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Figure 1: Personalized segmentation task involves segmenting a specific reference object in a new
scene. Our method is capable to accurately identify the specific reference instance in the target image,
even when other objects from the same class are present. While other methods capture visually or
semantically similar objects, our method can successfully extract the identical instance, by using
a new personalized feature map and fusing semantic and appearance cues. Red and green indicate
incorrect and correct segmentations respectively.

Abstract

Personalized retrieval and segmentation aim to locate specific instances within a
dataset based on an input image and a short description of the reference instance.
While supervised methods are effective, they require extensive labeled data for
training. Recently, self-supervised foundation models have been introduced to
these tasks showing comparable results to supervised methods. However, a sig-
nificant flaw in these models is evident: they struggle to locate a desired instance
when other instances within the same class are presented. In this paper, we explore
text-to-image diffusion models for these tasks. Specifically, we propose a novel
approach called PDM for Personalized Diffusion Features Matching, that lever-
ages intermediate features of pre-trained text-to-image models for personalization
tasks without any additional training. PDM demonstrates superior performance
on popular retrieval and segmentation benchmarks, outperforming even super-
vised methods. We also highlight notable shortcomings in current instance and
segmentation datasets and propose new benchmarks for these tasks.
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1 Introduction

Personalized retrieval and segmentation focus on identifying specific instances within a dataset. When
provided with an input image featuring a particular instance (such as your beloved cat) and a brief
description ("A cat"), the objective is to locate and segment this exact instance throughout a large
collection of images. Personalized methods are useful in various applications, including instance
search [29], product identification [6, 35], and landmark recognition [41]. Furthermore, personalized
segmentation can be applied to video tracking [39], automatic labeling [37], and image editing [5, 8].

While supervised methods can be effective for these tasks, they require an extensive amount of labeled
training data. Recently, a self-supervised foundation model was proposed [39] to address this task.
This model uses the SAM encoder [14] or DINOv2 [18] foundation model to extract spatial features
from a given reference instance. These features are then used to localize the object instance in the
target image. While effective when a single instance appear in the target image, both DINOv2 and
SAM fall short when multiple instances within the same object class are presented in the image. This
is illustrated in Figure 1 showing failure cases of DinoV2 and SAM in localizing the correct dog
or van (see first and second row). They also fail when two similar objects from different semantic
classes are presented (wrongly segmenting the dog instead of the cat.)

In this paper, we propose to explore text-to-image diffusion models for these tasks. Text-to-image
foundation models have achieved remarkable success in generating new and unique images from
text prompts [7, 25, 26, 28]. These models have the capability to generate an infinite array of objects
and instances, each exhibiting unique appearances and structures. Consequently, it is reasonable to
hypothesize that properties of generated objects are encoded within the intermediate features of the
diffusion model during generation. Recent studies [1, 32, 34] show zero-shot capabilities to create
subtle changes in generated instances by manipulating the intermediate activation of the diffusion
layers, during generation. Although effective, using text-to-image diffusion models "out of the box"
for instance-related tasks, beyond generation or editing, remains unexplored.

In this paper, we present a new approach, called PDM, Personalized Diffusion Features Matching,
for personalized retrieval and segmentation. PDM requires no training or fine-tuning, no prompt
optimization, or any additional models. We demonstrate how a specific layer and block contain hidden
textural and semantic information. These features are then used for the localization of a reference
instance within a given target image, enabling both personalized segmentation and retrieval. PDM
builds upon these newly discovered diffusion features, and surpasses other self-supervised methods
(like DINOv2 [18], SAM [14] and DIFT [31]) weakly supervised methods (CLIP, OpenCLIP) and
even supervised methods on personalized instance retrieval and segmentation tasks.

We also address significant limitations in traditional benchmarks for retrieval and segmentation.
Current benchmarks often feature images with a single, distinct object or multiple objects from
different categories, allowing semantic-based methods to achieve high accuracy. To overcome
these deficiencies, we construct new benchmarks based on a newly published video tracking and
segmentation dataset [4]. This dataset includes videos with multiple instances from the same category
(e.g. two dogs playing or a group of people talking). Our method significantly outperforms all
baselines on this new dataset, highlighting its ability to accurately handle multiple similar instances
and demonstrating its superior capability in personalized retrieval and segmentation.

2 Related Work

Exploring pre-trained diffusion features. Text-to-image diffusion models [7, 25, 26, 28] have
demonstrated state-of-the-art performance for image generation tasks. With its superior generation
ability, recent studies started investigating the internal representation of diffusion models. DIFT [31]
and Fuse [38] showed that extracting features from the ResNet layers of the denoising module
provides a semantic correspondence between two objects which can also be used for image editing
propagation. Plug-and-Play [34] suggested to extract features from self-attention layers of a reference
image, during the image generation process, while incorporated with a text prompt. This approach
showcased that output images can retain the structure of the reference image while embodying
the appearance described in the text prompt. Cross-Image-Attention [1] further showed that sub-
layers in self-attention layers correspond to the structure and the appearance of generated images.
Their findings enabled the generation of images that blend the structure from one image with the
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appearance from another. ConsiStory [32] recently suggested injecting the self-attention features
of an instance from a pre-generated image into the generation process of other images to ensure
consistent reproduction of the same instance across images. DiffSeg [33] introduced a method using
self-attention maps for zero-shot image segmentation. They aggregate attention maps from multiple
self-attention layers during image generation and merge them iteratively to produce a stack of object
proposals. Segmentation maps are then obtained by applying Non-Maximum Suppression over
the merged maps. In contrast to these studies, in this paper, we explore using internal features of
pre-trained diffusion models for instance related tasks.

Personalized Segmentation: PerSAM [39] introduced the use of SAM [39] for personalized image
segmentation. They employed the SAM [14] encoder (or DINOv2 [18]) for the representation of
the reference and target images, which are then used to calculate a confidence map localizing the
user’s reference instance in the target image. Finally, it predicts positive and negative points on the
target image to be used as prompts for SAM. Additionally, they proposed a new benchmark, called
PerSeg, for personalized image segmentation. It includes 40 objects across various categories, each
associated with 5-7 images, and is evaluated using mIoU and bIoU metrics.

Instance Retrieval: Content-based instance retrieval can be seen as a variant of personalized retrieval
where images contain only a single instance. Recent supervised methods, GSS [17] and HP [2]
proposed Graph Networks for effective retrieval. SuperGlobal [29] proposed a memory-efficient
image retrieval method, that specifically focuses on the global feature extraction while in the re-
ranking stage, they update the global features of the query and top-ranked images by only considering
feature refinement with a small set of images, thus being very efficient. Recently, also self-supervised
models [9, 11, 18, 40] show comparable performance to supervised methods on retrieval tasks. These
techniques achieve impressive results in zero-shot scenarios however, they often necessitate model
fine-tuning to achieve optimal performance. In this study, we investigate text-to-image diffusion
models, which belong to the category of self-supervised models, for zero-shot personalized retrieval
and segmentation tasks. Our findings show that diffusion features supress features from other
self-supervised foundation models.

3 Method

In this section, we describe our approach to leverage pre-trained diffusion models for personalized
retrieval and segmentation. We begin by defining these tasks and then delve into identifying features
that encompass both semantic and appearance aspects. Lastly, we demonstrate the application of
these features in personalized instance retrieval and segmentation.

3.1 Personalized Retrieval and Segmentation.

In personalized retrieval and segmentation, the user supplies a single reference image, and a mask
indicating the reference instance [39] or the class name of the instance [10]. This work focuses on
the case where only class names are provided. For personalized retrieval, the goal is to retrieve images
from a database that contains the exact instance specified in the reference image. In personalized
segmentation, the objective is to segment the specified instance in new images and videos.

3.2 Are instance features even encoded in a pre-trained text-to-image model?

Pre-trained text-to-image models can generate an endless variety of objects and instances, each
with unique visual characteristics and structures. Recent methods have demonstrated that specific
changes in the activations of self and cross-attention activations of the diffusion layer can influence
the appearance of specific instances in the generated image. These methods typically modify all
activations across all denoising timestamps to affect the generated image. This indicates that instance
features are indeed encoded within these models. One can propose to use all diffusion activations
during generation and aggregate them for downstream tasks. However, using all features extracted
from diffusion layers is memory-intensive and computationally demanding. It also raises the challenge
of merging all these features coherently.

We aim to identify a single layer at a unique timestamp where both the semantics and appearance
(texture) of a reference instance are encoded. We first briefly explain how we extract features from
Stable Diffusion [26], a pre-trained text-to-image model. The architecture of Stable Diffusion consists
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Figure 2: (a) PCA visualization of QSA features obtained from the first self-attention block in the
last layer of the U-Net module, at various diffusion timesteps. Objects with similar textures and
colors have similar features. The dog’s color in I1 is similar to the colors of both the dog and the
cat in I2, indicating textural similarity. Additionally, the localization is sharper at larger timesteps.
(b) Visualization of the cross-attention map FSCT for a given prompt "dog". Note the higher region
correlation (brighter colors) corresponding to the dog, while overlooking the cat in the bottom image.

of a VAE encoder and a VAE decoder that facilitates the conversion between the pixel and latent
spaces, and a denoising U-Net module that operates in the latent space. We refer the reader to
Appendix A, for preliminary on the internal structure of the denoising U-Net layer. We first encode
input image I into the latent space of a VAE using an encoder to produce a latent code z0. Next, we
employ a diffusion inversion method [19,30], to compute the latent code zt at the time step t with the
class name embedding as inputs. We then run denoising step at timestamp t to extract activations
(features) from the denoising U-Net.

Previous studies [31, 34, 38] observed that outputs of earlier layers from the U-Net decoder capture
coarse yet consistent semantic correspondences, while deeper layers capture more low-level details
and high-frequency information. Based on these observations, and in contrast to previous work, we
conducted a more thorough analysis of features extracted from all blocks of the last U-Net layer,
examining their role across different timestamps. Interestingly, we consistently found that appearance
features are encoded in the queries (QSA) and keys (KSA) matrices of the self-attention (SA) block.
This is illustrated in Figure 2(a), where we perform Principal Component Analysis (PCA) on features
extracted for a pair of images, at various timestamps. It shows that QSA features of the dog in I1
are similar (same color and texture) to those of the middle dog and cat in I2, indicating that textural
features are encoded in these layers (similar results are observed for KSA features).

We therefore define appearance features of an image to be the average tensor of QSA and KSA

features with dimensions h× w × d extracted from the self-attention (SA) block, at the last layer L
of timestamp t:

FA =
1

2
(QSA(L)

t +KSA(L)
t ) ∈ Rh×w×d. (1)

Here, h and w represent spatial resolutions of features extracted from layer L, while d denotes the
feature dimension.

For semantic similarity, [16] observed that cross-attention maps establish the relationship between
the textual input prompt and patch/pixel-wise image features, effectively allowing a coarse semantic
segmentation map that highlights areas of potential object localization. This is further illustrated in
Figure 2(b), where the cross attention of the word "dog" with both images results in an attention
map highlighting the location where dogs can be found. This cross-attention map is calculated by
fusion of the spatial feature map and the token embedding, after projection. Therefore, we define the
semantic features to be the projected spatial features of the cross-attention (CA) block:

FS = QCA(L)
t ∈ Rh×w×d. (2)

3.3 Personalized Diffusion Features Matching

We now describe our method for combining semantic and appearance features to address personalized
retrieval and segmentation tasks in a zero-shot manner, without training or fine-tuning. We call our
approach PDM for Personalized Diffusion Features Matching. See Figure 3 for illustration.
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Figure 3: An overview of our Personalized Diffusion Features Matching approach. PDM combines
semantic and appearance features for zero-shot personalized retrieval and segmentation. We first
extract features from the reference, Ir and target It images. Appearance similarity is determined
by dot product of cropped foreground features from the reference feature map, FAM

r and the target
feature map FA

t (Eq. 5) . Semantic similarity is calculated as the product between class name token
C and the target semantic feature map FS

t to create a Semantic Map (Eq. 6). The final similarity map
SDF combines both maps by average pooling. Note, that while the appearance and semantic maps
attend on two dogs, their fusion yields a single and correct result.

Let FA
r , FS

r and FA
t , FS

t denote the appearance and semantic features extracted for the reference
image Ir and target image It respectively. Next we define our appearance and semantic similarity
functions.

Appearance Similarity: We start by localizing objects in the target image that have similar visual
features as the reference instance in Ir. To this end, we make use of C ∈ R1×d as the projected token
vector of the class name, extracted from the cross-attention block CA(L)(same block as FS).

We first use the cross-attention map between spatial image features and C to obtain a reference mask
Mr. Specifically:

Mr = I(softmax(
FS

r CT

√
d

) > τ) ∈ Rh×w. (3)

This mask is used to crop relevant appearance features of the instance from the feature map FA
r ,

which will later be used for searching within target images. The masked appearance feature map is
thus defined as:

FAM
r = Mr ◦ FA

r (4)
I is the indicator function and τ is a threshold, resulting eventually in a binary mask, with n
foreground features (discarding zeroed-out tokens). Note that ◦ denotes spatial-wise multiplication.
This approach leverages the U-Net’s ability to preserve spatial information in its latent codes and
features during the diffusion process. Next, we compute a map for the appearance similarity score
between the reference and target image by simply applying a dot product between the corresponding
masked reference feature map and target feature map, followed by average pooling:

SA =
1

n

n∑
i=1

FAM
r (i) · FA

t (5)

where SA ∈ Rh×w and FAM
r (i) refers to the feature map i in FAM

r (i).

Semantic Similarity: Here we would like to localize all objects that have the same semantic category
as the reference instance. To achieve this, we make use of the semantics encoded in the input class
name and calculate a score map between C and FS

t . Specifically, we compute:

SS = FS
t CT (6)

The overall diffusion feature (DF) score map combining both semantic (conceptual) and appearance
(textural) features is then

SDF =
1

2
(SA + SS) ∈ Rh×w. (7)
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Figure 4: Examples of personalized retrieval and segmentation benchmarks. Current benchmarks
mostly show one single instance in an image or multiple instances from different object classes. Our
benchmark for both retrieval and segmentation introduces a realistic and challenging case where
multiple instances from the same object class are in the image, e.g. two dogs or multiple cars.

Using diffusion features for personalized retrieval and segmentation. For personalized retrieval,
we rank the target images, using a global score, obtained from the average of SDF , indicating the
matching score between a target (candidate) and the reference (query) image. For personalized
segmentation, we propose two variations: (1) The score map SDF is upsampled to the size of the
target image, using a binary threshold. We then segment all pixels that are above that threshold. (2)
Following [39], we select the point with the highest confidence value in SDF as positive prompt for
the position of the target object, and use it to segment the object with SAM [14].

4 Evaluation Datasets for Personalized Retrieval and Segmentation

For the evaluation of PDM, we adopted traditional instance retrieval and one-shot segmentation
benchmarks, where we also used the provided class names. While preparing these benchmarks, we
discovered that most existing instance retrieval and one-shot segmentation benchmarks predominantly
showcase only a single instance per object class. For instance, widely used instance retrieval
benchmarks such as RParis [23] and ROxford [23], focus on single landmarks in their images, with
categories typically representing only one possible instance. Similarly, image and video segmentation
benchmarks such as the popular Davis [22] dataset and PerSeg [39] mainly comprise either a single
instance or multiple instances from diverse object classes, each exhibiting distinct visual and semantic
characteristics. This is illustrated in Figure 4. These trends make it relatively straightforward for
semantic-based methods to accurately retrieve or segment instances, as there are often no hard
negative instances (objects from the same category but different instance) within or across images.
Consequently, comparing instance-based features with current methods on such benchmarks often
yields comparable results, failing to highlight the strengths of instance-based methods.

To establish a clear distinction between semantic-based and instance-level methods, we introduce
two new benchmarks: Personalized Multi-Instance Retrieval (PerMIR) and Personalized Multi-
Instance Segmentation (PerMIS). Our proposed benchmarks are constructed using the recently
introduced BURST dataset [4], which serves for Object Recognition, Segmentation, and Tracking in
Video. This dataset contains videos with pixel-precise segmentation masks for all unique object tracks
spanning different object classes. As the dataset encompasses both single-instance and multi-instance
videos, we focus on videos containing at least one hard negative instance per video. Specifically, we
select videos with a minimum of two instances belonging to the same object class. We then filter out
frames that do not contain these instances. This filtering process results in 150 videos across 16 object
classes, with an average of 3.1 instances per frame. Detailed statistics can be found in Appendix C.
Finally, for the personalized instance retrieval (PerMIR), we randomly chose three frames from each
video, designating one as the query frame and the remaining two as the database (gallery) frames.
For the personalized image segmentation task (PerMIS-image) we randomly pick three frames from
every video, assigning one as the query frame and the others for evaluation. Ground-truth masks are
used for cropping the instance from query images and are also used for segmentation evaluation. We
further evaluate on the task of video label propagation. For this task we use the first frame of a video
as the reference image and the subsequent frames for evaluation. We intend to make our generated
datasets publicly available for future work.
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Table 1: Benchmark (a) Personalized Segmentation (b) Video Label Propagation. Our method
shows the best performance on all benchmarks and achieves a notable balance between J and F ,
indicating its effectiveness in capturing both region and contour details.

(a) (b)
Perosnalized Image Segmentation Video Label Propogation

PerSeg PerMIS DAVIS PerMIS
(Image) (Video)

Model mIoU bIoU mIoU bIoU J&F J F J&F J F

SEEM [42] 87.1 55.7 14.3 35.8 - - - - - -
SegGPT [36] 94.3 76.5 18.7 39.5 - - - - - -
MAST [15] - - - - 65.5 63.3 67.6 65.1 61.7 69.2
SFC [12] - - - - 71.2 68.3 74.0 73.2 70.2 76.3

DINOv2 [18] 68.7 27.6 20.2 41.9 71.4 67.9 74.9 5.4 62.5 68.6
DIFT [31] 63.2 26.9 21.9 43.1 70.0 67.4 78.6 69.7 67.3 71.8
DiffSeg [33] 38.6 37.9 7.9 6.4 - - - - - -
PerSAM(SAM) [39] 95.3 77.9 16.5 38.3 76.1 74.9 79.7 64.0 61.8 67.1

PDM (ours) 95.4 79.8 42.3 86.8 75.8 72.9 80.1 75.1 72.1 78.0
PerSAM(PDM) (ours) 97.4 81.9 49.7 89.3 78.0 75.1 81.9 76.5 73.5 79.4

5 Experiments

We evaluate PDM across three main tasks: (1) Personalized image and video segmentation, (2)
Personalized retrieval and (3) Video label propagation where a single video frame is given with
object segmentation and the aim is to propagate labels (masks) across video frames, leveraging the
information provided by previous frames. The ablation study can be found in Appendix B

Implementation details. The main bottleneck of PDM is the real image inversion process, where the
image is converted to its noise latent representation for subsequent feature extraction. Using SoTA
inversion technique by [19] with Vanilla StableDiffusion, takes about 5 seconds for each image on
a single A100. This is due to the requirement of 50 inversion steps. In order to mitigate this, we
integrated [19] into SDXL-turbo, a variant of stable diffusion requiring only 4 inversion steps. This
decreases the inversion time to 0.5 seconds per image. Therefore, for all our experiments, features
were extracted from SDXL-turbo at the last U-Net layer at the first timestep t = 4. Furthermore, all
images were resized to 512 x 512 for proper image inversion. We set τ , the threshold for Mr to be
0.7 for all our experiments.

5.1 Personalized Image Segmentation

Datasets. We conducted experiments across two personalized (one-shot) image segmentation bench-
marks. We first evaluate PDM on the PerSeg [39] dataset, which comprises 40 objects spanning
diverse categories such as daily necessities, animals, and buildings. Each object is represented by
5-7 images and masks, capturing different poses or scenes. Additionally, we assessed our method’s
performance on the PerMIS-Image benchmark (Section 4).

Baselines. We evaluate our method by contrasting it with different self-supervised foundation models:
(1) DINOv2 [18], (2) PerSAM [39], (3) DIFT [31] and DiffSeg [33]. Additionally, we benchmark it
against SoTA-supervised techniques trained specifically for image segmentation, namely SEEM [42]
and SegGPT [36].

Evaluation protocol. Following [18, 31], we report mIOU and bIOU metrics over all benchmarks.
Segmentation with PDM is done by upsampling SDF to image size. Segmentation with DINOv2
and DIFT is done using features as a similarity function. Specifically, nearest neighbors are found
between the query features and target gallery features. No training is involved. We additionally report
results with SAM integration, as proposed by [39] (see 3). Here, features are utilized to derive a
positive point, followed by segmentation using SAM.

Results. Table 1a presents the results of our experiments in personalized image segmentation. Our
approach, denoted as ours, outperforms supervised methods trained specifically for image segmen-
tation. Additionally, our method achieves superior performance compared to other self-supervised
models, including DINOv2 [18], DIFT [31], and PerSAM [39]. We also demonstrate a significant im-
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Figure 5: Qualitative Comparison: (a) Personalized Segmentation: Red and green indicate incorrect
and correct segmentation, respectively. Our method accurately recognizes the reference instance
despite significant variations (view angle, pose, or scale), while other methods often capture false
positives from the same category. (b) Image Retrieval: Top-1 retrieved image is shown for each
method. Note how our model identifies images containing the same instance, despite their small size
and large variations. Other methods tend to capture only semantic similarity.

provement in performance by applying PerSAM with our method, called PerSAM(PDM), surpassing
both benchmarks by a considerable margin. Figure 5(a) provides qualitative segmentation results
showing that our method reliably identifies the reference instance despite substantial variations in
the target image, whereas other methods frequently capture false positives within the same category.
Additional qualitative results in Appendix D

5.2 Video Label Propagation

Datasets. We further conducted experiments across two temporal one-shot image segmentation
benchmarks. We conducted evaluations on the DAVIS17 dataset [22]. This dataset comprises 150
video sequences, with object masks provided for all frames. Furthermore, we evaluated our method’s
performance on the PerMIS-Video benchmark (Section 4).

Evaluation protocol. Following [31, 39], we used the first frame image and the corresponding object
masks as the user-provided query data. We also follow them and report region-based similarity J (the
Jaccard Index, measuring the overlap between the predicted and ground truth regions), contour-based
accuracy F (evaluating the accuracy of the predicted contour compared to the ground truth contour)
and J&F as evaluation metrics.

Compared methods. We compare our approach with various self-supervised foundation models: (1)
DINOv2 [18], (2) PerSAM [39] and (3) DIFT [31] and DiffSeg [33]. We also compare with SoTA
supervised methods that were trained on the task of video segmentation. Namely, MAST [15] and
SFC [12].

Results. Table 1b presents the results of our experiments in the video label propagation task. Our
method demonstrates competitive performance on the DAVIS [22] dataset and superior results
on PerMIS benchmark. Our method achieves a notable balance between J and F , indicating
its effectiveness in capturing both region and contour details. Improvement in PerSAM(PDM)
demonstrated that our PDM can boost results also for other methods.

5.3 Personalized Retrieval

Datasets. We conduct experiments across various retrieval benchmarks, including both single-
instance and multi-instance datasets. Initially, we assess our model’s performance on the widely-used
ROxford and RParis datasets [20, 21] with revised annotations [23]. These datasets consist of
4,993 and 6,322 images, each featuring a single instance. Evaluation involves 70 query images per
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Table 2: Personalized Retrieval: Mean Average Precision (mAP) on various benchmarks comparing
PDM with state-of-the-art self-supervised, weakly supervised, and supervised methods. While
our method yields superior performance, other methods leveraging our PDM features also yield a
performance boost.

ROxford RParis PerMIR
Methods Medium Hard Medium Hard

Self & Weakly Supervised
MAE [11] 11.7 2.2 19.9 4.7 -
iBOT [40] 39.0 12.7 70.7 47.0 -
DINOv2 [18] 75.1 54.0 92.7 83.5 29.7
CLIP [24] 28.5 7.0 66.7 41.0 20.9
OpenClip [13] 50.7 19.7 79.2 60.2 26.7

PDM (ours) 77.2 58.3 93.4 84.7 73.0
OpenClip + PDM (ours) 70.1 57.7 90.1 82.0 69.9
DINOv2 + PDM (ours) 80.4 62.1 93.6 85.1 70.8

Supervised
GSS [17] 80.6 64.7 93.4 85.3 -
HP [2] 85.7 70.3 92.6 83.3 -
SuperGlobal [29] 90.9 80.2 93.9 86.7 33.5

GSS + PDM (ours) 89.3 76.1 92.9 84.8 62.0
SuperGlobal + PDM (ours) 91.2 80.3 94.0 86.8 69.1

dataset, categorized into Easy, Medium, and Hard tasks based on retrieval complexity, with our focus
primarily on the more challenging Medium and Hard tasks. Instance masks are obtained from [3].
We further evaluate our model on the PerMIR benchmark (Section 4).

Baselines. We compare our approach with state-of-the-art models, including self-supervised founda-
tion models: MAE [11], SEER, and DINOv2 [18]; weakly-supervised foundation models: CLIP [24]
and OpenClip [13]; and fully supervised methods: GSS [17], HP [2], and SuperGlobal [29]. Both
self-supervised foundation models and weakly supervised foundation models were evaluated without
further training or fine-tuning. We showcase results utilizing PDM both independently and as a
re-ranking technique built upon various frozen pre-trained models (used for global feature retrieval).
We denote this combination of methods, in Table 2 by the name of the pre-trained model + PDM.
We follow [29] and apply re-ranking on the top 400 global features with the highest scores from the
pre-trained model.

Evaluation Protocol. Following [18, 29], we report the mean average precision (mAP) for all
methods. In all experiments, we used code and parameters provided by the authors of the compared
methods.

Results. Table 2 presents the Mean Average Precision (mAP) across all benchmarks, highlighting the
retrieval performance of PDM. Our method consistently outperforms all self-supervised and weakly
supervised foundation methods and achieves comparable results to supervised methods. Notably,
it surpasses DINOv2 [18] on the ROxford-hard dataset by +4.3% and by +43% on the PerMIR
benchmark. Additionally, using PDM for reranking, we achieve better performance than SoTA-
supervised methods, on the RParis and ROxford benchmarks. The results on the PerMIR benchmark
underscore the inherent challenges faced by current methods in handling multi-instance samples.
In contrast, our method demonstrates the robustness and effectively retrieves the correct samples,
highlighting the efficacy of features derived from pre-trained diffusion models for instance-based
retrieval tasks. Figure 5(b) provides qualitative retrieval results showing that our model successfully
identifies images containing the same instance, while other methods primarily capture semantic
similarity. See Appendix D for additional qualitative results.

6 Summary and Limitation

In this paper, we introduce a zero-shot approach for utilizing pre-trained Stable Diffusion (SD)
features for personalized retrieval and segmentation tasks. We also review existing benchmarks for
these tasks and propose a new benchmark to better evaluate performance. Our method showcases
SoTA performance in three different personalization tasks. Nevertheless, it requires image inversion
for feature extraction and therefore may depend on the success of image reconstruction quality.
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Appendix
A Perliminaries

Fig. S 1: Single block of a U-Net layer (
Stable Diffusion [26]).

Denoising module of text-to-image diffusion model.
We start by describing the different layers that compose
the denoising module of a Text-to-Image diffusion model.
Latent Diffusion Model [26], applies the diffusion pro-
cess in the latent space of a pre-trained image autoencoder.
This model adopts a U-Net [27] architecture conditioned
on the guiding prompt P . The U-Net is composed of sev-
eral layers where each consists of three types of blocks:
(1) a residual block, (2) a self-attention block, and (3) a
cross-attention block as illustrated in Figure 1. At each
timestep of the denoising process, the noised latent code zt
is fed as input to the U-net. The residual block convolves
image features, zt to produce intermediate features ϕ(zt).
In the self-attention block, ϕ(zt) projected into "queries"
Q, "keys" K and "values" V . For each query vector qi,j , representing a patch, located at the spatial
location (i, j) of Q, the self-attention map is then given by:

A(i,j) = softmax(
qi,j · KT

√
d

). (8)

The last block, the cross-attention block, facilitates interaction between the spatial image features
extracted from the self-attention block and the token embeddings of the text prompt P . The process
is similar to that in the self-attention layer, but here, Q is derived from the spatial features of the
previous self-attention layer, while K and V are projected from the token embeddings of the prompt.

B Ablation Study

In this section, we ablate key components of our method.

Object mask instead of class name: Here we explore our approach when the input image is
not accompanied by a class name but rather by a precise segmentation mask of the personalized
object. During inversion, the prompt is set to be an empty string. The segmentation mask is used to
distinguish the personalized object’s features from the input image instead of cross attention map.
We tested this configuration on PerMIR, resulting in a mAP of 76.2 compared to the original 73.0
when using the class name. This illustrates the strong capabilities of the semantic map obtained using
the cross-attention layer.

Appearance vs Semantic maps: Here we examine the individual contributions of the Appearance
and Semantic maps to the final similarity map SDF calculated in our method. For this experiment, we
use each map independently as the final similarity map SDF , ignoring the other (instead of averaging
them, as explained in Section 3, Eq.(7). When using only the Appearance Map, we achieve a mAP of
42.3, compared to 32.9 when using only the Semantic Map. Both results are significantly lower than
our original mAP of 73.0 when using both maps and averaging them. These findings underscore the
necessity of integrating both maps to achieve optimal performance in the final similarity map SDF .

C PerMIR and PerMIS Statistics

In this section, we describe the statistics of our newly introduced benchmark, Personalized Multi-
Instance Retrieval (PerMIR). Following our image extraction process from the BURST dataset
(detailed in Section 4), each video results in three different images of the personalized object, with
each image containing an average of 3.1 different objects. We randomly select one image to serve as
the query, while the other two are labeled as positive instances in the gallery. This process yields
a total of 150 queries and a gallery comprising 450 images. The object distribution among the 150
query images is as follows: 51 persons, 52 cars, 10 animals, 4 food items, and 33 other objects (e.g.
cup, drawer, tennis racket, slippers).
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Fig. S 2: Qualitative examples for personalized retrieval: DINOv2 exhibits improved instance-based
characteristics compared to OpenCLIP. However, unlike other methods that attend to the color or
texture, our (PDM) method can leverage both semantic and appearance cues to successfully identify
instances, even under substantial variations.

Fig. S 3: Qualitative examples for personalized segmentation: Rows 1,2 show cases where existing
similar objects in the scene often distract previous features, while our proposed PDM successfully
identifies and segments the correct instance. Note the successful segmentation of the small blanket
(row 3) and substantially occluded drink (row 4).

D Additional Qualititive Results

We provide additional qualitative results for personalized retrieval and personalized segmentation.
Figure 3 shows segmentation results on PerMIS and Figure 2 shows top-1 retrieved image of different
methods on PerMIR.
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