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Abstract
Running while fatigued poses an increased risk of
injury. Wearable sensors can be used to capture
the running kinematics or running pattern as time
series signals. The changes that happen in the run-
ning pattern due to fatigue, although prominent
enough to increase the risk of injury, are gener-
ally only seen as subtle differences in the signal
itself and hence are difficult to differentiate using
purely visual inspection. In this paper, we intro-
duce a time series dataset of motion capture data
from runners before and after a fatiguing inter-
vention. The total dataset consists of more than
5500 instances and was collected from 19 partici-
pants. The evaluation presented in this paper first
looks at the effectiveness of a data aggregation
technique called time series barycenters which
is shown to improve classification performance.
We evaluate and compare a set of classifiers and
explanation methods for this problem, and select
the most informative classifier and explanation
for this dataset. We then present feedback from
a domain expert on the insights offered by the
explanations.

1. Introduction
The onset of fatigue in runners increases their risk of injury
due to the higher impact accelerations and alterations in the
overall running kinematics (Mizrahi, 2000). The presence
of fatigue can cause a lack of control over joint motion and
muscle contraction which causes this change in the running
kinematics (Borgia et al., 2022). Furthermore, the changes
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seen in runners are often specific to the individual as there is
known to be no generalizable template of running technique
and hence feedback should be individualised to each runner
(Strohrmann et al., 2012).

Running kinematics for an individual can be captured using
wearable sensors such as the Shimmer1 sensors. The data
captured from these sensors are time series in nature. The
majority of research in this exercise classification domain
uses extracted features from these time series as input into
the models(O’Reilly et al., 2017). This requires a level
of understanding regarding which features may be more
important for a given classification task. Many problems in
the exercise domain such as the task considered in this paper,
where we predict fatigue in runners, have subtle differences
between classes which may not be noticeable by the eye
alone. Using time series classification techniques allows the
signal to be used in a time series format at a single stride
level without needing feature extraction. Additionally, this
allows interpretable classification techniques to be used to
highlight the particular regions of interest within a time
series. This information is valuable as it can inform the
runner when they are changing their form and hence can
help prevent fatigue related injuries.

The data captured from the sensors can be noisy and due to
the individualised nature of the running pattern, automated
segmentation procedures are not always completely
accurate. This can impact the classification performance
and the stability of the interpretations made. Hence we
employ a barycenter averaging strategy (Cuturi & Blondel,
2017) which aggregates and smoothes multiple strides
together which we expect will improve the classification
performance and improve the overall stability of the
explanations.

The key contributions of this paper are as follows:

- We present the methods used to capture, segment, and
classify motion capture data for a running fatigue pre-
diction task. Furthermore, we release this time series
dataset for use by the machine learning community. To

1http://shimmersensing.com
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access the anonymised data, see https://zenodo.
org/record/7997851#.ZJ2XenbMI2x.

- We evaluate the classification performance of this run-
ning fatigue prediction dataset using various models
that are used for interpretable time series classification.
Furthermore, we evaluate the impact on classifier per-
formance when using a barycenter averaging technique
as a smoothing strategy on the wearable sensor data.

- We produce explanations for the time series data and
discuss the insights into the impact of fatigue in runners
that can be deduced from these explanations.

2. Related Work
2.1. Impact of Fatigue on Runners

Running has become a popular form of exercise over the
past few decades and this has led to an increase in the rate
of running-related musculoskeletal injuries (Tonoli et al.,
2010). There are many factors that can cause these injuries
and often they are due to faults in the technique. Faults in a
runners technique can start to happen or get exaggerated as
they get fatigued as they start to lose control over their run-
ning form. This lack of control in the technique is known to
be a primary contributor to running related injuries (Willems
et al., 2006). Altering the kinematics while running is often
an attempt by the runner to minimise the overall metabolic
cost due to fatigue (Hunter & Smith, 2007). Hence it is
important to identify when a runner’s form is beginning
to change. Being able to objectively measure these alter-
ations is difficult and often runners are required to rely on
their own assessment of running form (Buckley et al., 2017).
Wearable sensors capture these kinematic changes hence
allowing an objective analysis of running form to be made.

2.2. Time Series Classification

A time series is a time-based sequence of observations,
xi(t); [i = 1, . . . ,m; t = 1, . . . , p], where xi(t) is the ob-
servation for the ith dimension at time point t. The time
series is univariate when m = 1 and multivariate when
m ≥ 2.

Time Series Classification (TSC) techniques are classed as
distance based, shapelet based, symbol based, deep learn-
ing methods and ensembles. Distance based techniques
are known to perform well and the common benchmark of
1-Nearest Neighbour (1-NN) with dynamic time warping
(DTW) is one of the most popular TSC approaches (Bagnall
et al., 2017). 1-NN DTW however has a high computational
complexity and sometimes faces challenges to the accu-
racy in the presence of noise (Schäfer, 2016). Time series
shapelets are subsequences of the data which capture the
portion of the time series maximally representative of the

class. There have been various implementations of shapelets
such as the original work by Ye and Keogh (Ye & Keogh,
2009), Shapelet Transform(Lines et al., 2012) and Learning
Shapelets(Grabocka et al., 2014). Shapelets, however are
not widely used as they can be computationally expensive
(Ruiz et al., 2020).

Symbol based techniques include Mr-SEQL (Le Nguyen
et al., 2019), WEASEL+MUSE (Schäfer & Leser, 2017)
and BOSS (Schäfer, 2015). Symbol based techniques work
by passing a sliding window over each time series and rep-
resenting each window with a word of symbols. This trans-
form is done using techniques such as Symbolic Aggregate
Approximation (SAX)(Lin et al., 2007) or Symbolic Fourier
Transform (SFA)(Schäfer & Högqvist, 2012). Although
these methods are known to work well, they often suffer a
long runtime. Most recent ensemble methods work by trans-
forming the time series into a new feature space. From this
idea, COTE (Collective of Transformation based ensembles)
was developed which works by ensembling different classi-
fiers over different time series representations (Bagnall et al.,
2015) This technique was later extended as HIVE-COTE
(Hierachical Vote system) which uses a hierachical structure
based on probabilistic voting (Lines et al., 2018). HIVE-
COTE has been shown to achieve high accuracy, however
has a large computational complexity.

Deep learning techniques such as ResNet and Fully Convo-
lutional Networks (FCN) have also been shown to perform
well for time series classification. However, the most popu-
lar and current state-of-the art technique is ROCKET (Demp-
ster et al., 2020), which is a method that borrows ideas from
deep neural networks where a simple linear classifier is
trained on random convolutional kernels. This method has
been shown to achieve state-of-the-art performance whilst
also maintaining a lower computational load than other state-
of-the-art techniques.

For the evaluations in this paper we have selected four
techniques, Ridge regression, Rocket, 1-NN-DTW, and Mr-
SEQL as detailed in Section 4.

2.3. Time Series Barycenter

A time series barycenter is an average measure of a
collection of time series. Typically time series averaging
strategies are classified as local or global. Local strategies
use pairwise averaging where a collection of series are
iteratively averaged into a single average series. Local
averaging is dependent on the order in which samples
are aggregated and hence changing the order can give a
different result. Recent advances look at global average
strategies which compute the average of the set of time
series simultaneously. These averaging strategies generally
use a similarity metric to find the distance between the
series. Dynamic Time Warping (DTW)(Sakoe & Chiba,
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1978) is one of the most common similarity metrics used
for time series and hence is used in most time series
barycenter calculation techniques. DTW maps the time
series in a non-linear way and works to find the optimal
alignment between the two series. Two popular global
averaging strategies are the DTW Barycenter Averaging
(DBA) proposed by Petitjean et al. (Petitjean et al., 2011)
and the Soft-DTW Barycenter proposed by Cuturi et al.
(Cuturi & Blondel, 2017).

DTW Barycenter Averaging (DBA) computes the
optimal average sequence within a group of series in DTW
space by minimising the sum of the squared DTW distance
between the average sequence and the group of series
(Petitjean et al., 2011). To compute the DTW barycenter of
a set of time series D is the optimisation problem outlined
in Equation 1.

min
µ

∑
x∈D

DTW (µ, x)2 (1)

Where x is a series belonging to the set D and µ is a
candidate barycenter. The DTW distance between each
time series and a temporary average sequence (candidate
barycenter) is calculated and the temporary average
sequence is updated until the optimisation criteria is
met(Shi et al., 2019).

Soft-DTW Barycenter computes the average sequence
within a group of series by minimising the weighted sum of
the Soft-DTW distance between the average sequence and
the group of series. Soft-DTW is an extention of the DBA
method where the min operator is replaced by the soft-min.
This has the advantage of being differentiable with respect
to all of its inputs. Soft-DTW also has the advantage
where it considers all possible alignments. Soft-min can be
computed as shown by Equation 2 (Tavenard et al., 2017).

softminγ(a1, ..., an) = −γlog
∑
i

e−ai/γ (2)

γ controls the smoothing and hence as γ → 0, the result
gets closer to that of DTW.

Previous literature has shown Soft-DTW barycenter averag-
ing to be an effective way to aggregate time series data as
it preserves the key features well (Kathirgamanathan et al.,
2022b) and hence this technique will be employed in our
evaluations.

2.4. Time Series Interpretation

Time Series data often comes from domains such as health-
care where having explainable models is of importance.
Many time series interpretation methods are based on ex-
plaining through visualisation and feature importance rather

than instance based explanations(Kenny et al., 2021). In-
stance based techniques such as 1-NN DTW although often
used as a benchmark for time series classification may not
be ideal for explanation as the nearest labelled neighbour
can be found, however, the specific parts of the time series
that are more influential for a given classification task are
unknown(Le Nguyen et al., 2019). Shapelet based tech-
niques are by nature interpretable as they pick up on the
section of the time series that is maximally representative
of a class; however, they are computationally inefficient.
Deep learning methods, although black box by nature, have
methods which allow explanations to be made based on the
class weights. A popular method for interpretation of time
series is the use of Class Activation Maps (CAM)(Zhou
et al., 2016) which is a saliency method that highlights dis-
criminating parts of the time series.

Many model-agnostic methods used outside the field of
time series generate local explanations use a perturbation
strategy where features are slightly altered to gain insight
into which features are more relevant to a model. For this,
mapping functions need to be defined to direct how the
perturbations should be done. LIME is one of the first
techniques which uses this perturbation strategy (Ribeiro
et al., 2016) which works for image, text, and tabular data.
SHapeley Additive exPlanations (SHAP) (Lundberg & Lee,
2017) is a current widely used technique which is a unified
measure of feature importance. TimeXplain is a recent
development which works with SHAP by defining mappings
that work on the time and frequency domain (Mujkanovic
et al., 2020). Hence TimeXplain makes SHAP usable with
time series data.

3. Data Collection and Processing
3.1. Experimental Setup and Protocol

Nineteen recreational runners were recruited to participate
in this study. The participants were all free of lower limb
injury and were regular runners (at least 2 runs/week). The
study protocol was reviewed and approved by the human
research ethics committee at University College Dublin.

A single lumbar mounted Shimmer Inertial Measurement
Unit (IMU) was mounted on each participant while they
completed the task in three segments. The tests were done
on an outdoor track typically used for running. In the first
segment, the participant completed a 400m run at a comfort-
able pace. In the second segment, the participant completed
a beep test(Léger et al., 1988), which is a multi-stage fit-
ness test where the runner is required to run continuously
between two points 20m apart following an audio which
produces ‘beeps’ to indicate when the person should start
running from one end. As the test progresses, the interval
between the ‘beeps’ reduces and hence the runner will be
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required to increase their pace. The test ends when the run-
ner is unable to continue or when they are unable to keep up
with the pace of the ‘beeps’. For this study, this was used
as the fatigue intervention. In the final stage, the participant
was required to repeat the 400m run, this time in their fa-
tigued state. The fatigued run was completed immediately
after the completion of the beep test.

The IMU sensor captured acceleration, angular velocity and
magnetometer data. The data was collected as three long
time series (non-fatigued run, beep test, and fatigued run)
and was then segmented into individual strides as described
in Section 3.2. The sampling rate of the sensors was set
to 256Hz. Altogether from the sensors, there were nine
signals extracted: Acceleration (X,Y,Z), Angular Velocity
(X,Y,Z), and Magnetometer (X,Y,Z). From the acceleration
signals, the magnitude acceleration was derived (Amag =√
X2 + Y 2 + Z2). This signal was primarily used for the

analysis presented in this paper. Our analysis focuses on the
two 400m runs which we frame as a binary classification
task to distinguish between Non-Fatigued and Fatigued.

Figure 1. Breakdown of a single stride

3.2. Segmentation and Pre-Processing strategy

The data was segmented into individual strides using a seg-
mentation protocol as follows. Each instance was a stride
or two steps (See Figure 1). To segment the data into in-
dividual strides, the acceleration in X-direction was first
used to identify the left foot so each stride begins with the
left limb. The peak point was identified and the minimum
before the peak was used as the point for segmentation. The
breakdown of a single stride is shown in Figure 1 where the
first peak roughly corresponds to the left foot initial contact
point. The segmented strides were then resampled to the
length of the median stride as the signals are required to be
of equal length for some of the interpretation strategies used
later in this paper. The segmentation and processing were
done using Python semi-automated scripts.

Figure 2 summarises the procedure that was used for the data

Soft-DTW 
Barycenter

Y

X

Z

Data Capture using Shimmer Sensors Data Processing

Data Segmentation and Barycenter Calculation

Figure 2. Data collection and processing protocol; Data was ini-
tially collected using Shimmer sensors, The signals were seg-
mented into individual strides and aggregated 5 strides at a time
using a rolling Soft-DTW barycenter averaging technique.

collection and processing. Following data collection and
segmentation, we use the barycenter aggregation technique
as a smoothing technique for the running data. We employ
a rolling barycenter calculation over every five strides. An
example of the five strides and its corresponding barycenter
can be observed in Figure 2. To check the effectiveness
of using barycenters to represent the data, we evaluate the
classification performance of the barycenters against the full
set of strides in the next section (Section 4).

4. Classification Performance
The classification was performed at an individual participant
level as previous research suggests global classifiers do not
work well in this domain due to differences in the running
style between individuals (Kathirgamanathan et al., 2022a).
Hence, we have 19 separate datasets with approximately
290 strides or instances per dataset. The task is posed as a
binary classification task where we predict fatigued strides
against non-fatigued strides. The four time-series classifica-
tion models considered in the evaluation were selected for
accuracy and interpretability:

• Ridge regression (RidgeCV)2 is a linear classifier and
is used as one of the simplest models and takes the
time series data as tabular data. Ridge regression can
work well on time series data where the values rather
than the shape of the data are of influence.

2https://scikit-learn.org/stable/modules/
generated/sklearn.linear_model.RidgeCV.html
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• Rocket is a current state-of-the-art technique for time
series classification (Dempster et al., 2020). Rocket
works by generating random convolutional kernels
which are then convolved along the time series to pro-
duce a feature map. These features are then input into
a simple linear classifier such as a Ridge Classifier
or Logistic Regression. In our evaluation, the default
10,000 kernels and random state of 0 are used.

• 1-Nearest Neighbour (1-NN) with Dynamic Time
Warping (DTW) has been used commonly as a bench-
mark classifier for time series. It is known to be one
of the more reliable and simple approaches for time
series classification (Bagnall et al., 2017).

• Mr-SEQL(Le Nguyen et al., 2019) is a linear classifier
which uses symbolic features extracted from the time
series. Mr-SEQL is an interpretable model and has
been used for explainable AI in Time Series research.
Hence it has been included in this evaluation.

Figure 3. Average accuracy using individual strides versus barycen-
ters across the 19 subjects for the four selected models

Each dataset was split with the first two-thirds of each 400m
run being used as the training data and the last one-third
used as test data which was done to preserve the time series
nature of the problem. On average across the participants
there were 192 training instances and 98 test instances per
participant. The classification models were run on both
the individual strides as well as the aggregated barycenter
signals. The last four barycenters in the train data were
removed to prevent any training data being leaked into the
test data.

A summary of the results are shown in Figure 3 and the
full set of results is presented in the git repository with

the anonymised data 3. Overall Rocket performed the best
but all classifiers were able to produce an average accuracy
across the subjects above 0.8. Using the barycenters instead
of the individual strides slightly improved performance sug-
gesting that the barycenters could be a good smoothing
technique to use.

5. Explanation
To provide insights into the impact of fatigue on the runners,
we present personalised explanations for selected partici-
pants. We aim to investigate if interpretable time series
techniques can successfully identify the more discrimina-
tive regions of the time series and if these regions can be
explained in a real-world context.

We select four participants and present a personalised expla-
nation for each participant. We assess a suitable explanation
technique using a ranking method as detailed in Section
5.1. The participants were selected on the basis of covering
a range of scenarios of how fatigue impacts runners. We
select three participants who show increased peak accelera-
tions after fatigue which is a commonly seen trend amongst
many participants and one participant who does not show
this increase.

5.1. Strategy for selecting the explanation method

5.1.1. EXPLANATION METHODS.

As we are interested in exploring the difference among fa-
tigued and non-fatigued runners using the raw time series
signals, we select local time-based explanation methods that
specifically show the critical moments (in time) that differen-
tiate the two classes. This explanation is often presented in
the form of a saliency map, highlighting the discriminative
areas of the data. It is usually represented as a set of impor-
tance weights (from 0 to 100), one weight for each point
in the target time series. In this explanation assessment,
we evaluate 8 popular methods (Table 1). Of the selected
methods, Gradient SHAP (Lundberg et al., 2018) and Inte-
grated Gradient (Sundararajan et al., 2017) are commonly
used in explaining deep models for image classification,
using the gradients of the trained models. SHAP (Lund-
berg & Lee, 2017) and LIME (Ribeiro et al., 2016) are
model-agnostic, post-hoc explanation methods that can be
used to explain any classifiers. In our evaluation, MrSEQL-
LIME, MrSEQL-SHAP, ROCKET-LIME, and ROCKET-
SHAP are results of LIME and SHAP explanations for the
MrSEQL(Le Nguyen et al., 2019) and ROCKET (Dempster
et al., 2020) classifiers. Intrinsic weights from MrSEQL
(Le Nguyen et al., 2019) (time-series specific classifier)
and Ridge Regression classifier (general classifier) are also

3https://zenodo.org/record/7997851#
.ZJ2XenbMI2x
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Rank for Participant Overall Rank

Explanation
Method 07 08 17 18 Avg Number

(1-
9)

Gradient SHAP 6 3 6 7 5.50 5
Integrated Gradient 3 1 9 8 5.25 4
MrSEQL-LIME 5 5 5 3 4.50 3
ROCKET-LIME 9 6 3 4 5.50 5
MrSEQL-SHAP 1 2 1 1 1.25 1
ROCKET-SHAP 2 4 8 2 4.00 2
MrSEQL-SM 4 7 2 5 4.50 3
RidgeCV-SM 8 9 7 9 8.25 7
Random 7 8 4 6 6.25 6

Table 1. Explanation evaluation ranking results. MrSEQL-SHAP
has the best rank and is thus the most informative explanation
method for this problem. The rank of each explanation method is
computed for each participant dataset, and then averaged across
participants.

added to the explanation methods to be evaluated. A ran-
dom explanation series (randomly generated importance
weights) is used as a sanity check to filter out any ineffective
explanation methods.

5.1.2. SELECTION STRATEGY.

We apply the explanation selection strategy presented in
(Nguyen et al., 2023) to evaluate the selected candidate ex-
planation methods. This strategy aims to estimate the impact
of discriminative data areas (identified by an explanation
method) by perturbing the data in that area and measuring
how a time series classifier (referee classifier) responds to
the perturbation. A good explanation method that correctly
identifies such discriminative areas will theoretically trigger
a more significant drop in accuracy of the referee classifier.
This strategy uses a committee of referee classifiers and a
combination of different perturbation strategies to reduce
possible bias and enhance robustness in the evaluation.

In our assessment, the committee of Referee Classifiers
includes ROCKET (Dempster et al., 2020), Mr-SEQL (Le
Nguyen et al., 2019), 1NN-DTW (Bagnall et al., 2017)
and Ridge Regression on datasets perturbed with mean and
Gaussian profile from either entire dataset or specific time
point (Mujkanovic et al., 2020).

5.1.3. RESULTS & SELECTED EXPLANATION

We present the results of our time series explanation eval-
uation in Table 1. We note that by evaluating and ranking
8 explanation methods on the 4 participants we analyse
in depth (with ids: 07, 08, 17, 18), the most informative

explanation method for our data is MrSEQL-SHAP.

5.2. Discussion and Feedback from the Explanations

(a)

(b)

Figure 4. (a) Mr-SEQL-SHAP explanation on the individual strides
(Fatigued Class), (b) Mr-SEQL-SHAP explanation on the rolling
barycenters calculated from the individual strides (Fatigued class)
for Participant 8.

The selected explanation technique, Mr-SEQL-SHAP was
used to generate explanations for the four selected partic-
ipants and these were discussed with our domain expert
to gain insights into how fatigue affected these runners.
The aggregated barycenter strides were used for the evalu-
ations due to improved classification performance. Indeed
the barycentres may also help to improve the clarity of the
explanations. Figure 4 shows saliency maps showing a Mr-
SEQL-SHAP explanation for both the individual strides and
the aggregated barycenter strides for participant 8 and it can
be seen that the barycenters aid in visualising the saliency
and potentially improving the stability of the predictions. A
reason for this could be that many of these interpretation
techniques work well when the data is aligned well. Al-
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(a) Participant 007

(c) Participant 008

(e) Participant 017

(g) Participant 018

(b) Participant 007 – Mr-SEQL-SHAP

(d) Participant 008 – Mr-SEQL-SHAP

(f) Participant 017 – Mr-SEQL-SHAP

(h) Participant 007 – Mr-SEQL-SHAP

Figure 5. Left: A map of the fatigued versus not-fatigued instances for the selected four participants. Right: Mr-SEQL-SHAP generated
saliency maps for a sample of a fatigued stride

7
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though the process of segmentation makes the nature of the
initial data reasonably well aligned, the barycenter further
aids in this overall alignment of the time series.

Figure 5 on the left shows a mapping of all the fatigued and
non-fatigued strides against each other and a saliency map
of a sample fatigued stride produced from Mr-SEQL-SHAP
for each of the four participants. The red highlighted regions
in the saliency map suggest that region contributed more
towards the classification decision.

The most common effect of fatigue was an increase in the
peak acceleration point which corresponds to the initial
contact where the foot strikes the ground. This suggests
that most people lose control during the loading stage. This
supports previous research which suggests that the natural
damping of runners reduces with fatigue (Willems et al.,
2006) which would affect the loading stage or the weight
absorption stage of running which is observed around the
peaks in our data.

The insights from the highlighted regions (Figure 5)
of each participant can be summarised as follows:

Participant 8 and 18: This is the most straightfor-
ward case and perhaps the most common in the dataset.
These participants have a fairly symmetric gait - the left
and right peaks are similar. Perhaps there is a slightly
higher peak acceleration on their left (non-dominant) leg.
However, there is a clear asymmetry in the fatigued state
and this is highlighted in dark red in the saliency maps. For
participant 8 the saliency map highlights the second peak
but to a lesser extent. So for both participants the feedback
is that fatigue shows up particularly in the non-dominant
leg resulting in loss of control during the loading stage.

Participant 17: This participant is similar to 8 and
18 except that there is already evidence of asymmetry in
the non-fatigued strides. The asymmetry shows up as
higher peak acceleration on the left leg. This asymmetry is
accentuated when fatigued. Both peaks are highlighted but
the saliency map gives more weight to the right leg in this
case.

Participant 7: This is the most interesting partici-
pant in some respects. We can see in Figure 5a that there
is no difference in peak impact between the fatigued and
non-fatigued states. So there is no evidence of loss of
control during the loading stage. Nevertheless the classifiers
are able to distinguish between the two classes with very
high accuracy. The saliency map in Figure 5b indicates that
the discriminative region is later in the stride; it is during the
unloading phase where the leg is preparing to go into flight.
This is interesting as although the participant was able to
maintain their impact acceleration which is known as an

indicator of fatigue, they are still modifying their overall
running gait in a way that is less obvious to an observer.

Overall the discriminatory regions that were identified by
the Mr-SEQL-SHAP technique supported the overlay plots
in Figure 5 as the regions which were clearly different in
the overlay plots were highlighted in the explanations. How-
ever, the saliency plots also provide more information as
they were able to highlight the particular limb that was con-
tributing more to the classification task. Furthermore, it
should be noted that there were some minor discrepancies
in the segmentation due to the automated nature and this
can be seen in the bi-modal behaviour in participant 17
(Figure 5e) where there are two apparent points that were
interchangeably selected during segmentation. Despite this,
the models were easily able to classify accurately and select
meaningful regions as discriminatory. This adaptability is
important due to the personalised nature of running, where
a one-fit-all solution is not feasible.

6. Conclusions and Future Work
In this paper, we present the protocol for collecting and
processing a dataset of wearable sensor data from runners in
their normal and fatigued states. We then evaluate the utility
of using a barycenter averaging strategy as a smoothing
and aggregation strategy to improve overall classification
and explanation. Finally, we identify a suitable explanation
technique and apply this to our data to gain insights into
how fatigue impacts runners.

The use of barycenters to aggregate the time series proved to
improve the classification performance as well as improve
the visual aspect of the explanation. A variety of explana-
tion techniques were also investigated and Mr-SEQL-SHAP
came out to be the most effective way to explain this particu-
lar dataset. Combining the explanations generated from the
Mr-SEQL-SHAP method with domain specific knowledge,
some insights into how fatigue impacts runners were made.
It was observed that many runners lost control during the
loading stage, which is around the peak impact point. How-
ever this was not the case for every participant, and hence
shows the importance of having personalised feedback sys-
tems. These feedback systems could be very helpful to
runners in providing personalised feedback on the changes
they are making to their overall running kinematics.

The results showed that Mr-SEQL with SHAP was able to
highlight domain meaningful discriminative regions of the
time series for the magnitude of acceleration data. However,
the sensors have multivariate data, and looking at the other
signals, may be useful in providing further insights into the
data. Furthermore, there is limited research that looks at
explanations for multivariate time series data and hence an
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interesting avenue to investigate would be to extend this
work to a multivariate case.
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