for lateral-thinking tasks. Together, these studies
 437 reflect a shift toward structured and cognitively inspired reasoning in LLMs.

438
 439 **CoT Reasoning in MLLMs.** Inspired by LLM advances and the success of DeepSeek-style rea-
 440 soning (Shao et al., 2024; Guo et al., 2025), recent studies have extended CoT prompting to MLLMs,
 441 which face challenges like visual grounding, hallucination, and limited data. URSA (Luo et al.,
 442 2025) tackled these with a large-scale dataset (MMathCoT-1M) and a dual-perspective verifier for
 443 logic and vision. Vision-R1 (Huang et al., 2025) added reinforcement learning with modality bridg-
 444 ing and verbosity control. Qwen-VL-DP (Shi et al., 2025) introduced multi-path reasoning with
 445 diversity-aware reward signals. These works advance verifiable and multi-perspective CoT in mul-
 446 timodal settings.

447 While previous approaches tend to focus on decomposition, critique, or supervision in isolation, our
 448 work integrates these components into a unified modular CoT framework, facilitating interpretable
 449 and semantically consistent reasoning.

450
 451 **Comic-based VQA in MLLMs.** Recent studies have explored whether MLLMs can capture the
 452 humor, satire, and implicit semantics of comics and memes. Early work introduced the New Yorker
 453 Humor Benchmark (Hessel et al., 2023), evaluating caption matching, ranking, and explanation
 454 tasks. MemeCap (Hwang & Shwartz, 2023) extended this to meme captioning, highlighting the
 455 difficulty of visual metaphor interpretation. Moving beyond surface humor, DeepEval (Yang et al.,
 456 2024) and II-Bench (Liu et al., 2024) assessed deep semantic and implicature understanding, show-
 457 ing large gaps between MLLMs and humans. Other benchmarks targeted specific structures, such
 458 as YESBUT for multi-panel juxtaposition (Hu et al., 2024) and CII-Bench for Chinese cultural con-
 459 texts (Zhang et al., 2025). Together, these benchmarks underscore the unique challenges of CVQA
 460 and call for methods that can strengthen the reasoning ability of MLLMs in such settings.

461 Most recently, the LAD framework (Zhang & Niu, 2025) introduced perception–search–reasoning
 462 modules, narrowing the performance gap with commercial systems. However, both II-Bench and
 463 CII-Bench largely attributed the weaker performance of smaller MLLMs with CoT prompting to
 464 model scale, overlooking that CoT itself may degrade reasoning in CVQA—a gap our work directly
 465 addresses. Moreover, while LAD improves performance by retrieving external information, our
 466 focus is on unleashing the latent reasoning capacity of MLLMs without external augmentation,
 467 particularly under resource-constrained settings where scaling up is not feasible.

468 469 5 CONCLUSION

470 This work highlights a central paradox in multimodal reasoning: while Chain-of-Thought prompt-
 471 ing is celebrated for enhancing reasoning in many domains, it can backfire in comic-based VQA,
 472 especially for small MLLMs. Our analysis shows that the challenges of symbolic ambiguity, cul-
 473 tural grounding, and narrative complexity make comics a unique stress test where naive CoT often
 474 produces fluent but unfaithful reasoning.

475 In response, we introduced a new framework for comics that rethinks how reasoning should be struc-
 476 tured for compact multimodal models. Instead of scaling parameters, our method emphasizes mod-
 477 ular decomposition, interpretable intermediate steps, and reward-aligned optimization. This design
 478 allows small models to not only close the gap with, but in some cases surpass, larger counterparts
 479 on multiple challenging benchmarks.

480 More broadly, our findings suggest that effective reasoning in multimodal contexts requires struc-
 481 ture, not just scale. By exposing the limits of standard CoT and demonstrating a path forward, this
 482 work points toward a new agenda: building reasoning frameworks that generalize robustly across
 483 symbolic, cultural, and perceptual dimensions. Future directions include adaptive reward shaping
 484 and applying our method beyond comics to other domains where reasoning fidelity is critical.

486 ETHICS STATEMENT
487488 Our work does not involve any human subjects, sensitive data, or applications with potential ethical
489 risks. Moreover, this work raises no known ethical concerns.
490491 REPRODUCIBILITY STATEMENT
492493 To ensure reproducibility, we have provided an anonymized package at the anonymous link², which
494 contains both the implementation and the train/validation datasets. Details of model architectures,
495 hyperparameters, and training procedures are described in Sect. 3.1.2, and all theoretical assump-
496 tions and complete proofs are presented in Appendix B.
497498 REFERENCES
499500 Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
501 Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A
502 highly capable language model locally on your phone. *arXiv preprint arXiv:2404.14219*, 2024.
503504 Tian Bai, Yongwang Cao, Yan Ge, and Haitao Yu. Mp: Endowing large language models with
505 lateral thinking. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp.
506 23460–23468, 2025.507 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shen-
508 glong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source
509 multimodal models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*,
510 2024.511 Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving fac-
512 tuality and reasoning in language models through multiagent debate. In *Forty-first International*
513 *Conference on Machine Learning*, 2023.514 515 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
516 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
517 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.518 519 Jack Hessel, Ana Marasović, Jena D Hwang, Lillian Lee, Jeff Da, Rowan Zellers, Robert Mankoff,
520 and Yejin Choi. Do androids laugh at electric sheep? humor “understanding” benchmarks from
521 the new yorker caption contest. In *Proceedings of the 61st Annual Meeting of the Association for*
522 *Computational Linguistics (Volume 1: Long Papers)*, pp. 688–714, 2023.523 524 Zhe Hu, Tuo Liang, Jing Li, Yiren Lu, Yunlai Zhou, Yiran Qiao, Jing Ma, and Yu Yin. Cracking
525 the code of juxtaposition: Can ai models understand the humorous contradictions. *Advances in*
526 *Neural Information Processing Systems*, 37:47166–47188, 2024.527 528 Wenzuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and
529 Shaohui Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language models.
530 *arXiv preprint arXiv:2503.06749*, 2025.531 532 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
533 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
534 *arXiv:2410.21276*, 2024.535 536 Eunjeong Hwang and Vered Shwartz. Memecap: A dataset for captioning and interpreting memes.
537 In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*,
538 pp. 1433–1445, 2023.539 540 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
541 language models are zero-shot reasoners. *Advances in neural information processing systems*,
542 35:22199–22213, 2022.2²<https://anonymous.4open.science/r/hum-6D5B>

540 Yunxin Li, Zhenyu Liu, Zitao Li, Xuanyu Zhang, Zhenran Xu, Xinyu Chen, Haoyuan Shi, Shenyuan
 541 Jiang, Xintong Wang, Jifang Wang, et al. Perception, reason, think, and plan: A survey on large
 542 multimodal reasoning models. *arXiv preprint arXiv:2505.04921*, 2025.

543

544 Tuo Liang, Zhe Hu, Jing Li, Hao Zhang, Yiren Lu, Yunlai Zhou, Yiran Qiao, Disheng Liu, Jeirui
 545 Peng, Jing Ma, et al. When 'yes' meets 'but': Can large models comprehend contradictory humor
 546 through comparative reasoning? *arXiv preprint arXiv:2503.23137*, 2025.

547 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 548 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *The Twelfth
 549 International Conference on Learning Representations*, 2023.

550 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 551 tuning, 2023.

552

553 Ryan Liu, Jiayi Geng, Addison J Wu, Ilia Sucholutsky, Tania Lombrozo, and Thomas L Griffiths.
 554 Mind your step (by step): Chain-of-thought can reduce performance on tasks where thinking
 555 makes humans worse. In *Forty-second International Conference on Machine Learning*, 2025.

556 Ziqiang Liu, Feiteng Fang, Xi Feng, Xeron Du, Chenhao Zhang, Noah Wang, Qixuan Zhao, Liyang
 557 Fan, CHENGGUANG GAN, Hongquan Lin, et al. Ii-bench: An image implication understanding
 558 benchmark for multimodal large language models. *Advances in Neural Information Processing
 559 Systems*, 37:46378–46480, 2024.

560

561 Shiyin Lu, Yang Li, Qing-Guo Chen, Zhao Xu, Weihua Luo, Kaifu Zhang, and Han-Jia Ye.
 562 Ovis: Structural embedding alignment for multimodal large language model. *arXiv preprint
 563 arXiv:2405.20797*, 2024.

564 Gen Luo, Xue Yang, Wenhan Dou, Zhaokai Wang, Jiawen Liu, Jifeng Dai, Yu Qiao, and Xizhou
 565 Zhu. Mono-internvl: Pushing the boundaries of monolithic multimodal large language models
 566 with endogenous visual pre-training. *arXiv preprint arXiv:2410.08202*, 2024.

567

568 Ruilin Luo, Zhuofan Zheng, Yifan Wang, Xinzhe Ni, Zicheng Lin, Songtao Jiang, Yiyao Yu, Chufan
 569 Shi, Ruihang Chu, Jin Zeng, et al. Ursu: Understanding and verifying chain-of-thought reasoning
 570 in multimodal mathematics. *arXiv preprint arXiv:2501.04686*, 2025.

571

572 Ansh Radhakrishnan, Karina Nguyen, Anna Chen, Carol Chen, Carson Denison, Danny Hernandez,
 573 Esin Durmus, Evan Hubinger, Jackson Kernion, Kamilé Lukošiūtė, et al. Question decomposition
 574 improves the faithfulness of model-generated reasoning. *arXiv preprint arXiv:2307.11768*, 2023.

575

576 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 577 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 578 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

579

580 Wenhao Shi, Zhiqiang Hu, Yi Bin, Yang Yang, See-Kiong Ng, and Heng Tao Shen. Multimodal
 581 mathematical reasoning with diverse solving perspective. *arXiv preprint arXiv:2507.02804*, 2025.

582

583 Zayne Rea Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa,
 584 Prasann Singhal, Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Durrett. To cot or not to cot?
 585 chain-of-thought helps mainly on math and symbolic reasoning. In *The Thirteenth International
 586 Conference on Learning Representations*, 2025.

587

588 Gemma Team. Gemma 3. 2025a. URL <https://goo.gle/Gemma3Report>.

589

590 Qwen Team. Qwen2.5-vl, January 2025b. URL <https://qwenlm.github.io/blog/qwen2.5-vl/>.

591

592 Yaoting Wang, Shengqiong Wu, Yuecheng Zhang, Shuicheng Yan, Ziwei Liu, Jiebo Luo, and
 593 Hao Fei. Multimodal chain-of-thought reasoning: A comprehensive survey. *arXiv preprint
 594 arXiv:2503.12605*, 2025.

595

596 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 597 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 598 neural information processing systems*, 35:24824–24837, 2022.

594 Yixin Yang, Zheng Li, Qingxiu Dong, Heming Xia, and Zhifang Sui. Can large multimodal mod-
 595 els uncover deep semantics behind images? In *Findings of the Association for Computational*
 596 *Linguistics: ACL 2024*, pp. 1898–1912, 2024.

597 Chenhao Zhang and Yazhe Niu. Let androids dream of electric sheep: A human-like image impli-
 598 cation understanding and reasoning framework. *arXiv preprint arXiv:2505.17019*, 2025.

600 Chenhao Zhang, Xi Feng, Yuelin Bai, Xeron Du, Jinchang Hou, Kaixin Deng, Guangzeng Han,
 601 Qinrui Li, Bingli Wang, Jiaheng Liu, Xingwei Qu, Yifei Zhang, Qixuan Zhao, Yiming Liang,
 602 Ziqiang Liu, Feiteng Fang, Min Yang, Wenhao Huang, Chenghua Lin, Ge Zhang, and Shiwen
 603 Ni. Can MLLMs understand the deep implication behind Chinese images? In Wanxiang Che,
 604 Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the*
 605 *63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,
 606 pp. 14369–14402, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN
 607 979-8-89176-251-0. URL <https://aclanthology.org/2025.acl-long.700/>.

608 Pan Zhang, Xiaoyi Dong, Yuhang Zang, Yuhang Cao, Rui Qian, Lin Chen, Qipeng Guo, Haodong
 609 Duan, Bin Wang, Linke Ouyang, et al. Internlm-xcomposer-2.5: A versatile large vision language
 610 model supporting long-contextual input and output. *arXiv preprint arXiv:2407.03320*, 2024.

611 Yaowei Zheng, Junting Lu, Shenzhi Wang, Zhangchi Feng, Dongdong Kuang, and Yuwen Xiong.
 612 Easyr1: An efficient, scalable, multi-modality rl training framework. [https://github.com/](https://github.com/hiyouga/EasyR1)
 613 [hiyouga/EasyR1](https://github.com/hiyouga/EasyR1), 2025.

615 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
 616 Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
 617 open-source multimodal models. *arXiv preprint arXiv:2504.10479*, 2025.

618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647

648	APPENDIX	
649		
650	A Usage of Large Language Models (LLMs)	13
651		
652	B Detailed Proofs	13
653		
654	B.1 Proof of Theorem 2.1.1	13
655		
656	B.2 Proof of Theorem 2.1.3	15
657		
658	C Algorithm Description	17
659		
660	D Full Results for Figure 1(A)	17
661		
662	E Prompt List	17
663		
664	F Complete Qualitative Comparisons	20
665		
666	G Case Study on MoCoT	23
667		
668		

A USAGE OF LARGE LANGUAGE MODELS (LLMs)

We used Large Language Models (LLMs) only for polishing writings, and grammar checking. No LLMs were involved in designing experiments, analyzing data, or contributing to the scientific findings of this work.

B DETAILED PROOFS

B.1 PROOF OF THEOREM 2.1.1

Setup. Let a CVQA instance be $\mathcal{I} = (I, Q)$, where I is the comic image (possibly multi-panel) and Q is the associated question. A reasoning trajectory is $\tau = (z_1, \dots, z_T)$ with states $z_u \in \mathcal{Z}$, and we denote the prefix by $z_{<u} = (z_1, \dots, z_{u-1})$. The policy is $\pi_\theta(z_u | \mathcal{I}, z_{<u})$, parameterized by θ , assigning probabilities over \mathcal{Z} . For analysis we decompose each state as

$$z_u = (z_u^{\text{perc}}, z_u^{\text{abs}}), \quad \mathcal{Z} = \mathcal{Z}_{\text{perc}} \times \mathcal{Z}_{\text{abs}},$$

where z_u^{perc} captures perceptual variables and z_u^{abs} captures abstract/narrative variables. We write $f_\theta(z; \mathcal{I}, z_{<u}) \in \mathbb{R}$ for the logit score of state z , so that

$$\pi_\theta(z | \mathcal{I}, z_{<u}) = \frac{\exp f_\theta(z; \mathcal{I}, z_{<u})}{\sum_{z' \in \mathcal{Z}} \exp f_\theta(z'; \mathcal{I}, z_{<u})}.$$

Let $\mathcal{Z}_{\text{sym}} \subset \mathcal{Z}$ denote symbolic states that are irrelevant to answering Q under \mathcal{I} . The abstract component is assumed to couple with perceptual cues through a noisy mapping $z_u^{\text{abs}} = g(z_u^{\text{perc}}, \mathcal{I}, z_{<u}, \varepsilon)$, where ε is an exogenous noise independent of $(\mathcal{I}, z_{<u})$ with $\text{Var}(\varepsilon) > 0$.

Validity of a trajectory is encoded by the indicator $\mathbf{1}_{\text{valid}}(\tau) \in \{0, 1\}$, equal to 1 iff τ is a correct reasoning path. We denote the valid set $\mathcal{T}_{\text{valid}} \subseteq \mathcal{Z}^T$ and its fraction $\rho_T = |\mathcal{T}_{\text{valid}}|/|\mathcal{Z}|^T$. For stepwise reasoning we also define $V_u^{\text{glob}}(\mathcal{I}, z_{<u}) \subseteq \mathcal{Z}$ as the set of valid next states. We assume there exists a constant $\bar{p}_{\text{glob}} < 1$ such that the probability mass assigned by π_θ to valid next states is at most \bar{p}_{glob} , and their relative size satisfies $|V_u^{\text{glob}}| \leq \kappa |\mathcal{Z}|$ for some $\kappa \in (0, 1)$.

Lemma B.1 (State entanglement is generic). *Under the setup above, for almost every $(\mathcal{I}, z_{<u})$ one has*

$$p(z_u | \mathcal{I}, z_{<u}) \neq p(z_u^{\text{perc}} | \mathcal{I}, z_{<u}) p(z_u^{\text{abs}} | \mathcal{I}, z_{<u}).$$

Hence z_u^{perc} and z_u^{abs} fail to be conditionally independent given $(\mathcal{I}, z_{<u})$, and entanglement is unavoidable in general.

702 *Proof.* By construction, $z_u^{\text{abs}} = g(z_u^{\text{perc}}, \mathcal{I}, z_{<u}, \varepsilon)$ with non-degenerate ε . Therefore the conditional
 703 law of z_u^{abs} depends on z_u^{perc} (via g) unless g is a.e. constant in its first argument, which contradicts
 704 the comic-narrative coupling. Thus $p(z_u^{\text{abs}} \mid z_u^{\text{perc}}, \mathcal{I}, z_{<u}) \neq p(z_u^{\text{abs}} \mid \mathcal{I}, z_{<u})$ almost everywhere,
 705 implying

$$707 \quad p(z_u \mid \mathcal{I}, z_{<u}) = p(z_u^{\text{abs}} \mid z_u^{\text{perc}}, \mathcal{I}, z_{<u}) p(z_u^{\text{perc}} \mid \mathcal{I}, z_{<u}) \neq p(z_u^{\text{abs}} \mid \mathcal{I}, z_{<u}) p(z_u^{\text{perc}} \mid \mathcal{I}, z_{<u}).$$

□

710 **Lemma B.2** (Inevitable spurious transitions). *Under the setup above, for any $(\mathcal{I}, z_{<u})$ and any θ
 711 not lying in a measure-zero set,*

$$713 \quad \sum_{z \in \mathcal{Z}_{\text{sym}}} \pi_\theta(z \mid \mathcal{I}, z_{<u}) > 0.$$

716 *Therefore trajectories drawn from π_θ admit spurious moves into \mathcal{Z}_{sym} with strictly positive proba-
 717 bility.*

719 *Proof.* By softmax positivity, $\pi_\theta(z \mid \cdot) > 0$ iff $f_\theta(z; \cdot)$ is finite; in standard neural parameterizations,
 720 logits are finite almost everywhere in θ . Since $|\mathcal{Z}_{\text{sym}}| \geq 1$, it suffices to show existence of at least
 721 one $z \in \mathcal{Z}_{\text{sym}}$ with $\pi_\theta(z \mid \cdot) > 0$. Because f_θ is continuous in θ and typically non-constant across
 722 z , the set of parameters enforcing *exact zeros* on a prescribed subset is a measure-zero manifold.
 723 Thus for almost all θ , each $z \in \mathcal{Z}$ receives strictly positive mass. Summing over \mathcal{Z}_{sym} yields the
 724 claim. □

726 **Lemma B.3** (Exploration complexity and exponential rarity). *For trajectory length T , the proba-
 727 bility that a trajectory sampled from π_θ is valid satisfies*

$$729 \quad \mathbb{P}_\pi(\tau \in \mathcal{T}_{\text{valid}}) \leq \bar{p}_{\text{glob}}^T \leq (\max\{\kappa, \bar{p}_{\text{glob}}\})^T,$$

731 *which decays exponentially in T . In particular, if $|\mathcal{T}_{\text{valid}}| \leq (\kappa|\mathcal{Z}|)^T$ for some $\kappa < 1$, then under
 732 uniform sampling the success probability is $\rho_T = \Theta(\kappa^T)$.*

734 *Proof.* A valid trajectory must pick a state in V_u^{glob} at each step. By the law of total probability and
 735 the per-step bound,

$$738 \quad \mathbb{P}_\pi(\tau \in \mathcal{T}_{\text{valid}}) = \mathbb{E} \left[\prod_{u=1}^T \sum_{z \in V_u^{\text{glob}}} \pi_\theta(z \mid \mathcal{I}, z_{<u}) \right] \leq \prod_{u=1}^T \bar{p}_{\text{glob}} = \bar{p}_{\text{glob}}^T.$$

741 Since $|V_u^{\text{glob}}|/|\mathcal{Z}| \leq \kappa$ and the uniform policy achieves κ per-step mass, we also have $\bar{p}_{\text{glob}} \leq$
 742 $\max\{\kappa, \bar{p}_{\text{glob}}\}$, giving the second inequality. For the uniform sampler, $\mathbb{P}_{\text{unif}}(\tau \in \mathcal{T}_{\text{valid}}) = \rho_T =$
 743 $|\mathcal{T}_{\text{valid}}|/|\mathcal{Z}|^T$; if $|\mathcal{T}_{\text{valid}}| \leq (\kappa|\mathcal{Z}|)^T$ then $\rho_T \leq \kappa^T$. □

745 **Corollary B.4** (Proof of Theorem 2.1.1). *By Lemma B.1, naive CoT induces unavoidable entangle-
 746 ment between perceptual and abstract factors. By Lemma B.2, softmax policies necessarily assign
 747 nonzero probability to irrelevant symbolic states, inducing spurious transitions. By Lemma B.3, the
 748 probability of sampling a valid trajectory without additional structure decays exponentially in T .
 749 Therefore standard CoT in CVQA suffers simultaneously from state entanglement, spurious transi-
 750 tions, and exploration inefficiency. □*

752 **Remarks on tightness.** The bounds in Lemma B.3 are tight up to constants: if per-step valid sets
 753 occupy at most a fraction $\kappa < 1$ of the state space and the policy mass on them is bounded by
 754 \bar{p}_{glob} , then the best-case success probability is at most \bar{p}_{glob}^T ; under uniform sampling it matches
 755 ρ_T . Moreover, Lemma B.2 can be strengthened to show that suppressing *all* spurious states requires
 measure-zero parameter choices (degenerate logits), which is unstable under training perturbations.

756 B.2 PROOF OF THEOREM 2.1.3
757

758 **Setup (inherits from Appendix B.1).** We reuse the CVQA instance $\mathcal{I} = (I, Q)$, the state space
759 $\mathcal{Z} = \mathcal{Z}_{\text{perc}} \times \mathcal{Z}_{\text{abs}}$, the (global) trajectory $\tau = (z_1, \dots, z_T)$, and the set of symbolic-irrelevant states
760 $\mathcal{Z}_{\text{sym}} \subset \mathcal{Z}$. MoCoT replaces the single policy π_θ with a modular *plan–execute–verify* pipeline:

761 $\text{Plan} \rightarrow \text{Execute} \rightarrow \text{Verify}.$
762

763 Planning yields K typed sub-questions $\{(q_k, t_k)\}_{k=1}^K$ with types $t_k \in \{\text{VISUAL}, \text{SYMBOLIC}, \text{NARRATIVE}\}$. Each type induces a typed subspace $\mathcal{Z}_{t_k} \subseteq \mathcal{Z}$ and a
764 sub-policy π_{t_k} supported on \mathcal{Z}_{t_k} . Execution produces sub-trajectories $\tau^{(k)} = (z_1^{(k)}, \dots, z_{T_k}^{(k)})$ with
765 $z_s^{(k)} \in \mathcal{Z}_{t_k}$ and $\sum_{k=1}^K T_k = T$. A symbolic checker \mathcal{V} accepts a composed rationale/answer iff it
766 passes type-consistency and entailment checks.
767

768 **Notation guard (local to this subsection).** We reserve t for *types* and s for *module-internal* steps.
769 Global valid sets from Appendix B.1 are $V_u^{\text{glob}}(\mathcal{I}, z_{<u})$ at global step u . Typed valid sets are
770 $V_s^{(t)}(\mathcal{I}, z_{<s}^{(t)}) \subseteq \mathcal{Z}_t$. Branching factors: $B := |\mathcal{Z}|$, $B_t := |\mathcal{Z}_t|$. Let Δ be the type-interface am-
771 biguity set and $\delta_{\text{type}} := |\Delta|/|\mathcal{Z}|$. For each type t ,

$$774 p_t := \inf_{s, \mathcal{I}, z_{<s}^{(t)} \in V_s^{(t)}} \sum_{z \in V_s^{(t)}} \pi_t(z \mid \mathcal{I}, z_{<s}^{(t)}), \quad \bar{p}_t := \sup_{s, \mathcal{I}, z_{<s}^{(t)} \in V_s^{(t)}} \sum_{z \in V_s^{(t)}} \pi_t(z \mid \mathcal{I}, z_{<s}^{(t)}), \quad \kappa_t := \sup_s \frac{|V_s^{(t)}|}{|\mathcal{Z}_t|}.$$

775 Verifier errors: α (false reject), β (false accept).
776

777 **Assumptions (mild and modular).**
778

- 779 • **A1 (Typed support).** For each type t , $\text{supp}(\pi_t) \subseteq \mathcal{Z}_t$ and $\mathcal{Z}_t \cap \mathcal{Z}_{t'} = \emptyset$ for $t \neq t'$, except
780 possibly on a negligible interface Δ with $\frac{|\Delta|}{|\mathcal{Z}|} \leq \delta_{\text{type}}$.
- 781 • **A2 (Weak subgoal coupling).** For the modular decomposition $\{\tau^{(k)}\}_{k=1}^K$,

$$782 \max_{i \neq j} D_{\text{KL}}(p(\tau^{(i)} \mid \tau^{(j)}, \mathcal{I}) \parallel p(\tau^{(i)} \mid \mathcal{I})) \leq \varepsilon.$$

- 783 • **A2' (Typed latent mediator).** In the no-interface event E^c , there exists a typed latent
784 mediator $S^{(t)}$ such that

$$785 X \leftarrow S^{(t)} \rightarrow Y \quad \text{given } (\mathcal{I}, z_{<s}^{(t)}, t, E^c),$$

786 and $I(S^{(t)}; \tau^{(-t)} \mid \mathcal{I}, z_{<s}^{(t)}, t, E^c) \leq \varepsilon$.

- 787 • **A3 (Verifier reliability).** With composed hypothesis H (DTR/FIR + answer),

$$788 \mathbb{P}[\mathcal{V}(H) = 1 \mid H \text{ invalid}] \leq \beta, \quad \mathbb{P}[\mathcal{V}(H) = 0 \mid H \text{ valid}] \leq \alpha < \frac{1}{2}.$$

- 789 • **A4 (Module sparsity).** For each t , $\kappa_t = \sup_s |V_s^{(t)}|/|\mathcal{Z}_t| < 1$, and $\underline{p}_t \leq \sum_{z \in V_s^{(t)}} \pi_t(z \mid$
- 790 $\cdot) \leq \bar{p}_t$ uniformly in s .

791 **Lemma B.5** (Typed disentanglement bounds). *Under A1, A2, and A2', for any module of type t and
792 step s ,*

$$793 I(z_{s,\text{perc}}^{(t)}; z_{s,\text{abs}}^{(t)} \mid \mathcal{I}, z_{<s}^{(t)}, t) \leq \varepsilon + h(\delta_{\text{type}}),$$

794 where one admissible choice is $h(\delta) = H_2(\delta) + \delta \log B_t$ with $H_2(\cdot)$ the binary entropy; h is mono-
795 tone and satisfies $h(0) = 0$.
796

797 *Proof.* Let $C := (\mathcal{I}, z_{<s}^{(t)}, t)$, $X := z_{s,\text{perc}}^{(t)}$, $Y := z_{s,\text{abs}}^{(t)}$. Let E be the “type-interface” event with
798 $\delta := \mathbb{P}(E = 1 \mid C) \leq \delta_{\text{type}}$.
799

800 *Step 1 (Mixture by the interface).* By the chain rule of conditional MI and the definition of condi-
801 tional interaction information,
802

$$803 I(X; Y \mid C) = (1 - \delta) I(X; Y \mid C, E^c) + \delta I(X; Y \mid C, E) + I(E; X; Y \mid C).$$

810 Since $|I(E; X; Y | C)| \leq H_2(\delta)$, we obtain
 811

$$812 \quad I(X; Y | C) \leq (1 - \delta) I(X; Y | C, E^c) + \delta I(X; Y | C, E) + H_2(\delta). \quad (1)$$

813
 814 *Step 2 (Interface term).* On E , type mixing can increase dependence but X, Y take values in a
 815 finite typed subspace, hence $I(X; Y | C, E) \leq \log B_t$. With $\delta \leq \delta_{\text{type}}$, this contributes at most
 816 $\delta_{\text{type}} \log B_t$.

817 *Step 3 (Typed-subspace term via mediator).* In the event E^c , by **A2'** there exists a typed mediator
 818 $S^{(t)}$ such that $X \leftarrow S^{(t)} \rightarrow Y$ given (C, E^c) and $I(S^{(t)}; \tau^{(-t)} | C, E^c) \leq \varepsilon$. By information
 819 decomposition and data processing,

$$820 \quad I(X; Y | C, E^c) \leq I(S^{(t)}; X | C, E^c) + I(S^{(t)}; Y | C, E^c) \leq \varepsilon.$$

822 *Step 4 (Combine).* Plugging these into equation 1 yields
 823

$$824 \quad I(X; Y | C) \leq \varepsilon + H_2(\delta_{\text{type}}) + \delta_{\text{type}} \log B_t = \varepsilon + h(\delta_{\text{type}}).$$

□

825
 826 **Lemma B.6** (Suppression of spurious symbolic states). *Under **A1** and **A3**, the probability that the
 827 final MoCoT output involves any spurious move into \mathcal{Z}_{sym} is at most*

$$828 \quad \beta + K \delta_{\text{type}},$$

829 where K can be taken as $K \leq T$ (or $K \leq \sum_{k=1}^K T_k$).
 830

831 *Proof.* By **A1**, for $t \neq \text{SYMBOLIC}$ we have $\mathcal{Z}_{\text{sym}} \cap \mathcal{Z}_t = \emptyset$ (up to Δ), so non-symbolic modules
 832 assign zero mass to \mathcal{Z}_{sym} unless traversing Δ . A union bound over at most T steps gives probability
 833 at most $K \delta_{\text{type}}$. Symbolic content is handled within the **SYMBOLIC** module and then checked by
 834 \mathcal{V} ; by **A3** spurious acceptance occurs with probability at most β . Summing gives $\beta + K \delta_{\text{type}}$. □

835 **Lemma B.7** (Modular exploration efficiency). *Under **A4**, each module k of type t_k satisfies*

$$836 \quad \mathbb{P}(\tau^{(k)} \in \mathcal{T}_{\text{valid}}^{(k)}) \geq \underline{p}_{t_k}^{T_k}.$$

837 *Moreover,*

$$838 \quad \mathbb{P}(\text{all modules valid}) \geq (1 - c\varepsilon) \prod_{k=1}^K \underline{p}_{t_k}^{T_k},$$

839 for some constant $c > 0$ from weak coupling (**A2**). For uniform exploration in \mathcal{Z}_{t_k} , $\mathbb{P}_{\text{unif}}(\tau^{(k)} \in$
 840 $\mathcal{T}_{\text{valid}}^{(k)}) = \Theta(\kappa_{t_k}^{T_k})$.

841 **Proposition B.8** (End-to-end success with verification). *Under **A3** and Lemma B.7,*

$$842 \quad \mathbb{P}(\text{MoCoT outputs a valid answer}) \geq (1 - \alpha)(1 - c\varepsilon) \prod_{k=1}^K \underline{p}_{t_k}^{T_k}.$$

843 **Theorem B.9** (Why MoCoT works in CVQA). *Assume **A1**–**A4** and **A2'**. Let standard CoT satisfy
 844 the per-step bound of Lemma B.3 with parameter \bar{p}_{glob} and valid fraction κ . Then MoCoT yields:*

- 845 1. **Entanglement reduction:** By Lemma B.5, within-module dependence is bounded by $\varepsilon +$
 $h(\delta_{\text{type}})$, strictly smaller than generic entanglement.
- 846 2. **Spurious suppression:** By Lemma B.6, the spurious probability is at most $\beta + K \delta_{\text{type}}$,
 whereas standard CoT assigns positive mass to \mathcal{Z}_{sym} almost surely.
- 847 3. **Exploration efficiency:** Standard CoT success $\leq (\max\{\kappa, \bar{p}_{\text{glob}}\})^T$; MoCoT achieves \geq
 $(1 - \alpha)(1 - c\varepsilon) \prod_k \underline{p}_{t_k}^{T_k}$. For uniform exploration, the search reduces from $\Theta(\kappa^T)$ to
 $\Theta(\prod_k \kappa_{t_k}^{T_k})$ with $B_{t_k} \ll B$.

848 *Thus MoCoT mitigates state entanglement, spurious symbolic transitions, and exponential explo-
 849 ration hardness.* □

Remarks on tightness and design levers.

- Lemma B.5 tightens as typing improves ($\delta_{\text{type}} \downarrow 0$) and subgoals decouple ($\varepsilon \downarrow 0$); in practice this means stronger **Plan** and cleaner DTR→FIR interfaces.
- Lemma B.6 shows that spurious probability is dominated by β ; improving **Verify** (e.g., stricter consistency checks) directly reduces it.
- Exploration gains arise from smaller B_t and larger \underline{p}_t , both compounding exponentially with T_k .
- Structured rewards (e.g., VERA) can further increase \underline{p}_t and decrease β , improving both constants and exponential rates.

C ALGORITHM DESCRIPTION

We provide the pseudocode for the two components of our framework: (i) MoCoT for modular chain-of-thought generation (Algorithm 1), and (ii) VERA-guided GRPO fine-tuning for verifiable alignment (Algorithm 2).

Algorithm 1 MoCoT

Require: Comic image I , question Q

Ensure: Final answer A_o with validated rationale

```

1: Initialize modules: planner  $\mathcal{P}$ , executors  $\{\mathcal{E}_k\}$ , meta-reasoner, and checker  $\mathcal{V}$ 
2: repeat
3:    $\mathcal{Q}_{\text{sub}} \leftarrow \mathcal{P}(I, Q)$                                  $\triangleright$  Decompose into  $K$  typed sub-questions
4:    $\mathcal{Q}_{\text{sub}} = \{(q_k, t_k)\}_{k=1}^K, t_k \in \{\text{VISUAL, SYMBOLIC, NARRATIVE}\}$ 
5:   Restrict reasoning space:  $\mathcal{Z}_{t_k} \subseteq \mathcal{Z}$  for each type  $t_k$ 
6:   for  $k = 1$  to  $K$  do
7:      $(r_k, a_k) \leftarrow \mathcal{E}_k(I, q_k; t_k)$      $\triangleright$  Executor produces rationale  $r_k$  and provisional answer  $a_k$ 
8:   end for
9:    $\mathcal{C}_{\text{sub}} \leftarrow \{(r_k, a_k, t_k)\}_{k=1}^K$                                  $\triangleright$  Pool of typed sub-results
10:   $\text{DTR} \leftarrow \text{Diagnose}(\mathcal{C}_{\text{sub}}, I, Q)$                                  $\triangleright$  Aggregate evidence into diagnostic rationale
11:   $(\text{FIR}, A_o) \leftarrow \text{Infer}(I, Q; \text{DTR})$                                  $\triangleright$  Generate final inference rationale and answer
12:   $A'_o \leftarrow \mathcal{V}(\text{FIR})$                                                $\triangleright$  Checker validates entailment of the final rationale
13: until  $A'_o = A_o$ 
14: return  $A_o$ 

```

D FULL RESULTS FOR FIGURE 1(A)

For completeness, we report the full numerical results corresponding to Figure 1(A), which illustrates the effect of naive CoT prompting on CII-BENCH. While the main paper shows the accuracy change in aggregate, Tables 4 and 5 provide the detailed results for Small and Large MLLMs, respectively. As can be seen, naive CoT prompting often leads to performance drops, especially for smaller models.

E PROMPT LIST

We provide the exact system prompts used in our experiments. Specifically, Table 6, 7, 8, and 9 correspond to the prompts for Step 1 (Subgoal Planning), Step 2 (Localized Execution), and Step 3 (Meta-Reasoning and Verification) in the MoCoT pipeline. In addition, Table 10 presents the system prompt used for VERA-guided GRPO fine-tuning, which enforces structured output formatting. Finally, Tables 11 and 12 provide the prompts employed in evaluating MLLMs without and with chain-of-thought reasoning, respectively.

918
919
920**Algorithm 2** GRPO Fine-tuning with VERA Reward

921 **Require:** Initial policy π_ω^0 , dataset \mathcal{D} , reward functions $\{R_{format}, R_{acc}, R_{rsn}, R_{logic}\}$ with weights
922 $\{\lambda_i\}$, hyperparameters: N (outer iterations), M (steps per iteration), μ (GRPO updates), ϵ
923 (clipping), β (KL coefficient)

924 **Ensure:** Fine-tuned policy π_ω

925 1: $\pi_\omega \leftarrow \pi_\omega^0$
 926 2: **for** $n = 1, \dots, N$ **do**
 927 3: $\pi_{ref} \leftarrow \pi_\omega$
 928 4: **for** $m = 1, \dots, M$ **do**
 929 5: Sample minibatch $\mathcal{B} \subset \mathcal{D}$
 930 6: $\pi_\omega^{old} \leftarrow \pi_\omega$ ▷ Update old policy
 7: **for** each $q \in \mathcal{B}$ **do**
 8: Generate G outputs $\{o_i\}_{i=1}^G \sim \pi_\omega^{old}(\cdot|q)$
 9: **for** $i = 1, \dots, G$ **do**
 10: Compute VERA reward:
 934
$$R(o_i) = \lambda_1 R_{format}(o_i) + \lambda_2 R_{acc}(o_i) + \lambda_3 R_{rsn}(o_i) + \lambda_4 R_{logic}(o_i)$$

 935
 11: **end for**
 12: Normalize rewards: $\tilde{R}(o_i) = (R(o_i) - \text{mean}(R)) / \text{std}(R)$
 13: Set advantages: $\hat{A}_{i,t} \leftarrow \tilde{R}(o_i)$, $\forall t \in o_i$
 14: **end for**
 15: **for** $u = 1, \dots, \mu$ **do**
 16: Update π_ω with gradient coefficient:
 936
$$GC(q, o, t) = \hat{A}_{i,t} + \beta \left(\frac{\pi_{ref}(o_{i,t}|o_{i,<t})}{\pi_\omega(o_{i,t}|o_{i,<t})} - 1 \right)$$

 937
 17: **end for**
 18: **end for**
 19: **end for**
 20: **return** π_ω

948
949
950
951

Model	#Params	w/ CoT	w/o CoT (Δ)
Mono-InternVL	2B	10.7	22.5 (+11.8)
Ovis2	2B	26.8	36.3 (+9.5)
InternVL2.5	2B	33.3	33.6 (+0.3)
Qwen2.5-VL	3B	36.2	41.8 (+5.6)
Phi-3.5	4B	22.1	33.1 (+11.0)
Qwen2-VL	7B	50.0	49.6 (-0.4)
LLaVA1.6	7B	29.0	30.2 (+1.2)
InternLM-XComposer-2.5	7B	32.6	32.6 (+0.0)
Qwen2.5-VL	7B	45.8	48.1 (+2.3)
Idefics2*	8B	33.3	36.3 (+3.0)
MiniCPM-V2.5*	8B	35.8	40.4 (+4.6)
MiniCPM-V2.6*	8B	38.9	45.0 (+6.1)
InternVL2*	8B	47.9	53.1 (+5.2)
InternVL3	8B	47.7	50.7 (+3.0)
Qwen-VL-Chat*	9B	34.0	34.3 (+0.3)
GLM-4V*	9B	49.1	50.3 (+1.2)

969 Table 4: Accuracy of **Small** ($\leq 15B$) MLLMs with and without CoT prompting on the CII-BENCH
970 benchmark. $\Delta = (\text{w/o CoT} - \text{w/ CoT})$. *Results reported from (Zhang et al., 2025).

971

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987

Model	#Params	w/ CoT	w/o CoT (Δ)
CogVLM2	19B	22.2	20.3 (-1.9)
CogVLM2-Chinese-Chat*	19B	42.6	43.4 (+0.8)
Gemma3	27B	39.1	39.1 (+0.0)
Qwen2.5-VL	32B	53.7	56.2 (+2.5)
LLaVA1.6*	34B	44.5	46.0 (+1.5)
InternVL3	38B	52.8	52.7 (-0.1)
InternVL2*	40B	57.6	57.9 (+0.3)
LLaVA1.6*	72B	45.3	48.0 (+2.7)
Qwen2-VL*	72B	62.1	64.4 (+2.3)
InternVL2*	76B	52.6	52.9 (+0.3)

Table 5: Accuracy of **Large** ($> 15B$) MLLMs with and without CoT prompting on the CII-BENCH benchmark. Δ = (w/o CoT – w/ CoT). *Results reported from (Zhang et al., 2025).

990
991
992
993
994
995
996
997

Table 6: Prompt used in Step 1 (Subgoal Planning) of the MoCoT pipeline.

998
999
1000
1001
1002
1003
1004

You will be shown an image and a related question. Do not attempt to answer the question. Instead, analyze the question in the context of the image, focusing on what makes it semantically complex, ambiguous, or rich in interpretation. Then, decompose it into a small number of **independent sub-questions** (up to 4), each targeting a different aspect that would help a model better understand and reason about the original question. These sub-questions should:

1005
1006
1007
1008
1009
1010

- Reflect the implicit knowledge, reasoning steps, or background assumptions required to fully understand the question and its connection to the image.
- Avoid directly referencing answer options.
- Be useful for guiding deeper interpretation of the comic’s meaning, narrative structure, symbolism, or emotional content.

1011

Format your output as:

```

1  {
2      "cot": "<your step-by-step reasoning about the question and how
3          the image informs it>",
4      "sub_questions": [
5          "<sub-question 1>",
6          "<sub-question 2>",
7          "... (up to 4)"
8      ]
9  }
```

1020
1021
1022
1023
1024
1025

Only output the JSON. You may refer to the image to inform your reasoning, but do not describe the image or answer the question.

1026 Table 7: Prompt used in Step 2 (Localized Execution) of the MoCoT pipeline.
10271028 You will be shown an image and a related question. Your task is to answer the question
1029 using a Chain of Thought (CoT) approach, grounded in the image.1030

- 1031 First, examine the image and identify relevant visual elements (e.g., objects, characters, expressions, actions, spatial relationships).
- 1032 Then, reason through the question step by step, referencing the image as needed.
- 1033 Finally, answer the question directly.

1034 Your output must be in the following JSON format:
10351036

```
1 {
2   "cot": "<your step-by-step reasoning based on the image and
3   question>",
4   "answer": "<final answer here>"
```

1037 Now, analyze the image and answer the question with a clear CoT reasoning process in the
1038 specified JSON format.
1039

Standard CoT	
<p>The image depicts a comparison between two individuals working on computers in 1980 and 2013. The cartoon humorously illustrates the rapid advancement of technology over the decades. While the 1980s individual struggles with the outdated equipment, the 2013 individual effortlessly handles the advanced technology. This contrast highlights the generational gap in adapting to new technologies and the challenges faced by older individuals in keeping up with modern advancements. The cartoon also suggests that the rapid evolution of technology has led to a significant increase in electronic waste, which can be harmful to the environment.</p>	
MoCoT	
<p>Sub-Question Decomposition What are the visible contrasts in the physical appearance and posture of the individual from 1980 to 2013, and how do they relate to lifestyle changes due to technology? How does the progression of technology between the two years reflect societal shifts in both product design and user engagement? What implications does the image suggest regarding the balance between technological advancement and personal health? In what ways might this image represent generational differences in familiarity and comfort with technology?</p> <p>Sub-Question Reasoning The visible contrasts in the physical appearance and posture of the individual from 1980 to 2013, and how they relate to lifestyle changes due to technology, include the individual's increased weight and slouched posture in 2013 compared to the slimmer, upright posture in 1980. This reflects a shift towards more sedentary lifestyles and increased screen time associated with modern technology. The progression of technology from 1980 to 2013 reflects a shift towards more compact and efficient designs, while societal changes have led to increased sedentary behavior and weight gain. The image suggests that technological advancement has led to a more sedentary lifestyle, potentially contributing to health issues like obesity. The image represents generational differences in familiarity and comfort with technology by showing the evolution of computer design and usage over time, with the character from 2013 appearing more comfortable and familiar with the technology.</p> <p>Diagnostic Thought Rationale The sub-questions provide insightful analysis regarding the visible contrasts in the characters from 1980 to 2013. The first answer accurately highlights the increase in weight and changes in posture due to a more sedentary lifestyle linked to technology. The second answer underscores how product design has evolved towards compactness, illustrating a societal trend toward increased screen time. The third answer supports the notion that such technological advancements have negative implications for physical health, suggesting a correlation between increased technology use and obesity. The fourth answer points out generational differences, indicating that familiarity with technology has grown but does not delve deeply into the broader implications of this comfort. Overall, the sub-questions suggest a consistent theme around the health impacts of technology and lifestyle changes, primarily pointing towards issues of obesity and sedentary behavior. However, they don't fully explore the potential humor in generational gaps, which might be significant considering one of the answer choices emphasizes this aspect.</p> <p>Final Inference Rationale The overall theme represented in the image reflects the consequences of technological advancement on health and lifestyle. The character from 1980 exhibits a healthier, more active posture, while the 2013 version highlights weight gain and sedentary habits fostered by modern technology...</p>	

1067 Figure 5: Case study comparing standard CoT (Qwen-2.5-3B-VL) and our MoCoT on a visual satire
1068 task.
10691070

F COMPLETE QUALITATIVE COMPARISONS

1071
1072 In Figure 2, we highlighted three representative failure modes of Qwen-2.5VL-3B: (A) satirical
1073 target confusion, (B) symbolic misalignment, and (C) salient cue omission. In this section, we
1074 provide the complete set of responses corresponding to Figure 1, including both Qwen and ours.
1075 Moreover, we further illustrate each failure type with additional examples: satirical target confusion
1076 with Figures 15 and 16, symbolic misalignment with Figures 13 and 18, and salient cue omission
1077 with Figures 14 and 17.
1078

1080
1081

Table 8: Prompt used in Step 3 (Meta-Reasoning) of the MoCoT pipeline.

1082

Two-Stage Visual Reasoning: Interpret the Deep Meaning of a Cartoon

1083

You are provided with:

1084

- A **cartoon image** ('image_path')
- A **multiple-choice question** asking which of the provided options (e.g., A, B, C, ...) best expresses the cartoon's deep meaning
- A set of **sub-questions and sub-answers** exploring visual, symbolic, or thematic aspects of the image

1085

Your task involves two distinct reasoning stages:

1086

Stage 1 — cot1: Critically Evaluate Sub-Answers Do not try to answer the main question yet.

1087

For each sub-question and its answer:

1088

- Assess whether the answer is accurate, coherent, visually grounded, and symbolically insightful.
- Point out strong insights (e.g., symbolism, emotional interpretation).
- Point out weak points (e.g., vagueness, factual errors, irrelevance).

1089

Summarize in a concise paragraph or bullet list per sub-answer. The goal is to diagnose the quality of intermediate reasoning, not to solve the problem.

1090

Stage 2 — cot2: Independent Deep Reasoning and Final Choice (Informed by cot1) Now interpret the cartoon from the image itself, making an independent judgment. Steps:

1091

1. Describe the image explicitly (main objects, actions, tone, key symbols).
2. Interpret the symbolism and theme (message, human values, societal critique).
3. Compare all answer choices: explain matches and mismatches.

1092

Finally, give your best answer.

1093

Final Output Format:

1094

```

1 {
2   "cot1": "Your structured evaluation of the sub-answers.",
3   "cot2": "Your independent reasoning and answer justification.",
4   "answer": "Your final choice (e.g., A, B, C, D, or other label)"
5 }
```

1095

Example Output:

1096

```

1 {
2   "cot1": "1. The answer to sub-question 1 accurately identifies the
3           image's central element - a businessman climbing over others. It is
4           visually grounded and symbolically points to social hierarchy.
5           2. The answer to sub-question 2 misses the emotional tone -- the
6           despair of those stepped on. It's a surface-level description
7           without symbolic insight.
8           3. Sub-answer 3 insightfully connects the broken ladder to systemic
9           inequality -- a strong symbolic interpretation.",
10  "cot2": "The image depicts a businessman climbing a ladder made of
11  people. Those below appear crushed, while he ascends smugly. The
12  exaggerated expressions emphasize exploitation. Symbolically, the
13  cartoon critiques how success in capitalism often rests on the
14  suffering of others.
15  A: Suggests hard work pays off -- doesn't fit the exploitative
16  theme.
17  B: Argues society rewards the clever -- also fails to address the
18  cruelty shown.
19  C: Says 'one's success is built on others' pain' -- this directly
20  reflects the image's symbolism.
21  D: Suggests individualism is key -- irrelevant to the collective
22  suffering shown. C is the best fit.",
23  "answer": "C"
24 }
```

1134

1135

1136 Table 9: Prompt used in Step 3 (Verification) of the MoCoT pipeline.

1137

1138 You are a logical critique model tasked with post-hoc evaluation and revision of a reasoning
1139 paragraph (‘cot2’) that aims to justify the selection of one of several options (e.g., A, B, C,
1140 D) in response to a visual question. **You will NOT see the image**, only the textual reasoning.1141 **Objectives:**1142 1. Determine if the original ‘cot2’ logically supports the given final answer.
1143 2. If it does not, return a corrected version of ‘cot2’.1144 **Output Format:** Respond with a valid JSON object, enclosed in a markdown code block,
1145 like this:1146

```
1 {  
2     "Matched Answer": "A",  
3     "Is Consistent": true,  
4     "Justification": "The reasoning supports the final answer.",  
5     "Corrected CoT2": "The revised reasoning here."  
6 }
```

1153 Do not include anything outside the code block.

1154

1155

1156

1157

1158 Table 10: Prompt used for GRPO reinforcement learning fine-tuning.

1159

1160 A conversation between User and Assistant. The user asks a multiple-choice question, and
1161 the Assistant solves it. The assistant first thinks about the reasoning process in the mind
1162 and then provides the user with the answer. The reasoning process and answer are enclosed
1163 within <REASONING></REASONING> and <ANSWER></ANSWER> tags, respectively,
1164 i.e., <REASONING> reasoning process here </REASONING><ANSWER>
1165 answer option label here </ANSWER>

1166

1167

1168

1169

1170 Table 11: Prompt used for MLLM evaluation without CoT.

1171

1172 You are a helpful assistant for image-based reasoning. You will be given an image and a
1173 related multiple-choice question. Your task is to examine the image, understand the question
1174 and options, and then identify the correct answer.1175 Respond in **strict JSON format**, with only one field: - “answer”: a list that contains only
1176 your final answer as a string — specifically, the correct option label (e.g., “A”, “B”, “C”, or
1177 “D”). It should NOT include explanation or restate the option text.1178 **Output exactly one JSON object, and nothing else — no comments, no code blocks, no
1179 additional text.**

1180 Here is the required format:

1181

```
1 {  
2     "answer": ["<option label here>"]  
3 }
```

1184 If the answer is not certain, make your best inference and still produce a valid JSON object
1185 with your final answer.

1186

1187

1188 Table 12: Prompt used for MLLM evaluation with CoT.
11891190 You will be given an image and a related multiple-choice question. Your task is to examine
1191 the image, understand the question and options, and then reason step by step before arriving
1192 at the final answer.1193 Respond in strict JSON format, with two fields: - "cot": a detailed step-by-step explanation
1194 showing your reasoning based on visual elements and the question and options. - "answer":
1195 a list that contains only your final answer (e.g., ["A"]).1196 **Output exactly one JSON object, and nothing else.**

1197 Your output must be in the following JSON format:

```

1 {
2     "cot": "<your step-by-step reasoning based on the image and
3         question>",
4     "answer": "<final answer here>"
5 }
```

1203
1204
1205
1206 **G CASE STUDY ON MoCoT**1207
1208 To evaluate the reasoning capability of MoCoT compared to standard CoT, we analyze a cartoon that
1209 contrasts an individual using a computer in 1980 with one in 2013, as illustrated in Figure 5. The
1210 image implicitly critiques how technological progress correlates with lifestyle changes and declining
1211 physical health.1212 Standard CoT focuses primarily on superficial signals such as device modernization, increased user
1213 comfort, and environmental impact (e.g., e-waste). However, it fails to recognize the central theme
1214 conveyed visually—the ironic reversal between technological refinement and human physical degra-
1215 dation. As a result, it selects interpretations that are plausible yet miss the intended societal critique.1216 In contrast, MoCoT decomposes the image into modular sub-questions covering posture, body
1217 shape, product evolution, and behavioral implications. This structured process surfaces the insight
1218 that while devices become slimmer and more efficient, users become more sedentary and unhealthy.
1219 By aligning local observations with a global interpretation, MoCoT identifies the core message:
1220 modern convenience may come at the cost of physical well-being. This example demonstrates Mo-
1221 CoT’s superiority in extracting abstract, compositional meaning from visual satire.1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242
1243
1244
1245
1246
1247

Table 13: Qualitative comparison on cartoon question 1.

1248	Image	Question
1249		<p>A. As illustrated at the top of the frame, this cartoon wants to tell the viewer: be careful with your words. If you express what you think in your head too directly, words will become a sharp weapon to kill you.</p> <p>B. In some cases, people read the warnings as required, only to find that the warnings themselves were self-denying. This can be confusing. So sometimes the rules themselves contradict each other. We should learn to judge for ourselves.</p> <p>C. The comic makes fun of the fact that many people are more oblivious towards common knowledge than people expect, and would perform stupid actions on common and easy tasks.</p> <p>D. The comic strip conveys a deeper meaning related to the divergent outcomes resulting from different choices and behaviors. The caricature also serves as a reminder that our actions have consequences and that making positive choices can lead to personal growth, fulfillment, and a vibrant life, while negative habits can lead to stagnation and a decline in overall well-being.</p>
1268	Qwen2.5VL-3B	Ours
1269		
1270		
1271		
1272		
1273	The image shows a cartoon character standing next to a sign that reads "WARNING: DO NOT READ THIS SIGN." This sign is placed in a grassy area with a blue sky in the background. The character appears to be looking at the sign, suggesting that the viewer is meant to pay attention to the message. The sign itself is a play on words, as it is a warning sign, but the text on the sign is actually a warning against reading the sign. This creates a humorous and ironic situation where the warning is not what it seems. The deep meaning of the image can be interpreted as a commentary on the importance of being cautious with our words and actions, as the sign itself is a warning against reading it. The character's reaction to the sign, combined with the irony of the message, suggests that the viewer should be careful with their words and actions, as they can have unintended consequences.	The image shows a cartoon character standing next to a sign that reads "WARNING DO NOT READ THIS SIGN." This suggests a paradoxical situation where the warning itself is contradictory. The cartoon humorously highlights the tension between the warning and the instruction to not read it, implying a deeper commentary on the complexity of warnings and the human tendency to ignore or misinterpret them. The cartoon conveys a critique of how people often fail to heed clear warnings, reflecting on the self-denying nature of warnings. Option A focuses on the danger of direct communication, but it doesn't capture the cartoon's critique of warnings. Option B directly addresses the contradiction in warnings, aligning well with the cartoon's message. Option C emphasizes obliviousness to common knowledge, but it misses the core theme of the cartoon's critique. Option D discusses the consequences of choices, but it doesn't specifically relate to the cartoon's focus on warnings. Therefore, option B is the most suitable choice as it encapsulates the cartoon's deeper meaning about the self-denying nature of warnings.
1274	Final answer: A ✗	Final answer: B ✓
1275		
1276		
1277		
1278		
1279		
1280		
1281		
1282		
1283		
1284		
1285		
1286		
1287		
1288		
1289		
1290		
1291		
1292		
1293		
1294		
1295		

1296
1297
1298
1299
1300
1301
1302

Table 14: Qualitative comparison on cartoon question 2.

1303	Image	Question
1304		<p>A. Through the echo of the behavior of the mother in 1995 and the behavior of the mother in 2015, the author of the cartoon expressed that with the changes of the times, parents' educational concepts are likely to fall into a strange cycle.</p> <p>B. The deep meaning conveyed by the picture relates to the unfair treatment of men and women in the workplace. It symbolizes the different challenges and obstacles faced by individuals based on their gender. The direct path represents the easier and smoother career progression often enjoyed by men, while the winding path signifies the complex and difficult journey that women often have to navigate to achieve the same level of success.</p> <p>C. Our whole life is like being on a conveyor belt. We are always pursuing various goals, yet we never stop chasing them. As we grow older, we start to escape from the threat of death. This cartoon sketches out the essence of life and the dilemma of human beings through a simple scene. We are always running towards fame, fortune, power, etc., but when we reach the finish line, we may only be left with emptiness and endless anxiety.</p> <p>D. The picture shows that by choosing the right way, you can reach the endpoint, while if you choose the wrong way, you will only get farther and farther away from the endpoint.</p>
1322	<p>Qwen2.5VL-3B</p> <p>The image shows two people walking on a winding path that leads to a tower. The path is marked with concentric circles, suggesting a journey or a path to a destination. Option A: This option suggests that the image is about the changes in parents' educational concepts over time. However, the image does not provide any information about parents' educational concepts or their evolution over time. It focuses more on the path and the tower, which are not directly related to this concept. Option B: This option suggests that the image is about the unfair treatment of men and women in the workplace. The winding path could symbolize the challenges faced by women, while the direct path could represent the easier career progression for men. However, the image does not provide any specific context about gender equality or workplace issues. Option C: This option suggests that the image is about the essence of life and the dilemma of human beings. The winding path could represent the pursuit of various goals, while the tower could symbolize the end or destination. However, the image does not provide any specific context about life or human dilemmas. Option D: This option suggests that the image is about the importance of choosing the right path. The winding path could represent a wrong path, while the direct path could represent the right path. This option aligns well with the visual elements of the image, where the winding path leads to a tower, suggesting a journey or a path to a destination. Based on this analysis, the most suitable deep meaning for the image is Option D: The picture shows that by choosing the right way, you can reach the endpoint, while if you choose the wrong way, you will only get farther and farther away from the endpoint.</p> <p>Final answer: D ✗</p>	<p>Ours</p> <p>The image depicts two individuals walking on different paths, one straight and one winding, towards a destination. This suggests a metaphor for different career paths and challenges faced by men and women. The winding path represents the complexities and obstacles women often encounter, while the straight path symbolizes easier career progression for men. The cartoon conveys the theme of gender inequality in professional environments, highlighting the different challenges faced by individuals based on their gender. Option A focuses on the changes in parental educational concepts over time, which does not align with the image's focus on gender inequality. Option B directly addresses the unfair treatment of men and women in the workplace, aligning well with the image's message. Option C emphasizes the essence of life and human pursuit, but it doesn't capture the specific gender dynamics depicted in the image. Option D suggests a choice between right and wrong paths, but it misses the underlying theme of gender inequality. Therefore, option B is the most suitable choice as it encapsulates the deep meaning of the image.</p> <p>Final answer: B ✓</p>

1344
1345
1346
1347
1348
1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

Table 15: Qualitative comparison on cartoon question 3.

Image	Question
<p>After years of research, Dr. Anderson devises the perfect way to get women to stop smoking: The 1,000-calorie cigarette.</p>	<p>A. This cartoon tells us that doing anything requires not only passion but also professional knowledge and careful preparation.</p> <p>B. Calories are the amount of heat and energy contained in food, which goes against the common pursuit of women in today's times to be slim and build a good body. People tend to choose foods, drinks, etc. with low calorie content in order to lose weight, and even keep their daily calorie intake within a certain limit.</p> <p>C. This picture shows that many great scientific discoveries often come from experiments with eccentricity. We should not be afraid to question and ridicule to make great discoveries.</p> <p>D. The comic strip prompts reflection of the status of teachers today, and the shifting landscape of education, parental involvement, and the recognition that a student's self-confidence and personal growth should be valued alongside academic performance.</p>

Qwen2.5VL-3B

The image depicts a humorous scenario where a scientist, Dr. Anderson, invents a 1,000-calorie cigarette as a way to get women to stop smoking. This is a satirical take on the idea that scientific discoveries can sometimes be absurd or impractical. Let's analyze each option in relation to the image: A. This cartoon tells us that doing anything requires not only passion but also professional knowledge and careful preparation. - This option is not directly related to the image. The image is more about the absurdity of the invention rather than the preparation required. B. Calories are the amount of heat and energy contained in food, which goes against the common pursuit of women in today's times to be slim and build a good body. People tend to choose foods, drinks, etc. with low calorie content in order to lose weight, and even keep their daily calorie intake within a certain limit. - This option is also not directly related to the image. The image is about a 1,000-calorie cigarette, not about calorie intake or weight loss. C. This picture shows that many great scientific discoveries often come from experiments with eccentricity. We should not be afraid to question and ridicule to make great discoveries. - This option is the most suitable deep meaning for the image. The image humorously depicts a scientist inventing a 1,000-calorie cigarette, which is an absurd and eccentric idea. This aligns with the idea that great scientific discoveries can sometimes come from unconventional and eccentric experiments. D. The comic strip prompts reflection of the status of teachers today, and the shifting landscape of education, parental involvement, and the recognition that a student's self-confidence and personal growth should be valued alongside academic performance. - This option is not related to the image. The image is about a scientist inventing a 1,000-calorie cigarette, not about the status of teachers or education. Therefore, the most suitable deep meaning for the image is option C.

Final answer: C ✗

Ours

The cartoon depicts Dr. Anderson inventing a 1,000-calorie cigarette as a way to get women to stop smoking. This suggests a humorous take on the societal pressure to be thin and the pursuit of weight loss. The cartoon implies a critique of societal norms and the pursuit of thinness, highlighting the absurdity of creating a product to counteract these pressures. The deep meaning of the cartoon revolves around the societal expectations and the humorous commentary on the pursuit of thinness. Option A focuses on the need for passion and professional knowledge, which doesn't directly relate to the cartoon's critique of societal norms. Option B emphasizes the common pursuit of slimness, aligning well with the cartoon's critique of societal expectations. Option C discusses the nature of scientific discoveries, but it misses the satirical tone of the cartoon. Option D addresses the status of teachers and education, which is not relevant to the cartoon's message. Therefore, option B is the most suitable choice as it captures the cartoon's critique of societal expectations related to weight and thinness.

Final answer: B ✓

1404
1405
1406
1407
1408
1409
1410

Table 16: Qualitative comparison on cartoon question 4.

	Image	Question
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430		<p>A. The cartoon satirizes that the I.R. law is a road to nowhere, yet the government insists on enacting and enforcing it.</p> <p>B. This cartoon satirizes many people in society who hope for change, but every one of them refuses to change themselves.</p> <p>C. Individuals lose their unique identities and become part of a homogeneous group. This portrayal reflects the potential loss of individuality and creativity in standardized educational systems, where diversity and personal expression may be suppressed in favor of uniformity. The comic strip highlights the societal pressure to conform and raises questions about the impact of institutional structures on personal identity and freedom of expression.</p> <p>D. It is a sign of racism, because blacks are treated differently, not only are they not allowed to be with whites, but they are kept in worse conditions.</p>
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457	<p>Qwen2.5VL-3B</p> <p>The image depicts a train with two separate compartments labeled 'Car for White Folks' and 'Jim Crow Car,' suggesting a division based on race. This satirical representation implies that despite the government's efforts to enforce racial equality, segregation persists. The cartoon likely aims to highlight the ineffectiveness of such policies and the ongoing racial disparities in society. Therefore, the most suitable deep meaning is that the cartoon satirizes that the I.R. law is a road to nowhere, yet the government insists on enacting and enforcing it.</p> <p>Final answer: A X</p>	<p>Ours</p> <p>The image depicts a train with separate compartments labeled 'CAR FOR WHITE FOLKS' and 'JIM CROW CAR,' suggesting segregation and discrimination based on race. This imagery conveys a critique of racial inequality and the systemic racism embedded in societal structures. The cartoon highlights the harsh realities of racial segregation, reflecting the deep-seated issues of discrimination and the loss of individuality due to societal norms. Option A focuses on the I.R. law, which doesn't directly relate to the cartoon's theme of racial discrimination. Option B emphasizes societal change, but it doesn't capture the specific critique of racial discrimination depicted in the cartoon. Option C discusses the loss of individuality in educational systems, which is not directly relevant to the cartoon's focus on racial segregation. Option D accurately encapsulates the cartoon's critique of racism and segregation, aligning perfectly with the image's message. Therefore, option D is the most suitable choice as it directly addresses the cartoon's deep meaning of racism.</p> <p>Final answer: D ✓</p>

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Table 17: Qualitative comparison on cartoon question 5.

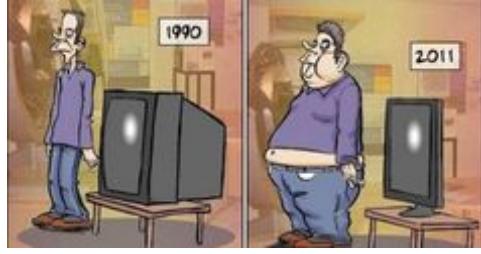

Image	Question
	<p>A. The moral of this cartoon is that people's physical health is affected by their daily eating habits; on a deeper level, people's thoughts are also related to what people usually read, and what we read and come into contact with will affect us in turn.</p> <p>B. The comic strip implicitly raises concerns about the impact of technological advancements on human health and lifestyle. We should change relationship between technology and human bodies, highlighting the importance of prioritizing physical health and balance in an increasingly digital age.</p> <p>C. Electronic devices like TV confine humanity. We should get rid of electronic devices and embrace nature.</p> <p>D. This cartoon satirizes many people in society who hope for change, but every one of them refuses to change themselves.</p>
Qwen2.5VL-3B	Ours
<p>The image shows a cartoon of a man in 1990 standing next to a small television, while in 2011, the same man is much larger and overweight, standing next to a much larger television. This visual progression suggests a correlation between the size of the television and the man's weight gain over time. The moral of the cartoon can be interpreted as a commentary on the impact of technology, particularly television, on human health and lifestyle. The larger television in 2011 could symbolize the increased consumption of media and the sedentary lifestyle that often accompanies it, leading to weight gain.</p> <p>Therefore, the most suitable deep meaning for the image is that people's physical health is affected by their daily eating habits; on a deeper level, people's thoughts are also related to what people usually read, and what we read and come into contact with will affect us in turn.</p> <p>Final answer: A ✗</p>	<p>The image shows a person in 1990 standing next to a small television, while in 2011, the same person is much larger and overweight, standing next to a much larger television. This visual metaphor suggests a correlation between increased screen time and physical health issues. The cartoon highlights how technological advancements have influenced human behavior and health. The deeper meaning touches on the impact of daily habits and the relationship between technology and human health. Option A focuses on the impact of eating habits, which aligns with the cartoon's theme but doesn't fully capture the broader technological impact depicted. Option B emphasizes the impact of technology on health and lifestyle, which resonates well with the cartoon's message. Option C suggests a rejection of electronic devices, which misses the cartoon's critique of technology. Option D addresses societal change but doesn't directly relate to the cartoon's core message about technology and health. Therefore, option B is the most suitable choice as it encapsulates the cartoon's deeper meaning about technology's influence on health.</p> <p>Final answer: B ✓</p>

Table 18: Qualitative comparison on cartoon question 6.

1512	Image	Question
1513		<p>A. This picture satirizes some people who talk too much when they give a speech, but what they actually say is illogical and ridiculous.</p> <p>B. If the person who sends flowers has ill intentions, then the flowers they send will only be offensive to people. No matter how well they are packaged, ill will is always hurtful.</p> <p>C. With flowers in your heart, your mood will naturally get better. We should be able to adjust our mood.</p> <p>D. This picture uses a sarcastic attitude to express the problem of people nowadays who only talk but don't take action. Without people who actually do things, all the talk from the critics and talkers is meaningless.</p>
1514	Qwen2.5VL-3B	
1515	<p>The image shows a hand holding a bouquet of flowers with middle fingers pointing upwards. This visual metaphor is often used to convey a message of defiance or rebellion. Let's analyze each option in relation to this image: A. This picture satirizes some people who talk too much when they give a speech, but what they actually say is illogical and ridiculous. This option suggests that the image is a critique of people who speak excessively but have no substance. However, the image does not seem to focus on the content of the speech but rather on the gesture of the middle fingers. B. If the person who sends flowers has ill intentions, then the flowers they send will only be offensive to people. No matter how well they are packaged, ill will is always hurtful. This option implies that the flowers themselves are offensive due to the gesture of the middle fingers. However, the flowers are not the focus of the image; the gesture is. C. With flowers in your heart, your mood will naturally get better. We should be able to adjust our mood. This option suggests a positive message about adjusting one's mood with flowers. However, the image does not convey this message; it uses the gesture of the middle fingers to make a point. D. This picture uses a sarcastic attitude to express the problem of people nowadays who only talk but don't take action. Without people who actually do things, all the talk from the critics and talkers is meaningless. This option aligns with the image's message. The gesture of the middle fingers, often associated with rebellion or defiance, can be interpreted as a critique of people who talk a lot but do little. The flowers, while not the main focus, can be seen as a symbol of the speaker's intentions, which are not well-received.</p> <p>Final answer: D ✗</p>	
1516	Ours	
1517	<p>The image depicts a bouquet of flowers with middle fingers pointing upwards, symbolizing a gesture of defiance or rebellion. This visual conveys a sense of rebellion against conventional norms, suggesting a critique of superficial gestures. The flowers, typically associated with love and affection, are juxtaposed with the aggressive gesture, highlighting the contrast between outward expressions and underlying intentions. The deep meaning of the image likely reflects the critique of superficial acts of communication and the underlying ill intentions behind such gestures. Option A focuses on the critique of speech, but it doesn't directly relate to the aggressive gesture in the image. Option B emphasizes the offensive nature of the gesture, aligning well with the image's message. Option C suggests a positive outlook on flowers, which doesn't resonate with the aggressive symbolism. Option D addresses the problem of talk without action, but it misses the specific critique of superficial gestures depicted in the image. Therefore, option B is the most suitable choice as it encapsulates the image's critique of ill intentions behind gestures.</p> <p>Final answer: B ✓</p>	