
IPM-LSTM: A Learning-Based Interior Point Method
for Solving Nonlinear Programs

Xi Gao1, Jinxin Xiong2,3, Akang Wang2,3,*, Qihong Duan1, Jiang Xue1,*, and Qingjiang Shi2,4

1School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, China
2Shenzhen Research Institute of Big Data, China

3School of Data Science, The Chinese University of Hong Kong, Shenzhen, China
4School of Software Engineering, Tongji University, Shanghai, China

Abstract

Solving constrained nonlinear programs (NLPs) is of great importance in various
domains such as power systems, robotics, and wireless communication networks.
One widely used approach for addressing NLPs is the interior point method (IPM).
The most computationally expensive procedure in IPMs is to solve systems of
linear equations via matrix factorization. Recently, machine learning techniques
have been adopted to expedite classic optimization algorithms. In this work, we
propose using Long Short-Term Memory (LSTM) neural networks to approximate
the solution of linear systems and integrate this approximating step into an IPM.
The resulting approximate NLP solution is then utilized to warm-start an interior
point solver. Experiments on various types of NLPs, including Quadratic Programs
and Quadratically Constrained Quadratic Programs, show that our approach can
significantly accelerate NLP solving, reducing iterations by up to 60% and solution
time by up to 70% compared to the default solver.

1 Introduction

Constrained Nonlinear Programs (NLPs) represent a category of mathematical optimization problems
in which the objective function, constraints, or both, exhibit nonlinearity. Popular NLP variants
encompass Quadratic Programs (QPs), Quadratically Constrained Quadratic Programs (QCQPs),
semi-definite programs, among others. These programs are commonly classified as convex or
non-convex, contingent upon the characteristics of their objective function and constraints. The
versatility of NLPs allows for their application across a wide array of domains, including power sys-
tems (Conejo and Baringo, 2018), robotics (Schaal and Atkeson, 2010), and wireless communication
networks (Chiang, 2009).

The primal-dual Interior Point Method (IPM) stands as a preeminent algorithm for addressing
NLPs (Nesterov and Nemirovskii, 1994; Nocedal and Wright, 1999). It initiates with an infeasible
solution positioned sufficiently far from the boundary. Subsequently, at each iteration, the method
refines the solution by solving a system of linear equations, thereby directing it towards the optimal
solution. Throughout this iterative process, the algorithm progresses towards feasibility and optimality
while keeping the iterate well-centered, ultimately converging to the optimal solution. However, a
notable computational bottleneck arises during the process of solving linear systems, necessitating
matrix decomposition with a runtime complexity of O(n3).

Recently, the Learning to Optimize (L2O) (Bengio et al., 2021; Chen et al., 2024; Gasse et al.,
2022) paradigm has emerged as a promising methodology for tackling various optimization problems,

*Corresponding authors: Akang Wang <wangakang@sribd.cn>, Jiang Xue <x.jiang@xjtu.edu.cn>

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Figure 1: An illustration of the IPM-LSTM approach.

spanning unconstrained optimization (Chen et al., 2022a), linear optimization (Chen et al., 2022b; Li
et al., 2024), and combinatorial optimization (Baker, 2019; Gasse et al., 2022; Han et al., 2023). Its
ability to encapsulate common optimization patterns renders it particularly appealing. Noteworthy is
the application of learning techniques to augment traditional algorithms such as the gradient descent
method (Andrychowicz et al., 2016), simplex method (Liu et al., 2024), and IPM (Qian et al., 2024).

We observe that existing works on learning-based IPMs primarily concentrate on solving LPs (Qian
et al., 2024). Motivated by the robustness and efficiency of IPMs for general NLPs, we pose the
following question:

Can we leverage L2O techniques to expedite IPMs for NLPs?

In this study, we propose the integration of Long Short-Term Memory (LSTM) neural networks to
address the crucial task of solving systems of linear equations within IPMs, introducing a novel
approach named IPM-LSTM. An illustration of the IPM-LSTM approach is depicted in Figure 1.
Specifically, we substitute the conventional method of solving linear systems with an unconstrained
optimization problem, leveraging LSTM networks to identify near-optimal solutions for the latter.
We integrate a fixed number of IPM iterations into the LSTM loss function and train these networks
within the self-supervised learning framework. The substitution is embedded within a classic IPM
to generate search directions. Ideally, the primal-dual solution provided by IPM-LSTM should be
well-centered with respect to the boundary and associated with a small duality gap. Finally, we utilize
such approximate primal-dual solution pairs to warm-start an interior point solver. IPM-LSTM has
several attractive features: (i) it can be applied to general NLPs; (ii) it strikes a good balance between
feasibility and optimality in the returned solutions; (iii) it can warm-start and thereby accelerate
interior point solvers.

The distinct contributions of our work can be summarized as follows:

• Approximating Solutions to Linear Systems via LSTM: This study marks the first attempt to
employ learning techniques for approximating solutions of linear systems in IPMs, achieving
significant speedup compared to traditional linear algebra approaches.

• Two-Stage Framework: We introduce a two-stage L2O framework. In the first stage, IPM-
LSTM generates high-quality primal-dual solutions. In the second stage, these solutions are
used to warm-start an interior point solver. This framework effectively accelerates the solving
process of IPMs while yielding optimal solutions.

• Empirical Results: Compared with existing L2O algorithms, IPM-LSTM demonstrates fa-
vorable performance in terms of solution feasibility and optimality across various NLP types,
including QPs and QCQPs. Utilizing these solutions as initial points in the state-of-the-art NLP
solver IPOPT (Wächter and Biegler, 2006) reduces iterations by up to 60% and solution time
by up to 70%.

2

2 Related Works

Constrained L2O. Approaches utilizing L2O for constrained optimization can be broadly categorized
into two directions: (i) direct learning of the mapping from optimization inputs to full solutions,
and (ii) integration of learning techniques alongside or within optimization algorithms (Bengio
et al., 2021; Donti et al., 2021). Previous works (Fioretto et al., 2020; Huang et al., 2021; Pan et al.,
2023) adopted the former approach, employing a supervised learning scheme to train the mapping.
However, this method necessitates a large number of (near-)optimal solutions as training samples,
making it resource-intensive. From a self-supervised learning perspective, an intuitive approach is to
incorporate the objective and penalization for constraint violation directly into the loss function (Kim
et al., 2023; Park and Van Hentenryck, 2023). Nevertheless, such an approach may not guarantee the
feasibility of the returned solutions. To address the feasibility issue, notable works such as Donti
et al. (2021) first predict a partial solution via neural networks and then complete the full solution by
utilizing equality constraints, iteratively correcting the solution towards the satisfaction of inequalities
by applying gradient-based methods. However, for general nonlinear inequalities, this correction
step may not ensure feasibility (Liang et al., 2023). Other approaches like Li et al. (2023) utilized
gauge mappings to enforce feasibility for linear inequalities, while Liang et al. (2023) proposed the
homeomorphic projection scheme to guarantee feasibility. However, these methods have limitations;
the former is only applicable to linearly constrained problems, and the latter works for problems with
feasibility regions homeomorphic to a unit ball. Another critical issue with the approach in Donti
et al. (2021) is that the completion step may fail during training when the equality system with
some fixed variables becomes infeasible, as highlighted in Han et al. (2024) and Zeng et al. (2024).
Consequently, such an approach will not succeed during the training stage. To mitigate this issue, Han
et al. (2024) proposed solving a projection problem if the completion step fails. However, the
computationally expensive projection step may still be necessary during inference, which hinders its
practical value.

Learning-Based IPMs. Primal-dual IPMs are polynomial-time algorithms used for solving con-
strained optimization problems such as LPs and NLPs. The work of Qian et al. (2024) demonstrated
that properly designed Graph Neural Networks (GNNs) can theoretically align with IPMs for LPs,
enabling GNNs to function as lightweight proxies for solving LPs. However, extending this alignment
to NLPs is challenging as representation learning for general NLPs remains unknown. Another
avenue of research in learning-based IPMs involves warm-starting implementation. Previous works
like Baker (2019), Diehl (2019) and Zhang and Zhang (2022) addressed alternative current optimal
power flow (ACOPF) applications and proposed using learning models, such as GNNs, to learn the
mapping between ACOPF and its optimal solutions. These predicted solutions are then utilized as
initial points to warm-start an interior point optimizer. However, even if these solutions are close to
the optimal ones, they may not be well-centered with respect to the trajectory in IPMs, causing the
optimizer to struggle in progressing towards feasibility and optimality (Forsgren, 2006).

3 Approach

3.1 The Classic IPM

We focus on solving the following NLP (1):

min
x∈Rn

f(x)

s.t. h(x) = 0

x ≥ 0

(1)

where the functions f : Rn → R and h : Rn → Rm are all assumed to be twice continuously
differentiable. Problems with general nonlinear inequality constraints can be reformulated in the
above form by introducing slack variables. We note that for simplicity, we assume all variables
in (1) are non-negative, though NLPs with arbitrary variable bounds can also be handled effectively.
Readers are referred to Appendix A for details.

The primal-dual IPM stands as one of the most widely utilized approaches for addressing NLPs. It
entails iteratively solving the perturbed Karush-Kuhn-Tucker (KKT) conditions (2) for a decreasing

3

sequence of parameters µ converging to zero.

∇f(x) + λ⊤∇h(x)− z = 0 h(x) = 0

diag(z)diag(x)e = µe x, z ≥ 0
(2)

where λ ∈ Rm and z ∈ Rn
+ denote the corresponding dual variables, diag(·) represents a diagonal

matrix, and e is a vector of ones. Let F (x, λ, z) = 0 denote the system of nonlinear equations in (2).
We then employ a one-step Newton’s method to solve such a system, aiming to solve systems of
linear equations (3).

∇2f(x) + λ⊤∇2h(x) ∇h⊤(x) −I

∇h(x)
diag(z) diag(x)

︸ ︷︷ ︸
J

[
∆x
∆λ
∆z

]
= −F (x, λ, z)

(3)

The IPM commences with an initial solution (x0, λ0, z0) such that x0, z0 > 0. At iteration k, the
linear system (3) defined by the current iterate (xk, λk, zk) is solved, with µ := σ

[
(zk)⊤xk

]
/n

being the perturbation parameter and constant σ ∈ (0, 1). A line-search filter step along the direction
(∆xk,∆λk,∆zk) is then performed to ensure boundary condition satisfaction as well as sufficient
progress towards objective value improvement or constraint violation reduction. This process iterates
until convergence criteria, such as achieving optimality and feasibility within specified tolerances, are
met. The IPM is guaranteed to converge to a KKT point with a superlinear rate. A pseudocode of the
IPM is presented as Algorithm 1.

Algorithm 1 The classic IPM
Inputs: An initial solution (x0, λ0, z0), σ ∈ (0, 1), k ← 0
Outputs: The optimal solution (x∗, λ∗, z∗)

1: while not converged do
2: Update µk

3: Solve the system Jk
[
(∆xk)⊤, (∆λk)⊤, (∆zk)⊤

]⊤
= −F k

4: Choose αk via a line-search filter method
5: (xk+1, λk+1, zk+1)← (xk, λk, zk) + αk(∆xk,∆λk,∆zk)
6: k ← k + 1
7: end while

We note that, in classic IPMs, one typically reformulates the system (3) and then solves a reduced
system of equations (i.e., augmented system) for greater efficiency. However, in this work, we
are interested in the full systems since they are associated with smaller condition numbers (Greif
et al., 2014) that are critical to the performance of our proposed approach. Additionally, various
techniques have been proposed to enhance the robustness and efficiency of IPMs, including second-
order correction, inertial correction, and feasibility restoration. Interested readers are referred to
Wächter and Biegler (2006) for further details about IPMs.

3.2 Approximating Solutions to Linear Systems

The small number of iterations in IPMs does not always guarantee efficiency because, at times, IPMs
encounter a high per-iteration cost of linear algebra operations. In the worst-case scenario, the cost
of solving a dense optimization problem using a direct linear algebra method to solve the Newton
equation system (3) may reach O(n3) flops per iteration. This motivates us to avoid computing exact
solutions to linear systems and instead focus on their approximations. Toward this goal, we consider
the following least squares problem (4):

min
y

1

2

∥∥Jky + F k
∥∥2 , (4)

where ∥·∥ denotes the Euclidean norm. If (3) is solvable, then an optimal solution to problem (4)
is also the exact solution

[
(∆xk)⊤, (∆λk)⊤, (∆zk)⊤

]⊤
to system (3). Otherwise, we resort to an

approximation of the latter. This perspective is similar to the inexact IPM (Bellavia, 1998; Dexter
et al., 2022).

4

Assumption 1. At iteration k, we could identify some yk such that
∥∥Jkyk + F k

∥∥ ≤ η
[
(zk)⊤xk

]
/n (5)

∥yk∥ ≤ (1 + σ + η)∥F0(x
k, λk, zk)∥. (6)

where η ∈ (0, 1) and F0(x
k, λk, zk) denotes F (xk, λk, zk) with µ = 0.

To satisfy Assumption 1, the approximate solution yk has to be bounded and accurate enough,
regardless of whether Jk is invertible.
Proposition 1 (Bellavia (1998)). If (xk, λk, zk) is generated such that Assumption 1 is satisfied,
let (x∗, λ∗, z∗) denote a limit point of the sequence {(xk, λk, zk)}, then {(xk, λk, zk)} converges to
(x∗, λ∗, z∗) and F0(x

∗, λ∗, z∗) = 0.

Proposition 1 implies that if solutions with specified accuracy for linear systems in Step 3 are found,
the IPM would converge.

3.3 The IPM-LSTM Approach

The problem (4) is an unconstrained convex optimization problem. Various L2O methods have been
proposed to solve such problems (Chen et al., 2022a; Gregor and LeCun, 2010; Liu et al., 2023). We
will employ the LSTM networks in our L2O method for addressing problem (4), hence our approach
is called “IPM-LSTM”.

Model Architecture. LSTM is a type of recurrent neural network designed to effectively capture and
maintain long-term dependencies in sequential data (Yu et al., 2019). LSTM networks are commonly
considered suitable for solving unconstrained optimization problems due to the resemblance between
LSTM recurrent calculations and iterative algorithms (Andrychowicz et al., 2016; Liu et al., 2023;
Lv et al., 2017).

The LSTM network consists of T cells parameterized by the same learnable parameters θ. Each
cell can be viewed as one iteration of a traditional iterative method, as illustrated in Figure 2. Let
ϕ(y) := 1

2

∥∥Jky + F k
∥∥2 for convenience. The t-th cell takes the previous estimate yt−1 and the

gradient (Jk)⊤(Jkyt−1 + F k) as the input and outputs the current estimate yt:

yt := LSTMθ

([
yt−1, (J

k)⊤(Jkyt−1 + F k)
])

. (7)

The T -th cell yields yT as an approximate solution to problem (4). As suggested by Andrychowicz
et al. (2016) and Liu et al. (2023), we utilize a coordinate-wise LSTM that shares parameters not
only across different LSTM cells but also for all coordinates of y.

Figure 2: The LSTM architecture for solving min
y

ϕ(y).

Model Training. We train the proposed optimizer by finding the optimal θ in (7) on a datasetM of
NLPs. Each sample inM is an instance of the optimization problem. During training, we apply the
optimizer to each instance M ∈ M, performing K IPM iterations in the outer loop and T LSTM

5

time steps in the inner loop, generating a sequence of iterates {(y11 , ..., y1T), ..., (yK1 , ..., yKT)} where
the superscript k denotes the IPM iteration number. We then optimize θ by minimizing the following
loss function:

min
θ

1

|M|
∑

M∈M

(
1

K

K∑

k=1

1

T

T∑

t=1

1

2

∥∥Jkykt (θ) + F k
∥∥2
)

M

,

where the subscript M indicates that the corresponding term is associated with instance M . Clearly,
our model training falls into the category of self-supervised learning. To mitigate memory issues
caused by excessively large computational graphs, we employ truncated backpropagation through
time after each IPM iteration during training, as done in Chen et al. (2022a) and Liu et al. (2023).

Preconditioning. The Hessian matrix of ϕ(y) is (Jk)⊤Jk, whose condition number, κ((Jk)⊤Jk),
is the square of that of Jk. Consequently, κ((Jk)⊤Jk) can easily become very large. Since solving
system (4) via LSTM networks emulates iterative first-order methods, the value of κ((Jk)⊤Jk)
strongly affects the performance of LSTM networks. To address this issue, we employ a simple
diagonal preconditioning technique that rescales the Hessian matrix (Jk)⊤Jk using the Ruiz scaling
method (Ruiz, 2001) to decrease its condition number.

3.4 Two-Stage Framework

To further enhance the solution quality, we propose a two-stage framework that initially obtains a near-
optimal and well-centered primal-dual solution via IPM-LSTM and then utilizes this approximate
solution to warm-start an interior point solver. In this study, we select IPOPT (Wächter and Biegler,
2006), an IPM-based solver renowned for its robustness and efficiency in optimizing NLPs.

Our two-stage framework works as follows: Given an NLP (1), we generate an initial point (x0, λ0, z0)
and formulate the least squares problem (4). Subsequently, the trained LSTM network with T cells
solves this problem and returns a search direction. We then employ the simple fractional-to-boundary
method (Wächter and Biegler, 2006) to determine the step size and reach the new iterate. This
procedure is iterated K times, resulting in a primal-dual solution (xK , λK , zK). Finally, the obtained
solution serves as the warm-start solution for IPOPT, leading to the optimal solution x∗ upon IPOPT
convergence.

4 Experiments

4.1 Experimental Settings

We evaluate our approach and compare its performance against traditional methods as well as L2O
algorithms for solving various types of NLPs. Furthermore, we also quantify the warm-starting effect
of our proposed two-stage approach. Our code is available at https://github.com/NetSysOpt/IPM-
LSTM.

Baseline Algorithms. In our experiments, we denote our algorithm by IPM-LSTM and com-
pare it against both traditional optimizers and L2O algorithms. The traditional optimizers con-
sidered are: (i) OSQP (Stellato et al., 2020): an ADMM-based solver designed for convex QPs.
(ii) IPOPT 3.14.8 (Wächter and Biegler, 2006): a state-of-the-art IPM-based solver for NLPs with the
default linear solver MUMPS (Amestoy et al., 2000) and a convergence tolerance of 10−4. We also
assess several L2O algorithms, including: (i) NN (Donti et al., 2021): a straightforward deep learning
approach that integrates the objective function and penalty for constraint violations into the loss
function. (ii) DC3 (Donti et al., 2021): an end-to-end method that uses “completion” steps to maintain
equality constraints and “correction” steps for inequality feasibility. (iii) DeepLDE (Kim et al.,
2023): an algorithm that trains neural networks using a primal-dual approach to impose inequality
constraints and employs “completion” for equality constraints. (iv) PDL (Park and Van Hentenryck,
2023): a self-supervised learning method that jointly trains two networks to approximate primal and
dual solutions. (v) LOOP-LC (Li et al., 2023): a neural approximator that maps inputs of linearly
constrained models to high-quality feasible solutions using gauge maps. (vi) H-Proj (Liang et al.,
2023): a method that applies a homeomorphic projection scheme to post-process solutions resulting
from the completion step in DC3.

Datasets. The dataset used in this paper includes randomly generated benchmarks obtained from
Chen and Burer (2012), Donti et al. (2021) and Liang et al. (2023), as well as real-world instances

6

https://github.com/NetSysOpt/IPM-LSTM
https://github.com/NetSysOpt/IPM-LSTM

from Globallib (see http://www.minlplib.org). These benchmarks encompass QPs, QCQPs, and
simplex non-convex programs. For each case, we generate 10, 000 samples and divide them into a
10 : 1 : 1 ratio for training, validation, and testing, respectively. All numerical results are reported for
the test set.

Model Settings. All LSTM networks have a single layer and are trained using the Adam opti-
mizer (Kingma, 2014). During IPM-LSTM training, an early stopping strategy with a patience of
50 is employed, halting training if no improvement is observed for 50 iterations, while satisfying
inequality and equality constraints violation less than 0.005 and 0.01. The learning rate is 0.0001,
and the batch size is 128 for each task. Additional IPM-LSTM parameters for each task are provided
in Appendix C.

Evaluation Configuration. All our experiments were conducted on an NVIDIA RTX A6000 GPU,
an Intel Xeon 2.10GHz CPU, using Python 3.10.0 and PyTorch 1.13.1.

4.2 Computational Results

Convex QPs. We consider convex QPs with both equality and inequality constraints:

min
x∈Rn

1

2
x⊤Q0x+ p⊤0 x

s.t. p⊤j x ≤ qj j = 1, · · · , l
p⊤j x = qj j = l + 1, · · · ,m
xL
i ≤ xi ≤ xU

i i = 1, · · · , n

(8)

where Q0 ∈ Sn+ , pj ∈ Rn, qj ∈ R, xL
i ∈ R∪{−∞} and xU

i ∈ R∪{+∞}. We conduct experiments
on two groups of QPs, each instance with 200 variables, 100 inequalities and 100 equalities. The first
group is generated in the same way as Donti et al. (2021), where only the right hand sides of equality
constraints are perturbed while the second one considers perturbation for all model parameters. Let
“Convex QP (RHS)” denote the former and “Convex QPs (ALL)” denote the latter. It is noteworthy
that, in line with Donti et al. (2021), we also investigate the performance of IPM-LSTM and baseline
algorithms on smaller-scale convex QPs. Interested readers are directed to Appendix D for details.

Table 1: Computational results on convex QPs.

Method End-to-End IPOPT (warm start) Total
Time (s)↓

Gain
(Ite./ Time) ↑Obj. ↓ Max ineq. ↓ Mean ineq. ↓ Max eq. ↓ Mean eq. ↓ Time (s) ↓ Ite. ↓ Time (s) ↓

Convex QPs (RHS)
OSQP -29.176 0.000 0.000 0.000 0.000 0.009 - - - -
IPOPT -29.176 0.000 0.000 0.000 0.000 0.642 12.5 - - -
NN -26.787 0.000 0.000 0.631 0.235 <0.001 10.5 0.560 0.560 16.0%/12.8%
DC3 -26.720 0.002 0.000 0.000 0.000 <0.001 10.2 0.535 0.535 18.4%/16.7%

DeepLDE -3.697 0.000 0.000 0.000 0.000 <0.001 12.5 0.648 0.648 0.0%/-0.9%
PDL -28.559 0.421 0.122 0.024 0.000 <0.001 9.7 0.514 0.514 22.4%/19.9%

LOOP-LC -28.512 0.000 0.000 0.000 0.000 <0.001 10.8 0.565 0.565 13.6%/12.0%
H-Proj -23.257 0.000 0.000 0.000 0.000 <0.001 11.2 0.605 0.605 10.4%/5.8%

IPM-LSTM -29.050 0.000 0.000 0.002 0.001 0.175 7.2 0.370 0.545 42.4%/15.1%

Convex QPs (ALL)
OSQP -33.183 0.000 0.000 0.000 0.000 0.009 - - - -
IPOPT -33.183 0.000 0.000 0.000 0.000 0.671 12.9 - - -

IPM-LSTM -32.600 0.000 0.000 0.003 0.001 0.195 8.3 0.426 0.621 35.7%/7.5%

We ran IPM-LSTM and all baseline algorithms on the test set “Convex QPs (RHS)”, and we reported
their computational results, which were averaged across 833 instances. The results are presented in
Table 1. We denote this experiment by “End-to-End” for convenience. The columns labeled “Max
Ineq.”, “Mean Ineq.”, “Max Eq.”, and “Mean Eq.” denote the maximum and mean violations for
inequalities and equalities, respectively. The columns “Obj.” and “Time (s)” represent the final primal
objective and the runtime in seconds. Both OSQP and IPOPT solved these instances to guaranteed
optimality, with OSQP being significantly more efficient due to its specialization as a QP-specific
solver. All L2O baseline algorithms returned solutions very quickly. However, solutions generated by
NN and PDL exhibited significant constraint violations. While the solutions from DC3 and DeepLDE
were nearly feasible, they corresponded to inferior objective values. On the other hand, LOOP-LC
produced feasible and near-optimal solutions, whereas H-Proj generated feasible solutions but with

7

http://www.minlplib.org

larger objective values. Solutions identified by IPM-LSTM showed mild constraint violations but
yielded superior objective values very close to the optimal values. Clearly, IPM-LSTM effectively
balances feasibility and optimality in the returned solutions. This comes at the cost of longer runtime
compared to the L2O baseline algorithms, as the baselines typically employ simple multi-layer
perceptrons, whereas IPM-LSTM utilizes a neural network with several dozen LSTM cells.

Since IPM-LSTM is designed to provide interior point optimizers with high-quality initial points, we
fed the returned primal-dual solution pair to IPOPT and reported the performance in Table 1. For
comparison, we also provided IPOPT with initial points generated from other L2O algorithms. The
columns labeled “Ite.” and “Time (s)” under “IPOPT (warm-start)” indicate the number of iterations
and solver time, respectively, while the column “Total Time (s)” represents the cumulative time
for running both the L2O algorithms and IPOPT. The final column, “Gain (Ite/Time)”, shows the
reduction in iteration number and solution time, with the default IPOPT iteration number listed in
the “Ite.” column for reference. When initial solutions from IPM-LSTM and most L2O baseline
algorithms (except DeepLDE) were used, IPOPT converged with fewer iterations and reduced solution
time. Notably, IPM-LSTM achieved the most significant reduction in iterations, from 12.5 to 7.2, and
decreased the average solver time from 0.642 seconds to 0.37 seconds. Including the computational
time for IPM-LSTM, the total runtime was 0.545 seconds, reflecting a 15.1% reduction in time. It is
worth noting that while IPM-LSTM did not yield the maximum solution time reduction, this was due
to its relatively high computational expense.

To our knowledge, there is no existing representation learning approach for general convex QPs.
Since the aforementioned L2O baseline algorithms depend on specific representations of QPs, they
are not applicable to “Convex QPs (ALL)”. Therefore, we only provide results for OSQP, IPOPT,
and IPM-LSTM. We also report computational results averaged across 833 instances in the test set
“Convex QPs (ALL)”, presented in Table 1. The results demonstrate that IPM-LSTM can identify
high-quality solutions for general convex QPs, and using these solutions as initial points can reduce
iterations by 35.7% and solution time by 7.5%.

Convex QCQPs. We now turn to convex QCQPs with both equaltity and inequality constraints:

min
x∈Rn

1

2
x⊤Q0x+ p⊤0 x

s.t. x⊤Qjx+ p⊤j x ≤ qj j = 1, · · · , l
p⊤j x = qj j = l + 1, · · · ,m
xL
i ≤ xi ≤ xU

i i = 1, · · · , n
where Qj ∈ Sn+, pj ∈ Rn, qj ∈ R, xL

i ∈ R∪{−∞} and xU
i ∈ R∪{∞}. Similar to our experiments

on convex QPs, we also consider two groups of convex QCQPs, each with 200 variables, 100
inequality constraints, and 100 equality constraints. The first group (denoted as “Convex QCQPs
(RHS)”) is generated as described in Liang et al. (2023), with perturbations only to the right-hand
sides of the equality constraints. The second group (denoted as “Convex QCQPs (ALL)”) considers
perturbations to all parameters. We also refer readers to Appendix D for computational experiments
on smaller-sized convex QCQPs.

We omit OSQP and LOOP-LC since the former cannot handle QCQPs, while the latter is only applicable
to linearly constrained problems. We evaluate IPM-LSTM and compare it against the remaining
baseline algorithms. The computational results are reported in Table 2. Again, solutions produced
by NN and PDL exhibit significant constraint violations, while those from DC3 and H-Proj are of
high quality in terms of feasibility and optimality. Once more, the solutions produced by DeepLDE
were deemed feasible but exhibited inferior objective values. Conversely, our approach, IPM-LSTM,
produced solutions with superior objective values albeit with minor infeasibility. Compared to the
baseline algorithms, utilizing solutions from IPM-LSTM to warm-start IPOPT resulted in the most
substantial reduction in iterations.

As the aforementioned L2O baseline algorithms are not applicable to “Convex QCQPs (ALL)”, we
only report computational results for IPOPT and IPM-LSTM in Table 2. The IPM-LSTM approach
produced high-quality approximate solutions to convex QCQPs, and warm-starting IPOPT with these
solutions accelerated IPOPT by 11.4%, with a 33.1% reduction in iterations.

Non-convex QPs. We now consider non-convex QPs of exactly the same form as (8) but with
Q0 being indefinite. We take 8 representative non-convex QPs from the datasets Globallib and

8

Table 2: Computational results on convex QCQPs.

Method End-to-End IPOPT (warm start) Total
Time (s)↓

Gain
(Ite./ Time) ↑Obj. ↓ Max ineq. ↓ Mean ineq. ↓ Max eq. ↓ Mean eq. ↓ Time (s) ↓ Ite. ↓ Time (s) ↓

Convex QCQPs (RHS)
IPOPT -39.162 0.000 0.000 0.000 0.000 1.098 12.5 - - -
NN -2.105 0.000 0.000 0.552 0.169 <0.001 12.1 1.311 1.311 3.2%/-19.4%
DC3 -35.741 0.000 0.000 0.000 0.000 0.005 9.6 1.051 1.051 20.7%/4.8%

DeepLDE -15.132 0.000 0.000 0.000 0.000 <0.001 11.5 1.222 1.222 8.0%/-11.3%
PDL -39.089 0.005 0.000 0.015 0.005 <0.001 8.9 1.013 1.013 28.8%/7.7%

H-Proj -36.062 0.000 0.000 0.000 0.000 <0.001 9.8 1.070 1.070 21.6%/2.6%
IPM-LSTM -38.540 0.000 0.000 0.004 0.001 0.205 8.0 0.825 1.030 36.0%/6.2%

Convex QCQPs (ALL)
IPOPT -39.868 0.000 0.000 0.000 0.000 0.801 12.4 - - -

IPM-LSTM -38.405 0.004 0.000 0.001 0.000 0.203 8.3 0.507 0.710 33.1%/11.4%

RandQP (Chen and Burer, 2012), each with up to 50 variables and 20 constraints, and perturb the
relevant parameters for instance generation. Details can be found in Appendix D.2.

Among all the baselines, only IPOPT is applicable to these general non-convex QPs. Hence, we report
computational results for IPOPT and IPM-LSTM in Table 3. IPOPT solved these instances to local
optimality, while IPM-LSTM identified high-quality approximate solutions very efficiently. Using
these primal-dual approximations to warm-start IPOPT resulted in an iteration reduction of up to
63.9% and a solution time reduction of up to 70.5%.

Table 3: Computational results on non-convex QPs.

Instance IPOPT IPM-LSTM IPOPT (warm-start) Total
Time (s)

Gain
(Ite./ Time)Obj. Ite. Time (s) Obj. Max Vio. Time (s) Obj. Ite. Time (s)

qp1 0.001 52.0 0.707 0.045 0.008 0.017 0.001 42.0 0.559 0.576 19.2%/18.5%
qp2 0.001 69.0 0.674 0.034 0.008 0.029 0.001 40.0 0.347 0.376 42.0%/ 44.2%

st_rv1 -58.430 215.0 0.955 -34.563 0.000 0.009 -58.867 168.0 0.626 0.635 21.9%/33.5%
st_rv2 -67.083 190.8 0.956 -30.955 0.000 0.011 -67.083 120.5 0.482 0.494 36.8%/38.1%
st_rv3 0.000 55.0 0.781 0.818 0.000 0.017 0.000 47.0 0.616 0.634 14.5%/18.8%
st_rv7 -132.019 449.0 2.445 -61.428 0.000 0.016 -131.756 162.0 0.705 0.721 63.9%/70.5%
st_rv9 -126.945 655.0 3.457 -58.415 0.000 0.026 -127.652 408.0 1.830 1.856 37.7%/46.3%

qp30_15_1_1 37.767 16.0 0.198 37.787 0.002 0.021 37.767 9.0 0.083 0.104 43.7%/47.5%

Max Vio. denotes the maximum constraint violation.

Simple non-convex programs. Following the approach outlined in Donti et al. (2021), we consider a
set of simple non-convex programs where the linear objective term in (8) is substituted with p⊤0 sin(x).
These instances were generated using the same methodology as Donti et al. (2021). We subject these
problems to evaluation using both IPM-LSTM and baseline algorithms. Once again, the computational
results underscore the high-quality solutions obtained by IPM-LSTM and its superior warm-starting
capability. Detailed results are provided in Appendix D.4.

4.3 Performance Analysis of IPM-LSTM

In Assumption 1, we posit that the linear systems (3) can be solved with an acceptable residual
(Condition (5)) and that the solutions are properly bounded (Condition (6)). Although the LSTM
network cannot guarantee the satisfaction of these conditions, we empirically assess the validity
of Assumption 1 in IPM-LSTM. We plot the progress of

∥∥Jkyk + F k
∥∥, η

[
(zk)⊤xk

]
/n,

∥∥yk
∥∥, and∥∥F0(x

k, λk, zk)
∥∥ as the IPM iterations increase in Figure 3(a) and 3(b). Condition (5) is mostly

satisfied except during the first few iterations, while Condition (6) is strictly satisfied across all IPM
iterations. To assess the precision of the approximate solutions as the LSTM time steps increase,
we plot the progress of the residual for linear systems (3) in Figure 3(c). At IPM iteration k, the
residual decreases monotonically towards 0 as the LSTM time steps increase, indicating that LSTM
networks can produce high-quality approximate solutions to system (3). The approximation quality
improves with the number of IPM iterations. As shown in Figure 3(d), the primal objective decreases
monotonically towards the optimal value with increasing IPM iterations, empirically demonstrating
the convergence of IPM-LSTM. Note that the condition number κ((Jk)⊤Jk) becomes quite large
in the later IPM iterations, which can adversely affect the performance of LSTM networks in
obtaining approximations to systems (3). Consequently, we terminate IPM-LSTM after a finite number
of iterations. Further analysis regarding the number of IPM iterations and LSTM time steps is

9

presented in Appendix D.5. Additionally, we include the performance of IPM-LSTM under various
hyperparameter settings in Appendix D.5.

(a) Condition (5) (b) Condition (6)

0 10 20 30 40 50

LSTM time step

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

1 2

∥ ∥ J
k
y
k
+
F

k
∥ ∥2

IPM iteration 1

IPM iteration 2

IPM iteration 3

IPM iteration 10

IPM iteration 20

IPM iteration 60

IPM iteration 100

(c) Residual

0 20 40 60 80 100

IPM iteration

−15

−10

−5

0

5

10

O
b
je
ct
iv
e
va
lu
e

IPM-LSTM

Optimal value

(d) Objective value

Figure 3: The performance analysis of IPM-LSTM on a convex QP (RHS).

5 Limitations and Conclusions

In this paper, we present a learning-based IPM called IPM-LSTM. Specifically, we propose ap-
proximating solutions of linear systems in IPMs by solving least square problems using trained
LSTM networks. We demonstrate that IPMs with this approximation procedure still converge. The
solutions returned by IPM-LSTM are used to warm-start interior point optimizers. Our computational
experiments on various types of NLPs, including general QPs and QCQPs, showcase the effectiveness
of IPM-LSTM and its ability to accelerate IPOPT. Although IPM-LSTM generates high-quality
primal-dual solutions, it is relatively computationally expensive due to the utilization of multi-cell
LSTM networks. In future endeavors, we aim to investigate the efficacy of employing low-complexity
neural networks to approximate solutions of linear systems within IPMs.

Acknowledgments

This work was supported by the National Key R&D Program of China under grant 2022YFA1003900.
Jinxin Xiong and Akang Wang also gratefully acknowledge support from the National Natural Science
Foundation of China (Grant No. 12301416), the Shenzhen Science and Technology Program (Grant
No. RCBS20221008093309021), the Guangdong Basic and Applied Basic Research Foundation
(Grant No. 2024A1515010306) and Longgang District Special Funds for Science and Technology
Innovation (LGKCSDPT2023002).

References
Patrick R Amestoy, Iain S Duff, Jean-Yves L’Excellent, and Jacko Koster. Mumps: a general purpose distributed

memory sparse solver. In International Workshop on Applied Parallel Computing, pages 121–130. Springer,
2000.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul, Brendan
Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient descent. Advances in
neural information processing systems, 29, 2016.

Kyri Baker. Learning warm-start points for ac optimal power flow. In 2019 IEEE 29th International Workshop
on Machine Learning for Signal Processing (MLSP), pages 1–6. IEEE, 2019.

Stefania Bellavia. Inexact interior-point method. Journal of Optimization Theory and Applications, 96:109–121,
1998.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization: a
methodological tour d’horizon. European Journal of Operational Research, 290(2):405–421, 2021.

Jieqiu Chen and Samuel Burer. Globally solving nonconvex quadratic programming problems via completely
positive programming. Mathematical Programming Computation, 4(1):33–52, 2012.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang Wang, and Wotao Yin.
Learning to optimize: A primer and a benchmark. Journal of Machine Learning Research, 23(189):1–59,
2022a.

10

Xiaohan Chen, Jialin Liu, and Wotao Yin. Learning to optimize: A tutorial for continuous and mixed-integer
optimization. Science China Mathematics, pages 1–72, 2024.

Ziang Chen, Jialin Liu, Xinshang Wang, and Wotao Yin. On representing linear programs by graph neural
networks. In The Eleventh International Conference on Learning Representations, 2022b.

Mung Chiang. Nonconvex optimization for communication networks. Advances in Applied Mathematics and
Global Optimization: In Honor of Gilbert Strang, pages 137–196, 2009.

Antonio J Conejo and Luis Baringo. Power system operations, volume 14. Springer, 2018.

Gregory Dexter, Agniva Chowdhury, Haim Avron, and Petros Drineas. On the convergence of inexact predictor-
corrector methods for linear programming. In International Conference on Machine Learning, pages
5007–5038. PMLR, 2022.

Frederik Diehl. Warm-starting ac optimal power flow with graph neural networks. In 33rd Conference on Neural
Information Processing Systems (NeurIPS 2019), pages 1–6, 2019.

Priya L Donti, David Rolnick, and J Zico Kolter. Dc3: A learning method for optimization with hard constraints.
In International Conference on Learning Representations, 2021.

Stanley C Eisenstat and Homer F Walker. Globally convergent inexact newton methods. SIAM Journal on
Optimization, 4(2):393–422, 1994.

Ferdinando Fioretto, Terrence WK Mak, and Pascal Van Hentenryck. Predicting ac optimal power flows:
Combining deep learning and lagrangian dual methods. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 630–637, 2020.

Anders Forsgren. On warm starts for interior methods. In System Modeling and Optimization: Proceedings of
the 22nd IFIP TC7 Conference held from July 18–22, 2005, in Turin, Italy 22, pages 51–66. Springer, 2006.

Maxime Gasse, Simon Bowly, Quentin Cappart, Jonas Charfreitag, Laurent Charlin, Didier Chételat, Antonia
Chmiela, Justin Dumouchelle, Ambros Gleixner, Aleksandr M Kazachkov, et al. The machine learning for
combinatorial optimization competition (ml4co): Results and insights. In NeurIPS 2021 competitions and
demonstrations track, pages 220–231. PMLR, 2022.

Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In Proceedings of the 27th
international conference on international conference on machine learning, pages 399–406, 2010.

Chen Greif, Erin Moulding, and Dominique Orban. Bounds on eigenvalues of matrices arising from interior-point
methods. SIAM Journal on Optimization, 24(1):49–83, 2014.

Jiayu Han, Wei Wang, Chao Yang, Mengyang Niu, Cheng Yang, Lei Yan, and Zuyi Li. FRMNet: A Feasibility
Restoration Mapping Deep Neural Network for AC Optimal Power Flow. IEEE Transactions on Power
Systems, pages 1–11, 2024. ISSN 0885-8950, 1558-0679. doi: 10.1109/TPWRS.2024.3354733. URL
https://ieeexplore.ieee.org/document/10411984/.

Qingyu Han, Linxin Yang, Qian Chen, Xiang Zhou, Dong Zhang, Akang Wang, Ruoyu Sun, and Xiaodong
Luo. A gnn-guided predict-and-search framework for mixed-integer linear programming. In The Eleventh
International Conference on Learning Representations, 2023.

Wanjun Huang, Xiang Pan, Minghua Chen, and Steven H Low. Deepopf-v: Solving ac-opf problems efficiently.
IEEE Transactions on Power Systems, 37(1):800–803, 2021.

Hongseok Kim et al. Self-supervised equality embedded deep lagrange dual for approximate constrained
optimization. arXiv preprint arXiv:2306.06674, 2023.

DP Kingma. Adam: a method for stochastic optimization. In Int Conf Learn Represent, 2014.

Bingheng Li, Linxin Yang, Yupeng Chen, Senmiao Wang, Qian Chen, Haitao Mao, Yao Ma, Akang Wang, Tian
Ding, Jiliang Tang, et al. Pdhg-unrolled learning-to-optimize method for large-scale linear programming. In
Forty-first International Conference on Machine Learning, 2024.

Meiyi Li, Soheil Kolouri, and Javad Mohammadi. Learning to solve optimization problems with hard linear
constraints. IEEE Access, 2023.

Enming Liang, Minghua Chen, and Steven Low. Low complexity homeomorphic projection to ensure neural-
network solution feasibility for optimization over (non-) convex set. In Conference on Parsimony and
Learning (Recent Spotlight Track), 2023.

11

https://ieeexplore.ieee.org/document/10411984/

Jialin Liu, Xiaohan Chen, Zhangyang Wang, Wotao Yin, and HanQin Cai. Towards constituting mathematical
structures for learning to optimize. In International Conference on Machine Learning, pages 21426–21449.
PMLR, 2023.

Tianhao Liu, Shanwen Pu, Dongdong Ge, and Yinyu Ye. Learning to pivot as a smart expert. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 38, pages 8073–8081, 2024.

Kaifeng Lv, Shunhua Jiang, and Jian Li. Learning gradient descent: Better generalization and longer horizons.
In International Conference on Machine Learning, pages 2247–2255. PMLR, 2017.

Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex programming. SIAM,
1994.

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

Xiang Pan, Minghua Chen, Tianyu Zhao, and Steven H. Low. Deepopf: A feasibility-optimized deep neural
network approach for ac optimal power flow problems. IEEE Systems Journal, 17(1):673–683, 2023. doi:
10.1109/JSYST.2022.3201041.

Seonho Park and Pascal Van Hentenryck. Self-supervised primal-dual learning for constrained optimization. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages 4052–4060, 2023.

Chendi Qian, Didier Chételat, and Christopher Morris. Exploring the power of graph neural networks in solving
linear optimization problems. In International Conference on Artificial Intelligence and Statistics, pages
1432–1440. PMLR, 2024.

Daniel Ruiz. A scaling algorithm to equilibrate both rows and columns norms in matrices. Technical report,
CM-P00040415, 2001.

Stefan Schaal and Christopher G Atkeson. Learning control in robotics. IEEE Robotics & Automation Magazine,
17(2):20–29, 2010.

B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. OSQP: an operator splitting solver for quadratic pro-
grams. Mathematical Programming Computation, 12(4):637–672, 2020. doi: 10.1007/s12532-020-00179-2.
URL https://doi.org/10.1007/s12532-020-00179-2.

Andreas Wächter and Lorenz T Biegler. On the implementation of an interior-point filter line-search algorithm
for large-scale nonlinear programming. Mathematical programming, 106:25–57, 2006.

Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. A review of recurrent neural networks: Lstm cells
and network architectures. Neural computation, 31(7):1235–1270, 2019.

Sihan Zeng, Youngdae Kim, Yuxuan Ren, and Kibaek Kim. QCQP-Net: Reliably Learning Feasible Alternating
Current Optimal Power Flow Solutions Under Constraints, January 2024. URL http://arxiv.org/abs/
2401.06820. arXiv:2401.06820 [cs, math] version: 1.

Ling Zhang and Baosen Zhang. Learning to solve the ac optimal power flow via a lagrangian approach. In 2022
North American Power Symposium (NAPS), pages 1–6, 2022. doi: 10.1109/NAPS56150.2022.10012237.

12

https://doi.org/10.1007/s12532-020-00179-2
http://arxiv.org/abs/2401.06820
http://arxiv.org/abs/2401.06820

Appendix

A Implementation Details

The general NLP considered in this paper can be formulated as:

min
x∈Rn

f(x),

s.t. g(x) + s = 0
h(x) = 0
s ≥ 0
xi ≥ xL

i , i ∈ IL

xi ≤ xU
i , i ∈ IU

(9)

where f : Rn → R, g : Rn → Rmineq , and h : Rn → Rmeq are twice continuously differentiable
functions; s ∈ Rmineq is the slack variable corresponding to the inequality constraints; IL = {i :
xL
i ̸= −∞} and IU = {i : xU

i ̸=∞}. The Lagrangian function is defined as:

L
(
x, η, λ, s, zL, zU

)
:= f(x)+η⊤g(x)+λ⊤h(x)−

∑

i∈IL

zLi
(
xi − xL

i

)
−
∑

i∈IU

zUi
(
xU
i − xi

)
(10)

where η ∈ Rmineq and λ ∈ Rmeq are the corresponding dual variables. The perturbed KKT conditions
are given by:

∇f(x) + η⊤∇g(x) + λ⊤∇h(x)− zL + zU = 0
g(x) + s = 0
diag(η)diag(s)e = µe
η ≥ 0, s ≥ 0, h(x) = 0
zLi (xi − xL

i) = µ, i ∈ IL

zUi (xU
i − xi) = µ, i ∈ IU

zLi ≥ 0, i ∈ IL, zUi ≥ 0, i ∈ IU

xi ≥ xL
i , i ∈ IL, xj ≤ xU

j , j ∈ IU

(11)

The nonlinear system extracted from the KKT conditions is represented as:

F (x, η, λ, s, zL, zU) = 0 (12)

where

F (x, η, λ, s, zL, zU) =

∇f(x) + η⊤∇g(x) + λ⊤∇h(x)− zL + zU

g(x) + s
diag(η)diag(s)e− µe

h(x)
diag(zL)diag(x− xL)e− µe
diag(zU)diag(xU − x)e− µe

= 0

The Jacobian matrix of F (x, η, λ, s, zL, zU) is:

J(x, η, λ, s, z
L
, z

U
) :=

∇2L(x, η, λ, zL, zU), ∇g(x)⊤, ∇h(x)⊤, 0, −I, I

∇g(x), 0, 0, I, 0, 0
0, diag(s), 0, diag(η), 0, 0

∇h(x), 0, 0, 0, 0, 0

diag(zL), 0, 0, 0, diag(x − xL), 0

−diag(zU), 0, 0, 0, 0, diag(xU − x)

where

∇2L
(
x, η, λ, s, zL, zU

)
= ∇2f(x) +

mineq∑
i=1

ηi∇2gi(x) +

meq∑
j=1

λj∇2hj(x) (13)

For convenience, we define the updates of primal and dual variables as:

y :=

∆x
∆η
∆λ
∆s
∆zL

∆zU

. (14)

13

Then the linear system obtained from one-step Newton’s method is shown as:

J
(
x, η, λ, s, zL, zU

)
y = −F

(
x, η, λ, s, zL, zU

)
(15)

Initial points. If dual variables η, s, zL, and zU exist, their initial values are set to 1. If the dual
variable λ exists, its initial value is set to 0. The initial value of the primal variable x can be formulated
as:

xi =

zLi + 1, i ∈ IL\IU
zUi − 1, i ∈ IU\IL
(zLi + zUi)/2, i ∈ IL ∩ IU

0, otherwise.

. (16)

The step length. If the dual variables η, s, zL and zU exist, their step lengths are chosen as follows:

αη := sup {α ∈ (0, 1] | ηi + α∆ηi ≥ 0, i = 1, · · · ,mineq} (17)

αs := sup {α ∈ (0, 1] | si + α∆si ≥ 0, i = 1, · · · ,mineq} (18)

αzL

:= sup
{
α ∈ (0, 1] | zLi + α∆zLi ≥ 0, i ∈ IL

}
(19)

αzU

:= sup
{
α ∈ (0, 1] | zUi + α∆zUi ≥ 0, i ∈ IU

}
(20)

If x is bounded, the step sizes for x and λ are chosen to be equal as:

αλ, αx := sup
{
α ∈ (0, 1] | xi + α∆xi ≥ xL

i , i ∈ IL;xi + α∆xi ≤ xU
i , i ∈ IU

}
(21)

If x is unbounded but inequality constraints exist, the step lengths for x and λ are chosen the same as
the step length for s. If x is unbounded and there are no inequality constraints, the step lengths for x
and λ are chosen to be 1. In our experiments, additional line search procedures for step lengths, as
described in Bellavia (1998), were not implemented in order to save computational time.

B Proof of Proposition 1

Proof. Step 1. Let δ > 0, suppose that (xk, λk, zk) ∈ Nδ(x
∗, λ∗, z∗) := {(x, λ, z) | ∥(x, λ, z) −

(x∗, λ∗, z∗)∥ < δ}. Define σ := min{σk} and η := min{ηk}, where σk and ηk are chosen to satisfy
the update rule (11) in Bellavia (1998). Then from the Assumption 1:

∥yk∥ ≤ (1 + σk + ηk)∥F0(x
k, λk, zk)∥. (22)

By using the steplength αk obtained from the line search method of Bellavia (1998) and defining:

η̂k = 1− αk
(
1− σk − ηk

)
(23)

we obtain:
∥pk∥ = ∥αkyk∥

= ∥ (1−η̂k)αkyk

1−(1−αk(1−σk−ηk))
∥

= 1−η̂k

1−σk−ηk ∥yk∥
≤ (1− η̂k) 1+σk+ηk

1−σk−ηk ∥F0(x
k, λk, zk)∥

≤ (1− η̂k)Γ∥F0(x
k, λk, zk)∥

(24)

where Γ = 1+ηmax
1−ηmax

, (σk + ηk) ∈ (0, ηmax) and ηmax ∈ (0, 1). Then, there exists a constant Γ
independent of k such that (24) holds, whenever yk is bounded by (1 + σk + ηk)∥F0(x

k, λk, zk)∥.
Hence, from Theorem 3.5 of Eisenstat and Walker (1994), it follows that (xk, λk, zk)→ (x∗, λ∗, z∗).

Step 2. In this step, we aim to prove that the step size αk of the inexact IPM is bounded away from 0.
Given that Assumption 1 is satisfied, it follows that ∥Jkyk + F k∥ and ∥yk∥ are both bounded. Then
we assume the first two equations of F0(x, λ, z) are Lipschitz continuous gradient with constant L.
The remaining proofs are consistent with Theorem 3.2 in Bellavia (1998).

Step 3. The line search method of Bellavia (1998) enables αk to satisfy:

∥F0(x
k+1, λk+1, zk+1)∥ ≤ (1− β(1− η̂k))∥F0(x

k, λk, zk)∥ (25)

14

where β ∈ (0, 1). Therefore {∥F0(x
k, λk, zk)∥} is decreasing and bounded, hence, it is convergent.

Based on Assumption 1, (24) holds. Furthermore, we assume ∥F0(x
k, λk, zk)∥ ̸= 0 and δ is chosen

sufficiently small so that

∥F0(x2, λ2, z2)− F0(x1, λ1, z1)− J(x1, λ1, z1)[(x2 − x1)
⊤, (λ2 − λ1)⊤, (z2 − z1)

⊤]⊤∥
≤ ((1− β)/Γ)∥[(x2 − x1)

⊤, (λ2 − λ1)
⊤, (z2 − z1)

⊤]⊤∥
(26)

is satisfied, whenever (x1, λ1, z1), (x2, λ2, z2) ∈ N2δ(x
∗, λ∗, z∗). Define

S := sup
(x,λ,z)∈Nδ(x∗,λ∗,z∗)

∥F0(x, λ, z)∥, (27)

then based on Lemma 5.1 of Eisenstat and Walker (1994), the loop of backtracking line search of
Bellavia (1998) will terminate with

1− η̂k ≥ min(αk(1− σk − ηk), θδ/(ΓS)) (28)

where θ ∈ (0, 1) is a control parameter. This implies that the series
∞∑
k=0

(1 − η̂k) is divergent. By

applying (25) iteratively, we have

∥F0(x
k, λk, zk)∥ ≤ (1− β(1− η̂k−1))∥F0(x

k−1, λk−1, zk−1)∥
≤ ∥F0(x

0, λ0, z0)∥
∏

0≤j<k

(1− β(1− η̂j))

≤ ∥F0(x
0, λ0, z0)∥exp(−β

∑

0≤j<k

(1− η̂j)).

(29)

Since β > 0 and 1− η̂j ≥ 0, the divergence of series
∞∑
j=0

(1− η̂j) implies ∥F0(x
k, λk, zk)∥ → 0.

C Datasets and Parameter setting

The key hyperparameters for each task, including K, T , and the hidden dimension of LSTM networks,
are listed in Table 4. Generally, IPM-LSTM demonstrates improved performance with larger values
of K and T , although this comes at the cost of increased computational time. Increasing T could
enhance the quality of solutions to the linear system. In this study, K is maintained at the same value
for both training and testing. Further analysis can be found in Appendix D.5.

Table 4: Instance information and hyperparameter settings.

Instance Information Hyperparameters

Source n mineq meq |IL| |IU | K T Hidden dimension

Convex QPs (RHS)

Synthetic

100 50 50 0 0 100 50 50
200 100 100 0 0 100 50 75

Convex QPs (ALL) 100 50 50 0 0 100 50 50
200 100 100 0 0 100 50 100

Convex QCQPs (RHS) 100 50 50 0 0 100 50 50
200 100 100 0 0 100 50 100

Convex QCQPs (ALL) 100 50 50 0 0 100 50 50
200 100 100 0 0 100 50 100

Non-convex Programs (RHS) 100 50 50 0 0 100 50 50
200 100 100 0 0 100 50 75

Non-convex Programs (ALL) 100 50 50 0 0 100 50 50
200 100 100 0 0 100 50 100

qp1

Globallib

50 1 1 50 0 100 50 30
qp2 50 1 1 50 0 100 50 30

st_rv1 10 5 0 10 0 100 50 50
st_rv2 20 10 0 20 0 100 50 50
st_rv3 50 1 0 50 0 100 50 50
st_rv7 30 20 0 30 0 100 50 50
st_rv9 50 20 0 50 0 100 50 50

qp30_15_1_1 Rand_QP 30 15 6 30 30 100 50 50

15

D Experimental Results

D.1 Convex QPs

The performance on convex QPs, including “Convex QPs (RHS)” and “Convex QPs (ALL)”, each
instance with 100 variables, 50 inequality constraints, and 50 equality constraints, is shown in Table 5.
From Table 5, IPM-LSTM provided the best objective value with acceptable constraint violations.

Table 5: Computational results on convex QPs

Method End-to-End IPOPT (warm start) Total
Time (s)↓

Gain
(Ite./ Time) ↑Obj. ↓ Max ineq. ↓ Mean ineq. ↓ Max eq. ↓ Mean eq. ↓ Time (s) ↓ Ite. ↓ Time (s) ↓

Convex QPs (RHS)
OSQP -15.047 0.000 0.000 0.000 0.000 0.002 - - - -
IPOPT -15.047 0.000 0.000 0.000 0.000 0.269 12.2 - - -
DC3 -13.460 0.000 0.000 0.000 0.000 <0.001 10.5 0.227 0.227 13.9%/15.6%
NN -12.570 0.000 0.000 0.350 0.130 <0.001 10.7 0.234 0.234 12.3%/13.0%

DeepLDE 46.316 0.000 0.000 0.007 0.000 <0.001 12.9 0.294 0.294 -5.7%/-9.3%
PDL -14.969 0.011 0.003 0.002 0.000 <0.001 9.5 0.199 0.199 22.1%/26.0%

LOOP-LC -13.628 0.000 0.000 0.000 0.000 <0.001 11.2 0.246 0.246 8.2%/8.6%
H-Proj -11.778 0.000 0.000 0.000 0.000 <0.001 10.7 0.233 0.233 12.3%/13.4%

IPM-LSTM -14.985 0.000 0.000 0.001 0.000 0.045 6.5 0.115 0.160 46.7%/40.5%
Convex QPs (ALL)

OSQP -16.670 0.000 0.000 0.000 0.000 0.002 - - - -
IPOPT -16.670 0.000 0.000 0.000 0.000 0.279 12.4 0.000 0.279 -

IPM-LSTM -16.116 0.000 0.000 0.003 0.001 0.044 8.5 0.157 0.201 31.2%/28.0%

Also, IPM-LSTM achieved the most significant reduction in iterations when the returned primal-dual
solution pair is utilized for warm-starting IPOPT.

D.2 Non-convex QPs

For non-convex QPs (8), all the non-zero elements without any special physical meaning, such as
all zeros or all ones, are multiplied by a value generated from a uniform distribution in the range
[0.8, 1.2]. If the original elements are integers, we will perform an additional rounding operation. We
use “p” and “r” to represent these operations, respectively, and use “c” to denote the case without
perturbation. The detailed perturbation rules for each instance are shown as:

Table 6: Perturbation rules.

Instance Q0 p0 pineq qineq peq qeq xL xU

qp1 p c p p c c c -
qp2 p c p p c c c -

st_rv1 p p r r - - c -
st_rv2 p p r r - - c -
st_rv3 p p r r - - c -
st_rv7 p p r r - - c -
st_rv9 p p r r - - c -

qp30_15_1_1 p p p p p p c c

D.3 Convex QCQPs

The performance on convex QPs, including “Convex QCQPs (RHS)” and “Convex QCQPs (ALL)”,
each instance with 100 variables, 50 inequality constraints, and 50 equality constraints, is shown
in Table 7. From Table 7, IPM-LSTM provided the best objective value with acceptable constraint
violations. Also, IPM-LSTM achieved the most significant reduction in iterations when the returned
primal-dual solution pair is utilized for warm-starting IPOPT.

16

Table 7: Computational results on convex QCQPs

Method End-to-End IPOPT (warm start) Total
Time (s)↓

Gain
(Ite./ Time) ↑Obj. ↓ Max ineq. ↓ Mean ineq. ↓ Max eq. ↓ Mean eq. ↓ Time (s) ↓ Ite. ↓ Time (s) ↓

convex QCQPs (RHS)
IPOPT -18.761 0.000 0.000 0.000 0.000 0.287 12.3 - - -

NN -1.931 0.000 0.000 0.439 0.141 <0.001 12.2 0.285 0.285 0.8%/0.7%
DC3 -14.111 0.000 0.000 0.000 0.000 <0.001 10.6 0.244 0.244 13.8%/15.8%

DeepLDE -10.331 0.000 0.000 0.000 0.000 <0.001 11.2 0.282 0.282 8.9%/1.7%
PDL -15.311 0.006 0.000 0.005 0.002 <0.001 10.1 0.227 0.227 17.9%/20.9%

H-Proj -15.450 0.000 0.000 0.000 0.000 <0.001 10.8 0.247 0.247 12.2%/13.9%
IPM-LSTM -18.654 0.000 0.000 0.000 0.000 0.051 7.6 0.163 0.213 38.2%/25.8%

convex QCQPs (ALL)
IPOPT -21.849 0.000 0.000 0.000 0.000 0.253 11.8 - - -

IPM-LSTM -21.200 0.000 0.000 0.001 0.001 0.049 7.4 0.124 0.173 37.3%/31.6%

D.4 A Simple Non-convex Program

min
x∈Rn

1

2
x⊤Q0x+ p⊤0 sin(x)

s.t. p⊤j x ≤ qj j = 1, · · · , l
p⊤j x = qj j = l + 1, · · · ,m
xL
i ≤ xi ≤ xU

i i = 1, · · · , n

(30)

The performance on simple non-convex programs (30), including “Non-convex Programs (RHS)” and
“Non-convex Programs (ALL)”, each instance with 100/200 variables, 50/100 inequality constraints,
and 50/100 equality constraints, is shown in Table 8. From this table, IPM-LSTM provided the best
objective value with acceptable constraint violations. Also, IPM-LSTM achieved the most significant
reduction in iterations when the returned primal-dual solution pair is utilized for warm-starting
IPOPT.

Table 8: Computational results on non-convex programs

Method End-to-End IPOPT (warm start) Total
Time (s)↓

Gain
(Ite./ Time) ↑Obj. ↓ Max ineq. ↓ Mean ineq. ↓ Max eq. ↓ Mean eq. ↓ Time (s) ↓ Ite. ↓ Time (s) ↓

Non-convex Programs (RHS): n = 200,mineq = 100,meq = 100

IPOPT -22.375 0.000 0.000 0.000 0.000 0.717 13.1 - - -
DC3 -20.671 0.000 0.000 0.000 0.000 <0.001 10.9 0.603 0.603 16.8%/15.9%
NN -20.736 0.000 0.000 0.632 0.235 <0.001 11.0 0.607 0.607 16.0%/20.7%

DeepLDE -20.074 0.000 0.000 0.000 0.000 <0.001 10.5 0.576 0.576 19.8%/19.7%
PDL -21.859 0.589 0.167 0.026 0.000 <0.001 10.9 0.600 0.600 16.8%/16.3%

LOOP-LC -21.932 0.000 0.000 0.000 0.000 <0.001 10.2 0.558 0.558 22.1%/22.2%
H-Proj -19.097 0.000 0.000 0.006 0.000 <0.001 11.5 0.634 0.634 12.2%/11.6%

IPM-LSTM -22.213 0.000 0.000 0.002 0.001 0.175 9.5 0.533 0.708 27.5%/1.3%

Non-convex Programs (ALL): n = 200,mineq = 100,meq = 100

IPOPT -25.1043 0.000 0.000 0.000 0.000 0.768 14.3 - - -
IPM-LSTM -20.288 0.000 0.000 0.006 0.002 0.195 12.1 0.639 0.834 15.4%/-8.6%

Non-convex Programs (RHS): n = 100,mineq = 50,meq = 50

IPOPT -11.590 0.000 0.000 0.000 0.000 0.289 12.9 - - -
DC3 -10.660 0.000 0.000 0.000 0.000 <0.001 11.6 0.259 0.259 11.6%/10.4%
NN -10.020 0.000 0.000 0.350 0.130 <0.001 11.4 0.253 0.253 11.6%/12.5%

DeepLDE 4.870 0.000 0.000 0.008 0.000 <0.001 13.1 0.294 0.294 -1.6%/-1.7%
PDL -11.385 0.006 0.002 0.001 0.000 <0.001 9.6 0.207 0.207 25.6%/28.4%

LOOP-LC -11.296 0.000 0.000 0.000 0.000 <0.001 10.1 0.217 0.217 21.7%/24.9%
H-Proj -9.616 0.000 0.000 0.000 0.000 <0.001 11.3 0.252 0.252 12.4%/12.8%

IPM-LSTM -11.421 0.000 0.000 0.002 0.001 0.044 8.9 0.181 0.225 31.0%/22.1%

Non-convex Programs (ALL): n = 100,mineq = 50,meq = 50

IPOPT -12.508 0.000 0.000 0.000 0.000 0.305 13.2 - - -
IPM-LSTM -12.360 0.000 0.000 0.001 0.000 0.044 8.0 0.149 0.193 39.4%/36.7%

D.5 Performance Analysis

D.5.1 The Number of LSTM Time Steps

The number of LSTM time steps T is a key hyperparameter which decides the performance-efficiency
trade-off of IPM-LSTM. To illustrate this, we conduct experiments on a convex QP (RHS) problem

17

with 100 variables, 50 inequality constraints, and 50 equality constraints, investigating the quality of
approximate solutions under different LSTM time step settings. As shown in Table 9, the IPM-LSTM
with deeper LSTM architectures generally yields better approximate solutions (with lower objective
values, smaller constraint violation and better warm-start performance) but with longer computational
time. Specifically, the IPM-LSTM with 60 and 70 time steps achieves most significant reductions
in warm-starting iteration count and total runtime, respectively. However, taking into account the
end-to-end solution time, we have opted to set T to 50 in our experiments. At each IPM iteration,
as the LSTM network depth increases, ∥Jkyk + F k∥ decreases (see Figure 5(a)). This indicates
an improvement in the quality of solutions to the linear systems. Furthermore, the corresponding
IPM-LSTM converges faster (e.g., fewer IPM iterations) when the LSTM network becomes deeper
(see Figure 4).

Table 9: Computational results on convex QPs (RHS) under different LSTM time steps.

T
End-to-End IPOPT (warm start) Total

Time (s)↓
Gain

(Ite./ Time) ↑Obj. ↓ Max ineq. ↓ Mean ineq. ↓ Max eq. ↓ Mean eq. ↓ Time (s) ↓ Ite. ↓ Time (s) ↓
10 -12.740 0.000 0.000 0.006 0.002 0.014 9.7 0.203 0.217 20.5%/19.3%
20 -14.615 0.000 0.000 0.003 0.001 0.021 8.5 0.171 0.192 30.3%/28.6%
30 -14.753 0.000 0.000 0.002 0.001 0.029 8.0 0.155 0.184 34.4%/31.6%
40 -14.897 0.000 0.000 0.003 0.001 0.037 7.1 0.130 0.167 41.8%/37.9%
50 -14.985 0.000 0.000 0.001 0.000 0.045 6.5 0.115 0.160 46.7%/40.5%
60 -15.021 0.000 0.000 0.001 0.000 0.055 6.1 0.099 0.154 50.0%/42.7%
70 -15.026 0.000 0.000 0.000 0.000 0.064 6.0 0.100 0.164 50.8%/39.0%
80 -15.012 0.000 0.000 0.000 0.000 0.073 6.2 0.106 0.179 49.2%/33.4%
90 -14.960 0.000 0.000 0.000 0.000 0.081 6.6 0.117 0.198 45.9%/26.4%

0 20 40 60 80 100

IPM iteration

−15

−10

−5

0

5

10

15

O
b
je
ct
iv
e
va
lu
e

T = 10

T = 20

T = 30

T = 40

T = 50

T = 60

T = 70

T = 80

T = 90

Optimal value

Figure 4: The objective values returned by IPM-LSTM at each IPM iteration on a convex QP (RHS).

D.5.2 Linear System Solutions

In order to provide an more specific presentation of how accurately the LSTM performs, we report
the detailed values of Figure 3(a) in Table 10. We can conclude that, ∥Jkyk + F k∥ is roughly in the
same order of magnitude as η[(zk)⊤xk]/n at each IPM iteration. To reveal the relationship between
the error of the linear system solution ∥Jkyk + F k∥ and the LSTM time steps, hidden dimensions,
training sizes and test sizes, we conduct experiments on representative convex QP (RHS) problems
with 100 variables, 50 inequality constraints, and 50 equality constraints, and the results are included
in Figure 5.

• In Figure 5(a), with the number of LSTM time steps increasing, ∥Jkyk + F k∥ decreases.
• In Figure 5(b), we consider LSTMs with 25, 50, 75, and 100 hidden dimensions and find

that an LSTM with a hidden dimension of 50, as used in our manuscript, generally performs
the best (e.g., the smallest ∥Jkyk + F k∥).

• In Figure 5(c), a larger training set is more beneficial for model training. The training set
size in our experiment is 8,334, and the error in solving the linear system ∥Jkyk + F k∥ is
smaller compared with the case of 4,000 or 6,000 training samples.

18

• As shown by Figure 5(d), the number of samples in the test set does not affect the perfor-
mance of LSTM for solving linear systems.

Table 10: The detailed values of Figure 3(a).

IPM Ite. ∥Jkyk + F k∥ η[(zk)⊤xk]/n

1 2.396 0.900
10 0.154 0.255
20 0.104 0.124
30 0.073 0.073
40 0.052 0.047
50 0.040 0.031
60 0.032 0.021
70 0.027 0.013
80 0.024 0.008
90 0.022 0.006

100 0.020 0.005

0 20 40 60 80 100

IPM iteration

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

lo
g
(∥ ∥ J

k
y
k
+
F

k
∥ ∥)

T = 10

T = 20

T = 30

T = 40

T = 50

T = 60

T = 70

T = 80

T = 90

(a) LSTM time steps

0 20 40 60 80 100

IPM iteration

−1.5

−1.0

−0.5

0.0

0.5

lo
g
(∥ ∥ J

k
y
k
+
F

k
∥ ∥)

Hidden dimension 25

Hidden dimension 50

Hidden dimension 75

Hidden dimension 100

(b) Hidden dimension

0 20 40 60 80 100

IPM iteration

−1.5

−1.0

−0.5

0.0

0.5

lo
g
(∥ ∥ J

k
y
k
+
F

k
∥ ∥)

Training size 4000

Training size 6000

Training size 8334

(c) Training size

0 20 40 60 80 100

IPM iteration

−1.5

−1.0

−0.5

0.0

0.5

lo
g
(∥ ∥ J

k
y
k
+
F

k
∥ ∥)

Test size 400

Test size 833

Test size 1000

Test size 2000

(d) Test size

Figure 5: The relationship between the error of the linear system solution with different parameter
settings of LSTM.

We take the log of the y-axis in Figure 3(a) and plot it in Figure 6(a). Roughly speaking, ∥Jkyk +
F k∥ is smaller than η[(zk)⊤xk]/n in the first 40 IPM iterations, while ∥Jkyk + F k∥ surpasses
η[(zk)⊤xk]/n in the later IPM iterations. We increase the number of LSTM time steps and report the
computational results in Figure 6(b). From Figure 6, we can claim that with the number of LSTM
time steps increasing, ∥Jkyk + F k∥ becomes smaller.

0 20 40 60 80 100

IPM iteration

−2.0

−1.5

−1.0

−0.5

0.0

0.5

log(
∥∥Jkyk + F k

∥∥)
log(η

[
(zk)⊤xk

]
/n)

(a) IPM-LSTM (100, 50)

0 20 40 60 80 100

IPM iteration

−2.5

−2.0

−1.5

−1.0

−0.5

0.0
log(

∥∥Jkyk + F k
∥∥)

log(η
[
(zk)⊤xk

]
/n)

(b) IPM-LSTM (100, 90)

Figure 6: Equation (5) under different LSTM time steps. The first number in the parentheses denotes
the number of IPM iterations, while the second one represents the number of LSTM time steps.

D.5.3 Condition Numbers

The LSTM approach for solving linear systems is negatively affected by their large condition numbers.
To demonstrate this, we consider the least squares problem

min
y∈Rl

ϕ(y) :=
1

2

∥∥Jky + F k
∥∥2 (31)

19

We utilize a first-order method (e.g., steepest descent method) to minimize ϕ(y) and achieve a linear
convergence rate (Nocedal and Wright, 1999), i.e.,

ϕ
(
yt+1

)
− ϕ (y⋆) ≤

(
1− 2

(κ (Jk))
2
+ 1

)2 (
ϕ
(
yt
)
− ϕ (y⋆)

)
(32)

As we discussed in Section 3.3, since solving linear systems via LSTM networks emulates iterative
first-order methods, thus the value of κ

(
Jk
)

affects the performance of LSTM networks. However,
LSTM networks can empirically achieve a faster convergence rate than traditional first-order algo-
rithms when solving the same least squares problems as shown in the computational studies (Section
3.1) of Andrychowicz et al. (2016). In order to alleviate the effect of large condition numbers, as
discussed in Section 3.3, we have employed preconditioning techniques. To illustrate its effect, we
conduct experiments on the simple non-convex programs, and report κ

(
Jk
)

and their values after
preconditioning (in parantheses) across several IPM iterations (e.g., 1st, 10th, 20th, 50th, 100th) in
Table 11. We can conclude that the condition numbers κ

(
Jk
)

remain within reasonable magnitudes
even during the later IPM iterations, and are significantly reduced after applying the preconditioning
technique.

Table 11: The condition numbers of simple non-convex programs in IPM iteration process.

Instance 1st 10th 20th 50th 100th

Non-convex Programs (RHS) (100, 50, 50) 53.8 (59.8) 126.2 (580.7) 153.1 (711.2) 208.7 (1004.8) 348.4 (1860.1)
Non-convex Programs (ALL) (100, 50, 50) 55.4 (59.8) 113.6 (517.0) 139.8 (658.5) 214.0 (1190.9) 329.2 (1859.9)

Non-convex Programs (RHS) (200, 100, 100) 91.5 (99.8) 157.1 (1114.0) 205.8 (1441.1) 326.2 (2398.3) 488.3 (3667.8)
Non-convex Programs (ALL) (200, 100, 100) 72.1(75.7) 175.4 (1143.4) 184.5 (1352.7) 249.5 (2016.6) 368.4 (3015.3)

20

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Please refer to Abstract and Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please refer to Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

21

Justification: Please refer to Section 3.2 and Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please refer to Section 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

22

Answer: [Yes]

Justification: Please refer to Section 4.1 for data. Our code will be available to public once
our work is accepted, as mentioned in Section 1.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please refer to Section 4.1 and Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Please refer to Section 4.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research presented in this paper adheres to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There are many potential societal consequences of our work, none of which
we feel must be specifically highlighted here.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

24

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper does not present any such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Please refer to Section 4.1.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

25

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve any crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve any crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

26

	Introduction
	Related Works
	Approach
	The Classic IPM
	Approximating Solutions to Linear Systems
	The IPM-LSTM Approach
	Two-Stage Framework

	Experiments
	Experimental Settings
	Computational Results
	Performance Analysis of IPM-LSTM

	Limitations and Conclusions
	Implementation Details
	Proof of Proposition 1
	Datasets and Parameter setting
	Experimental Results
	Convex QPs
	Non-convex QPs
	Convex QCQPs
	A Simple Non-convex Program
	Performance Analysis
	The Number of LSTM Time Steps
	Linear System Solutions
	Condition Numbers

