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Abstract

Despite Graph Neural Networks (GNNs) have achieved remarkable accuracy,
whether the results are trustworthy is still unexplored. Previous studies suggest
that many modern neural networks are over-confident on the predictions, however,
surprisingly, we discover that GNNs are primarily in the opposite direction, i.e.,
GNNs are under-confident. Therefore, the confidence calibration for GNNs is
highly desired. In this paper, we propose a novel trustworthy GNN model by
designing a topology-aware post-hoc calibration function. Specifically, we first
verify that the confidence distribution in a graph has homophily property, and
this finding inspires us to design a calibration GNN model (CaGCN) to learn
the calibration function. CaGCN is able to obtain a unique transformation from
logits of GNNs to the calibrated confidence for each node, meanwhile, such
transformation is able to preserve the order between classes, satisfying the accuracy-
preserving property. Moreover, we apply the calibration GNN to self-training
framework, showing that more trustworthy pseudo labels can be obtained with the
calibrated confidence and further improve the performance. Extensive experiments
demonstrate the effectiveness of our proposed model in terms of both calibration
and accuracy.

1 Introduction

Graphs are ubiquitous in the real world, including social networks, e-commerce networks, traffic
networks, and so on. Recently, Graph Neural Networks (GNNs), which are able to effectively learn
the node representations based on the message-passing manner, have attracted considerable attention
in dealing with graph data [16, 33, 39, 44, 15, 2, 34]. To date, GNNs have been applied to various
applications and achieved remarkable accuracy, e.g., node classification [16, 33], link prediction [41]
and graph classification [9].

However, it is well established that a model with good accuracy is not the only goal, but a trustworthy
model is highly desired in many applications, especially in safety-critical fields [1]. Usually, a
trustworthy model implies that it should know when it is likely to be incorrect, in other words, the
probability, i.e., the confidence, associated with the predicted class label should reflect its ground
truth correctness likelihood [12]. For example, in the scene of autonomous driving, the system will
adopt the prediction given by the model only when the model has high confidence for its prediction.
Otherwise, the decision-making power will be returned to the driver or the system adopts other safer
strategies. Recently, the confidence calibration has attracted considerable attention in deep learning
[12, 40, 19], which reveals that many modern neural network models are over-confident on the
predictions, i.e., the prediction accuracy is lower than its confidence. However, it has not been studied
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in GNNs on the semi-supervised scenario, which gives rise to one fundamental question: will the
current GNNs follow the same over-confident property as other neural networks? A well-informed
answer can help us better understand GNNs and enable GNNs to be applied to various areas in a
more reliable manner.

As the first contribution of this study, we present experiments assessing the relationship between the
confidence and the accuracy of Graph Convolutional Networks (GCNs) [16] and Graph Attention Net-
works (GAT) [33] in the node classification task (more details can be seen in Section 2), respectively.
Surprisingly, we discover that existing GNNs are far distant from being well-calibrated, and more
importantly, GNNs tend to be under-confident in their predictions, which is very different from other
modern deep learning models that are often over-confident [12, 19]. GNNs being under-confident
means that many predictions are distributed in the low-confidence range, and therefore, fewer predic-
tions are available for safety-critical applications. Once the weakness is identified, another natural
question is: how can we calibrate the confidence on predictions given by GNNs so as to make them
more trustworthy?

Essentially, the confidence calibration is to calibrate the outputs (also known logits) of original
models (e.g., GNNs), therefore, a straightforward manner is to employ temperature scaling (TS) [12],
OP-families [25] to learn calibration function using a held-out dataset in a post-hoc way. However,
when being applied to graphs, they all ignore the effect of topology, which will inevitably make
mistakes during calibration. For example, considering that the logits of two nodes a and b are the
same, but node a is similar to its neighbors while node b is not. Apparently, the predictions of GCNs
for a should be more confident than b, while the traditional calibration methods, e.g., TS, will learn
the same confidence for a and b, because it does not consider the effect of topology.

Moreover, most of them explore calibration functions only in the linear space [12, 18] while it is
well known that non-linear space contains more complex function transformation which is able
to calibrate networks with complicated landscapes well. Even if some works have explored the
non-linear space such as Matrix Scaling [12], they generally degrade the classification accuracy of
the original classifier, while a good accuracy is still a basic requirement by many applications.

In this paper, we introduce a topology-aware post-hoc calibration method for GNNs. Specifically, for
the logits given by the original classification GNNs, we employ another calibration GCN (CaGCN) to
propagate confidence, naturally enabling that the confidence of topologically adjacent nodes becomes
similar. CaGCN learns a unique temperature t for each node for temperature scaling, thus preserving
the accuracy of the original classification GCN. In addition, based on our finding that large numbers
of high-accuracy predictions are distributed in the low-confidence range, we design a calibrated
self-training model CaGCN-st in which the confidence is firstly calibrated then used to generate
pseudo labels with high confidence. The contributions of this paper are three-fold:

• We study the trustworthy problem of GNNs, and discover one unique characteristic of GNNs, i.e.,
the predictions made by GNNs are usually under-confident.

• We propose a novel trustworthy GNN model based on the confidence calibration. Our proposed
calibration function has three features: topology-aware, non-linear, and accuracy-preserving. We
further design a calibrated self-training GNN model, which can effectively utilize the predictions
with high confidence.

• Extensive experiments demonstrate the effectiveness of our proposed models in terms of both
calibration and accuracy.

2 Notation and Preliminary Study

In this paper, we focus on the calibration of semi-supervised node classification in an undirected
attributed graph G = (V,E) with the adjacent matrix A ∈ RN×N and the node feature matrix X =
[x1, . . . ,xN ]

T. V is a set of nodes and E ⊆ V ×V is a set of edges between nodes. N = |V | is the
number of nodes. Here we give the definition of perfect calibration of GNNs as follows:
Definition 1. Given random variables A, X, Y⊆ {1, . . . ,K} and a GNN model fθ where θ is the
learnable parameters, for node i with label yi ∈ Y, zi = fθ (xi,A) = [zi,1, . . . ,zi,K ]

T is the output of
GNNs (i.e., the prediction probability), and ŷi = argmaxk zi,k and p̂i = maxk zi,k are the prediction
and the confidence respectively. Then we define fθ to be perfectly calibrated as:

P(ŷi = yi|p̂i = p) = p,∀p ∈ [0,1]. (1)
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Figure 1: Reliability diagrams for GCN (top) and GAT (bottom) without confidence calibration.
The diagram is expected to plot an identity function of accuracy with respect to confidence. Any
deviation from a perfectly diagonal (i.e., the difference between blue and red histogram) represents
the miscalibration.

Figure 2: Confidence distribution before calibration.

According to Definition 1, GNN is perfectly calibrated only when the confidence p̂i is exactly equal
to the true probability of getting a correct prediction for every node.

Next, we take two representative GNNs (GCN [16] and GAT [33]) as examples to analyze whether
they are perfectly calibrated. Specifically, we apply GCN and GAT to four widely used datasets Cora
[29], Citeseer [29], Pubmed [29], CoraFull [3], and examine whether their results satisfy Definition
1. To provide more results, we select three label rates for training set (i.e., 20, 40, 60 labeled nodes
per class). All the experimental settings follow [16, 33]. Since the true probability p cannot be
exactly known, we take an approximate way to evaluate the calibration as in [12]. In particular, we
first partition the [0,1] range of confidence into 20 equal bins and then we group the nodes into
corresponding bins according to their confidence. After that we calculate the average accuracy of
each bin. We expect the average accuracy is equal to the average confidence of each bin, which means
the model is approximately perfectly calibrated. For example, if the average confidence of nodes in
the bin [0.95, 1.0] is 0.96, and then the classification accuracy in this bin should be 96%.

We illustrate the results of label rate being 20 in Fig. 1 using Reliability Diagrams [23] here, where
the x-axis is the confidence in 20 bins of equal size and y-axis is the average accuracy in each bin.
The blue represents the classification accuracy of GCN and GAT while the red is our expectation.
More results of label rate being 40, 60 and other GNN models can be seen in Fig. 8, Fig. 9, Fig. 12,
Fig. 13 and Fig. 14 in the appendix. We can see that in all the datasets, the average accuracy of most
bins is higher than the average confidence. In other words, these GNNs actually achieve remarkable
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performance, but they all output low confidence, i.e., the GNNs are usually under-confident. Please
note that this phenomenon of GNNs is very different from other modern neural networks, which are
generally known to be over-confident [12, 19]. Moreover, as shown in Fig. 2, we also visualize the
confidence distribution of test nodes, where the x-axis is the confidence and y-axis is the density
[28]. The histogram height multiplied by the width is equal to the frequency. The blue represents the
confidence distribution of correct predictions while the yellow represents that of incorrect predictions.
More results of label rate being 40 and 60 can be seen in Fig. 10 and Fig. 11 in the appendix. We
can see that a large quantity of correct predictions are distributed in the low confidence range. The
results above indicate that the current GNNs are far from perfect calibration, leading to unreliable
confidence.

3 Confidence Calibration on GCNs

In this section, we propose our method to calibrate current GNNs. Given A and X, for a l-layer GCN
[16], the output of the GCN before the softmax layer can be obtained by:

V = Aσ(· · ·Aσ(AXW(1))W(2) · · ·)W(l) = [v1, · · · ,vN ]
T, (2)

where W(l) is the weight matrix of l-th layer in GCN and σ(·) is the activation function. For each
node i ∈ {1, · · · ,N}, our goal is to learn a calibration function which is fed with vi (often known as
the logit of node i) and outputs a calibrated confidence using a held-out dataset in a post-hoc way. The
calibration function should satisfy three points below: (1) taking the network topology into account
(2) non-linear (3) preserving the classification accuracy of the GCNs.

3.1 CaGCN: GCNs as Calibration Function

Figure 3: The illustration of the confidence
propagation. Different colors indicate differ-
ent classes.

Table 1: Summary of total variation of con-
fidence before and after calibration (Bold:
best). Uncal. is short for uncalibrated and
TS is short for temperature scaling.

Dataset GCN
Uncal. TS Ours

Cora 240.267 172.346 164.651
Citeseer 128.145 112.212 108.684
Pubmed 1299.33 1266.68 1113.41
CoraFull 6014.32 4698.20 4500.30

We assume that the ground-truth confidence distribution in a graph has homophily property, i.e., the
confidence of neighboured nodes given by well-calibrated models should be similar, and thus we
conduct an experiment to verify this. We employ the classic temperature scaling method [12] as
our calibration function and use the total variation [27] of confidence as our evaluation, which sums
the difference of confidence between all the neighboured nodes. We compare the total variation of
confidence before and after confidence calibration, where the results are shown in Table 1. We can
find that the total variation of confidence does decrease after temperature scaling, which verifies our
assumption. This inspires us that if a GCN model is well-calibrated, then the confidence between
neighbors should be more similar than before.

To this end, we find that GCN itself can play the role of calibration function that meets above require-
ment since GCN is able to propagate node features along the network topology and smooth similar
information between neighboured nodes. Therefore, we can employ another l-layer GCN (CaGCN)
as our calibration function to propagate the confidence along the network topology. Specifically,
given the output V of the classification GCN, the logit v′i and confidence p̂i for node i after calibration
can be obtained by:

V′ = Aσ(· · ·Aσ(AVW(1))W(2) · · ·)W(l) = [v′1, · · · ,v′N ]T,
zi = [σSM(v′i,1), · · · ,σSM(v′i,K)]T, p̂i = max

k
zi,k,

(3)

where σSM(v′i,·) =
exp(v′i,·)

∑
K
j=1 exp(v′i, j)

is the softmax operation. Then the total variation of confidence will

surely become lower and the original classification GCN will be calibrated. Please note that although
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temperature scaling can be directly applied here, compared with GCN, it does not take the network
topology into account, which may cause mistakes mentioned in Section 1. Moreover, temperature
scaling only employs a linear transformation, and GCN is able to learn a non-linear calibration
function.

For a comprehensive understanding of confidence propagation, we make a detailed and visible
illustration here. As shown in Fig. 3, the logits of two nodes a and b are the same, but node a is
similar to its neighbors while node b is not. Apparently, the predictions of GCNs for a should be more
confident than b. Suppose that a, b and their neighbours are under-confident based on the observation
above. If we continue to propagate their logits along the topology using another GCN, the logits of a
and its neighbors will tend to be the same. Therefore, if one or more of these nodes are calibrated
during the calibration process, all of them will be calibrated as well. The confidence is propagated in
this way. On the other hand, looking at another node b, it is as difficult even for manual classification
as it is for GCNs. Consequently, the confidence of b should stay still even be lower. However, it will
become higher because of the influence from a if we use the traditional calibration method without
considering the network topology. Instead, when the network topology is taken into account, the
logit of b will be averaged by its neighboured and each dimension tends to 1/K. It will be correctly
calibrated when other nodes in the same situation are well-calibrated.

3.2 The Accuracy-Preserving Property

Until now, we have proposed a non-linear calibration model CaGCN which can take the network
topology into account, but the accuracy-preserving property cannot be satisfied. To address this
problem, we firstly study the general accuracy-preserving calibration function.
Proposition 1. Let h : RK → RK be a calibration function, s : R → R be a 1-D function and
vi = [vi,1, · · · ,vi,K ]

T be the logit of node i. The calibration function h preserves the classification
accuracy of the original model if s is a strictly isotonic function and h satisfies:

h(vi) = [s(vi,1), . . . ,s(vi,K)]
T,∀i ∈ {1, · · · ,N}. (4)

Proof We set vi,1 < vi,2 < · · ·< vi,K without loss of generality. Since [s(vi,1), . . . ,s(vi,K)]
T shares the

same order with vi as a result of the strictly isotonicity of s, the order between classes of the logit vi
is unchanged, hence the accuracy of the prediction is preserved. �

Temperature scaling [12] is the simplest accuracy-preserving calibration method using a scalar
parameter t called temperature for all classes. Given the logit vi of node i, the confidence of the
prediction is p̂i = maxk σSM(vi,k/t)(t > 0). In temperature scaling, h(vi) = [vi,1/t, · · · ,vi,K/t]T is the
calibration function and s(x) = x/t is the strictly isotonic function.

However, we can find that temperature scaling (TS) [40] only performs the same linear transformation
for all the nodes using the same t. As mentioned in Eq. 3, we propose to use CaGCN as our calibration
function, while CaGCN is generally not isotonic, i.e., the order between classes of vi and v′i is not the
same, implying that after calibration by CaGCN, the accuracy of original GCN cannot be preserved.
Instead, here we propose an improved CaGCN. Given the output V of the classification GCN, we
firstly use a l-layer GCN to learn a unique temperature ti for each node i, then get a calibrated logit v′i
by transforming its original logit vi using ti in a temperature-scaling way, and finally obtain calibrated
confidence p̂i as follows:

t = σ
+(Aσ(· · ·Aσ(AVW(1))W(2) · · ·)W(l)) = [t1, · · · , tN ]T(ti > 0,∀i ∈ {1, · · · ,N}),

v′i = h(vi, ti) = [vi,1/ti, · · · ,vi,K/ti]T,zi = [σSM(v′i,1), · · · ,σSM(v′i,K)]T, p̂i = max
k

zi,k,
(5)

where ti ∈ R is a scalar greater than zero and σ+(x) = log(1+ exp(x)) is an element-wise softplus
activation [8]. The model proposed in Eq. 5 does not change the order between classes of vi and v′i,
implying that the accuracy of original GCN is preserved. Compared Eq. 5 with Eq. 3, we can find
that Eq. 5 makes the same transformation on all the dimensions of vi, which will limit the learnable
calibration function space. However, we will prove that actually Eq. 5 is the same with the model
proposed in Eq. 3 on confidence calibration using the Proposition 2. Considering that for any logit vi,
our expectation is in fact that the calibration model can output any confidence p̂i ∈ ( 1

K ,1). Please note
that p̂i ≥ 1

K , or the prediction will be changed. Since Eq. 3 has no limitation on the learnt calibration
model, its output p̂i can take any value from 1

K to 1. Therefore, if we can prove the output p̂i in Eq. 5
can also traverse the interval ( 1

K ,1) for any vi, the equality between Eq. 3 and Eq.5 can be proved.
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Proposition 2. Given the original logit vi = [vi,1, · · · ,vi,K ]
T of node i, assume vi, j not approaching

infinity for each j ∈ {1, · · · ,K}. The calibrated confidence p̂i in Eq. 5 can traverse the interval ( 1
K ,1)

for node i.

Proof We set vi,1 > vi,2 > · · ·> vi,K without loss of generality. For any vi ∈RK , with the assumption
of vi not approaching infinity, we have that

lim
t→0

p̂i = lim
t→0

exp(vi,1/ti)

∑
K
j=1 exp(vi, j/ti)

= lim
t→0

exp((vi,1− vi,2)/ti)
exp((vi,1− vi,2)/ti)+∑

K
j=2 exp((vi, j− vi,2)/ti)

= 1 (6)

and

lim
t→+∞

p̂i = lim
t→+∞

exp(vi,1/ti)

∑
K
j=1 exp(vi, j/ti)

=
1
K
. (7)

Obviously, both σSM(vi,k) and vi/ti are continuous, thus σSM(vi,k/ti) is continuous. Therefore,
p̂i = maxk zi,k = maxk σSM(vi,k/ti) can traverse the interval (1/K,1). �

The assumption about vi is easy to be satisfied since the L2-norm in GCN drives the weight matrix W
approaching zero matrix and each element in node feature matrix X is not infinity. Therefore, based
on Eq. 2, each element vi, j in V cannot approach infinity. From Proposition 2 we know that for any
vi, there exactly exists such a unique temperature ti that p̂i can take any value from 1/K to 1. In other
words, the model can be perfectly calibrated.

3.3 Optimization Objective

Since NLL loss [10] can be decomposed into calibration loss and refinement loss [21], minimizing
NLL loss benefits for confidence calibration. Therefore, we employ the NLL loss as our objective
function with an additional regularization term. We use the prediction probability zi ∈ RK in Eq.
5 to calculate the NLL loss. Denote the K-class one-hot label for node i as yi = [yi,1, · · · ,yi,K ]

T

and suppose the size of the validation set is |Dval |. Then the NLL loss over all validation nodes is
represented as Lnll where:

Lnll =−
|Dval |

∑
i=1

K

∑
k=1

yi,klog(zi,k). (8)

Due to the under-confidence of GCNs, our goal is to increase the confidence of correct predictions
while decreasing that of incorrect predictions. Considering that for incorrect predictions, the NLL
loss cannot directly reduce their confidence, therefore, we design a regularization term for NLL loss
as follows:

Lcal =
1
n
(
|cor|

∑
i=1

1− z(cor)
i,m + z(cor)

i,s +
|inc|

∑
i=1

z(inc)
i,m − z(inc)

i,s ), (9)

where |cor| and |inc| are the number of nodes correctly and incorrectly predicted and zi,m and zi,s are
the max and submax prediction probability. Intuitively, the confidence of incorrect predictions is
decreased by reducing the gap between the max and the submax value of zi and vice versa. Combining
Lnll and Lcal , we have the following overall objective function:

L= Lnll +λLcal , (10)

where λ is the parameter of the regularization term. With the guide of labeled data, we can optimize
CaGCN via back propagation and learn the calibrated confidence. The overall framework of CaGCN
is shown in Fig. 4.

4 Self-training with Confidence Calibration

Here we propose a practical application of confidence calibration to improve the performance of
self-training in GCNs. Self-training is to predict the labels for unlabeled data, and then add them to
the training set, so as to achieve better performance. When applying self-training to GCN, we firstly
obtain the predictions ŷi and the confidence p̂i given by GCN and then add the most confident nodes
to the training set with pseudo labels ŷi based on p̂i. We continue to train until convergence. However,
existing self-training methods perform not as expected with higher label rates [30]. Considering
the under-confidence of existing GCNs, motivated by [26], we argue that the under-performance of
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Figure 4: The overall framework of CaGCN. Solid lines represent that we can backpropagate gradient
here while dashed lines represent we cannot. We firstly train a classification GCN using the training
set to obtain the logit V of all the nodes. Then we feed V to CaGCN to get the temperature t and
transform V using t into V′. Finally, the loss can be obtained using V′ after softmax according to Eq.
10 and CaGCN can be optimized with the guide of the validation set.

Table 2: ECE (M=20) on different models and citation networks of various label rate (L/C) with
and without calibration. Uncal. represents the uncalibrated model, (-) denotes this method cannot
converge to a meaningful result and bold denotes the best result, the subscript of each result refers to
the standard deviation (×10−3) while the superscript refers to the results of paired t-test ( * for 0.05
level and ** for 0.01 level).

Dataset L/C GCN GAT

Uncal. TS MS CaGCN Uncal. TS MS CaGCN

Cora
20 0.13476.3 0.04885.5 0.04145.7 0.04016.7 0.15588.9 0.07179.8 0.05449.4 0.0450∗∗5.6
40 0.11344.7 0.04177.2 0.03724.6 0.04075.4 0.13405.4 0.04857.7 0.04916.0 0.0365∗∗5.6
60 0.09374.9 0.03555.4 0.03646.1 0.03764.4 0.12013.3 0.03936.1 0.04115.3 0.0313∗∗3.2

Citeseer
20 0.12487.1 0.06418.7 0.06443.7 0.0595∗7.2 0.15345.0 0.09168.7 0.06339.8 0.05726.8
40 0.09577.7 0.06014.2 0.05385.7 0.05455.5 0.12528.7 0.07973.1 0.05905.4 0.0532∗5.4
60 0.08066.4 0.05595.0 0.05216.4 0.05463.4 0.10905.9 0.06487.1 0.05199.1 0.05257.6

Pubmed
20 0.05867.7 0.05413.8 0.04764.2 0.0405∗6.0 0.08353.1 0.06564.6 0.05013.7 0.0356∗∗6.3
40 0.04445.5 0.04466.3 0.04366.3 0.0402∗4.0 0.08694.6 0.06586.5 0.05396.0 0.0308∗∗5.4
60 0.04459.7 0.03676.0 0.03186.4 0.03114.8 0.09934.1 0.06696.3 0.04835.7 0.0308∗∗5.2

CoraFull
20 0.19866.1 0.10136.1 - 0.0776∗∗6.4 0.21193.6 0.11015.1 - 0.0788∗∗6.0
40 0.23215.4 0.11176.5 - 0.0701∗∗3.9 0.24384.2 0.11338.3 - 0.0738∗∗4.8
60 0.23374.0 0.09813.8 - 0.0768∗∗3.4 0.24971.8 0.11335.2 - 0.0849∗∗6.9

existing self-training methods originals from large numbers of high-accuracy predictions distributing
in low-confidence intervals as shown in Fig. 2, causing that they cannot be added to the training set.

Consequently, we design a self-training model CaGCN-st where confidence is firstly calibrated then
employed to generate pseudo labels for unlabeled nodes. Specifically, given an unlabeled dataset DU
and a labeled dataset DL which has been divided into three parts Dtrain, Dval and Dtest , we firstly train
a classification GCN using Dtrain to get the logit of each node. Then all the logits will be fed into a
CaGCN to train and we get a calibrated confidence for each node. It should be noted that instead of
Dval , we still employ Dtrain to train our CaGCN. After that, the most confident predictions of DU will
be adopted as the pseudo labels according to a threshold τ and added to the label set. The Dtrain is
enlarged in this way. The process above will be repeated s stages until convergence. Please note that
our classification GCN and CaGCN are re-initialized in each stage.

5 Experiments

In this section, we evaluate the performance of CaGCN on confidence calibration and CaGCN-st on
self-training respectively. We choose the commonly used citation networks Cora [29], Citeseer [29],
Pubmed [29] and CoraFull [3] for evaluation, and more detailed descriptions are in Appendix B.
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Table 3: Node classification accuracy and the standard deviation on GCN and its self-training variants.

Dataset L/C Methods
Orig. St. Ct. Union Inter. TS-st CaGCN-st

Cora
20 81.630.24 82.270.33 81.510.30 81.850.68 81.410.28 82.680.20 83.11∗0.52
40 83.990.26 83.590.34 83.660.25 83.330.41 83.380.33 84.440.35 84.370.38
60 84.440.29 84.980.32 84.630.31 85.030.30 84.880.18 85.600.24 85.790.27

Citeseer
20 71.640.32 73.240.44 74.220.29 74.600.38 72.250.45 74.200.24 74.90∗∗0.40
40 72.250.32 74.700.33 72.120.39 74.790.36 73.660.32 75.620.19 75.480.50
60 73.200.35 75.080.29 73.210.36 75.530.30 75.230.23 75.870.24 76.43∗∗0.20

Pubmed
20 79.570.33 80.320.18 79.670.32 81.120.29 79.590.29 80.950.18 81.16∗0.36
40 80.650.39 82.200.32 81.620.40 81.840.23 80.460.55 82.280.39 83.08∗0.21
60 83.380.34 83.350.28 83.400.36 83.320.35 83.310.17 83.260.39 84.47∗∗0.23

CoraFull
20 60.450.43 60.870.28 60.120.45 60.520.35 61.010.53 61.730.41 62.19∗0.49
40 65.770.37 65.830.45 64.220.35 64.330.42 65.840.37 66.110.60 66.30∗0.31
60 66.520.25 66.620.30 66.640.29 66.780.29 66.820.32 66.950.45 67.60∗0.40

5.1 Confidence Calibration Evaluation

Baselines. Since our CaGCN is a general calibration model for GNNs, here we choose GCN [16] and
GAT [33] as our classification models. For comparison, we choose the classic post-hoc calibration
methods temperature scaling (TS) [12] and matrix scaling with off-diagonal regularization (MS) [18]
as our baselines.

Experimental settings. For the base model GCN and GAT, i.e., the uncalibrated model, we follow
parameters suggested by [16] and [33] and further carefully tune them to get optimal performance.
For the post-hoc calibration technique, we follow the official implementation [12, 18]. For our
CaGCN, we train a two-layer GCN with the hidden layer dimension to be 16. We set λ = 0.5 for all
datasets, weight decay to be 5e-3 for Cora, Citeseer, Pubmed and 0.03 for CoraFull. Other parameters
of CaGCN follows [16]. We evaluate the performance of confidence calibration by ECE [22], NLL
[10] and Brier Score (BS) [4], which we expect are smaller, and we set the bin number M = 20 for
ECE (more details can be seen in Appendix A). For all methods, we randomly run 10 times and
report the average results. More detailed experimental settings can be seen in Appendix B.

Results. Table 2 reports calibration results evaluated by ECE (more results on NLL and Brier Score
are in Appendix C.1). We have the following observations: (1) Compared with uncalibrated models
and other baselines, CaGCN is statistically significantly better at the * 0.05 level and ** 0.01 level.
(2) The ECE values on uncalibrated models are generally the highest, implying that GCN and GAT
are poorly calibrated. (3) MS behaves badly on datasets with many classes, e.g., CoraFull. This is
because the number of parameters for matrix scaling scales quadratically with the number of classes
while the size of the validation set keeps unchanged. Therefore, it will over-fit to the small validation
set when dataset has a great number of classes. However, CaGCN does not have this problem.

Additional analysis. In Section 2 we visualize the under-confidence problem of existing GNNs using
reliability diagrams. Here we utilize the same visualization method to make a comparison before and
after confidence calibration. As shown in Fig. 8, Fig. 9, Fig. 10 and Fig. 11 in the appendix, we can
find that the confidence is well-calibrated after calibration.

5.2 Classification Evaluation of Self-Training

Baselines. Since self-training can be applied to any models, here we choose GCN and GAT as our
base models, i.e., the original models (Orig.) without self-training, and we choose self-training (St.),
co-training (Ct.), Union, Intersection (Inter.) methods proposed in [20] for comparison, which are
commonly used as the baselines in self-training. Furthermore, we employ TS as the confidence
calibration function in CaGCN-st as another baseline and we denote it by TS-st.

Experimental settings. We set the learning rate lr = 0.001 for CaGCN-st and train our CaGCN-st
200 epochs for Cora, 150 epochs for Citeseer, 100 epochs for Pubmed and 500 epochs for CoraFull.
We set the threshold τ ∈ {0.8,0.85,0.9,0.95,0.99} and the maximum number of stage s = 10. As
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for baselines, all the parameters follow [20] and we further carefully tune them to get optimal
performance. For all methods, we randomly run 10 times and report the average results.

Results. Table 3 summarizes the node classification accuracy on GCN and its self-training variants.
More results on GAT can be seen in Appendix C.2. We have the following observation: (1) CaGCN-st
consistently outperforms all the baselines on all the datasets and label rates at the * 0.05 level. (2)
Compared with the base model, self-training methods generally achieve better results, which proves
their effectiveness. (3) Self-training methods with confidence calibration (i.e., TS-st and CaGCN-st)
have better performance, which implies that confidence calibration scales more correct predictions to
the high confidence range while keeps incorrect predictions basically unchanged, which we believe is
beneficial for self-training.

Table 4: Abaltion study on self-training

Dataset L/C GCN GAT
GCN-st CaGCN-st GCN-st CaGCN-st

Cora
20 82.28 83.11 84.08 84.08
40 84.10 84.37 85.50 85.63
60 85.16 85.79 85.57 86.26

Citeseer
20 74.13 74.90 73.73 74.34
40 75.28 75.48 75.07 75.62
60 75.85 76.43 75.13 76.08

Pubmed
20 81.01 81.16 80.34 81.17
40 82.90 83.08 82.75 83.47
60 83.44 84.47 83.46 83.95

CoraFull
20 61.32 62.19 62.09 65.46
40 65.96 66.30 65.92 66.86
60 66.43 67.60 66.54 67.45

Ablation study. CaGCN-st generates pseudo
labels based on the calibrated confidence.
Here we study the effectiveness of the confi-
dence calibration function CaGCN in CaGCN-
st. We propose a variant GCN-st of CaGCN-
st, where CaGCN is removed from CaGCN-st
while other parts are kept unchanged. All
the experimental settings of GCN-st are the
same as CaGCN-st. We report the results in
Table 4, and we can observe that CaGCN-st
consistently outperforms GCN-st on all the
datasets, implying that self-training with cal-
ibrated confidence can generate more correct
pseudo labels.

Additional analysis. We also investigate the
changing trends of accuracy with respect to
the threshold τ in CaGCN-st in Appendix C.2
and study why GCNs are poorly calibrated in Appendix D.

6 Related Work

Graph Neural Networks. Modern GCNs mimics CNNs to learn the local and global structural
patterns of graphs through designed convolution and readout functions. [5] generalizes CNNs to
graph signal based on the spectrum of graph Laplacian. ChebNet [7] uses Chebyshev polynomials to
approximate the K-order localized graph filters and GCN [16] further employs the 1-order simplifica-
tion of the Chebyshev filter. GAT [33] utilizes attention mechanisms to adaptively learn aggregation
weights. GraphSAGE [13] uses various ways of pooling for aggregation. [20] introduces self-training
to GCNs and [30] proposes a multi-stage self-supervised (M3S) self-training algorithm of GCNs.
Both [20] and [30] focus on the few-shot learning and neither has ever explored self-training with
higher label rates in GCNs. More works on GNNs can be found in surveys [36, 43], however, to the
best of our knowledge, current GNNs have not considered the confidence calibration.

Confidence Calibration. Confidence calibration has been studied for a long time in CV and NLP
[12, 23, 25, 14, 19, 37, 40, 42]. [12] discovers modern neural networks are poorly calibrated and study
factors influencing calibration. Platt scaling [24] is a simple post-hoc calibration method for binary
models, which transforms the logit using scalar parameters. Temperature scaling is the simplest
multi-class extension of Platt scaling and matrix and vector scaling are another two extensions of
platt scaling. [40] proposes Mix-n-Match calibration strategies which mix parameter methods with
non-parameter methods. [25] explores the non-linear space for post-hoc calibration function using a
neural network. Moreover, [32] points out GNNs can be miscalibrated in the supervised scenario and
mainly focus on miscalibration originated from the imbalanced class distribution. However, none of
them have considered the confidence calibration in GNNs on the common semi-supervised scenario.

7 Conclusion

Current efforts on advancing GNNs mostly focus on classification accuracy. However, when deploying
GNNs to real-world applications, especially safety-critical fields, whether the results of GNNs are
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trustworthy is another important factor that cannot be neglected. In this paper, we study the confidence
calibration problem in GNNs and discover existing GNNs are under-confident on their predictions.
To solve this problem, we propose a novel trustworthy GNN model CaGCN which respects the
homophily property of confidence in GNNs and preserves the classification accuracy. Moreover, we
propose a novel self-training method CaGCN-st where confidence is first calibrated by CaGCN and
then used to generate pseudo labels. Extensive experiments demonstrate the effectiveness of our
proposed model in terms of both calibration and accuracy.

An interesting direction for future work is to extend CaGCN to other graph tasks, but more studies
need to be conducted. We take the link prediction as an example, where we can regard the link
prediction as a binary classification problem and the output as the confidence. Considering that the
ground-truth confidence distribution for nodes should have the homophily property as is shown in
Section 3.1, edges are likely to have the same property as well. As a result, we can employ CaGCN
to propagate the confidence between edges by regarding the edges as the nodes. However, more
exploration still needs to be conducted for the homophily property of edges.

Broader impact. Current efforts on advancing GNNs mostly focus on classification accuracy.
However, when deploying GNNs to real-world applications, especially safety-critical fields, whether
the results of GNNs are trustworthy is another important factor. The demands for a trustworthy model
are universal and extensive such as in the field of disease prediction [31], traffic states prediction [6]
and object detection [11] for autonomous driving, where estimating the true probability of getting
a correct prediction is necessary. We take the disease prediction [31] as an example, where GNNs
are utilized to encode the information of different symptoms, users and diseases. In this scenario,
accurately and comprehensively predicting diseases at an early stage will help patients receive
prevention treatments in a timely manner. Otherwise, the misdiagnosis and missed diagnosis will
endanger the health of patients. Therefore, a trustworthy model is urgently needed. Our CaGCN
can make a trustworthy prediction based on its confidence, and as a result, decrease the risk of
misdiagnosis and missed diagnosis. We hope our work can provide insights for future improvements
in tackling the trustworthiness problem in other saftey-critical fields.

Limitations. One potential issue of this work is that it provides a limited explanation to the under-
confidence problem. We advocate peer researchers to look into this, making GNNs more reliable
in different domains. Other than that, since this work is mostly on the discovery of the confidence
calibration problem in GNNs and the theoretical aspect of improving calibration, we do not foresee
any direct negative impacts on the society.
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[33] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[34] Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi, and Jian Pei. Am-gcn: Adaptive multi-
channel graph convolutional networks. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 1243–1253, 2020.

[35] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger.
Simplifying graph convolutional networks. In International conference on machine learning,
pages 6861–6871. PMLR, 2019.

[36] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 2020.

[37] Chen Xing, Sercan Arik, Zizhao Zhang, and Tomas Pfister. Distance-based learning from errors
for confidence calibration. arXiv preprint arXiv:1912.01730, 2019.

[38] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations, ICLR 2019.

[39] Jiaxuan You, Zhitao Ying, and Jure Leskovec. Design space for graph neural networks. Advances
in Neural Information Processing Systems, 33, 2020.

[40] Jize Zhang, Bhavya Kailkhura, and T Yong-Jin Han. Mix-n-match: Ensemble and compositional
methods for uncertainty calibration in deep learning. In International Conference on Machine
Learning, pages 11117–11128. PMLR, 2020.

[41] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. arXiv preprint
arXiv:1802.09691, 2018.

[42] Xujiang Zhao, Feng Chen, Shu Hu, and Jin-Hee Cho. Uncertainty aware semi-supervised
learning on graph data. arXiv preprint arXiv:2010.12783, 2020.

[43] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and
applications. AI Open, 1:57–81, 2020.

[44] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Be-
yond homophily in graph neural networks: Current limitations and effective designs. Advances
in Neural Information Processing Systems, 33, 2020.

12


	Introduction
	Notation and Preliminary Study
	Confidence Calibration on GCNs
	CaGCN: GCNs as Calibration Function
	The Accuracy-Preserving Property
	Optimization Objective

	Self-training with Confidence Calibration
	Experiments
	Confidence Calibration Evaluation
	Classification Evaluation of Self-Training

	Related Work
	Conclusion
	Evaluation Metrics
	Expected Calibration Error (ECE)
	Brier Score (BS)

	More Experimental Details
	Datasets and Environment
	Additional Experimental Details for Calibration
	Additional Experimental Details for Self-Training
	Other Source Code

	Additional Results
	Additional Results for Calibration
	Additional Results for Self-Training

	Why GCNs are poorly calibrated



