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Abstract

Multi-Modal Learning (MML) aims to learn ef-
fective representations across modalities for ac-
curate predictions. Existing methods typically
focus on modality consistency and specificity to
learn effective representations. However, from a
causal perspective, they may lead to representa-
tions that contain insufficient and unnecessary in-
formation. To address this, we propose that effec-
tive MML representations should be causally suf-
ficient and necessary. Considering practical issues
like spurious correlations and modality conflicts,
we relax the exogeneity and monotonicity assump-
tions prevalent in prior works and explore the
concepts specific to MML, i.e., Causal Complete
Cause (C3). We begin by defining C3, which
quantifies the probability of representations being
causally sufficient and necessary. We then dis-
cuss the causal identifiability of C3 and introduce
an instrumental variable to support identifying
C3 with non-exogeneity and non-monotonicity.
Building on this, we conduct the C3 measure-
ment, i.e., C3 risk. We propose a twin network
to estimate it through (i) the real-world branch:
utilizing the instrumental variable for sufficiency,
and (ii) the hypothetical-world branch: applying
gradient-based counterfactual modeling for neces-
sity. Theoretical analyses confirm its reliability.
Based on these results, we propose C3 Regular-
ization, a plug-and-play method that enforces the
causal completeness of the learned representa-
tions by minimizing C3 risk. Extensive experi-
ments demonstrate its effectiveness.
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1. Introduction
The initial inspiration for artificial intelligence is to imitate
human perceptions which are based on different modalities
(Jordan & Mitchell, 2015; Mahesh, 2020), e.g., sight, sound,
and touch. Each modality provides unique information with
distinct statistical properties (Baltrušaitis et al., 2018; Wang
et al., 2023c). A fundamental aspect of human perception
is the ability to simultaneously integrate data from different
modalities to understand the world (Xu et al., 2023). Multi-
modal learning (MML) (Huang et al., 2021a; Ge et al., 2023)
has emerged as a promising approach to emulate human sen-
sory perception. It aims to learn good representations from
multiple modalities that can achieve accurate decisions.

In this context, a key question arises: what defines a “good”
MML representation? Existing methods typically define
good MML representations from two perspectives: modal-
ity consistency and modality specificity (Zhang et al., 2023a;
Ge et al., 2023; Radford et al., 2021; Fan et al., 2024; Dong
et al., 2024). The former emphasizes extracting modality-
shared semantics related to primary events within the MML
task. This type of method (Liang et al., 2022a; Xia et al.,
2024; Abdollahzadeh et al., 2021) aims to obtain unified
representations by mapping features from different modal-
ities into a common embedding space. In contrast, the
second perspective believes modality specificity captures
the distinct statistical properties of each modality, reflecting
different aspects of the primary events. This type of method
(Dong et al., 2024; Yang et al., 2022; Frost et al., 2015;
Zhou et al., 2021) decomposes features within each modal-
ity into modality-specific and modality-shared components,
learning all shared components while applying distance con-
straints on modality-specific features to enhance diversity.

However, from a causal perspective (Ahuja et al., 2020;
Koyama & Yamaguchi, 2020), these methods may result in
the learned representations being insufficient or unnecessary.
Specifically, sufficiency indicates that the use of the repre-
sentations will establish the label, while necessity indicates
that the label becomes incorrect when the representations
are absent (Pearl, 2009). Figure 1 provides an example. If
the MML model only focuses on causal sufficiency, it will
lose important modality-specific semantics, affecting gener-
alization; if the model only focuses on causal necessity, the
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“duck paws” 
sufficient 

but 
unnecessary

“wings” 
necessary 

but 
insufficient

Training Testing

A duck is standing on a 
hard surface with  striking 

orange webbed paws… 

A duck is flying with its 
wings spread and striking 
orange webbed paws…

A duck is swimming in 
the lake with its wings 
folded, the feathers … 

A little bird flying with its 
wings spread, it has blue 

feathers and dark green…

Figure 1: Example of causal sufficiency and necessity in
“duck” classification task (See Section 2 for more analyses).

decisions may be made incorrectly based on the background,
affecting discriminability. Correspondingly, considering the
aforementioned two types of MML methods: (i) those fo-
cused on modality consistency may cause the model to
overlook important modality-specific semantics; (ii) those
focused on modality specificity may incorrectly capture ir-
relevant information. Thus, existing MML methods (Dong
et al., 2024; Lu et al., 2022) without causal constraints may
fail to satisfy sufficiency and necessity, affecting model per-
formance. The experiments in Section 6.2 further prove this
(Figure 3 and Table 1): (i) the representations learned by
existing methods have much lower correlation scores with
sufficient and necessary causes than the proposed method
with causal constraints; (ii) after constraining the learned
representations, the performance of existing methods are
significantly improved. The analyses in Section 4 also em-
phasize the importance of causal sufficiency and necessity.
Thus, inspired by (Pearl, 2009; Yang et al., 2024), we pro-
pose that a good MML representation must be both causally
sufficient and necessary, i.e., causally complete.

Noticeably, in practical MML applications, constraining the
causal sufficiency and necessity of learned representations
remains challenging. Specifically, the related discussion in
existing works (Yang et al., 2024; Pearl, 2009) is based on
the exogeneity and monotonicity assumptions (Definition
D.1 and Definition D.2 in Appendix D.3). Exogeneity
refers to the scenario where the influence of the external
intervention on the conditional distributions is negligible
when the causal representation variable is exogenous rela-
tive to the label variable, while monotonicity illustrates the
consistent, unidirectional effect on the label of the represen-
tation. However, in practice, non-trivial corner cases often
arise: the inseparability of MML semantics leads to spurious
correlations (Figure 2), and cross-modal conflicts combined
with high-dimensional nonlinear interactions (Huang et al.,

2021b; Wang et al., 2024) undermine monotonicity. These
challenges render the conditions of traditional causal suffi-
ciency and necessity discussion inapplicable.

To address this, in this paper, we relax the above assump-
tions to explore the causal sufficiency and necessity in MML,
ensuring the quality of the learned representation. Firstly,
we propose the definition of causal sufficiency and necessity,
i.e., causal complete causes (C3), for MML based on (Pearl,
2009). It reflects the probability that the learned represen-
tation is causally complete by estimating the probability
of label change after an intervention on the representation,
given two conditions of observations. One condition is for
sufficiency, and another is for necessity. Then, we analyze
the causal identifiability of C3, which allows us to quantify
C3 using the observable data in practice. Unlike previous
studies, we propose an instrumental variable to ensure esti-
mating the segmented effect of C3 without spurious correla-
tions, thereby relaxing the assumptions of exogeneity and
monotonicity. Based on this, we propose the measurement
of C3 using the twin network, i.e., C3 risk, where a low
C3 risk means that the learned representations are causally
complete with high confidence. The challenge of C3 mea-
surement lies in eliminating the spurious correlations in the
sufficiency evaluation and modeling the counterfactual data
required for the necessity evaluation. The proposed twin
network addresses this through (i) the real-world branch: us-
ing the proposed instrumental variable to eliminate spurious
correlations in the representation, and (ii) the hypothetical-
world branch: using provable gradient-based adjustments
to model the counterfactuals. Through theoretical analyses,
we prove the reliability of the twin network and provide
the performance guarantee of the C3 risk. Based on these
theoretical results, we propose Causal Complete Cause Reg-
ularization (C3R), a plug-and-play method to learn causal
complete representations by constraining their C3 risks.

The main contributions are as follows: (i) We propose
the definition, identifiability, and measurement of the causal
complete cause (C3) concept for MML without the assump-
tions of exogeneity and monotonicity. These results provide
an effective way, i.e., C3 risk, to estimate the sufficiency
and necessity of the learned representation for robust and ac-
curate MML (Section 3). (ii) We theoretically demonstrate
the effectiveness and reliability of the proposed C3 risk. In-
spired by this, we propose C3R, which can be applied to any
MML model to learn causal complete representations with
low C3 risk (Sections 4 and 5). (iii) Finally, we conduct
extensive experiments on various datasets that prove the
effectiveness and robustness of C3R (Section 6).

2. Problem Analysis
Problem Settings Let X , Y , and Z represent the input
space, label space, and latent space, respectively. Consider
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a MML task involving data (x, y) ∈ X × Y , where x ∈
X denotes the sample and y ∈ Y denotes the label. All
the data are sampled from the same joint distribution PXY

over X × Y . The training dataset is defined as Dtr =
{(xi, yi)}Ni=1, and the testing dataset is defined asDte. Here,
each sample xi = {x(1)

i , . . . , x
(K)
i } contains K modalities.

The objective of MML is to obtain a robust model fθ =W◦
g that performs well on the unseen test dataset Dte. Here,
the g : X → Z is the feature extractor andW : Z → Y is
the classifier. The specific implementation is illustrated in
Appendix G, and the table of notations is shown in Table 4.

From the perspective of data generation (Suter et al., 2019;
Hu et al., 2022b), each sample is considered to be generated
using a set of generating factors, e.g., color, shape, etc.
In the context of MML, each sample contains generating
factors from all modalities. From a causal perspective (Pearl,
2009), these generating factors can be divided into task-
related factors, i.e., causal factors Fc, and task-independent
factors, i.e., non-causal factors Fs. Among them, the causal
factors are related to the task label, supporting accurate
predictions (Deshpande et al., 2022). Thus, the goal of fθ
can be re-established as learning representations that contain
all causal generating factors Fc from the data without Fs.

Example of Causal Sufficiency and Necessity As shown
in Figure 1, assume the goal of this MML task is to classify
the “duck”, the analysis is conducted under specific task
and data conditions. The training data of this task contains
three modalities, i.e., image, text, and audio, and all the
modalities have the feature “duck paws”. Then, the models
that learn representations based on consistency may capture
the features of “duck paws”, and can establish the label
“duck” based on “duck paws”. However, the model may
make errors in another “duck” scenario where the MML
samples do not contain “duck paws”, e.g., “duck swims on
the lake” (upper right in Figure 1). This suggests that the
learned representation contains sufficient but unnecessary
causes: the label “duck” can be predicted using the current
representation (Line 1 Left), but may not work in another
scenario (Line 1 Right). Similarly, the models may also
learn necessary but insufficient representations, e.g., the rep-
resentations with feature “wings”. Take the Line 2 of Figure
1 as an example, “duck” must have “wings”, but the samples
with “wings” may also correspond to another label, e.g.,
“bird” (lower of Figure 1), leading to incorrect predictions.
Under this context, a sufficient and necessary feature can be
“flat duck bill” as its presence indicates “duck” and every
“duck” sample includes it. Briefly, for sufficient and neces-
sary causes, they ensure that the learned representations not
only reflect the features targeted the “duck” label, but also
the features that the “duck” label must have. Thus, a good
representation must have both causal sufficiency and neces-
sity, i.e., causal complete causes, for accurate and robust

Y

𝐹𝑐

𝐹𝑠

X X

𝐹𝑐

𝐹𝑠

Y

observable variable

unobservable variable

true correlations

spurious correlations

Figure 2: Structural Causal Model (SCM) for MML. Left:
causal generating mechanism, Right: the learning process.

prediction. This is also the goal we explore in this study.
More analyses are provided in Appendix D.2.

Causal Analysis of MML We construct a Structural
Causal Model (SCM) for MML based on the causal generat-
ing mechanism (Suter et al., 2019; Deshpande et al., 2022)
in Figure 2 left. In this SCM, Y and X denote the label vari-
able and corresponding generated data variable in the MML
task. Fc and Fs represent the distinct sets of generating
factors that are causally and non-causally related to Y. Each
generating factor corresponds to a semantic of the MML
task, e.g., color, shape, background, modality indicator, etc.
Since both Fc and Fs represent high-level knowledge of the
data but only Fc is causally related to Y, we could naturally
define the MML task label variable Y as the cause of the
Fc, i.e., Y→ Fc. There is no connection between Fs and Y.
Following (Hu et al., 2022a; Deshpande et al., 2022), the
sample in each modality is generated simultaneously using
all the generating factors, including factors caused from
the label and unobservable variables, e.g., environmental
effects. The unobservable variable results in the generating
factors Fs, which are non-causally related to Y. Then, we
get both Fc → X and Fs → X. Thus, we obtain Figure 2
left. Based on this, we further construct an SCM to discuss
the learning process of MML, as shown in Figure 2 right.
It can be viewed as the inverse process of the causal gener-
ating mechanism. Based on Figure 2 left, an ideal MML
model should only utilize causal generating factors Fc and
be invariant to any intervention on non-causal generating
factors Fs. However, in practice, Fc and Fs in the learned
representation may be coupled (Dong et al., 2024; Li et al.,
2023). This leads to the model potentially learning based on
non-causal Fs. There exist spurious correlations between Fs

and Y, i.e., we get the additional Fs → Y in Figure 2 right.

The presence of spurious correlations leads to inaccuracies
in MML. Specifically, the learned MML representations
may fall into four scenarios: (i) sufficient and necessary:
contains all Fc; (ii) necessary but insufficient: contains part
of Fc; (iii) sufficient but unnecessary: contains all Fc with
Fs; (iv) insufficient and unnecessary: only contains Fs. See
Appendix D and G for more analyses. To ensure accurate
and robust MML, in this paper, we aim to propose a method-
ology that constrains the model to learn representations that
contain only causally sufficient and necessary information.
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3. Causal Complete Cause
To access the learning of causal sufficient and necessary rep-
resentations, in this section, we first provide the definition of
causal sufficiency and necessity in MML, i.e., Causal Com-
plete Cause (C3). Next, we discuss the identifiability of C3,
which ensures the quantification of C3 through observable
data in practice, even in corner cases (non-monotonicity
and non-exogeneity). Finally, we give the measurement of
C3, i.e., C3 risk, to measure the probability of whether the
learned MML representation is causally complete.

3.1. Definition of C3

To learn representations of causal variable Fc for MML
that is with both causal sufficiency and necessity, based on
(Pearl, 2009; Yang et al., 2024), we introduce the concept of
the probability of Causal Complete Cause (C3) as follows:

Definition 3.1 (Probability of Causal Complete Cause (C3)).
Denote that the data and corresponding label variables of
the given multi-modal data distribution are X and Y, while
the variable of the learned MML representation is Z. Let
the specific implementations of representation variable Z as
c and c̄, where c denotes the implementation that results in
the accurate label prediction Y = y, and c̄ ̸= c denotes the
implementation resulting in Y ̸= y. The probability that Z
is the causal complete cause of Y can be defined as:

C3(Z) :=P (Ydo(Z=c) = y | Z = c̄,Y ̸= y)︸ ︷︷ ︸
Sufficiency

P (Z = c̄,Y ̸= y)

+P (Ydo(Z=c̄) ̸= y | Z = c,Y = y)︸ ︷︷ ︸
Necessity

P (Z = c,Y = y),

(1)

where P (Ydo(Z=c) = y | Z = c̄,Y ̸= y) denotes the
probability of Y = y when force Z to be another specific
implementation c via do-operator do(Z = c), when giving
observations Z = c̄ and Y ̸= y with probability P (Z =
c̄,Y ̸= y). Similarly, the second term corresponds to the
case that where the observations are Z = c and Y = y, the
probability of Y becomes incorrect when force Z = c̄.

Definition 3.1 indicates that when Z with a high C3 score,
it has a high probability of being the causal complete cause
of Y. The two terms in Eq.1 correspond to sufficiency and
necessity, respectively. Specifically, the sufficiency term
P (Ydo(Z=c) = y | Z = c̄,Y ̸= y) means that even when
Z = c̄ and Y ̸= y, intervening to set Z = c results in a high
probability of Y = y, indicating that Z = c has a sufficient
causal effect on the occurrence of Y = y. Correspondingly,
for necessity term P (Ydo(Z=c̄) ̸= y | Z = c,Y = y), even
when Z = c and Y = y, intervening to set Z = c̄ results in
Y ̸= y, indicating that Z = c is necessary for the occurrence
of Y = y. Under this condition, the learned representation
can be divided into sufficient but unnecessary causes, neces-

sary but insufficient causes, sufficient and necessary causes,
and insufficient and unnecessary causes (Appendix D.1 for
detailed analyses). We aim to constrain the C3 score of the
learned representation, i.e., extract sufficient and necessary
causes, to achieve robust and accurate MML.

3.2. Causal Identifiability of C3

Since it is difficult to obtain all samples in the multi-modal
data distribution, especially in real systems, e.g., the coun-
terfactual data in the definition of C3 is difficult to obtain
(Kusner et al., 2017; Morgan & Winship, 2015), calculating
the probability of C3 is still a challenging issue. To access
the calculation of C3 based on observable MML data, we
discuss the causal identifiability of C3 in this section.

Identifiability refers to the ability to uniquely infer causal
effects from observable data under given assumptions (Pearl,
2009). For MML settings, it means the causal factors within
the representation Z can uniquely determine the label Y
from the sample X . To ensure reliable estimation, we con-
strain the C3 score of the learned representation Z extracted
from X , ensuring its identifiability. In previous studies (Tian
& Pearl, 2002; Yang et al., 2024), identifying causal proba-
bilities typically assumes that statistical data are derived un-
der exogeneity and monotonicity conditions (Definition D.1
and Definition D.2 in Appendix D.3). Exogeneity refers to
where the external intervention’s impact on the conditional
distribution P (Y|Z) is negligible when the variable Z is
exogenous to Y. This ensures the learned Z to recognize Fc

without being affected by Fs. Monotonicity, on the other
hand, describes the consistent, unidirectional effect of the
representation Z on Y. This ensures that the impact of the
learned Z on the labeling decision will not be reversed as
other factors change. However, in practice, non-trivial cases
often arise: the inseparability of generating factors in the
latent space leads to spurious correlations, i.e., the learned
representations Z contain non-causal Fs (Figure 2); Mean-
while, modality conflicts and the high-dimensional nonlin-
ear interactions (Wang et al., 2024; Huang et al., 2021b) un-
dermine monotonicity. These challenges render traditional
identifiability conditions inapplicable. To address this, we
relax the above assumptions and explore the identifiability
of C3, assessing the calculation of the C3 score.

Consider the effects of spurious correlations, i.e.,
P (Ydo(Z=c)) ̸= P (Y | Z = c), we first relax the exogene-
ity assumption (with definition and analysis in Appendix
D.3). Based on Definition 3.1, we extend Theorem 9.2.15
in (Pearl, 2009) to MML for C3, obtaining:

Theorem 3.2 (Causal Identifiability under Non-Exogeneity).
Given the MML model fθ, where the label variable Y is
influenced by the causal factors Fc and non-causal factors
Fs. Assume fθ satisfy the Positive Markovian assumption
(Tian & Pearl, 2002), the probabilities of C3 (P (Ydo(Z=c) =
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y,Ydo(Z=c̄) ̸= y)) is identifiable and can be estimated via:

C3(Z) = P (Ydo(Z=c))− P (Ydo(Z=c̄)) (2)

where Y is monotonic relative to Z with Ydo(Z=c) = ȳ ∧
Ydo(Z=c) = y is false or Ydo(Z=c̄) = y ∧ Ydo(Z=c) = ȳ is
false, and the model fθ satisfies local invertibility.

Theorem 3.2 establishes that, under the monotonicity con-
dition, C3 can be estimated using observable multi-modal
data, thereby quantifying C3. The local invertibility (Propo-
sition D.3) states that the model can uniquely recover the
distribution of s from the conditional distribution of Y given
its parents Pa(Y ). Specifically, by modeling the effects of
spurious correlations (Fs on Y) as non-causal pathways
in the SCM, interventions with the do-operator, such as
P (Ydo(Z=c)) and P (Ydo(Z=c̄)), facilitates reliable causal ef-
fect estimation. For counterfactual terms (Z = c̄) involved
in the necessity probability, the model fθ imposes locally
reversible constraints to ensure identifiability, as discussed
in (Galles & Pearl, 1998). Under these conditions, the proba-
bility of causal sufficiency C3

su and the probability of causal
necessity C3

ne can be estimated as follows:

C3
su(Z) =

P (Ydo(Z=c))−P (Ydo(Z=c̄))

1−P (Z=c) (3)

C3
ne(Z) =

P (Ydo(Z=c))−P (Ydo(Z=c̄))

P (Z=c) (4)

Next, according to the second paragraph of Subsection 3.2,
considering the cross-modal conflicts with high-dimensional
nonlinear interactions in practice, we relax the assumptions
of monotonicity. The key idea lies in introducing an instru-
mental variable V (Caner & Hansen, 2004) to estimate the
piecewise effects of conditional distributions within the C3

definition. Meanwhile, V satisfies V ⊥⊥ Fs with a control-
lable impact on Fc, i.e., V → Fc → Y. Then, we have:
Theorem 3.3 (Causal Identifiability under Non-Monotonic-
ity and Non-Exogeneity). Given fθ that learns the causal
effect Z→ Y. The representation variable Z = ΞcFc+ΞsFs

where Ξ(·) is the weight matrix. Introducing an instrumental
variable V satisfying P (Y | Z, V ) ≈ P (Y | Z), we have:

C3(Z) =
∫
v

[
P (Y = y | Z = c, V = v)

− P (Y = y | Z = c̄, V = v)
]
P (V = v) dv.

(5)

Theorem 3.3 posits that the estimation of C3 is achievable
without the dependence on exogeneity and monotonicity, en-
abling the quantification of C3 in the absence of counterfac-
tual data. The detailed discussion is provided in Appendix
D.3, and the proofs of the above theorems are provided in
Appendix A.1 and A.2, respectively. According to this
theorem, the practical estimation of C3 hinges on how the
instrumental variable V is modeled and how the sufficiency
and necessity terms of C3 are constrained under V , also the
main focus in the next subsection, i.e., measurement of C3.

3.3. Measurement of C3

Based on Definition 3.1 and Theorem 3.3, we provide the
measurement of C3 in this section, i.e., C3 risk, to estimate
the C3 score of the representation distribution P (Z|X = x)
inferred from X on the multi-modal data distribution PXY .
When the learned representation obtains less necessary and
sufficient information, the C3 risk will be higher. Specifi-
cally, we first model the instrumental variable V based on
Theorem 3.3. It aims to make the MML model learn rep-
resentations Z that only contain the causal factors Fc for
decision-making while ensuring the identifiability of the C3

score assessment (Theorem 3.4). Next, based on Defini-
tion 3.1, we provide the C3 measurement of the learned Z,
i.e., C3 risk (Theorem 3.5). We employ a twin network
(Figure 5) with a real-world branch (extract causal repre-
sentation using the proposed instrumental variable) and a
hypothetical-world branch (modeling counterfactual data
with gradient-based adjustments), thereby modeling the suf-
ficiency and necessity terms. Appendix D.4 establishes the
reliability of the proposed twin network.

Firstly, as shown in Section 2, we establish the model
fθ using the feature extractor g and the linear classifier
W : Rd → Y on the overall representation Z = g(X)
(Z = ΞcFc+ΞsFs) to obtain the label Y = sign(W⊤g(X)).
To infer Fc from observable data x ∼ X , we use the instru-
mental variable V . Here, we focus on how V is modeled
to constrain Z only contains Fc for decision-making while
satisfying the conditions in Theorem 3.3. We propose:

Theorem 3.4 (Instrumental Variable V in MML). For mul-
timodal input X ∈ RK×d, representing K modalities each
with a feature dimension of d, instrumental variable V is
introduced to extract causal generating factors Fc while
reducing the influence of non-causal factors Fs. V is gener-
ated from X using self-attention mechanism with:

V =

K∑
j=1

exp(sij)∑K
k=1 exp(sik)

XjWV ,

where sij =
q⊤i kj√

d
− α∥qi − kj∥2.

(6)

where qi = XiWQ and kj = XjWK are the query and key
of i-th and j-th modalities’ features, WQ,WK ,WV ∈ Rd×d

are linear projection matrices, mapping query, key and value
respectively. Then, V satisfies (i) P (Z | V ) ̸= P (Z); (ii)
P (Fs | V ) = P (Fs); and (iii) P (Y | Z, V ) = P (Y | Fc).

In Theorem 3.4, we propose using the self-attention mecha-
nism to model the instrumental variable V for C3. Specifi-
cally, the alignment score sij is to capture inter-modal in-
teractions for labels. Then, by strengthening the correlation
between V and Z, the learned representation Z is guided to
approach Fc while weakening the correlation with Fs. Fur-
thermore, consider inter-modal misalignment, ∥qi − kj∥2
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with weight α is introduced as a distance-based adjustment
to diminish the impact of modalities with large feature dis-
tances on attention weights. It satisfies three conditions: (i)
Relevance: V manipulate Fc; (ii) Independence: V is condi-
tionally independent from Fs; and (iii) Exclusion: the influ-
ence of V on Y is completely indirectly realized through Fc.
The detailed proofs are provided in Appendix A.3.

Next, based on these results, we provide the measurement of
C3, i.e., C3 risk. Specifically, we first utilize V to constrain
fθ, effectively distinguishing Fc from Fs and ensuring the
identifiability of C3 based on Theorem 3.4. Obtaining Zc

that only contains Fc, we then define sufficiency risk (when
Z = c, the label is not y) and necessity risk (when Z = c̄, the
label is y) to construct the C3 risk based on Definition 3.1
and Eq.5. The key challenge lies in the counterfactual data,
i.e., Zc : Z = c̄, is difficult to obtain (Kusner et al., 2017;
Morgan & Winship, 2015). To address this, we propose
a twin network comprising: (i) the real-world branch to
obtain Ẑc with V , and (ii) the hypothetical-world branch
to obtain Zc under a provable gradient-based adjustment,
ensuring Zc stay close to the original observable distribution
(Appendix D.4). These branches share network structures
and parameters, maintaining a mirrored correspondence that
enforces causal consistency (Pearl, 2009). Thus, we get:
Theorem 3.5 (C3 Risk). Given N observable samples
{(xi, yi)}Ni=1 drawn from the multi-modal distribution
PXY , and the model fθ with feature extractor g(·) and
linear classifierW , we define the following twin-network:

Ẑc,i = g∗(xi, vi), Zc,i = Ẑc,i +∆i,

where ∆i = −∇Ẑc,i
ℓ
(
σ(W⊤Ẑc,i), yi

)
,

s.t. µKL(Zc,i, Ẑc,i) ≤ ε, ∀i,

(7)

where g∗(xi, vi) is the calibrated g with vi using Kull-
back–Leibler divergence µKL(·), i.e., with loss Lv =
E(x,y)∼PXY

Evi∈V µKL(g(x), vi), to estimate the causal rep-
resentation Ẑc,i in the real-world branch, ∆i arises from
the gradient-based intervention with vi ∼ V for the hypo-
thetical world. If fθ converges to an optimal solution under
a Monte Carlo approximation of V , then by using:

R̂C3

= 1
N

∑N
i=1

[
ρ[σ(W⊤Ẑc,i) ̸= yi] + ρ[σ(W⊤Zc,i) = yi]

]
, (8)

the discrepancy between R̂C3

N and the ideal causal com-
plete quantity approaches zero with high probability. Here,
σ denotes the signum function, ρ(·) denotes an indicator
function which is equal to 1 if the condition in ρ(·) is true.

Theorem 3.5 presents a method to measure the causal com-
pleteness of learned representations based on observable
data. It leverages instrumental variables V and a twin net-
work to address the issues of spurious correlations in MML
and the unavailability of counterfactual data in practice. The
detailed proofs and analysis are provided in Appendix A.4.

4. Performance Guarantee with C3 Risk
In this section, we conduct theoretical analyses to establish
the connection between the proposed C3 risk and MML
generalization performance, proving its effectiveness.

Before discussing generalization, we first illustrate the em-
pirical and expectation risks of the MML model fθ on train-
ing and test data, i.e., R̂C3

(fθ) (Eq.8) and RC3

(fθ) =

E(x,y)∼PXY
ρ[σ(W⊤F̂c,i) ̸= yi] + ρ[σ(W⊤Fc,i) = yi].

Then, we provide the following performance guarantee:

Theorem 4.1 (Performance Guarantee via C3). Denote the
hypothesis setH of linear classifierW ∈ H ⊆ {h : Rd →
Y}, let H = Pdim({ℓh : h ∈ H}). Then with probability
at least 1 − δ, and training samples that sampling from
empirical distribution Dtr(x, y), we have

RC3

(fθ) ≤ R̂C3

(fθ) +MR(H) +
√

ln(1/δ)

2H
. (9)

Here, R(H) is the Rademacher complexity of the hypothesis
class H , and M is a finite constant.

Theorem 4.1 derives the upper bound on the generalization
error of C3 risk, relating its empirical error on the training
data to its performance on unseen samples. Specifically, the
generalization error is bounded by the sum of the empirical
error, the Rademacher complexity of the hypothesis class
of the linear classifier, and a confidence term that controls
the probability of exceeding the bound. This result provides
a theoretical performance guarantee for optimizing MML
models with C3 risk. See Appendix A.5 for detailed proofs.

5. Learning Causal Complete Representations
Based on the above theoretical results, we propose a plug-
and-play method, Causal Complete Cause Regularization
(C3R), which is built upon the C3 risk to extract causal
complete representations from observable multi-modal data.

Specifically, we first introduce the constraints of the instru-
mental variable V (Theorem 3.4) to make the MML model
fθ learn causal representations while satisfying the identi-
fiability in practice. Then, we minimize the C3 risk of the
learned representations (Theorem 3.5) to ensure the causal
completeness of the learned representation, i.e., causal suffi-
ciency and necessity. In summary, the objective of C3R is a
combination of the above two-step objectives, which can be
embedded in various MML models. It can be expressed as:

min
fθ

R̂C3

+ λvLv + λfeLfe (10)

where λv and λfe denotes the importance weights, the
three terms: (i) R̂C3

(Eq.8) constrains the model to learn
a causally complete representation, i.e., one that exhibits
minimal sufficiency and necessity risk; (ii) Lv, built upon
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Table 1: Performance comparison when 50% samples are corrupted with Gaussian noise, i.e., zero mean with the variance
of N . “(N, Avg.)” and “(N, Worst.)” denotes the average and worst-case accuracy. The best results are highlighted in bold.

Method NYU Depth V2 SUN RGB-D FOOD 101 MVSA
(0,Avg.) (0,Worst.) (10,Avg.) (10,Worst.) (0,Avg.) (0,Worst.) (10,Avg.) (10,Worst.) (0,Avg.) (0,Worst.) (10,Avg.) (10,Worst.) (0,Avg.) (0,Worst.) (10,Avg.) (10,Worst.)

CLIP (Sun et al., 2023) 69.32 68.29 51.67 48.54 56.24 54.73 35.65 32.76 85.24 84.20 52.12 49.31 62.48 61.22 31.64 28.27
ALIGN (Jia et al., 2021) 66.43 64.33 45.24 42.42 57.32 56.26 38.43 35.13 86.14 85.00 53.21 50.85 63.25 62.69 30.55 26.44
MaPLe (Khattak et al., 2023) 71.26 69.27 52.98 48.73 62.44 61.76 34.51 30.29 90.40 86.28 53.16 40.21 77.43 75.36 43.72 38.82
CoOp (Jia et al., 2022a) 67.48 66.94 49.43 45.62 58.36 56.31 39.67 35.43 88.33 85.10 55.24 51.01 74.26 73.61 42.58 37.29
VPT (Jia et al., 2022a) 62.16 61.21 41.05 37.81 54.72 53.92 33.48 29.81 83.89 82.00 51.44 49.01 65.87 64.98 32.79 29.21
Late fusion (Wang et al., 2016) 69.14 68.35 51.99 44.95 62.09 60.55 47.33 44.60 90.69 90.58 58.00 55.77 76.88 74.76 55.16 47.78
ConcatMML (Zhang et al., 2021) 70.30 69.42 53.20 47.71 61.90 61.19 45.64 42.95 89.43 88.79 56.02 54.33 75.42 75.33 53.42 50.47
AlignMML (Wang et al., 2016) 70.31 68.50 51.74 44.19 61.12 60.12 44.19 38.12 88.26 88.11 55.47 52.76 74.91 72.97 52.71 47.03
ConcatBow (Zhang et al., 2023c) 49.64 48.66 31.43 29.87 41.25 40.54 26.76 24.27 70.77 70.68 35.68 34.92 64.09 62.04 45.40 40.95
ConcatBERT (Zhang et al., 2023c) 70.56 69.83 44.52 43.29 59.76 58.92 45.85 41.76 88.20 87.81 49.86 47.79 65.59 64.74 46.12 41.81
MMTM (Joze et al., 2020) 71.04 70.18 52.28 46.18 61.72 60.94 46.03 44.28 89.75 89.43 57.91 54.98 74.24 73.55 54.63 49.72
TMC (Han et al., 2020) 71.06 69.57 53.36 49.23 60.68 60.31 45.66 41.60 89.86 89.80 61.37 61.10 74.88 71.10 60.36 53.37
LCKD (Wang et al., 2023b) 68.01 66.15 42.31 40.56 56.43 56.32 43.21 42.43 85.32 84.26 47.43 44.22 62.44 62.27 43.52 38.63
UniCODE (Xia et al., 2024) 70.12 68.74 44.78 42.79 59.21 58.55 46.32 42.21 88.39 87.21 51.28 47.95 66.97 65.94 48.34 42.95
SimMMDG (Dong et al., 2024) 71.34 70.29 45.67 44.83 60.54 60.31 47.86 45.79 89.57 88.43 52.55 50.31 67.08 66.35 49.52 44.01
MMBT (Kiela et al., 2019) 67.00 65.84 49.59 47.24 56.91 56.18 43.28 39.46 91.52 91.38 56.75 56.21 78.50 78.04 55.35 52.22
QMF (Zhang et al., 2023c) 70.09 68.81 55.60 51.07 62.09 61.30 48.58 47.50 92.92 92.72 62.21 61.76 78.07 76.30 61.28 57.61

CLIP+C3R 76.54 75.12 56.73 52.90 62.31 58.71 41.59 37.52 92.93 91.80 59.77 57.54 69.61 68.64 39.58 35.89
MaPLe+C3R 77.07 74.45 58.94 55.95 66.21 65.51 40.12 37.34 94.38 93.51 60.63 46.07 81.19 81.51 49.32 45.98
Late fusion+C3R 73.26 71.62 57.21 50.98 64.84 63.25 53.35 50.43 94.09 92.24 65.27 59.02 83.77 79.79 62.14 52.50
LCKD+C3R 77.14 75.12 50.11 47.98 60.97 60.14 47.23 46.21 90.89 90.14 54.48 51.16 66.78 65.67 49.28 42.84
SimMMDG+C3R 75.32 74.61 49.99 47.22 65.50 64.58 52.69 51.70 92.24 91.14 57.32 53.56 73.62 71.01 51.65 51.07
MMBT+C3R 73.74 71.82 54.35 52.57 61.47 59.99 48.42 46.07 94.25 93.90 60.41 60.11 82.76 81.64 62.12 58.93
QMF+C3R 77.58 74.95 59.72 59.18 67.35 65.84 52.26 51.28 94.87 93.79 66.45 63.69 83.13 81.98 66.66 64.51

Table 2: Performance with missing modalities on BraTS. The brackets “()” indicate the effect changes after introducing
C3R. “•” and “◦” indicate the availability and absence of the modality for testing. The best results are highlighted in bold.

Modalities Enhancing Tumour Tumour Core Whole Tumour

Fl T1 T1c T2 HMIS HVED RSeg mmFm LCKD LCKD+C3R HMIS HVED RSeg mmFm LCKD LCKD+C3R HMIS HVED RSeg mmFm LCKD LCKD+C3R

• ◦ ◦ ◦ 11.78 23.80 25.69 39.33 45.48 49.81 (+4.33) 26.06 57.90 53.57 61.21 72.01 76.65 (+4.64) 52.48 84.39 85.69 86.10 89.45 91.62 (+2.17)
◦ • ◦ ◦ 10.16 8.60 17.29 32.53 43.22 49.13 (+6.01) 37.39 33.90 47.90 56.55 66.58 72.18 (+5.60) 57.62 49.51 70.11 67.52 76.48 82.39 (+5.91)
◦ ◦ • ◦ 62.02 57.64 67.07 72.60 75.65 80.50 (+4.85) 65.29 59.59 76.83 75.41 83.02 88.06 (+5.04) 61.53 53.62 73.31 72.22 77.23 81.93 (+4.70)
◦ ◦ ◦ • 25.63 22.82 28.97 43.05 47.19 54.13 (+6.94) 57.20 54.67 57.49 64.20 70.17 77.32 (+7.15) 80.96 79.83 82.24 81.15 84.37 90.78 (+6.41)
• • ◦ ◦ 10.71 27.96 32.13 42.96 48.30 54.16 (+4.86) 41.12 61.14 60.68 65.91 74.58 79.83 (+5.25) 64.62 85.71 88.24 87.06 89.97 93.63 (+3.66)
• ◦ • ◦ 66.10 68.36 70.30 75.07 78.75 82.98 (+4.23) 71.49 75.07 80.62 77.88 85.67 89.74 (+4.07) 68.99 85.93 88.51 87.30 90.47 93.91 (+3.44)
• ◦ ◦ • 30.22 32.31 33.84 47.52 49.01 56.12 (+7.11) 57.68 62.70 61.16 69.75 75.41 82.57 (+7.16) 82.95 87.58 88.28 87.59 90.39 95.48 (+5.09)
◦ • • ◦ 66.22 61.11 69.06 74.04 76.09 81.76 (+5.67) 72.46 67.55 78.72 78.59 82.49 88.32 (+5.83) 68.47 64.22 77.18 74.42 80.10 87.03 (+6.96)
◦ • ◦ • 32.39 24.29 32.01 44.99 50.09 56.03 (+5.94) 60.92 56.26 62.19 69.42 72.75 78.78 (+6.03) 82.41 81.56 84.78 82.20 86.05 92.33 (+6.28)
◦ ◦ • • 67.83 67.83 69.71 74.51 76.01 83.97 (+7.96) 76.64 73.92 80.20 78.61 84.85 93.57 (+8.72) 82.48 81.32 85.19 82.99 86.49 94.40 (+7.91)
• • • ◦ 68.54 68.60 70.78 75.47 77.78 82.94 (+5.06) 76.01 77.05 81.06 79.80 85.24 90.46 (+5.22) 72.31 86.72 88.73 87.33 90.50 95.51 (+5.01)
• • ◦ • 31.07 32.34 36.41 47.70 49.96 56.25 (+6.29) 60.32 63.14 64.38 71.52 76.68 82.69 (+6.01) 83.43 88.07 88.81 87.75 90.46 96.23 (+5.77)
• ◦ • • 68.72 68.93 70.88 75.67 77.48 83.90 (+6.42) 77.53 76.75 80.72 79.55 85.56 92.39 (+6.83) 83.85 88.09 89.27 88.14 90.90 96.78 (+5.88)
◦ • • • 69.92 67.75 70.10 74.75 77.60 82.54 (+4.94) 78.96 75.28 80.33 80.39 84.02 89.43 (+5.41) 83.94 82.32 86.01 82.71 86.73 91.73 (+5.00)
• • • • 70.24 69.03 71.13 77.61 79.33 86.36 (+7.03) 79.48 77.71 80.86 85.78 85.31 91.43 (+6.12) 84.74 88.46 89.45 89.64 90.84 95.41 (+4.57)

Theorem 3.4, employs the instrumental variable V to guide
the model toward the causal representation, correspond-
ing to the real-world branch; (iii) Lfe stems from the
counterfactual construction condition in Eq. 7, specifically
Lfe =

1
N

∑N
i=1 µKL

(
Zc,i, Ẑc,i

)
, ensuring that Ẑc,i remains

within the feasible region. Thus, by minimizing the above
objective, the C3 score of the learned representation will be
higher while maintaining the required conditions for practi-
cal implementations. Then, it makes the learned representa-
tion causally sufficient and necessary with high confidence.

6. Experiments
In this section, we conduct extensive experiments on various
benchmark datasets to verify the effectiveness of C3R. More
details and experiments are provided in Appendix E-H.

6.1. Experimental Settings

Datasets We select six datasets: (i) scenes recognition on
NYU Depth V2 (Silberman et al., 2012) and SUN RGBD
(Song et al., 2015) with RGB and depth images; (ii) image-
text classification on UPMC FOOD101 (Wang et al., 2015)
and MVSA (Niu et al., 2016) with image and text; (iii) seg-
mentation considering missing modalities on BraTS (Menze
et al., 2014; Bakas et al., 2018) with Flair, T1, T1c, and T2;
and (iv) synthetic MMLSynData (see Appendix D.5).

Implementation Details We use a three-layer MLP with
activation functions (Clevert et al., 2016) as the representa-
tion learner. The hidden vector dimensions of each layer are
specified as 64, 32, and 128, while the learned representa-
tion is 64. For optimization, we employ the Adam optimizer
(Kingma & Ba, 2015) with Momentum and weight decay
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Figure 3: Evaluation for the property of learned representa-
tions (SNC, SC, NC, and SP). See Appendix H for details.

With all four modalities (F1, T1, T1c, and T2)

With one missing modality (F1, T1, and T1c)

With two missing modalities (F1 and T1)

With three missing modalities (F1)

Ablation Study on BraTS Whole Tumour with Missing Modalities

Label

Figure 4: Ablation study of C3R (performance when remov-
ing different regular terms). See Appendix H for details.

set at 0.8 and 10−4. The initial learning rate is established
at 0.1, with the flexibility for linear scaling as required. Ad-
ditionally, we use grid search to set the hyperparameters
λv = 0.75 and λfe = 0.4. All experimental procedures
are executed in five runs via NVIDIA RTX A6000 GPUs.
Codes can be found in our Github repository1.

6.2. Results

Performance and robustness analysis To evaluate the ef-
fectiveness of C3R, we record the performance change
across various MML baselines after introducing C3R under
Gaussian noise (for image modality) and blank noise (for
text modality) following (Han et al., 2020; Zhang et al.,
2023d; Ma et al., 2021). We record both the average and
worst-case accuracy. The results are shown in Table 1. We
can observe that C3R achieves stable improvements in both
the average and worst-case accuracy. This proves the supe-
rior effectiveness and robustness of C3R.

When faces the problem of missing modalities Consid-
ering the missing modality issues, we evaluate the perfor-
mance of C3R and several strong baselines (Wang et al.,
2023b; Bakas et al., 2018; Zhang et al., 2022b) on all 15 pos-
sible combinations of missing modalities on BraTS. From
Table 2, we can observe that (i) C3R brings significant per-
formance improvements; (ii) C3R can reduce the learning
gap for the representations on different modal semantics,
i.e., reducing the accuracy gap of learning on the difficult-
to-identify Fl and T1 modalities and the easy T1c. This
demonstrates the superiority of C3R and the advantage of
causally complete representation in missing modality issues.

Learning causal complete representations To evaluate
C3R’s ability to extract causal complete causes, we conduct

1Codes can be found in https://github.com/
WangJingyao07/Multi-Modal-Base

experiments: (i) construct four types of MML data, i.e., suf-
ficient and necessary (SNC), sufficient but unnecessary (SC),
necessary but insufficient causes (NC), and spurious corre-
lations (SP) following (Yang et al., 2024) (see Appendix H
for more details); then (ii) evaluate their correlation with the
learned representation based on the distance metric (Jones
et al., 1995), i.e., the higher the score, the stronger the cor-
relation. The results are shown in Figure 3 (see Appendix
D and H for details). The representations learned by C3R
have a higher correlation with SNC and lower with SP. This
proves that C3R can learn causal complete representations
more effectively, while other methods are hard to achieve.

Ablation Study To evaluate the effect of each item in
C3R (Eq.10), we evaluate the performance change on
LCKD+C3R. We record the performance changes before
and after the model introduced specific terms. We consider
the standard and corner case (missing modality), and con-
duct experiments on FOOD 101 and BraTS. The results are
shown in Figure 4. We can observe that each item plays
an important role. See Appendix H for more experiments,
including the analyses about model efficiency and param-
eter sensitivity. We provide a brief summary about all the
experiments conducted in this paper, as shown in Table 3.

7. Related Work
Multi-modal learning aims to learn good representations
through multiple modalities for accurate prediction. Re-
cently, multiple methods (Xu et al., 2023; Jia et al., 2022b;
Wang et al., 2023c; Fan et al., 2024) have been proposed
to solve MML tasks through modality consistency, e.g.,
tokenize diverse modalities into sequences and utilize Trans-
formers for joint learning (Bao et al., 2022; Wang et al.,
2022), whereas CLIP (Radford et al., 2021; Fan et al., 2024),
ALIGN (Jia et al., 2021), etc. employ distinct encoders
for each modality and utilize contrastive loss to synchro-
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nize features. These methods align features from different
modalities into the same space to capture the primary events.
Another type of work (Jiang et al., 2023; Dong et al., 2024;
Wang et al., 2023a; Wu et al., 2020) proposed to addition-
ally focus on modality specificity. They divide the MML
features into modality-shared and modality-specific compo-
nents and learn separately. However, all these methods may
result in learning insufficient or unnecessary information.
Meanwhile, they rely on strong assumptions like semantic
alignment (Akbari et al., 2021; Wang et al., 2023c; Lu et al.,
2022; Zhang et al., 2023b) and may be limited to ideal data
(Ge et al., 2023; Zhang et al., 2023a), affecting model perfor-
mance. For causal sufficiency and necessity, (Pearl, 2009)
first proposed the related concepts, and (Yang et al., 2024)
applied it to domain generalization with assumptions in an
ideal environment. The differences between our method-
ology and previous causal-related works include problem
settings, theorems, implementations, learning objectives,
etc. (More comparison and analyses are provided in Ap-
pendix D.6). We explore the MML-specific concepts of
causal completeness without strong assumptions, ensuring
the effectiveness of the learned representations.

8. Conclusion
We explore the MML-specific concepts of causal sufficient
and necessary without exogeneity and monotonicity assump-
tions. To measure whether the learned MML representation
is causally complete, we present the definition, identifiabil-
ity, and measurement of C3 with theoretical support. Based
on these results, we propose a plug-and-play method C3R
to promote MML learning causal complete representations.
Extensive experiments demonstrate its effectiveness.
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Appendix
This supplementary material provides results for additional experiments and details to reproduce our results that could not
be included in the paper submission due to space limitations.

• Appendix A provides proofs and further theoretical analysis of the theory in the text.

• Appendix B provides the pseudo-code of incorporating C3R into the MML models.

• Appendix C provides the detailed notations and the corresponding definitions for this work.

• Appendix D provides discussions of how to better understand C3 score, and the three parts of learned invariant
representations, i.e., sufficient but unnecessary, necessary but insufficient, and sufficient and necessary causes.

• Appendix E provides the additional details of the benchmark datasets.

• Appendix F provides the additional details of the baselines for comparision.

• Appendix G provides the additional details of the implementation details.

• Appendix H provides the full results and additional experiments for the evaluation of C3R.

Note that before we illustrate the details and analysis, we provide a brief summary about all the experiments conducted in
this paper, as shown in Table 3.

Table 3: Illustration of the experiments conducted in this work. Note that all experimental results are obtained after five
rounds of experiments.

Experiments Location Results

Performance and robustness analysis Section 6.2 and Appendix H.1 Table 1, Table 6, and Ta-
ble 7

Performance comparison when faces the problem
of missing modalities

Section 6.2 and Appendix H.2 Table 2

Performance of learning causal complete repre-
sentations

Section 6.2, Appendix D.5, and Ap-
pendix H.3

Figure 3 and Figure 6

Ablation Study about the effect of each item in
the C3R objective

Section 6.2 and Appendix H.4 Figure 4

Experiment of model efficiency Appendix H.4 Figure 7

Experiment of parameter sensitivity Appendix H.4 Figure 8 and Figure 9

Visualization of Causal Complete Cause Appendix H.5 Figure 10 and Table 8

Performance When Facing Noise Appendix H.6 Table 9

Role of Distance Loss Appendix H.7 Figure 11

A. Proofs
In this section, we provide the proofs of (i) the C3 identifiability under non-exogeneity (Theorem 3.2), (ii) the C3

identifiability under non-exogeneity and non-monotonicity (Theorem 3.3) (iii) the modeling of instrumental variable Z in
MML (Conditions in Theorem 3.4), (iv) C3 risk with twin network (Theorem 3.5), where the reliability and completeness
of the twin network is demonstrated in Appendix D.4, and (v) the performance guarantee for C3 risk (Theorem 4.1).
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A.1. Proofs of Theorem 3.2

Proof. Based on Definition 3.1, C3(Z) is defined as:

C3(Z) := P
(
Ydo(Z=c) = y | Z = c̄,Y ̸= y

)
· P (Z = c̄,Y ̸= y)

+P
(
Ydo(Z=c̄) ̸= y | Z = c,Y = y

)
· P (Z = c,Y = y)

Expand the conditional probabilities into joint probabilities over marginal probabilities:

P
(
Ydo(Z=c) = y | Z = c̄,Y ̸= y

)
=

P
(
Ydo(Z=c) = y,Z = c̄,Y ̸= y

)
P (Z = c̄,Y ̸= y)

P
(
Ydo(Z=c̄) ̸= y | Z = c,Y = y

)
=

P
(
Ydo(Z=c̄) ̸= y,Z = c,Y = y

)
P (Z = c,Y = y)

Substituting these into C3(Z):

C3(Z) = P
(
Ydo(Z=c) = y,Z = c̄,Y ̸= y

)
+ P

(
Ydo(Z=c̄) ̸= y,Z = c,Y = y

)
Considering that the monotonicity assumption states:

Ydo(Z=c̄) = y ⇒ Ydo(Z=c) = y

This means there are no individuals for whom Y is y under Z = c̄ but changes to ̸= y when Z = c. Therefore:

P
(
Ydo(Z=c̄) = y ∧ Ydo(Z=c) ̸= y

)
= 0

This eliminates the second term in C3(Z):

P
(
Ydo(Z=c̄) ̸= y,Z = c,Y = y

)
= 0

Thus, the simplified C3(Z) becomes:

C3(Z) = P
(
Ydo(Z=c) = y,Z = c̄,Y ̸= y

)
Considering the causal model, Ydo(Z=c) = y can be decomposed into two parts:

• Individuals for whom Y ̸= y when Z = c̄, but Y = y when intervened to Z = c.

• Individuals for whom Y = y when Z = c̄, and Y remains y when intervened to Z = c.

Thus:
P
(
Ydo(Z=c) = y

)
= C3(Z) + P

(
Ydo(Z=c) = y,Ydo(Z=c̄) = y

)
According to the monotonicity assumption:

Ydo(Z=c̄) = y ⇒ Ydo(Z=c) = y

Therefore:
P
(
Ydo(Z=c) = y,Ydo(Z=c̄) = y

)
= P

(
Ydo(Z=c̄) = y

)
Substituting this into the previous equation:

P
(
Ydo(Z=c) = y

)
= C3(Z) + P

(
Ydo(Z=c̄) = y

)
Solving for C3(Z) from the above equation:

C3(Z) = P
(
Ydo(Z=c) = y

)
− P

(
Ydo(Z=c̄) = y

)
This is precisely the formula presented in the theorem.
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A.2. Proofs of Theorem 3.3

Proof. Under spurious correlations and non-monotonicity, one cannot simply take

P (Y | Z = c)− P (Y | Z = c̄)

as a valid measure of causal effect. The key idea lies in introducing an instrumental variable V (Caner & Hansen, 2004) to
estimate conditional distributions and piecewise effects. An instrumental variable V helps “decouple” Fc from unobserved
Fs, allowing us to recover or approximate the true intervention distribution P (Ydo(Z)).

Specifically, if
P (Y | Z, V ) = P (Y | Z),

then V is conditionally independent of Y given Z. By stratifying over V , we can estimate the conditional interventional
distribution and aggregate (integrate) across values of V to obtain the true causal effect.

Recall the key idea in causal inference:

P (Ydo(Z=c) = y) =

∫
v

P
(
Ydo(Z=c) = y

∣∣V = v
)
P (V = v) dV.

Since V is assumed to provide no direct influence on Y aside from through Fc, we can drop the do-operator in the
conditional:

P (Ydo(Z=c) = y) ≈
∫
v

P (Y = y | Z = c, V = v) P (V = v) dv

=

∫
v

P (Y = y | Z = c) P (V = v) dz (if P (Y | Z, V ) = P (Y | Z)).

Likewise,

P (Ydo(Z=c̄) = y) =

∫
v

P (Y = y | Z = c̄, V = v) P (V = v) dv.

Recall the definition of C3:
C3(Z) := P (Ydo(Z=c) = y) − P (Ydo(Z=c̄) = y).

By substituting the integrals,

C3(Z) =
∫
v

P (Y = y | Z = c, V = v)P (V = v) dv

−
∫
v

P (Y = y | Z = c̄, V = v)P (V = v) dv

=

∫
z

[
P (Y = y | Z = c, V = v)− P (Y = y | Z = c̄, V = v)

]
P (V = v) dv.

Thus, we get:

C3(Z) =
∫
v

[
P (Y = y | Z = c, V = v)− P (Y = y | Z = c̄, V = v)

]
P (V = v) dv.

Hence, even under non-monotonicity and non-exogeneity, if there exists an appropriate instrumental variable V satisfying
P (Y | Z, V ) = P (Y | Z), we can stratify on V and integrate out P (V = v) to recover an identifiable estimate for C3(Z).

A.3. Analyses of Theorem 3.4

Proof. In a multimodal learning setting, we denote the causal generating factors across modalities as Fc and the label-
irrelevant interference factors as Fs, and our goal is to construct an auxiliary variable z via a self-attention mechanism. After
training, this z should sufficiently aggregate information from Fc, weaken as much as possible the influence of Fs, and avoid
providing any extraneous intervention pathway for the label Y . Briefly, in this subsection, we illustrate how Z achieve
the three conditions in Theorem 3.4, (i) P (Z | V ) ̸= P (Z); (ii) P (Fs | V ) = P (Fs); and (iii) P (Y | Z, V ) = P (Y | Fc).
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Building upon the earlier stage, we now provide more detailed formulaic explanations, especially regarding how gradients
are computed.

First, we start from the classical self-attention formula. Let

qi = Xi WQ, kj = Xj WK , vj = Xj WV ,

where Xi ∈ Rd represents the input features of the i-th modality, and WQ,WK ,WV ∈ Rd×d are learnable linear projection
parameters. To generate the auxiliary variable z for the i-th modality, we define the scoring function:

sij =
q⊤i kj√

d
− α ∥ qi − kj∥2,

and then apply a Softmax to obtain the attention weights

αij =
exp
(
sij
)∑K

m=1 exp
(
sim
) .

Subsequently, we construct

z =

K∑
j=1

αij (vj)

by taking the weighted sum. In this formulation, Fc can be viewed as the “common dimension” across all modalities that are
strongly correlated with the label, whereas Fs corresponds to each modality’s internal style or noise dimension. In order
for v to primarily collect Fc while excluding Fs, we rely on the objective-driven gradient updates during training. If we let
θ = (WQ,WK ,WV ) denote all projection matrices and possibly other network parameters, then each iteration’s update rule
can typically be abstracted as

θ ←− θ − η
∑
(i,j)

∂L
∂sij

∂sij
∂θ

,

where η is the learning rate, and L is the model’s overall error or loss function used to measure how well the network
predicts the label Y on the current batch (or satisfies other constraints, such as preferences for causal representations). By
applying the chain rule, we can further expand

∂L
∂sij

=
∂L
∂αij

∂αij

∂sij
+
∑
p ̸=j

∂L
∂αip

∂αip

∂sij
,

where ∂αij

∂sij
and ∂αip

∂sij
reflect the competitive relationships of attention distribution across different modalities, and ∂L

∂αij

corresponds to how the specific attention weight impacts the task or other constraints, whether positively or negatively. Next,
we consider ∂sij

∂θ . Since

sij =
q⊤i kj√

d
− α ∥ qi − kj∥2 =

(XiWQ)
⊤(XjWK)√
d

− α ∥(XiWQ)− (XjWK)∥2,

its gradient with respect to θ can be further decomposed into

∂sij
∂WQ

,
∂sij
∂WK

,
∂sij
∂WV

.

Note that vj = XjWV appears only in the weighted sum, not in the scoring function, so ∂sij
∂WV

= 0. However, in generating
the final output v, vj still influences ∂L

∂αij
, so ∂L

∂vj
will likewise propagate back to WV . When the network repeatedly

performs this type of gradient backpropagation, if certain (i, j) features are only close in terms of Fs and do not help real
label prediction, then ∂L

∂sij
tends to be negative or very small; conversely, if (i, j) align well in terms of Fc and bring better

predictions, ∂L
∂sij

will be overall positive or large, encouraging the score to increase. Consequently, after many iterations of
gradient descent, the scores sij corresponding to Fc are continuously reinforced, shrinking ∥qi − kj∥ further and boosting
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the dot product q⊤i kj√
d

, so that αij is raised to a higher level. Meanwhile, pairs that initially had high scores only due to Fs

resemblance will gradually get suppressed by the long-term gradient updates, lowering αij and reducing their contribution
to Z.

By a similar logic, in meeting the exclusion requirement, if some (i, j) combination can potentially bypass Fc and
directly influence label Y , but fails to get consistent positive reinforcement in the loss function (or even triggers negative
regularization), then the result of backpropagation will be to suppress such shortcut-related attention weights, preventing
them from accumulating through repeated updates. If Fc alone suffices to determine Y , then additional influences on the
label from such detours are not favored by the loss, so the parameters shift against this overstepping, ultimately making the
learned attention distribution pay little heed to noncausal pathways.

In this manner, once training converges, the instrumental variable V comes to reflect common features aligned with Fc,
which explains why observing V updates our inference about Fc and ensures P (Z | V ) ̸= P (Z). Meanwhile, couplings
with Fs, which represent mere style or noise, are gradually eliminated from the scoring, leaving z nearly independent of Fs.
Lastly, given Z, V does not convey additional pathways to Y , since detouring around Fc has no sustainable benefit in the
gradient. From the perspective of the gradient update formula, each positive or negative adjustment applies directly to sij
and αij , ultimately shaping z into a representation that strongly consolidates the causal features while masking non-causal
interferences and refraining from interfering directly with the label.

Hence, by the end of training, we naturally obtain an auxiliary variable V that satisfies the following properties: it is
positively correlated with Fc, largely insensitive to Fs, and does not offer extra intervention for label Y . The formulaic
derivation and gradient-based explanation clearly illustrate why simply introducing the above self-attention scoring and
relying on gradient-driven optimization can distill a robust representation of Z with minimal interference in a multimodal
setting, i.e., achieving (i) P (Z | V ) ̸= P (V ); (ii) P (Fs | V ) = P (Fs); and (iii) P (Y | Z, V ) = P (Y | Fc).

A.4. Proofs of Theorem 3.5

Proof. The main proofs can be divided into three steps: (i) from Markov property to the validity of local intervention; (ii)
reliability of the twin network: why gradient-based intervention + KL constraint can approximate a causal intervention; and
(iii) justification of c3 risk and corresponding error analysis.

Before establishing the main proof, we begin by illustrating the background of the problem and the statement of the Theorem.
Specifically, we operate under a multimodal distribution PXY , with an observable sample set {(xi, yi)}Ni=1, (xi, yi) ∼
PXY , where xi here denotes a concatenation/joint form of features from multiple modalities, and yi is the label. We then
consider a learning model fθ =W ◦ g(·), where g(·) is a feature extraction network andW a linear classifier. In order to
approximate the causal representation Zc during training, we introduce a calibration or regularization loss in g. In particular,
for each sample xi, we draw a random variable vi ∼ V , which can be regarded as an auxiliary or instrumental distribution,
and define Ẑc,i = g∗(xi, vi), where g∗ denotes the modified feature extractor incorporating the calibration/regularization
that approximates the causal representation.

Next, for gradient-based intervention with KL constraint, in this causal representation space Ẑc,i, we introduce a small
perturbation ∆i, setting

∆i = −∇Ẑc,i
ℓ
(
σ(W⊤Ẑc,i), yi

)
,

thereby defining the second branch of the twin network:

Zc,i = Ẑc,i + ∆i.

To ensure that this local intervention does not diverge too far from Ẑc,i, we impose the Kullback–Leibler (KL) divergence
constraint:

µKL
(
Zc,i, Ẑc,i

)
≤ ε,

which means we only allow gradient interventions within a small neighborhood, ensuring that Zc,i remains probabilistically
similar to Ẑc,i. Then, we define the empirical quantity

R̂C3

=
1

N

N∑
i=1

[
ρ
(
σ(W⊤Ẑc,i) ̸= yi

)
+ ρ

(
σ(W⊤Zc,i) = yi

)]
,
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where ρ(·) is an indicator function, taking value 1 when the condition is true and 0 otherwise, and σ(·) is the signum function.
In concise terms, R̂C3

simultaneously counts the classification errors in the real branch Ẑc,i and the instances where the
intervention branch Zc,i incorrectly retains the original label yi instead of flipping it.

Theorem 3.5 states: If fθ converges to an optimal solution under the Monte Carlo approximation {vi ∼ V }, and for each
sample i the perturbation ∆i satisfies the above KL constraint, then with high probability in the large-sample limit, R̂C3

converges to the true causal complete quantity.

Part I Formalizing the Markov property (Frydenberg, 1990; Blumenthal, 1957), we assume in the multimodal context
that the causal representation Zc satisfies a Markov property: given Zc, the label Y is independent of other interference
variables Fs, symbolically (Y ⊥ Fs)

∣∣∣ Zc, or in causal graph terms, back-door paths (Pearl, 2009) are blocked by Zc. When
we perform an intervention on Zc (be it global or local), it does not compromise the remaining independence conditions
involving Fs. If, for sample xi, we feed it into g∗ to obtain Ẑc,i as the real-world branch, and then apply a small gradient
perturbation to get Zc,i as the hypothetical-world branch, the Markov assumption ensures that modifying Zc alone will not
inadvertently bring Fs into play or disrupt other independent factors. Consequently, the concept of “twin” is feasible at
the formulaic level. The difference between Ẑc,i and Zc,i precisely gauges how the label Y , if it truly depends only on Zc,
should respond to a local change.

Part II Let the loss function
ℓ
(
σ(W⊤Ẑc,i), yi

)
be denoted by

Li(Ẑc,i) = ℓ
(
σ(W⊤Ẑc,i), yi

)
.

Then
∆i = −∇Ẑc,i

Li(Ẑc,i)

is a small step in the negative gradient direction on the Ẑc,i space. We define

Zc,i = Ẑc,i +∆i.

To keep this perturbation local, we require
µKL

(
Zc,i, Ẑc,i

)
≤ ε,

thereby bounding the scale of ∥∆i∥ so that Zc,i remains in the KL-neighborhood of Ẑc,i.

Viewing Zc as directly influencing Y , changing Zc to Zc,i in a causal model is akin to imposing do(Zc = Zc,i). In practice,
performing a complete change in Zc for a multimodal environment can be too difficult, or insufficient data may exist to
estimate it (Liang et al., 2022b). By enacting a local gradient ∆i while ensuring Zc,i and Ẑc,i remain within finite KL
distance, we can approximate a mild causal intervention and test whether the model is sensitive to label changes that should
happen. If the model truly captures the correct causal relationship, then it should detect and reflect these label flips. The
reliability and completeness of the twin network is proved and discussed in Appendix D.4.

Part III Recall the proposed C3 risk, we have:

R̂C3

=
1

N

N∑
i=1

[
ρ
(
σ(W⊤Ẑc,i) ̸= yi

)
+ ρ
(
σ(W⊤Zc,i) = yi

)]
.

For brevity, set
hi = ρ

(
σ(W⊤Ẑc,i) ̸= yi

)
+ ρ
(
σ(W⊤Zc,i) = yi

)
,

Then, we get:

R̂C3

=
1

N

N∑
i=1

hi.
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In theory, if we had a fully correct causal model, we could define an ideal quantity

RC3

= E(x,y)∼PXY

[
ρ(· · · )

]
,

where the ρ(· · · ) events reflect correct label under the real branch? and incorrect label under the intervention branch? etc.
Because the Markov property allows local interventions on Fc alone and the Monte Carlo set {vi} helps calibrate g∗, we
expect that, as N →∞, ∣∣R̂C3

N −RC3 ∣∣ → 0 (with high probability).

Based on this, we can decomposing the error, i.e., define:

δi = hi − hideal
i ,

where hideal
i represents the indicator’s value under the truly causal complete scenario for sample i. Then

R̂C3

−RC3

=
1

N

N∑
i=1

δi.

To show that this difference converges to zero as N →∞, one needs to argue that under the KL constraint and the Markov
assumption, δi can be made very small on average, and its variance is controlled. Applying Hoeffding’s inequality or
Markov’s inequality on the i.i.d. samples (xi, yi, vi) then ensures convergence with high probability.

When ∥∆i∥ is small and µKL(Zc,i, Ẑc,i) ≤ ε, the local intervention around Ẑc,i will not drastically alter the sample’s label
distribution. In particular, assuming fθ is well-optimized, two things can happen:

• If σ(W⊤Ẑc,i) was correct, then a small gradient shift σ(W⊤Zc,i) likely stops predicting the same label (assuming it is
designed to flip it).

• Conversely, if Ẑc,i was incorrect, then the adjusted Zc,i can likely correct the label.

Since this agrees with how a genuinely causal intervention would flip or not flip the label, δi can be suppressed to a very
small expected value (Arslan et al., 2015; Piotroski & So, 2012). With i.i.d. sampling and concentration inequalities, we get:

1

N

N∑
i=1

δi → 0 (in probability),

implying R̂C3

N → RC3

. Hence, it shows that in a multimodal setting under the Markov assumption, performing a controlled
gradient-based intervention on Ẑc,i to obtain Zc,i based on Hoeffding inequality, and defining R̂C3

from these two branches
(real vs. intervention), yields an estimate converging to the genuine causal complete quantity in the large-sample limit. Thus,
the proof of Theorem 3.5 is established:

R̂C3

N −→ RC3

as N →∞,with high probability.

A.5. Proofs of Theorem 4.1

Proof. We will need the following definition for this proof:

ρθ,h(x, y) = min
y′

(h(x, y)− h (x, y′) + θ1y′=y) , (11)

where θ > 0 is an arbitrary constant. Observe that E
[
1ρh(x,y)≤0

]
≤ E

[
1ρθ,h(x,y)≤0

]
since the inequality ρθ,h(x, y) ≤

ρh(x, y) holds for all (x, y) ∈ X × y:

ρθ,h(x, y) = min
y′

(h(x, y)− h (x, y′) + θ1y′=y) (12)

≤ min
y′ ̸=y

(h(x, y)− h (x, y′) + θ1y′=y) (13)

= min
y′ ̸=y

(h(x, y)− h (x, y′)) = ρh(x, y) (14)
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where the inequality follows from taking the minimum over a smaller set. Now, let H̃ = {(x, y) 7→ ρθ,h(x, y) : h ∈ H}
and H̃ =

{
Φρ ◦ h̃ : h̃ ∈ H̃

}
. With probability at least 1− δ, for all h ∈ H,

E [Φρ (ρθ,h(x, y))] ≤
1

m

m∑
i=1

Φρ (ρθ,h (xi, yi)) + 2Rm(H̃) +

√
log 1

δ

2m
(15)

Since 1u≤0 ≤ Φρ(u) for all u ∈ R, the generalization error is a lower bound on the left-hand side, and we can write:

RC3

(fθ) ≤
1

m

m∑
i=1

Φρ (ρθ,h (xi, yi)) + 2Rm(H̃) +

√
log 1

δ

2m
. (16)

Fixing θ = 2ρ, we observe that Φρ (ρθ,h (xi, yi)) = Φρ (ρh (xi, yi)). Indeed, either ρθ,h (xi, yi) = ρh (xi, yi) or
ρθ,h (xi, yi) = 2ρ ≤ ρh (xi, yi), which implies the desired result. Furthermore, ℜm(H̃) ≤ 1

ρRm(H̃) since Φρ is a
1
ρ -Lipschitz function. Therefore, for any δ > 0, with probability at least 1− δ, for all h ∈ H:

RC3

(fθ) ≤ R̂C3

(fθ) +
2

ρ
ℜm(H̃) +

√
log 1

δ

2m
, (17)

and to complete the proof it suffices to show that Rm(H̃) ≤ 2kℜm (Π1(H)).

Here ℜm(H̃) can be upper-bounded as follows:

ℜm(H̃) = 1

m
E
S,σ

[
sup
h∈H

m∑
i=1

σi

(
h (xi, yi)−max

y
(h (xi, y)− 2ρ1y=yi

)

)]
(18)

≤ 1

m
E
S,σ

[
sup
h∈H

m∑
i=1

σih (xi, yi)

]
+

1

m
E
S,σ

[
sup
h∈H

m∑
i=1

σi max
y

(h (xi, y)− 2ρ1y=yi)

]
. (19)

Now we bound the first term above. Observe that

1

m
E
σ

[
sup
h∈H

m∑
i=1

σih (xi, yi)

]
=

1

m
E
σ

sup
h∈H

m∑
i=1

∑
y∈†

σih (xi, y) 1yi=y

 (20)

≤ 1

m

∑
y∈†

E
σ

[
sup
h∈H

m∑
i=1

σih (xi, y) 1yi=y

]
(21)

=
∑
y∈†

1

m
E
σ

[
sup
h∈H

m∑
i=1

σih (xi, y)

(
ϵi
2
+

1

2

)]
(22)

where ϵi = 2 · 1yi=y − 1. Since ϵi ∈ {−1,+1}, we have that σi and σiϵi admit the same distribution and each of the terms
of the right-hand side can be bounded as follows:

1

m
E
σ

[
sup
h∈H

m∑
i=1

σih (xi, y)

(
ϵi
2
+

1

2

)]
(23)

≤ 1

2m
E
σ

[
sup
h∈H

m∑
i=1

σiϵih (xi, y)

]
+

1

2m
E
σ

[
sup
h∈H

m∑
i=1

σih (xi, y)

]
(24)

≤ R̂m (Π1(H)) (25)

Thus, we can write 1
mES,σ [suph∈H

∑m
i=1 σih (xi, yi)] ≤ kℜm (Π1(H)). To bound the second term, we derive

1

m
E
S,σ

[
suph∈H

m∑
i=1

σi maxy (h (xi, y)− 2ρ1y=yi)] ≤
∑
y∈†

1

m
E
S,σ

[
sup
h∈H

m∑
i=1

σi (h (xi, y)− 2ρ1y=yi)

]
, (26)
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and since Rademacher variables are mean zero, we observe that

E
S,σ

[
sup
h∈H

m∑
i=1

σi (h (xi, y)− 2ρ1y=yi)

]
= E

S,σ

[
sup
h∈H

(
m∑
i=1

σih (xi, y)

)
− 2ρ

m∑
i=1

σi1y=yi

]
(27)

= E
S,σ

[
sup
h∈H

m∑
i=1

σih (xi, y)

]
≤ Rm (Π1(H)) , (28)

which completes the proof.

B. Pseudo-Code
The pseudo-code of incorporating C3R into the MML models is shown in Algorithm 1.

Algorithm 1 Pseudo-Code of MML with C3R
Input: MML data distribution PXY ; Randomly initialize MML model fθ with feature extractor g and a linear classifierW;
Hyperparameters λv and λfe

Output: MML model fθ
1: Sample training datasets Dtr = {(xi

j , y
i
j)}Nj=1 with N samples from PXY ▷ Data Sampling

2: for each iteration do
3: Calculate the multi-modal representation via Zi = g(x)

4: Obtain causal Ẑc,i = g∗(Zi, vi) from Zi based on the V via Eq.6 ▷ Extract Causal Representation for Sufficiency
5: Obtain counterfactual Zc,i = Ẑc,i +∆i via Eq.7 ▷ Model Counterfactual Representation for Necessity
6: Update the MML model fθ using the original MML loss with C3R in Eq.10 ▷ Update MML Model
7: end for
8: return solution

C. Table of Notations
We list the definitions of all notations from the main text in Table 4.

D. Discussion
D.1. More Details of C3 Definition

Recalling Definition 3.1, the learned representation of existing MML models can be divided into:

• Sufficient but Unnecessary Causes: P (Ydo(Z=c) = y | Z = c̄,Y ̸= y) > 0 and P (Z = c̄ | Y = y) > 0.

• Necessary but Insufficient Causes: P (Ydo(Z=c̄) = y) = 0 and P (Ydo(Z=c) ̸= y | Z = c̄,Y ̸= y) > 0.

• Sufficient and Necessary Causes: P (Ydo(Z=c) = y | Z = c̄,Y = ȳ) > 0 and P (Ydo(Z=c̄) = y) = 0.

• Insufficient and Unnecessary Causes: P (Ydo(Z=c) = y | Z = c̄,Y ̸= y) = 0 and P (Ydo(Z=c̄) = y) = 0

For the four parts of Z, we provide the detailed illustration:

• Sufficient but unnecessary: Z results in effect Y, yet the presence of Y does not definitively imply that Z is the cause;

• Necessary but insufficient: the occurrence of effect Y confirms that the cause is Z, but Z alone is not guaranteed to
produce Y;

• Sufficient and necessary: the presence of effect Y invariably indicates cause Z, and the presence of Z invariably results
in Y.

• Insufficient and unnecessary: Even if Z exists, it does not guarantee that Y will occur. Similarly, even if Y occurs, it
cannot be determined that Z is the cause of Y because there are other possible causes.
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Table 4: The definitions of notations.

Notations Definition

Notations of Data

X , Y , and Z The input space, label space, and latent space
(x, y) ∈ X × Y The sample x ∈ X and the label y ∈ Y

PXY The joint distribution over X × Y
Dtr = {(xi, yi)}Ni=1 The training dataset with N samples
Dte = {(xi, yi)}Nte

i=1 The test dataset with Nte samples
xi = {x(1)

i , . . . , x
(K)
i } Each sample, which contains K modalities

Notations of Model

fθ =W ◦ g The MML model
g : X → Z The feature extractor of MML model fθ
W : Z → Y The classifier of MML model fθ

Notations of Variables

X, Y Variables of the sample and corresponding label
Z Variable of the learned representation, i.e., Z = ΞcFc + ΞsFs

Fc, Fs Variables of the causal and non-causal generating factors
Ξc, Ξs Weight matrices of Fc and Fs that make up Z

V The instrumental variable satisfies V ⊥⊥ Fs with a controllable impact V → Fc → Y

Notations of C3 and C3R Learning Objective

R̂C3

C3 risk
Lv The loss based on the instrumental variable V , designed to guide the model toward the causal representation
Lfe The feature extraction loss term based on counterfactual constructions, ensuring remain within the feasible region

λv , λfe The weights for Lv and Lfe

Ẑc,i Real extraction version of Z for sample xi where the condition is c (real-world branch)
Zc,i Counterfactual version of Z for sample xi where the condition is c̄ (hypothetical-world branch)
∆i Gradient-based adjustment for counterfactual data

µKL(·) Kullback-Leibler divergence
σ Signum function
ρ(·) Indicator function which is equal to 1 if the condition in ρ(·) is true.
sij The alignment scores between the i-th and j-th modalities

WQ,WK ,WV Linear projection matrices for query, key, and value in the modeling of V
qi Query vector for the i-th modality
kj Key vector for the j-th modality
α Weighting factor for distance-based adjustment ∥qi − kj∥2 in the modeling of V

For the derivation of Eq.3 and Eq.4 C3(Z) can be decomposed into sufficiency and necessity components. Specifically,
following (Pearl, 2009): (i) when Z ̸= c occurs with probability 1−P (Z = c), its contribution reflects the sufficiency effect
C3

su(Z) required for Z = c; (ii) when Z = c occurs with probability P (Z = c), its contribution reflects the necessity effect
C3

ne(Z) of Z = c̄ on Y . Therefore, we have C3(Z) =
(
1 − P (Z = c)

)
C3

su(Z) + P (Z = c)C3
ne(Z). By normalizing

C3(Z) according to their respective weights, we obtain:

C3
su(Z) =

C3(Z)

1− P (Z = c)
=

P
(
Ydo(Z=c)

)
− P

(
Ydo(Z=c̄)

)
1− P (Z = c)

=
P (Ydo(Z=c))− P (Ydo(Z=c̄))

1− P (Z = c)
(29)

C3
ne(Z) =

C3(Z)

P (Z = c)
=

P
(
Ydo(Z=c)

)
− P

(
Ydo(Z=c̄)

)
P (Z = c)

=
P (Ydo(Z=c))− P (Ydo(Z=c̄))

P (Z = c)
(30)

D.2. Example to Understand C3 Score

We have provided an example of causal sufficiency and necessity in MML tasks in Section 2. Inspired by (Yang et al.,
2024), we also provide specific numerical calculations to further explain this example. This task aims to identify the label of
“duck” using three modalities, i.e., image, text, and audio. Using this example, we further use probability to explain causal
sufficiency and necessity. The illustration of this example is shown in Figure 1.
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Example of Causal Sufficiency If the learned representation is represented by the variable Z (taking binary values 1 or 0),
we use it to predict the label of whether being “duck”. If the learned representation contains the information of “duck paws”,
it is a sufficient but unnecessary cause because the MML data containing “duck paws” must have a “duck”. However, a
sample with“duck” might not contain “duck paws”, e.g., duck swim in the lake. Assuming that P (Ydo(Z=1) = 1) = 1 and
P (Ydo(Z=0) = 0) = 0.5, P (Y = 1) = 0.75, P (Z = 1,Y = 1) = 0.5, P (Z = 0,Y = 0) = 0.25, P (Z = 0,Y = 1) = 0.25.
Then, following (Pearl, 2009), for the probability of sufficiency and necessity, we obtain: P (Ydo(Z=1) = 1|Y = 0,Z = 0) =

P (Ydo(Z=1)=1)−P (Y=1)

P (Y=0,Z=0) = 1−0.75
P (Y=1,Z=1) = 1

P (Ydo(Z=0) = 0|Y = 1,Z = 1) =
P (Y=1)−P (Ydo(Z=0)=1)

P (Y=1,Z=1) = 0.75−0.5
P (Y=1,Z=1) = 0.5

(31)

where the first line represents the probability of sufficiency and the second line represents the probability of necessity. Thus,
the learned representation contains “laugh (positive)-good (positive)-rising tone (positive)” has a probability of being the
sufficient but unnecessary cause.

Example of Causal Necessity If the learned representation contains the information of “wings” Z (taking values 1 and 0,
where 1 means “wings”), to predict Y (“duck” 1, other label 0). Since a “duck” must have “wings” but if give a sample with
“bird”, it may also have “wings”. Assuming that P (Ydo(Z=1) = 1) = 0.5 and P (Ydo(Z=0) = 0) = 1, P (Y = 1) = 0.25,
P (Z = 1,Y = 1) = 0.25, P (Z = 0,Y = 0) = 0.5, P (Z = 0,Y = 1) = 0.25. Then, for the probability of sufficiency and
necessity, we obtain: P (Ydo(Z=1) = 1|Y = 0,Z = 0) =

P (Ydo(Z=1)=1)−P (Y=1)

P (Y=0,Z=0) = 0.5

P (Ydo(Z=0) = 0|Y = 1,Z = 1) =
P (Y=1)−P (Ydo(Z=0)=1)

P (Y=1,Z=1) = 1
(32)

where the first line represents the probability of sufficiency and the second line represents the probability of necessity. Thus,
the learned representation has a probability of being the necessary but insufficient cause.

If we only focus on causal sufficient causes, we will lose important modality-specific information and affect generalizability;
if we only focus on causal necessary causes, then decisions will be made incorrectly based on background knowledge,
affecting discriminability. For sufficient and necessary causes, the probability of sufficiency or necessity should be 1.
Together they ensure that the MML model can learn a representation that not only reflects different modal information, i.e.,
contains the semantics of all three modalities, but also targets primary events, i.e., the “duck” label.

D.3. Discussion of Identifiability

For detailed analyses, in this subsection, we provide the definitions of exogeneity and monotonicity in MML settings, and
illustrate the importance of the identifiability proposed in Subsection 3.2.

Firstly, we propose the definitions of exogeneity and monotonicity for C3 based on (Pearl, 2009) as follows:

Definition D.1 (Exogeneity). Variable Z is exogenous relative to variable Y if and only if the Y would potentially respond to
conditions c or c̄ is independent of the actual value of Z. The intervention probability is identified by conditional probability
P (Ydo(Z=c) = y) = P (Y = y|Z = c).

Exogeneity (Definition D.1) means that when Z is exogenous to Y , external interventions (e.g., environmental disturbances
or other unobserved factors) have a negligible impact on the conditional distribution of Z and Y . In other words, Z as a
causal variable is not easily influenced by external environments or noise, ensuring that its causal effect on Y remains stable
across different modalities (image, text, audio, etc.). This assumption ensures the learned representation Z only contains
causal generating factors Fc without spurious correlations caused by Fs. It requires the model to retain relatively reliable
predictive or inference capability even under cross-modal or cross-domain distribution shifts.

Definition D.2 (Monotonicity). Variable Y is monotonic relative to Z if and only if Ydo(Z=c) = ȳ ∧ Ydo(Z=c) = y is false
or Ydo(Z=c̄) = y ∧Ydo(Z=c) = ȳ is false, where ȳ ̸= y. For probabilistic formulations, P (Ydo(Z=c) = y, Ydo(Z=c̄) ̸= y) = 0
or P (Ydo(Z=c) ̸= y, Ydo(Z=c̄) = y) = 0.
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Monotonicity (Definition D.2) illustrates the consistent, unidirectional effect on Y of representation Z. If Z increases
(or decreases) along some dimension, Y correspondingly and consistently increases (or decreases). Such a monotonic
constraint helps the model capture Z’s causal effect on Y more effectively, so that even if different modalities depict Z
slightly differently, the overall causal direction remains consistent, improving the learned representation’s generalization
across modalities and scenarios. The assumption ensures that changes in all data variables have the same trend effect on the
results. It simplifies the causal structure and is a common assumption for complex scenarios such as MML.

However, in practical MML settings, non-trivial cases often arise: for instance, the inseparability of causal and non-
causal semantics leads to spurious correlations (as depicted in Figure 2), and cross-modal semantic conflicts combined
with high-dimensional nonlinear interactions undermine monotonicity. These challenges render traditional identifiability
conditions inapplicable. More specifically, enforcing exogeneity and monotonicity during model training can introduce
multiple issues. First, it may oversimplify or deviate from real-world distributions, leading to large errors. As Figure 2
shows, real-world Fc often cannot be perfectly resistant to external interventions, and the spurious correlations between
Fs and Y will break exogeneity. In such cases, forcing exogeneity can lead to the model learning spurious correlations,
undermining its applicability and accuracy. Likewise, if monotonicity does not hold in reality (e.g., certain modalities
exhibit nonlinear or time-varying relationships with Z), the model may be biased or misjudge the direction of Z’s effect
on Y . Moreover, some systems have feedback loops in which changes in Y can affect Fc or other variables (e.g., user
behavior and recommendation outcomes on social media), and imposing strictly one-way causal or monotonic relationships
can ignore these dynamic interactions and distort the model. Additionally, from a performance perspective, if exogeneity
and monotonicity assumptions are rigidly applied during training, the model may fail to generalize once deployed to
new environments or tasks that do not meet these assumptions. Such “hard” constraints may lead the model to over- or
underestimate the actual contribution of Fc to Y , resulting in decision risks. Therefore, the discussion on identifiability in
Subsection 3.2 is crucial to ensure accuracy and generalizability of MML models in real-world applications.

D.4. Reliability and Completeness of the Twin Network

Considering that the intervention value c̄ does not necessarily come from the same distribution as Z (Pearl, 2009), we define
the intervention variable Z̄ has the same range as Z, where c̄ comes from its distribution P (Z̄|X = x). Correspondingly, the
estimated distribution is defined as P (Z|X = x) and P (Z̄|X = x). Generally, the C3 risk is formally defined as:

RC3

:= E(x,y)∼PXY

[
Ec∼P (Z|X=x)ρ[σ(W⊤c) ̸= y]︸ ︷︷ ︸

Sufficiency

+Ec̄∼P (Z̄|X=x)ρ[σ(W⊤c̄) = y]︸ ︷︷ ︸
Necessity

]
, (33)

whereW is the above invariant predictor, ρ(·) denotes an indicator function which is equal to 1 if the condition in ρ(·)
is true, otherwise equals 0. However, as described in the main text (Subsection 3.3), it is difficult to directly obtain the
evaluation of necessity, since the counterfactual data c̄ is hard to acquire. Therefore, we employ a twin network to separately
model the real-world branch for sufficiency evaluation and the hypothetical-world branch for necessity evaluation. The twin
network for C3 estimation in MML is shown in Figure 5. Then, we get:

R̂C3

=
1

N

N∑
i=1

[
ρ[σ(W⊤Ẑc,i) ̸= yi] + ρ[σ(W⊤Zc,i) = yi]

]
,

where Ẑc,i = g∗(xi, vi), Zc,i = Ẑc,i −∇Ẑc,i
ℓ
(
σ(W⊤Ẑc,i), yi

)
,

(34)

This equation satisfies µKL(Zc,i, Ẑc,i) ≤ ε, ∀i, also illustrated in Theorem 3.5. In this subsection, we discuss and prove
the reliability and completeness of the proposed twin network.

The core idea of the twin network is to generate two representation branches for the same input x, which are close but
slightly different, thereby modeling the real world and the hypothetical world in parallel. In this work, we aim to use the
twin network to separately model causal sufficiency and necessity, corresponding to the real world and the hypothetical
world: (i) the real world evaluates whether the extracted representation, i.e., Z = c, can yield the ground-truth label; (ii)
the hypothetical world evaluates whether the extracted representation, under the intervention Z = c̄, can still yield the
ground-truth label. The key challenge lies in modeling counterfactual data Z = c̄.

Note that the true counterfactual effect involves unobserved outcomes, making direct modeling difficult (Pearl, 2009).
Existing work typically adopts the “minimal change” principle to estimate counterfactuals, which is proven to align with
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true counterfactual effects (Pearl, 2009; Kusner et al., 2017): to study the causal effect of a variable or factor on the outcome,
one should avoid making large modifications to other irrelevant factors. Instead, only the parts most sensitive to the outcome
should be adjusted, ensuring that the original instance and its counterfactual counterpart remain as similar as possible, apart
from the change in the target variable. For instance, Chapters III–V in (Wachter et al., 2017) demonstrate that by making
only minor adjustments to the treatment variable while preserving the distribution of other covariates, the counterfactual
samples maintain the original data’s characteristics, ensuring accurate counterfactual effect estimates. Based on these
results, we leverage gradient intervention to satisfy the ”minimal change” principle for counterfactual effect estimation with
theoretical guarantees. Inspired by this, we propose to first use instrumental variables to extract the causal representation
Ẑc from input x in the real-world branch. Simultaneously, in the hypothetical world, we compute Zc = Ẑc +∆ along the
gradient direction ∆, constructing a relative “small-step” change strictly in the dimensions relevant to the causal mechanism.
This approach allows Zc to serve as an approximate counterfactual representation for the same input. The core idea lies in:
(i) constraining the gradient direction to ensure that counterfactual modeling does not deviate from the true implementation
Z in the latent space (Berger & Gostiaux, 2012); (ii) applying minimal changes to satisfy the “minimal change” principle
of counterfactual modeling. Under the Markov assumption (Frydenberg, 1990; Blumenthal, 1957), once Ẑc is given, any
disturbance variables will be independent of Y. Therefore, if Ẑc needs to flip, it is sufficient to make small-step modifications
to Ẑc until the label changes, aligning with the essence of counterfactual reasoning: if I slightly modify Ẑc, will Y remain
the same or change? As long as these small perturbations are enough to alter the model’s output, they effectively simulate
the counterfactual condition of the prediction.

To assess whether the generated counterfactual data adhere to the principle for accurate estimation, we develop a distribution
consistency test with Wasserstein distance Dw, i.e., whether the distribution of the covariates matches that of the original
data. The lower Dw shown below proves that our method satisfies the principle. Besides, we also conduct a toy experiment
on LCKD and NYU Depth V2 to demonstrate credibility. We follow (Galles & Pearl, 1998) to make manually curated
examples and select the recently proposed transport-based counterfactual modeling method (De Lara et al., 2024) as another
baseline. Table 5 shows the advantages of our method, i.e., superior accuracy and lowest computational cost.

Table 5: Model performance and calculation overhead

Model Accuracy Calculation Overhead

C3R 77.6 1×
manually curated example 71.2 4.1×
Transport-based 77.2 2.3×

We further provide an illustration of the twin network in Figure 5. The left (orange) region contains nodes X,Fc, Fs, Y
to represent the causal structure of the real world, while the right (purple) region contains X∗, F ∗

c , F
∗
s , Y

∗ to indicate a
hypothetical (counterfactual) scenario. Both branches connect to the overhead nodes D,V , where D denotes the variable for
data generation and V denotes the instrumental variable, meaning that they share certain background and content variable
but can diverge in some causal nodes. Following (Pearl, 2009), in causal inference or counterfactual analysis, if we aim
to compare how the world actually is (the real scenario) with how the world would be under certain interventions (the
hypothetical/counterfactual scenario), we naturally create two similar branches in a diagram, sharing part of the background
or parent nodes (such as D, V ) but intervening in certain causal nodes (F ∗

c or X∗). The twin network shows two conditions
of the same model.

Based on the above analyses, we propose the following propositions to expand the ability to identify causal effects:

Proposition D.3 (Local Invertibility). Let M be a twin network that operates on exogenous/background variables s. Suppose
that in every local neighborhood of M , the mapping P

(
Y
∣∣Pa(Y )

)
7−→ P (s) is injective, i.e. from the conditional

distribution of Y given its parents Pa(Y ), one can uniquely solve for the distribution P (s). Then, any counterfactual
statement in M is uniquely identifiable from the observational data.

Proposition D.3 tells us that, in each neighborhood, specifying Pa(Y ) = v enforces a unique distribution of s. So once
we move Pa(Y ) from the real-world value to an intervened value v′ (the do(x′) operation), that new local condition forces
a unique s. If, hypothetically, local invertibility did not hold, multiple distinct distributions over s could give the same
conditional P (Y | Pa(Y ) = v), leading to multiple solutions for the counterfactual. But since local invertibility excludes
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Figure 5: Twin Network for C3 estimation in MML.

that possibility, the solution for each neighborhood is unique—hence identifiability. Thus, under local invertibility, any local
or global counterfactual query in the twin network can be computed from observational data.

Proof. A general counterfactual statement α in causal inference (for example, If X had been x′, then Y would have been
y′.) often demands integrating over all possible exogenous-variable configurations s. Formally, evaluating

P (α) =

∫
P (α | s) P (s) ds

in principle calls for specifying how s is distributed and how it changes under different local conditions.

If in a neighborhood N , we know the conditional distribution P
(
Y | Pa(Y ) = v

)
for some value v, the local invertibility

assumption states that precisely one distribution over s leads to that conditional. Symbolically,

P
(
Y
∣∣Pa(Y ) = v

)
7→ {P (s) }unique.

Hence, specifying Pa(Y ) = v fixes how s must be distributed.

In computing a counterfactual probability, e.g. P (Yx = y′), one typically modifies certain parent values Pa(Y )→ v′ and
then integrates out s. Because local invertibility provides a single assignment to s in the local region, we obtain a unique
predicted outcome distribution. There is no ambiguity about which exogenous states correspond to that local condition.

Since any condition on Pa(Y ) in the local domain yields a unique exogenous distribution, any if–then statement about
local changes in Pa(Y ) can be pinned down. As long as the twin network M remains locally invertible in all relevant
neighborhoods, we can piece together all such local analyses to conclude that any finite or infinite combination of
counterfactual statements is identifiable.

Proposition D.4 (Markov Identifiability). If the twin network M is semi-Markovian, and furthermore satisfies graphical
criteria (Pearl, 2009), then the quantities C3, C3

su, and C3
ne are all identifiable within such a causal model, and the causal

effect can be uniquely determined from the topology of the graph.

Proposition D.4 shows that whenever the graph meets the semi-Markovian plus the cited conditions, the causal effect and
the individual-level necessity/sufficiency measures are identified from the topology alone. Accoding to (Norton, 2009), if the
confounders appear in specific ways (with certain back-door or front-door paths, or no cyclical bridging in the unobserved
structure), we can factor the joint distribution into purely observational data pieces or partial adjustments. This also extends
to multi-world queries needed by C3, C3

su, and C3
ne. Meanwhile, if there were multiple expressions consistent with the

same graph, we would lose identifiability (Tangirala, 2018). But the theorems ensure a single final expression for each of
C3, C3

su, and C3
ne, establishing that these cross-world probabilities cannot be ambiguous.

D.5. Multi-modal Representation Learning on Synthetic Data

To assess the effectiveness of the proposed C3R in capturing the critical causal information that serves as both sufficient and
necessary causes, we have constructed synthetic data that encompasses four distinct categories of variables following (Yang
et al., 2024), i.e., sufficient and necessary causes (SNC), sufficient but unnecessary causes (SC), necessary but insufficient
causes (NC), and spurious correlations (SP). Among them, the first three are the information contained in the invariant

27



Towards the Causal Complete Cause of Multi-Modal Representation Learning

representation currently learned in standard cases, while the last one is artificially constructed and used for evaluation in
practice.

Specifically, we first construct different multi-modal data distributions, then generate labels from the known data distributions,
and finally constrain their correlations to achieve the construction of different causes. We assume the task contains three
modalities and construct the following generating functions. Note that the first three correspond to the three parts of the
invariant representation learned by the current MML methods, i.e., sufficient but unnecessary, necessary but insufficient, and
sufficient and necessary causes, while the last, i.e., spurious correlations, is for evaluation.

Sufficient and Necessary Cause (SNC) Each modality of the sufficient and necessary cause is generated according to
a Bernoulli distribution following (Yang et al., 2024), i.e., SNCi ∼ B(ξa), a = 1, 2, 3, where ξ represents the Bernoulli
distribution parameters corresponding to different modalities, e.g., SNCi ∼ B(0.5), ξa = 0.5. The data label yi is generated
based on the sufficient and necessary cause, where yi = SNCi ◦ B(ξ′a), e.g., SNCi ∼ B(0.15) when ξa = 0.5. Since Y
is generated from each modality corresponding SNC ∈ {0, 1}. The probability of the sufficient and necessary cause is
P (Y = 0|do(SNC = 0)) + P (Y = 1|do(SNC = 1)).

Sufficient but Unnecessary Cause (SC) Sufficiency indicates that the presence of a representation aids in establishing the
accuracy of the label, i.e., SC→ Y. According to the definition of C3, when SF is defined as fSC(SNC), the distribution
of intervention P (Y|do(SC = SCi)) is determined by the conditional distribution P (Y|SC = SCi), where P (Y|do(SC =
SCi)) =

∫
P (Y|do(SNC))P (SNC|fSC(SNC) = SCi)d SNC =

∫
P (Y|SNC)P (SNC|fSC(SNC) = SCi)d SNC. Even Y

is only generated from SNC, the sufficient cause SC is exogenous relative to Y. Meanwhile, according to the identifiability
results of C3 , the sufficient but unnecessary cause SC ∈ {0, 1} in synthetic data has the same probability with SNC,
expressed as P (Y = 1|do(SC = 1)) = P (Y = 1|do(SNC = 1)). However, it has a lower probability of P (Y =
0|do(SC = 0)) compared to P (Y = 0|do(SNC = 0)). To determine the value of SCi, we use a transformation function
fSC : {0, 1} → {0, 1} to derive SCi from the sufficient and necessary cause value SNCi for each modality. The generation
process of SCi can be expressed as: (i) SCi = B(ξa) when SNCi = 0; and (ii) SCi = SNCi when SNCi = 1.

Necessary but Insufficient Cause (NC) Necessity indicates that the label becomes invalid when the representations
are absent, i.e., NC← Y, which reflects the general situation of different modal information, i.e., contains the semantics
of all modalities. Similarly, we get: P (Y|do(NC = NCi)) =

∫
P (Y|do(SNC))P (SNC|fNC(SNC) = NCi)d SNC =∫

P (Y|SNC)P (SNC|fNC(SNC) = NCi)d SNC. Based on the definition and identifiability outcomes of C3, the cause that
is insufficient but necessary exhibits an equivalent probability to P (Y = 0|do(NC = 0)) as P (Y = 0|do(SNC = 0)), yet
it diminishes the likelihood of P (Y = 1|do(NC = 1)) compared to P (Y = 1|do(SNC = 1)). To determine the value
of NC, we employ a transformation function fNC : {0, 1} → {0, 1} to derive NCi from both sufficient and necessary
cause SNCi. The process of generating NCi is outlined below, and NCi serves as the cause of y: NCi = fNC(SNCi) :=
SNCi ∗ B(ξb), b = 1, 2, 3 where ξb equals 0.5, 0.7, and 0.9, respectively.

Spurious Correlations (SP) Spurious correlations indicate data in the learned representation that is irrelevant to the
decision, e.g., background information and noise. Although the learned invariant representations do not contain noise
information and false correlations are not separately considered in the scenarios involved in this study because the model
satisfies the corresponding identifiability through the four constraints corresponding to exogeneity and monotonicity, we still
construct relevant data to examine whether false correlations are learned in reality. We introduce an additional variable that
exhibits spurious correlation with both the sufficient and necessary causes. The level of spurious correlation is determined
by a parameter denoted as ω. The generation process for this variable is defined as SPi = ω ∗ SNCi ∗ 1d + (1− ω)N (0, 1),
where N (0, 1) represents a Gaussian distribution, 1d represents a vector of ones of dimension d, and d is set to 5 in the
synthetic generation process. As ω increases, the strength of the spurious correlation within the data sample intensifies. For
our synthetic experiments, we choose s = 0.1 and s = 0.7 to explore different levels of spurious correlation. Note that the
SP data here is artificially constructed and has been used for evaluation, and it involves the corner case, e.g., anti-causal and
confounder, which has been discussed for evaluation.

Construction of MMLSynData for Evaluation After obtaining the above functions, we now introduce how to generate
the synthetic dataset for evaluation (the experiments of “Learning causal complete representations” in Subsection 6.2)
following (Yang et al., 2024). Firstly, we introduce a nonlinear transformation to generate the multi-modal samples x from
the variables {SNCi,SCi,NCi,SPi}, where each sample consists three modalities (functions with different parameters).
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Initially, we create a temporary vector with Gaussian noise, i.e., v = [SNCi ∗ 1d,SCi ∗ 1d,NCi ∗ 1d,SPi ∗ 1d] +N (0, 0.4),
where 1d represents a vector of ones of dimension d, and N (0, 0.4) denotes the Gaussian noise with mean 0 and variance
0.4. Next, following (Dandekar et al., 2018), we use two functions, i.e., υ1(v) subtracts 0.5 from each element of v if v is
greater than 0, otherwise, it sets the output to 0; and υ2(v) adds 0.5 to each element of v if v is less than 0, otherwise, it sets
the output to 0. Finally, the vector v is generated using the sigmoid function applied element-wise to the product of υ1(v)
and υ2(v), i.e., v = sigmoid(υ1(v) · υ2(v)). For the training phase, we generate 1,000 multi-modal samples for training,
while generating 200 samples for evaluation. We call this MML synthetic dataset (MMLSynData).

D.6. Comparison and Uniqueness Discussion

“Causal sufficiency and necessity” is an important concept in causal theory, which is proposed in Book “Causality” (Pearl,
2009). Recently, (Yang et al., 2024) applied it to domain generalization. To clearly highlight the novelty of our work and
differentiate it from existing studies, we outline the key distinctions.

Uniqueness of the C3 Concept and Modeling We introduce the concept of Probability of Causal Complete Cause (C3),
which serves as a foundational element in our framework for MML. For definition and extension: C3 quantifies the likelihood
that a representation Z is both a necessary and sufficient cause for the label Y. It extends the PNS concept of (Pearl, 2009)
to accommodate the complexities of MML, involving distinct feature extraction and fusion mechanisms, while (Yang et al.,
2024) is for domain generalization. They both based on the concept of (Pearl, 2009) but focus on different problems.
Causal Identifiability: We propose identifiability of C3 in real-world MML systems, relaxing the strong assumptions of
Exogeneity and Monotonicity that previous studies (Zhang et al., 2024; von Kügelgen, 2024; Yang et al., 2024) relies
on. We consider additional conditions specific to MML, such as handling missing modalities and confounders, thereby
enhancing the robustness of causal inference in multimodal settings. Meanwhile, we introduce instrumental variables to
ensure the identifiability of the model even in corner cases, e.g., in the presence of spurious correlations and noise. Next, for
measurement and modeling, we introduce the C3 risk as a metric to estimate the C3 score of multimodal representations
on unseen test datasets. We directly model the sufficiency and necessity of the learned representations via a provable twin
network, while (Yang et al., 2024) replacing the necessity with counterfactual modeling via a theoretical upper bound
based on monotonicity; (Schölkopf et al., 2021) presents a review for causal inference; (Sun et al., 2025; Yao et al.,
2024; Ahuja et al., 2023) mainly focus on identifiability under different settings and problems, e.g., weak supervision and
partial observability, instead of the concept of causal sufficiency and necessity; (Wang & Jordan, 2024) aim to construct
measures of non-spuriousness and disentanglement, where the exploitation of causal necessity and sufficiency concept
is to align it with non-spuriousness and “invoke” the corresponding measure in (Pearl, 2009) to construct the measure of
non-spuriousness. Our framework is able to adaptively capture complex patterns and potential relationships in the data
without relying on pre-set assumptions. Meanwhile, it can construct a more complex model structure without being limited
by the high-dimensional and nonlinear conditions.

Constraining Causal Completeness Our methodology for enforcing causal sufficiency differs significantly from that of
previous theory or causal-related works (Yang et al., 2024; Kim et al., 2024; Sun et al., 2025; Yao et al., 2024; Ahuja et al.,
2023). For the objective function, as outlined in Section 5, our C3R objective incorporates both effectiveness and reliability.
The effectiveness component addresses causal completeness of the learned representation, with the generalization guarantee,
while the reliability component ensures mitigates the effects of spurious correlations and the accuracy of counterfactual
modeling (for necessity) through additional constraints. It is inspired from the proposed measurement. The objective of
(Yang et al., 2024) relies on the proposed generalization bounds, where the foundation is different. For implementation and
experimental Settings: Our approach employs distinct feature extractors for each modality, followed by an MLP layer for
fusion, tailored to the diverse data distributions inherent in MML. This contrasts with (Yang et al., 2024), which utilizes a
shared feature extractor suitable for domain generalization across different domains. Furthermore, our experimental results
demonstrate that C3R consistently improves performance across various MML scenarios.

In summary, while both our work and previous works (Yang et al., 2024; Sun et al., 2025; Yao et al., 2024; Ahuja et al.,
2023; Brehmer et al., 2022) draw inspiration from key concepts in causal theory, they diverge significantly in their problem
settings, motivations, theoretical foundations, optimization strategies, empirical validations, etc. Our introduction of causal
sufficiency and necessity tailored for MML, the novel C3 concept, and the comprehensive C3R framework collectively
advance the field of MML beyond the scope of existing domain generalization approaches.
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E. Benchmark Datasets
In this section, we briefly introduce all datasets used in our experiments. In summary, the benchmark datasets can be divided
into four categories: (i) scenes recognition on two datasets, i.e., NYU Depth V2 (Silberman et al., 2012) and SUN RGBD
(Song et al., 2015) datasets, with two modalities, i.e., RGB and depth images; (ii) image-text classification on two datasets,
i.e., UPMC FOOD101 (Wang et al., 2015) and MVSA (Niu et al., 2016) datasets, with two modalities, i.e., image and text;
(iii) segmentation when consider missing modalities on the BraTS dataset (Menze et al., 2014; Bakas et al., 2018) with four
modalities, i.e., Flair, T1, T1c, and T2; and (iv) MMLSynData mentioned in Appendix D.5 which is an MML synthetic
dataset that used to evaluate whether learned representations contain causal sufficiency and necessity. The composition of
the data set is as follows:

• NYU Depth V2 (Silberman et al., 2012) is an indoor scene dataset captured by New York University using Microsoft
Kinect’s RGB and depth cameras. It includes 1,449 labeled RGB and depth images across 464 distinct indoor scenes
from three cities, along with 407,024 unlabeled images.

• SUN RGBD (Song et al., 2015) is a scene understanding dataset released by the Vision & Robotics Group at Princeton
University. It comprises 10,335 RGB-D images of indoor scenes, which are pairs of color and depth images. These
images were captured using four different types of 3D cameras, including the Intel RealSense, Asus Xtion, Kinect v1,
and Kinect v2. Each image in the dataset has been meticulously annotated with 2D polygonal segmentation and 3D
bounding boxes.

• UPMC FOOD101 (Wang et al., 2015) is a comprehensive food recognition dataset consisting of 101,000 images
across 101 categories. Each category features 750 training images and 250 test images. Notably, the images are stored
in JPEG format and are uniformly resized to a maximum dimension of 512 pixels.

• MVSA (Niu et al., 2016) is a multimodal biometric dataset that includes a variety of biometric samples such as
fingerprints, iris, face, and hand shapes. It is designed to support research in the fields of biometric recognition
and security applications. The MVSA dataset typically comprises a rich collection of samples with image and text
modalities.

• BraTS (Menze et al., 2014; Bakas et al., 2018) aims to segment specific areas within brain tumors, which are identified
as the enhancing tumor (ET), the tumor core (TC), and the entire tumor (WT). The dataset is composed of 3D multi-
modal MRI scans of the brain, featuring modalities such as Flair (Fl), T1, T1 contrast-enhanced (T1c), and T2, all of
which come with corresponding ground-truth segmentations. It includes a training set of 285 cases and an evaluation
set of 66 cases. While the ground-truth annotations for the training cases are accessible to the public, those for the
validation set remain undisclosed.

• MMLSynData aims to analyze whether the learned representations contain causal sufficiency and necessity. It contains
four types of data, i.e., sufficient and necessary causes (SNC), sufficient but unnecessary causes (SC), necessary but
insufficient causes (NC), and spurious correlations (SP). Each type of data uses 250 MML samples for training and 50
groups for evaluation. The construction details and corresponding functions are described in Appendix D.5.

F. Baselines
For comprehensive evaluation of the proposed C3R, we select 5 types of comparison baselines for evaluation, which covers
almost all types of MML baselines including (i) large model and foundation model for MML, i.e., CLIP (Sun et al., 2023),
ALIGN (Jia et al., 2021), CoOp (Jia et al., 2022a), MaPLe (Khattak et al., 2023), and VPT (Jia et al., 2022a); (ii) classic
MML methods, i.e., RGB (Zhang et al., 2023c), Depth (Zhang et al., 2023c), Late fusion (Wang et al., 2016), ConcatMML
(Zhang et al., 2021), and AlignMML (Wang et al., 2016); (iii) strong unimodal baselines and the corresponding multi-modal
methods, i.e., Bow (Zhang et al., 2023c), Img (Zhang et al., 2023c), BERT (Zhang et al., 2023c), ConcatBow (Zhang et al.,
2023c), and ConcatBERT (Zhang et al., 2023c); (iv) recently proposed and SOTA MML methods, i.e., MMTM (Joze et al.,
2020) and TMC (Han et al., 2020), LCKD (Wang et al., 2023b), UniCODE (Xia et al., 2024), SimMMDG (Dong et al.,
2024), MMBT (Kiela et al., 2019), and QMF (Zhang et al., 2023c); and (v) MML methods that specifically designed for
missing modalities, i.e., HMIS (Havaei et al., 2016), HVED (Dorent et al., 2019), RSeg (Chen et al., 2019), mmFm (Zhang
et al., 2022b), and LCKD (Wang et al., 2023b).
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Table 6: Full results (with error bars) of scenes recognition performance on NYU Depth V2 (Silberman et al., 2012) and
SUN RGBD (Song et al., 2015) with RGB and depth images. “(N, Avg.)” and “(N, Worst.)” denotes the average and
worst-case accuracy. The results show the error of accuracy by executing the experiments randomly 3 times on 40 randomly
selected hyperparameters. The best results are highlighted in bold.

Method NYU Depth V2 SUN RGB-D
(0,Avg.) (0,Worst.) (10,Avg.) (10,Worst.) (0,Avg.) (0,Worst.) (10,Avg.) (10,Worst.)

CLIP (Sun et al., 2023) 69.32±0.35 68.29±0.36 51.67±0.42 48.54±0.36 56.24±0.51 54.73±0.31 35.65±0.47 32.76±0.54
ALIGN (Jia et al., 2021) 66.43±0.36 64.33±0.32 45.24±0.47 42.42±0.38 57.32±0.52 56.26±0.36 38.43±0.42 35.13±0.52
MaPLe (Khattak et al., 2023) 71.26±0.32 69.27±0.35 52.98±0.45 48.73±0.37 62.44±0.54 61.76±0.33 34.51±0.42 30.29±0.54
CoOp (Jia et al., 2022a) 67.48±0.34 66.94±0.32 49.43±0.44 45.62±0.32 58.36±0.50 56.31±0.36 39.67±0.41 35.43±0.55
VPT (Jia et al., 2022a) 62.16±0.36 61.21±0.31 41.05±0.47 37.81±0.32 54.72±0.54 53.92±0.32 33.48±0.44 29.81±0.51
RGB (Zhang et al., 2023c) 63.33±0.35 62.54±0.32 45.46±0.47 42.20±0.38 56.78±0.51 56.51±0.36 42.94±0.45 41.02±0.54
Depth (Zhang et al., 2023c) 62.65±0.37 61.01±0.34 44.13±0.48 35.93±0.32 52.99±0.55 51.32±0.32 35.63±0.40 33.07±0.54
Late fusion (Wang et al., 2016) 69.14±0.33 68.35±0.32 51.99±0.49 44.95±0.32 62.09±0.58 60.55±0.38 47.33±0.46 44.60±0.57
ConcatMML (Zhang et al., 2021) 70.30±0.32 69.42±0.36 53.20±0.47 47.71±0.31 61.90±0.52 61.19±0.37 45.64±0.41 42.95±0.50
AlignMML (Wang et al., 2016) 70.31±0.36 68.50±0.37 51.74±0.42 44.19±0.39 61.12±0.52 60.12±0.33 44.19±0.47 38.12±0.51
Bow (Zhang et al., 2023c) 61.38±0.35 59.23±0.36 37.98±0.42 34.24±0.38 54.37±0.50 54.11±0.34 39.07±0.47 36.43±0.53
Img (Zhang et al., 2023c) 43.27±0.33 42.96±0.34 29.27±0.46 28.53±0.37 36.28±0.54 35.26±0.36 21.32±0.40 20.31±0.53
BERT (Zhang et al., 2023c) 65.31±0.36 63.23±0.32 38.64±0.47 36.45±0.33 57.98±0.52 56.74±0.35 42.51±0.41 38.53±0.57
ConcatBow (Zhang et al., 2023c) 49.64±0.36 48.66±0.34 31.43±0.45 29.87±0.30 41.25±0.54 40.54±0.32 26.76±0.49 24.27±0.58
ConcatBERT (Zhang et al., 2023c) 70.56±0.34 69.83±0.36 44.52±0.46 43.29±0.34 59.76±0.52 58.92±0.34 45.85±0.42 41.76±0.54
MMTM (Joze et al., 2020) 71.04±0.36 70.18±0.34 52.28±0.42 46.18±0.33 61.72±0.56 60.94±0.31 46.03±0.44 44.28±0.57
TMC (Han et al., 2020) 71.06±0.34 69.57±0.32 53.36±0.42 49.23±0.39 60.68±0.54 60.31±0.30 45.66±0.46 41.60±0.50
LCKD (Wang et al., 2023b) 68.01±0.31 66.15±0.34 42.31±0.45 40.56±0.38 56.43±0.56 56.32±0.32 43.21±0.49 42.43±0.54
UniCODE (Xia et al., 2024) 70.12±0.37 68.74±0.32 44.78±0.48 42.79±0.39 59.21±0.55 58.55±0.36 46.32±0.47 42.21±0.57
SimMMDG (Dong et al., 2024) 71.34±0.32 70.29±0.31 45.67±0.41 44.83±0.39 60.54±0.50 60.31±0.37 47.86±0.43 45.79±0.56
MMBT (Kiela et al., 2019) 67.00±0.35 65.84±0.34 49.59±0.41 47.24±0.38 56.91±0.51 56.18±0.36 43.28±0.47 39.46±0.51
QMF (Zhang et al., 2023c) 70.09±0.30 68.81±0.34 55.60±0.42 51.07±0.34 62.09±0.50 61.30±0.36 48.58±0.46 47.50±0.58

CLIP+C3R 76.54±0.89 (+7.22) 75.12±1.20 (+6.83) 56.73±0.83 (+5.06) 52.90±1.03 (+4.36) 62.31±1.51 (+6.07) 58.71±0.91 (+3.98) 41.59±1.19 (+5.94) 37.52±0.78 (+4.76)
ALIGN+C3R 71.92±0.96 (+5.49) 70.33±0.91 (+6.00) 52.59±1.42 (+7.35) 51.26±1.58 (+8.84) 62.99±1.36 (+5.67) 61.95±1.06 (+5.69) 46.08±1.72 (+7.65) 41.95±1.02 (+6.82)
MaPLe+C3R 77.07±1.16 (+5.81) 74.45±1.23 (+5.18) 58.94±1.17 (+5.96) 55.95±1.41 (+7.22) 66.21±1.85 (+3.77) 65.51±1.23 (+3.75) 40.12±1.51 (+5.61) 37.34±1.03 (+7.05)
Late fusion+C3R 73.26±1.05 (+4.12) 71.62±0.77 (+3.27) 57.21±0.85 (+5.22) 50.98±1.51 (+6.03) 64.84±1.25 (+2.75) 63.25±1.32 (+2.70) 53.35±0.81 (+6.02) 50.43±1.60 (+5.83)
ConcatMML+C3R 75.97±1.51 (+5.67) 75.95±0.90 (+6.53) 60.32±1.43 (+7.12) 55.02±0.83 (+7.31) 67.17±1.20 (+5.27) 66.73±1.30 (+5.54) 52.28±1.48 (+6.64) 50.42±1.11 (+7.47)
Bow+C3R 65.77±0.93 (+4.39) 65.22±1.42 (+5.99) 44.82±1.64 (+6.84) 42.88±1.04 (+8.64) 58.15±1.41 (+4.78) 57.52±0.67 (+3.41) 47.37±1.11 (+8.30) 43.85±1.42 (+7.42)
LCKD+C3R 77.14±1.62 (+9.13) 75.12±1.62 (+8.97) 50.11±1.59 (+1.80) 47.98±0.99 (+7.42) 60.97±1.40 (+4.54) 60.14±0.79 (+3.82) 47.23±1.65 (+4.02) 46.21±1.65 (+3.78)
UniCODE+C3R 76.52±1.42 (+6.40) 74.39±1.70 (+5.65) 51.51±1.41 (+6.73) 48.09±1.05 (+5.3) 65.78±1.44 (+6.57) 64.49±1.63 (+5.94) 51.42±1.52 (+5.10) 49.70±1.66 (+7.49)
SimMMDG+C3R 75.32±1.29 (+3.98) 74.61±1.00 (+4.32) 49.99±1.24 (+4.32) 47.22±1.60 (+2.65) 65.50±1.66 (+4.96) 64.58±1.44 (+4.27) 52.69±1.57 (+4.83) 51.70±1.21 (+5.91)
MMBT+C3R 73.74±1.26 (+6.74) 71.82±1.22 (+5.98) 54.35±1.51 (+4.76) 52.57±1.58 (+5.33) 61.47±1.67 (+4.56) 59.99±1.15 (+3.81) 48.42±1.01 (+5.14) 46.07±1.44 (+6.61)
QMF+C3R 77.58±1.37 (+7.49) 74.95±1.32 (+6.14) 59.72±1.60 (+4.12) 59.18±1.35 (+8.11) 67.35±1.12 (+5.26) 65.84±1.26 (+4.54) 52.26±1.59 (+3.68) 51.28±1.83 (+3.78)

G. Implementation Details
For the basic MML model, we follow the commonly used structure mentioned in (Zhang et al., 2023d; Xu et al., 2023) or the
corresponding official code. For the model architecture of the causal representations learner, we use a three-layer Multilayer
Perceptron (MLP) neural network with activation functions designed following (Clevert et al., 2016). The dimensions of the
hidden vectors of each layer are specified as 64, 32, and 128. It can be embedded after the feature extractor of any MML
model, ensuring the causal completeness of the learned representations by learning a learnable matrix based on Eq.10 that
is consistent with the size of the representations. Moving on to the optimization process, we employ the Adam optimizer
to train our model. Momentum and weight decay are set at 0.8 and 10−4, respectively. The initial learning rate for all
experiments is established at 0.1, with the flexibility for linear scaling as required. Additionally, we use grid search to set the
hyperparameters λv = 0.75, and λfe = 0.4. Note that we specially construct corresponding ablation experiments for the
selection of these parameters, as described in Appendix H. Experimental results show that the model can maintain relatively
stable performance on various data sets using different hyperparameter settings.

For evaluation, the training dataset is randomly split as training and validation datasets, the hyperparameters are selected on
the validation dataset, which maximizes the performance of the validation dataset. The overall accuracy results are evaluated
on the test dataset rather than the validation dataset. All experimental procedures are executed using NVIDIA RTX A6000
GPUs, and all experimental results are obtained on the basis of five rounds of experiments.

H. Full Results and Additional Experiments
In this section, we provide the full results and analyses of the experiments in Section 6 and additional experiments which can
only be supplemented in the appendix due to space limitations. Specifically, we first provide full results and additional details
of “Performance and Robustness Analysis” (the first experiment in Subsection 6.2 with Table 1), including performance
on all MML baseline methods and more analysis conclusions (Appendix H.1). Then, we provide the additional details

31



Towards the Causal Complete Cause of Multi-Modal Representation Learning

Table 7: Full results (with error bars) of image-text classification performance on UPMC FOOD101 (Wang et al., 2015)
and MVSA (Niu et al., 2016) with image and text. “(N, Avg.)” and “(N, Worst.)” denotes the average and worst-case
accuracy. The results show the error of accuracy by executing the experiments randomly 3 times on 40 randomly selected
hyperparameters. The best results are highlighted in bold.

Method FOOD 101 MVSA
(0,Avg.) (0,Worst.) (10,Avg.) (10,Worst.) (0,Avg.) (0,Worst.) (10,Avg.) (10,Worst.)

CLIP (Sun et al., 2023) 85.24±0.31 84.20±0.34 52.12±0.54 49.31±0.43 62.48±0.33 61.22±0.37 31.64±0.58 28.27±0.54
ALIGN (Jia et al., 2021) 86.14±0.32 85.00±0.33 53.21±0.52 50.85±0.47 63.25±0.36 62.69±0.32 30.55±0.56 26.44±0.59
MaPLe (Khattak et al., 2023) 90.40±0.32 86.28±0.37 53.16±0.56 40.21±0.47 77.43±0.32 75.36±0.30 43.72±0.56 38.82±0.52
CoOp (Jia et al., 2022a) 88.33±0.30 85.10±0.32 55.24±0.56 51.01±0.48 74.26±0.33 73.61±0.34 42.58±0.56 37.29±0.58
VPT (Jia et al., 2022a) 83.89±0.31 82.00±0.35 51.44±0.52 49.01±0.47 65.87±0.36 64.98±0.37 32.79±0.50 29.21±0.59
RGB (Zhang et al., 2023c) 83.54±0.30 82.43±0.37 54.32±0.56 52.32±0.45 69.28±0.32 69.12±0.31 51.43±0.55 47.26±0.54
Depth (Zhang et al., 2023c) 81.37±0.35 81.21±0.33 46.29±0.57 43.57±0.42 67.52±0.39 66.76±0.34 43.77±0.51 38.68±0.53
Late fusion (Wang et al., 2016) 90.69±0.30 90.58±0.31 58.00±0.52 55.77±0.47 76.88±0.33 74.76±0.38 55.16±0.56 47.78±0.52
ConcatMML (Zhang et al., 2021) 89.43±0.34 88.79±0.32 56.02±0.52 54.33±0.48 75.42±0.33 75.33±0.30 53.42±0.51 50.47±0.53
AlignMML (Wang et al., 2016) 88.26±0.30 88.11±0.38 55.47±0.57 52.76±0.42 74.91±0.36 72.97±0.34 52.71±0.55 47.03±0.52
Bow (Zhang et al., 2023c) 82.50±0.36 82.32±0.34 41.95±0.54 41.41±0.48 48.79±0.34 35.45±0.32 41.57±0.50 32.18±0.53
Img (Zhang et al., 2023c) 64.62±0.32 64.22±0.39 33.03±0.58 32.67±0.47 64.12±0.37 62.04±0.36 45.00±0.56 39.31±0.50
BERT (Zhang et al., 2023c) 86.46±0.37 86.42±0.35 43.88±0.58 43.56±0.42 75.61±0.30 74.76±0.33 47.41±0.55 45.86±0.51
ConcatBow (Zhang et al., 2023c) 70.77±0.35 70.68±0.34 35.68±0.58 34.92±0.41 64.09±0.37 62.04±0.35 45.40±0.56 40.95±0.54
ConcatBERT (Zhang et al., 2023c) 88.20±0.36 87.81±0.32 49.86±0.54 47.79±0.40 65.59±0.38 64.74±0.36 46.12±0.56 41.81±0.51
MMTM (Joze et al., 2020) 89.75±0.35 89.43±0.39 57.91±0.52 54.98±0.46 74.24±0.38 73.55±0.34 54.63±0.50 49.72±0.56
TMC (Han et al., 2020) 89.86±0.33 89.80±0.34 61.37±0.52 61.10±0.43 74.88±0.30 71.10±0.31 60.36±0.55 53.37±0.54
LCKD (Wang et al., 2023b) 85.32±0.36 84.26±0.34 47.43±0.52 44.22±0.43 62.44±0.30 62.27±0.34 43.52±0.59 38.63±0.54
UniCODE (Xia et al., 2024) 88.39±0.36 87.21±0.35 51.28±0.52 47.95±0.41 66.97±0.39 65.94±0.33 48.34±0.58 42.95±0.54
SimMMDG (Dong et al., 2024) 89.57±0.38 88.43±0.34 52.55±0.57 50.31±0.42 67.08±0.35 66.35±0.39 49.52±0.58 44.01±0.52
MMBT (Kiela et al., 2019) 91.52±0.37 91.38±0.36 56.75±0.55 56.21±0.40 78.50±0.34 78.04±0.39 55.35±0.52 52.22±0.57
QMF (Zhang et al., 2023c) 92.92±0.32 92.72±0.35 62.21±0.58 61.76±0.40 78.07±0.39 76.30±0.31 61.28±0.55 57.61±0.50

CLIP+C3R 92.93±1.04 (+7.69) 91.80±1.41 (+7.60) 59.77±1.38 (+7.65) 57.54±1.61 (+8.23) 69.61±1.00 (+7.13) 68.64±0.86 (+7.42) 39.58±1.52 (+7.94) 35.89±1.73 (+7.62)
ALIGN+C3R 90.91±0.95 (+4.77) 90.13±1.21 (+5.13) 58.74±1.78 (+5.53) 57.96±1.78 (+7.11) 68.71±1.51 (+5.46) 67.21±1.19 (+4.52) 37.26±1.25 (+6.71) 33.60±1.48 (+7.16)
MaPLe+C3R 94.38±0.99 (+3.98) 93.51±1.55 (+7.20) 60.63±1.59 (+7.47) 46.07±0.69 (+5.86) 81.19±0.50 (+3.76) 81.51±0.94 (+6.15) 49.32±0.90 (+5.60) 45.98±1.24 (+7.16)
Late fusion+C3R 94.09±0.80 (+3.40) 92.24±0.57 (+1.66) 65.27±1.51 (+7.27) 59.02±0.83 (+3.25) 83.77±0.66 (+6.89) 79.79±0.85 (+5.03) 62.14±0.78 (+6.98) 52.50±0.98 (+4.72)
ConcatMML+C3R 94.48±0.73 (+5.05) 94.36±1.20 (+5.57) 60.91±1.23 (+4.89) 59.46±1.16 (+5.13) 79.95±0.68 (+4.53) 78.84±0.98 (+3.51) 59.36±1.48 (+5.94) 57.66±1.04 (+7.19)
Bow+C3R 86.61±1.29 (+4.11) 89.31±0.52 (+6.99) 46.44±0.87 (+4.49) 48.62±1.06 (+7.21) 54.89±1.00 (+6.10) 43.16±0.83 (+7.71) 47.93±1.07 (+6.36) 37.67±0.71 (+5.49)
LCKD+C3R 90.89±1.22 (+5.57) 90.14±1.29 (+5.88) 54.48±1.21 (+7.05) 51.16±0.80 (+6.94) 66.78±0.67 (+4.34) 65.67±0.94 (+3.40) 49.28±1.41 (+5.76) 42.84±1.35 (+4.21)
UniCODE+C3R 91.76±0.69 (+3.37) 89.74±0.96 (+2.53) 54.79±0.63 (+3.51) 52.14±0.68 (+4.19) 70.49±0.81 (+3.52) 67.96±1.00 (+2.02) 52.56±1.10 (+4.22) 47.55±0.83 (+4.60)
SimMMDG+C3R 92.24±1.07 (+2.67) 91.14±1.36 (+2.71) 57.32±1.53 (+4.77) 53.56±0.84 (+3.25) 73.62±1.22 (+6.54) 71.01±0.94 (+4.66) 51.65±0.80 (+2.13) 51.07±0.74 (+7.06)
MMBT+C3R 94.25±0.72 (+2.73) 93.90±1.02 (+2.52) 60.41±0.71 (+3.66) 60.11±1.01 (+3.90) 82.76±0.50 (+4.26) 81.64±0.68 (+3.60) 62.12±0.81 (+6.77) 58.93±1.30 (+6.71)
QMF+C3R 94.87±1.00 (+1.95) 93.79±0.68 (+1.07) 66.45±1.63 (+4.24) 63.69±1.38 (+1.93) 83.13±0.94 (+5.06) 81.98±0.94 (+5.68) 66.66±0.81 (+5.38) 64.51±1.08 (+6.90)

and analysis of “When faces the problem of missing modalities” (the second experiment in Subsection 6.2 with Table 2).
Next, we provide the full results and more analysis of “Learning causal complete representations” (the third experiment
in Subsection 6.2 with Figure 3), including the detailed settings, the visualization and more analysis of the correlation
between different methods and different causal causes under different spurious degrees. Finally, we provide the full results
and additional experiments of the ablation study, including the experiments about model efficiency, trade-off performance,
and parameter sensitivity.

H.1. Full Results and Additional Details of Performance and Robustness Analysis

Due to space limitations, we provide part of the experimental results in Table 1 of the main text, which contains typical
methods of all categories of baselines mentioned in Appendix F. In Table 6 and Table 7, we provide comparison baselines
for all baselines. Specifically, Table 6 provides the experiments about scene recognition on NYU Depth V2 (Silberman
et al., 2012) and SUN RGBD (Song et al., 2015) datasets. Table 7 provides the experiments about image-text classification
on UPMC FOOD101 (Wang et al., 2015) and MVSA (Niu et al., 2016) datasets. From the results, we can observe that (i)
C3R achieves stable improvements in both the average and worst-case accuracy on almost all the comparison baselines,
including both the foundation model and all types of MML baselines; and (ii) regardless of the data scale, C3R can bring
obvious and stable performance improvements, with an average increase of more than 5%.. This proves the superior effect
and robustness of C3R.

H.2. Full Results and Additional Details of Performance with Missing Modalities

Due to the complexity of data in real systems, MML methods face the dilemma of missing modalities (Zhao et al., 2021;
Zhang et al., 2022a). This problem severely affects model performance, especially when important modes are missing.
Therefore, in order for the model to have good practicality, it is very critical to be able to maintain stable performance in the
face of missing modes. To evaluate the performance of the proposed C3R when facing missing modalities, we constructed
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(a) Spurious correlation degree Dsp = 0.3 (b) Spurious correlation degree Dsp = 0.6

Figure 6: Evaluation for the property of learned representations (identification for SNC, SC, NC, and SP) with different
spurious correlation degree Dsp.

comparative experiments on all 15 possible combinations of missing modalities on BraTS. Specifically, based on BraTS, we
construct fifteen combinations of different modes following (Wang et al., 2023b). Then, we recorded the performance of
C3R and several strong baseline models after five runs.

From the results illustrated in Table 2, we can observe that (i) using F1 and T1c, the model performs much better than others
on Enhancing Tumour. Likewise, T1c and Flair from the Tumour Core and Whole Tumour contributed the most. (ii) The
model has been significantly improved after the introduction of C3R, especially when important modes are missing, e.g., F1
on Enhancing Tumour. The results prove that our method can improve the performance of the model in the scenario of
missing modality and improve the stability.

H.3. Full Results and Additional Details of Causal Complete Evaluation

In order to verify whether our method C3R actually extracts causal necessary and sufficient representations, we construct a
synthetic data set called MMLSynData (as mentioned in Appendix D.5) to conduct comparative experiments. Specifically,
we first built MMLSynData, which is a synthetic data set for MML scenarios containing four types of data, i.e., sufficient
and necessary causes (SNC), sufficient but unnecessary causes (SC), necessary but insufficient causes (NC), and spurious
correlations (SP). Each category contains 250 sets of training data and 50 sets of test data. Next, based on the above 1200
sets of data, we set different degrees of spurious correlation Dsp for comparative experiments, including Dsp = 0.3 and
Dsp = 0.6. It is worth noting that the result shown in Figure 3 in the text is Dsp = 0.6. Then, we choose SOTA and classic
MML methods to compare with the basic MML framework after the introduction of C3R, where basic represents a simple
MML learning framework based on the Conv4 backbone network and a classifier following (Wang et al., 2016). We record
their correlation with four different types of data in MMLSynData.

The results of Dsp = 0.3 and Dsp = 0.6 are shown in Figure 6. Combined with Figure 3, the results show that compared
with other methods, the correlation with real data (such as SN, SF, and NC) is higher after the introduction of C3R, and the
correlation with spurious correlation (SP ) has a lower score. For example, when Dsp = 0.3, we obtain the average distance
correlations of SNC, SC, NC, and SP as 0.91, 0.71, 0.69, 0.13 respectively. Furthermore, when we set Dsp to a larger value
of 0.6, the distance correlation between the MML method and false information is almost unchanged after introducing C3R,
while other methods are difficult to achieve this. The results show that when there are more spurious correlations in the data,
C3R still tends to capture valid information from the real data to extract sufficient and necessary causes.

H.4. Full Results and Additional Details of Ablation Study

To evaluate the effect of the model and understand how C3R works well, we constructed a series of experiments, including
(i) the effect of each item in the C3R objective as shown in Subsection 6.2; (ii) trade-off performance about the model
efficiency and accuracy after introducing C3R; (iii) parameter sensitivity about the three hyperparameters in the C3R
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Figure 7: Trade-off Performance of different methods on (0,Avg.) NYU Depth V2.
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Figure 8: Parameter sensitivity about λv on (0,Avg.) NYU
Depth V2.
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Figure 9: Parameter sensitivity about λfe on (0,Avg.) NYU
Depth V2.

objective, i.e., λv and λfe. In this section, we provide details about the latter two experiments and results, where the results
of the first experiment are shown in Figure 4.

Model efficiency Since C3R is a plug-and-play module, in order to ensure its practicability, we explore the balance
between model performance and efficiency. We compare the trade-off performance of multiple baselines before and after
using our C3R with the same Conv4 backbone. The results illustrated in Figure 7 show that introducing C3R achieves great
performance with acceptable computational cost.

Parameter sensitivity We determine the hyperparameters of the regularization term in the experiment based on the
performance of the validation samples. Specifically, for each experimental scenario, we test the impact of different values of
λv and λfe on model performance. The range of these values is set between [0.3, 0.9]. In each scenario, we first use grid
search to screen the parameters with a difference of 0.05. After screening the optimal interval, we screened the parameters
with a difference of 0.01 and recorded the final average results.

The results are shown in Figures 8-9. From the results, we observe that when λv = 0.75, and λfe = 0.4, the results are
better which is also our choice. Meanwhile, the model effect does not change significantly under different parameters, which
illustrates the stability of the parameters and the convenience of adjustment in reality.
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(a) Heatmap of Sample 1 (b) Heatmap of Sample 2 (c) Heatmap of Sample 3

(d) Heatmap of Sample 4 (e) Heatmap of Sample 5 (f) Heatmap of Sample 6

(g) Heatmap of Sample 7 (h) Heatmap of Sample 8 (i) Heatmap of Sample 9

Figure 10: Nine sets of visualization results on the BraTS dataset. For qualitative demonstration, we used the model after
five iterations to calculate the importance weights of the resized (32× 32) sampled data and obtained the above heat map. In
the heat map, the score of each area represents the probability that it belongs to a causal complete cause.
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Table 8: Effect of the extracted representation. This experiment aims to analyze the practical guidance of C3R and how
this representation mirrors the properties in the example. The “Original” means that the representation is directly from
the extractor of the method; “Reduce” means we reduce the weights of high-weight elements which are more likely to be
causal complete and directly input them into the frozen classification head; “Increase” means we increase the weights of
low-weight representation elements to twice the original weights and normalize them.

Method Representation Accuracy(%)

LCKD Original 79.30
LCKD+C3R Original 85.39
LCKD+C3R Reduce 83.73
LCKD+C3R Increase 84.02

Table 9: Performance when faces noise on NYU Depth V2. We follow the same experimental setting in Section 6.2. We
apply a mask to 30% of the data area. Then, we selected MMBT and QMF as the baselines to calculate the performance
changes before and after the introduction of C3R.

Method Accuracy(%)

MMBT 62.89
QMF 64.72
MMBT+C3R 71.26
QMF+C3R 75.49

H.5. Visualization of Causal Complete Cause

In addition to the examples of causal completeness provided in Figure 1 and Appendix D, we construct more qualitative
demonstrations for real datasets. Specifically, for the five datasets involved in the experiment, we randomly sample a set of
training samples from each dataset and visualize, i.e., calculate the importance heatmap of sufficient and necessary causes
based on the constructed C3R. The results are shown in Figure 10.

Besides this, we conduct a series of visualization experiments to further elucidate the practical guidance provided by C3R
and to examine how this representation reflects the underlying properties in the example. Utilizing the BraTS dataset as
a case study, we consider four modalities, namely F1, T1, T1c, and T2, and adopt LCKD as the baseline method. The
results are presented in Table 8. Specifically, we first randomly select five sets of multi-modal data and input them into
LCKD to obtain both the results and the representations with the weight matrix. Subsequently, we employ the same
settings to visualize the feature representations after integrating C3R, observing that the weights are altered and the
accuracy is significantly enhanced. We hypothesize that this improvement arises because C3R calculates the probability
of representations belonging to causal factors and subsequently re-weights the matrix. To further validate this hypothesis,
we reduce the weights of high-weight elements and directly input them into the frozen classification head, resulting in a
decrease in accuracy. Conversely, when we amplify the weights of low-weight representation elements to twice their original
values and normalize them, the accuracy also declines. Thus, this example demonstrates how C3R effectively guides the
representation in these datasets, where elements with high weights correspond to the causal factors of the selected data.

H.6. Performance When Facing Noise

One reason of why we conduct experiments of “Performance and robustness analysis” is to consider the impact of data noise
and damage. The difference between the “worst result” and the “average result” under the same setting may be caused by
noises. The results in Table 1, Table 6, and Table 7 show that C3R steadily improves the effect of MML and greatly reduce
the gap between the worst and average results. Meanwhile, we also considered more serious data defects such as missing
modality, and the results (Table 2) reached similar conclusions. These results prove that (i) C3R is effective and robust, and
(ii) noise will damage multi-modal representations but hard to affect causal representations learned by C3R.

To comprehensively evaluate the effect of C3R in the presence of noise, we further provide a toy experiment to intuitively
evaluate the impact of noise on C3R. Specifically, we choose NYU Depth V2 as the benchmark dataset and apply a mask to

36



Towards the Causal Complete Cause of Multi-Modal Representation Learning

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Training Hours

70

75

80

85

90

95

100

Ac
cu

ra
cy

Datasets
Standard MML Dataset: FOOD 101
Dataset with Missing Modalities: BraTS (F1 and T1)

Loss Functions
MSE
Cross-Entropy
KL
Wasserstein

Loss Functions
MSE
Cross-Entropy
KL
Wasserstein

Figure 11: Trade-off Performance of with different distance loss functions.

30% of the data area. Then, we select MMBT and QMF as the baselines to calculate the performance changes of the models
before and after the introduction of C3R. The results are shown in Table 9. The results show that (1) noises affects the
performance of the MML baselines with the degradation exceeding 5%; (2) even in the presence of noises, the performance
of MML after the introduction of C3R only decreases by less than 2% compared with the original (Table 1), needless to say
that is may be due to the mask blocking important feature areas. This further shows that C3R has good robustness.

H.7. Role of Distance Loss

In this subsection, we examine the role of loss functions for distance in the objective of C3R. The goal of this optimization is
to evaluate the distance between Ẑc,i and Zc,i, with the choice of loss function directly affecting performance. We evaluate
four common distance loss functions—Mean Squared Error (MSE) (Tsai et al., 2020), Cross-Entropy (De Boer et al.,
2005), KL Divergence (Hershey & Olsen, 2007), and Wasserstein Distance (Panaretos & Zemel, 2019)—by analyzing their
performance and training time on FOOD101. The loss functions are defined as follows:

Mean Squared Error (MSE) (Tsai et al., 2020) measures the average squared differences between predicted and true
values across modalities. It is simple to compute but sensitive to differences between modalities:

MSE(y, ŷ) =
1

n

n∑
i=1

∥yi − ŷi∥2,

where y and ŷ are the true and predicted values across modalities, ∥ · ∥ is the Euclidean distance, and n is the sample size.

Cross-Entropy (De Boer et al., 2005) calculates the difference between true and predicted joint distributions, capturing
uncertainty between modalities:

CE(y, ŷ) = −
n∑

i=1

m∑
j=1

yij log ŷij ,

where y and ŷ denote the true and predicted joint probability distributions, and m is the number of modalities.

KL Divergence (Kullback-Leibler Divergence) (Hershey & Olsen, 2007) measures the difference between two joint
probability distributions, offering a balance between accuracy and computational cost:

KL(P∥Q) =
∑
i

m∑
j=1

P (i, j) log
P (i, j)

Q(i, j)
,

where P and Q are the true and predicted joint distributions.

Wasserstein Distance (Panaretos & Zemel, 2019) reflects the geometric distance between joint distributions but is computa-
tionally expensive:

WD(P,Q) = inf
γ∈Π(P,Q)

E(X,Y )∼γ [∥X − Y ∥],
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where P and Q are distributions, Π(P,Q) represents the set of joint distributions coupling P and Q.

From empirical analysis, KL divergence achieves the best trade-off between accuracy and efficiency, as shown in Figure 11.
We evaluate the effect of LCKD+C3R by introducing different distance metrics. We select the standard MML benchmark
dataset, FOOD 101, and dataset with missing modality, i.e., tumour core on BraTS (with F1 and T1 available), for evaluation.
The results show that it provides higher accuracy in shorter training times compared to MSE and cross-entropy, while
Wasserstein distance achieves comparable accuracy, its computational cost is significantly higher, making KL divergence the
more practical choice.

From a theoretical perspective, to better use C3R in MML models, the distance metric used in Theorem 3.5 should include:
(i) the ability to capture subtle differences between distributions accurately, (ii) utility in ensuring stable and efficient
convergence to the global optimum during optimization, (iii) applicability to a wide range of complex distributions, and (iv)
computational efficiency. KL divergence excels in these aspects, as evidenced by three key features (Hershey & Olsen, 2007;
Goldberger et al., 2003; Shlens, 2014). First, KL divergence is non-negative and equals zero only when two distributions are
identical, aligning with intuitive notions of difference (Gong et al., 2021). This property ensures its stability in capturing
subtle differences, fulfilling criteria (i) and (iv). Second, KL divergence is convex, increasing the likelihood of convergence
to the global optimum rather than becoming trapped in local minima, especially in high-dimensional settings (Hershey &
Olsen, 2007). This characteristic addresses criterion (ii). Finally, as an extension of information entropy, KL divergence
effectively quantifies information loss and uncertainty, making it highly versatile for diverse applications (Goldberger et al.,
2003), including self-rewarding learning tasks, thereby satisfying criterion (iii).

In contrast, alternative metrics exhibit significant limitations. MSE, rooted in Euclidean distance, is overly sensitive to
outliers and disregards the non-negativity and normalization properties of probability distributions (Marmolin, 1986; Chicco
et al., 2021; Lebanon, 2010), failing to meet criteria (i) and (iii). Cross-entropy, a specific case of KL divergence, struggles
with continuous distributions and non-one-hot true distributions (De Boer et al., 2005; Botev et al., 2013), limiting its ability
to precisely measure complex distributions (i and iii). While Wasserstein distance captures overall shape differences between
distributions, its high computational cost and dependence on smoothness conditions make it unsuitable for high-dimensional
problems (Panaretos & Zemel, 2019; Vallender, 1974), falling short of criterion (iv).

In summary, KL divergence strikes an optimal balance between theoretical robustness and computational feasibility, adhering
to the properties for twin network. This balance enables better model generalization and reduced training costs, making it
the preferred metric for practical applications.
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