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ABSTRACT

This paper addresses the problem of long-context linear system identification,
where the state xt of a dynamical system at time t depends linearly on previous
states xs over a fixed context window of length p. We establish a sample com-
plexity bound that matches the i.i.d. parametric rate up to logarithmic factors for a
broad class of systems, extending previous works that considered only first-order
dependencies. Our findings reveal a “learning-without-mixing” phenomenon, in-
dicating that learning long-context linear autoregressive models is not hindered
by slow mixing properties potentially associated with extended context windows.
Additionally, we extend these results to (i) shared low-rank representations, where
rank-regularized estimators improve rates with respect to dimensionality, and (ii)
misspecified context lengths in strictly stable systems, where shorter contexts offer
statistical advantages.

1 INTRODUCTION

System identification, which consists of estimating the parameters of a dynamical system from ob-
servations of its trajectories, is a fundamental problem in many fields such as econometrics, robotics,
aeronautics, mechanical engineering, or reinforcement learning (Ljung, 1998; Gupta et al., 1976;
Moerland et al., 2022). Recent theoretical advances focused on linear system identification, where
observations are of the form:

xt = A⋆xt−1 + ξt , (1)

for t ⩾ 1, with initialization x0 ∈ Rd, noise ξt ∈ Rd and design matrix A⋆ ∈ Rd×d. Linear
system identification (Simpkins, 1999) has been thoroughly studied, with recent interest in sharp
non-asymptotic rates (Simchowitz et al., 2018; Sarkar & Rakhlin, 2019; Faradonbeh et al., 2018;
Jedra & Proutiere, 2019). The existing analyses, however, focus solely on order-1 time dependency,
in which the law of xt only depends on the previous state xt−1. For order-p time dependencies, the
literature on non-asymptotic rates becomes surprisingly scarce, as existing techniques do not extend
to p > 1.

We study this more general setting, where the state xt depends on previous states xs for s in a
context window of length p ∈ N∗, i.e.,

xt =

p∑
k=1

A⋆kxt−k + ξt , (2)

for t ⩾ p, the initialization x0, . . . , xp−1 ∈ Rd, noise ξt ∈ Rd and design matrices A⋆1, . . . , A
⋆
p ∈

Rd×d. This classical pth-order vector autoregression model (Box et al., 2015; Brockwell & Davis,
1991; Hamilton, 2020) is termed long-context linear autoregressive model. The term linear refers
to the (noisy) linear relationship between iterates and long-context refers to the context length p.
Recent advances in autoregressive models and architectures such as transformers (Vaswani et al.,
2017; Dosovitskiy et al., 2020; El-Nouby et al., 2024) highlight the importance of long-context and
its impact on learning. Developing a theoretical understanding of long-context linear autoregressive
models is a necessary first step toward tackling these more complex architectures.

Motivated by empirical evidence that high-dimensional data may share some lower-dimensional
representation (Bengio et al., 2013; Hospedales et al., 2022), several works additionally studied the
problem of learning matrices A⋆k under the assumption that they are of low-rank (Alquier et al.,
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2020; Basu et al., 2019), for order-1 autoregressive models. In the long-context setting, this prob-
lem is further motivated by the fact that if there exists a lower-dimensional representation of the
autoregressive process, this translates into shared kernels for the matrices A⋆k.

Finally, a key challenge in long-context autoregressive models is misspecification: the system might
have an unknown context window p as in Equation (2). p may be arbitrarily large and unknown by
the statistician. She may then specify a context length p′ that can be much smaller, thus yielding
the following two fundamental questions: can useful structure still be learned under misspecified
context lengths? And what advantages, if any, arise from model misspecification?

Our contributions in long-context linear systems identification are then threefold.

(i) We derive statistical rates on the recovery of matrices A⋆k in terms of Frobenius norm, which
depends on the number of trajectories N and their length T , on the dimension d and the context
length p. These rates reveal a “learning-without-mixing” phenomenon as they do not have a deflation
in effective sample size due to the mixing time of the autoregressive process. This first contribution
is an attempt to fill the gap in linear system identification for long context lengths.

(ii) We study statistical guarantees for learning the matrices A⋆k assuming that they are all of rank at
most r ≪ d. We prove that the statistical rate reduces, and that rank-regularized estimators adapt to
the low-rank structure.

(iii) We study a scenario under which the model is misspecified. Fitting a linear model with context
length p′ < p instead of p, we show that the first p′ matrices are still learned. More importantly,
the sample complexity of learning these matrices depends only on the misspecified context length,
indicating that misspecification may benefit the model statistically, not just computationally.

Finally, we confirm these statistical rates through experiments that verify the scaling laws predicted
by problem parameters. Due to space constraints, these experiments are provided in Appendix C.

2 RELATED WORKS

In multivariate linear regression, one observes {(xi, yi)}Ni=1 from the model yi = A⋆xi + ξi, where
matrix A⋆ ∈ Rd×d and the sequences of noise ξi and inputs xi are i.i.d.. The number of samples N
needs to scale at least as d2 for a good estimation of A⋆ with ordinary least squares estimator (Hsu
et al., 2012; Wainwright, 2019) in Frobenius norm—∥A⋆ − Â∥2F ≪ 1. However, in many domains,
data is sequential, violating the i.i.d. assumption. In such domains, classical non-i.i.d. formulations,
such as vector autoregressive models or discrete-time linear dynamical systems (LDS), as seen in
Equation (1), are often employed. Most works used to deal with the non-i.i.d.-ness of the data
through mixing time arguments that fall short when the spectral radius of A⋆ reaches 1, leading to
rates of the form ∥Â − A⋆∥2F = O(d2/(n(1 − ρ))) or ∥Â − A⋆∥2op = O(d/(n(1 − ρ))) for some
spectral quantity 1 − ρ related to the mixing time of the process. These rates apply to the OLS
estimator (Faradonbeh et al., 2018) and online settings (Hardt et al., 2018; Even, 2023) alike.

Simchowitz et al. (2018); Sarkar & Rakhlin (2019) have developed excitation-based arguments
to leverage mixing-time independent statistical bounds for the OLS estimator, while Hazan et al.
(2017); Jain et al. (2021) respectively used spectral filtering and reverse experience replay in the
online setting to obtain such bounds. The estimation of low-rank features has been studied by Basu
et al. (2019); Alquier et al. (2020) via nuclear norm regularization. Finally, learning parameters
of dynamical systems from N trajectories of length T has previously been considered by Tu et al.
(2023) in a more general framework than Equation (1).

Layers of complexity can be added to the LDS described in Equation (1). Mania et al. (2022); Foster
et al. (2020) considered non-linear dynamics, that write respectively as xt+1 = A⋆ϕ(xt, ut) + ξt
and xt+1 = f⋆(xt) + ξt, where in the former A⋆ is to be estimated and ϕ is a known non-linearity,
while in the latter f⋆ is to be estimated. Kostic et al. (2022) recently provided a general framework
using Koopman operators, to estimate the parameters of some general Markov chain. Giraud et al.
(2015) considered time-varying systems, with arbitrary context lengths, while Bacchiocchi et al.
(2024) studied autoregressive bandits. Ziemann & Tu (2022) provided a framework for learning
non-parametric dynamical systems with “little mixing”: as their rates are not hindered by slow
mixing after a burn-in time (that may itself depend on mixing properties). We refer the reader to

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Tsiamis et al. (2023) for a survey on recent advances on non-asymptotic system identification of
LDS such as in Equation (1). Surprisingly, there does not seem to be much known about long-
context LDS in Equation (2), the counterparts of LDS in Equation (1) with a context window p > 1.

3 PROBLEM SETTING

For a matrix M ∈ Rd1×d2 with singular values σ1, . . . , σmin {d1,d2}, we denote its squared Frobenius
norm as ∥D∥2F =

∑
(i,j) M

2
ij =

∑
ℓ σ

2
ℓ , operator norm as ∥D∥op = maxℓ |σℓ|, and nuclear norm

as ∥D∥∗ =
∑
ℓ |σℓ|. Id and 0d denotes the identity and the null d × d matrices, respectively.

A = (A1, . . . , Ap) denotes a rectangular matrix of size d× pd where each Ai is d× d block.

3.1 DATA GENERATION PROCESS

Let d, p ∈ N∗ be the dimension of the state space and the context length, respectively. Consider the
following linear autoregressive process:

∀t > 0 : xt =

p∑
k=1

A⋆kxt−k + ξt , (3)

where xs = 0 for any s ⩽ 0 and the noise ξt is independent of the xs, ξs for s < t. This is a
particular instance of the general linear autoregressive model in Equation (2) with initial conditions
x0, . . . , xp−1 set to 0 and the independent noise structure. We assume sub-Gaussian noise:
Assumption 3.1. For all t, the noise ξt is centered and isotropic:

E[ξt] = 0 , E[ξtξ⊤t ] = σ2Id ,

and each coordinate of ξt is independent and c2σ2-sub-Gaussian (Wainwright, 2019, Chapter 2) for
some c ⩾ 1:

∀i ∈ [d] ∥(ξt)i∥ψ2
⩽ c2σ2 , where ∥x∥ψ2

= sup
k⩾1

k−1/2E
[
|x|k

]1/k
.

Let AR(A⋆, σ2) denote the law of the sequence defined in Equation (3) where A⋆ denotes
(A⋆1, . . . , A

⋆
p) for brevity. Given N independent sequences of length T > p:{

x
(n)
t , n ∈ [N ], t ∈ [T ]

}
, where (x

(n)
t )t∈[T ]

i.i.d.∼ AR(A⋆, σ2) ,

the goal of long-context linear system identification is to estimate the matrices A⋆k, k ∈ [p].

Lastly, we assume a condition on the design matrices A⋆k, k ∈ [p] that amounts to an operator norm
bound. First, we define the following linear operators for any matrix A ∈ Rd×pd:
Definition 3.2. Let MA ∈ RTd×Td be the block-matrix with block entries of size d× d:

M
(i,j)
A = Ai−j , for all 1 ⩽ j < i ⩽ j + p ⩽ T , and M

(i,j)
A = 0d , otherwise .

Definition 3.3. Let L⋆ ∈ RTd×Td be the block-matrix with block entries of size d× d:

L
(1,1)
⋆ = Id and L

(i,1)
⋆ =

max {i−1,p}∑
k=1

A⋆kL
(i−k,1)
⋆ 1 < i ⩽ T ,

L
(i,j)
⋆ = L

(i−j+1,1)
⋆ for all 1 ⩽ i ⩽ j ⩽ p , and L

(i,j)
⋆ = 0d otherwise .

MA executes predictions from the given data with A and L⋆ generates the data from the noise. That
is, letting (MA)t· , (L⋆)t· : Rd × RTd be the tth block-row of MA and L⋆, respectively, we have:

(MA)t·

 x
(n)
1
...

x
(n)
T

 =

p∑
k=1

Akx
(n)
t−k , (L⋆)t·

 ξ
(n)
1
...

ξ
(n)
T

 = x
(n)
t , with xs = 0 for s ⩽ 0 .
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Therefore, the operator norm of MA is a measure of the worst-case growth of the predictions.
Moreover, MA⋆ is linked to the data-generating operator L⋆:

L⋆ = ITd +MA⋆L⋆ =⇒ L⋆ = (ITd −MA⋆)
−1

= ITd +

T−1∑
i=1

(MA⋆)
i
.

We assume the following conditions on the design matrices:
Assumption 3.4. There exists a known constant D > 0 such that ∥MA⋆∥op ⩽ D.

Assumption 3.4 is not restrictive as D is arbitrary and only needs to be an upper bound on ∥MA⋆∥op.
However, the knowledge of D is necessary, as it is used to confine the estimator in Section 3.2.

As the operator MA⋆ is a derived object over the full trajectory, it is important to relate Assump-
tion 3.4 to conditions on the design matrices A⋆k. In Proposition 3.5 below, we provide two different
assumptions on the design matrices that ensure the boundedness of the operator norm of MA⋆ with
the same constant. Both conditions imply Assumption 3.4.
Proposition 3.5. Assumption 3.4 holds if one of the following holds:

(i)
p∑
i=1

∥A⋆i ∥op ⩽ D , (ii) ∥A⋆∥op ⩽
D√
p
.

There is no direct assumption on L⋆; yet, our results depend on well-behavedness of κ, the logarithm
of the condition number of L⋆, which is related to Γt that appears in Simchowitz et al. (2018); Sarkar
& Rakhlin (2019). κ is related to the system stability, as explained in Section 5.

Definition 3.6. Let κ be the logarithm of the condition number of L⋆, i.e., κ := ln

( ∥L⋆∥op
σmin(L⋆)

)
.

3.2 CONSTRAINED LEAST SQUARES

A natural estimator is the Ordinary Least Square (OLS), defined as any minimizer of the square loss:

ÂOLS ∈ argminA L(A) , where L(A) :=
1

NT

N∑
n=1

T∑
t=p

∥∥∥∥∥x(n)
t −

p∑
k=1

Akx
(n)
t−k

∥∥∥∥∥
2

. (4)

The OLS estimator has been considered in previous works (Simchowitz et al., 2018; Alquier et al.,
2020; Faradonbeh et al., 2018; Sarkar & Rakhlin, 2019), albeit in the p = 1 case. Most of these
works provide estimation rates on ∥Â − A⋆∥op or ∥Â − A⋆∥F , for marginally stable systems, i.e.,
under the assumption that ρ(A) ⩽ 1 (Alquier et al., 2020; Simchowitz et al., 2018; Basu et al., 2019)
and in the general case (Sarkar & Rakhlin, 2019).

Instead of directly considering the OLS estimator, we consider the empirical minimizer of the square
loss under a restricted set of matrices A that have a bounded operator norm:

Â ∈ argminA=(A1,...,Ap) {L(A) | ∥MA∥op ⩽ D} . (5)

Note that the set
A(D) := {A = (A1, . . . , Ap) | ∥MA∥op ⩽ D} ,

is bounded, closed and convex. Hence, the empirical minimizer of the square loss overA(D) can be
computed with projected gradient descent (Duchi et al., 2008) or the Frank-Wolfe algorithm (Jaggi,
2013) as done for ℓ1 constrained optimization. To avoid projecting onto the set A(D), following
Proposition 3.5, it is possible to restrict A(D) further into

A(D)′ :=

{
A |

p∑
i=1

∥Ai∥2op ⩽ D2

}
, and A(D)′′ :=

{
A | ∥A∥op ⩽

D√
p

}
.

in order to ensure a condition directly on design matrices. Then, the empirical minimizer of the
square loss over A(D)′ or A(D)′′ can again be computed via projected gradient descent or the
Frank-Wolfe algorithm, with simplified projection steps.

Lastly, we briefly remark that the diameter constraint in Equation (5) can be removed, i.e., A(D)
replaced by A(∞), under an additional assumption on NT . This is explained in detail in Section 5.
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3.3 LOW-RANK ASSUMPTION

A common assumption in multi-task and meta-learning is that high-dimensional data often shares
a representation in a smaller space (Bengio et al., 2013; Tripuraneni et al., 2021; Hospedales et al.,
2022; Boursier et al., 2022; Collins et al., 2022; Yüksel et al., 2024) The following low-rank as-
sumptions are crucial, as they significantly improve the statistical complexity of the problem.
Assumption 3.7. For all k ∈ [p], rank(A⋆k) ⩽ r.

Assumption 3.8. There exists an orthonormal matrix P ⋆ ∈ Rr×d and matrices B⋆
1 , . . . , B

⋆
p ∈ Rd×r

such that A⋆k = B⋆
kP

⋆ for all k ∈ [p].

Note that Assumption 3.8 is an instance of Assumption 3.7. The factorization A⋆k = Q⋆C⋆
k is

another subcase of Assumption 3.7, but is not considered as it leads to iterates that directly lie in the
subspace spanned by Q⋆ and hence Q⋆ can be learned by treating iterates x(n)

t as independent. In
order to benefit from the low-rank structure, we consider the following regularized estimator:

Â ∈ argminA∈Ar(D) L(A) , where Ar(D) := {A ∈ A(D) | ∀k ∈ [p], rank(Ak) ⩽ r} . (6)

3.4 MISSPECIFICATION

The context length of the generative autoregressive process might be unbounded, too large for an
efficient estimation, or apriori unknown. In any case, practitioners still have to set a context length
p′ ∈ N⋆ for the estimator, which might differ from the true p. In this scenario, we need an additional
boundedness assumption that relates the first p′ matrices of the ground truth.
Assumption 3.9. There exist a constant D′ such that∥∥∥(MA⋆ −MA⋆

1:p′

)
L⋆

∥∥∥
op

⩽ D′ , where A⋆
1:p′ = (A⋆1, . . . , A

⋆
p′ , 0d, . . . , 0d) .

Instead of the estimator defined in Equation (6), we consider the following misspecified estimator:

Â ∈ argminA∈Ar,p′ (D) L(A) , where Ar,p′(D) := {A ∈ Ar(D) | ∀p′ < k ⩽ p,Ak = 0d} . (7)

Assumption 3.9 is a strong assumption as it requires that L⋆ is well-behaved regardless of the se-
quence length T . Consequently, the misspecification results are more stringent than other results and
apply to a smaller class of systems that still includes strictly stable systems as discussed in Section 5.

4 LONG-CONTEXT LINEAR SYSTEM IDENTIFICATION

In this section, we present statistical rates for the recovery of the design matrices in terms of Frobe-
nius norm. Since the matrices A lie in Rd×pd, the number of variables is pd2. In the i.i.d. setting,
the rates of the form ∥Â−A⋆∥2F = O(pd2/(NT )) are expected. The following theorem extends
this rate for long-context linear dynamical system identification:
Theorem 4.1. Let Assumptions 3.1 and 3.4 hold. Then, for any 0 < δ < e−1, there exists a constant
C(δ) = O(ln 1

δ ) such that the estimator Â in Equation (5) verifies with probability 1− δ:∥∥∥Â−A⋆
∥∥∥2
F
⩽ C(δ)D2 κ2pd2

N(T − p)
polylog(p, d,N, T, lnD) . (8)

The constant C(δ) depends mildly on the sub-Gaussianity constant c as described in Appendix B.5
and the rate is numerically verified in Figure 1. Theorem 4.1 exhibits several interesting features.

First, it shows that despite the temporal dependencies in the data, learning still occurs at a pace
reminiscent of the i.i.d. setting, with a logarithmic term adjustment. This implies that the number
of samples required to learn the system is approximately the same as in the i.i.d. setting, except for
the logarithmic factor. Therefore, even though the data is sequential and only i.i.d. at the sequence
level, the number of iterates N(T − p) represents the effective data size.

Second, the rate in Equation (8) exhibits a linear dependency on the context length p instead of a
quadratic dependency. This is only due to the number of parameters to be estimated, which is pd2

5
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instead of d2 and not a deflation in T by a factor of p, which implies the context length does not
affect the effective sample size. The additive factor in T −p is due to the fact that first iterates do not
depend on the full context length, and thus are not as informative as the later iterates. More detailed
discussions of Theorem 4.1, in comparison with previous work, can be found in Section 5.

Low-rank setting. Next, we extend the results to the low-rank setting:
Theorem 4.2. Let Assumptions 3.1, 3.4 and 3.7 hold. Then, for any 0 < δ < e−1, there exists a
constant C(δ) = O(ln 1

δ ) such that the estimator Â in Equation (6) verifies with probability 1− δ:∥∥∥Â−A⋆
∥∥∥2
F
⩽ C(δ)D2 κ2prd

N(T − p)
polylog(p, d, r,N, T, lnD) . (9)

The improved statistical rate depends on rd instead of d2. Note, however, that this estimator cannot
be computed in polynomial time, since the underlying optimization problem involves a non-convex
constraint on the rank of all Ak. Several heuristics exist to approximate this estimator. One approach
is the Burer-Monteiro factorization (Burer & Monteiro, 2003; 2004), which involves parameterizing
Ak as Ak = BkCk with Bk ∈ Rd×r and Ck ∈ Rr×d. This method relaxes the constraint to a convex
set but results in a non-convex function. Another approach is hard-thresholding algorithms, which
use projected (stochastic) gradient descent on the non-convex constraint set (Blumensath & Davies,
2009; Foucart & Subramanian, 2018).

Perhaps the most intuitive approach is to use nuclear norm regularization, which is a convex relax-
ation of the rank constraint:

Â ∈ argmin {Lλ(A) | A ∈ A(D)} , where Lλ(A) = L(A) + λ∥A∥∗,group , (10)

and ∥A∥∗,group =
∑p
k=1 ∥Ak∥∗ is the group-nuclear norm. We leave the analysis of the nuclear

norm estimator for future work.

While the low-rank estimator cannot be computed easily, substituting the constraint ∀k, rank(Ak) ⩽
r with rank(A) ⩽ r′ enables a closed-form solution for the optimization problem (Bunea et al.,
2011). However, the latter constraint effectively includes the former only when r′ ⩾ pr, which
would lead to suboptimal dependencies on the context length. These constraints are equivalent only
if all Ak matrices project onto the same space: i.e., Ak = QBk for some Q ∈ Rd×r and Bk ∈ Rr×r.

Misspecification. Lastly, we study linear long-context autoregressive prediction models under
misspecified context lengths and show that partial learning still occurs for misspecified models:
Theorem 4.3. Let Assumptions 3.1, 3.4, 3.7 and 3.9 hold. Then, for any 0 < δ < e−1, there exists a
constant C(δ) = O(ln 1

δ ) such that the estimator Â in Equation (7) verifies with probability 1− δ:∥∥∥Â−A⋆
p′

∥∥∥2
F
⩽ C(δ)D2(D′ + 1)2

κ2p′dr

N(T − p)
polylog(p′, d, r,N, T, lnD) . (11)

For r = d, we recover Theorem 4.1 (full-rank setting) for misspecified context windows. The main
improvement in that case of Theorem 4.3 over Theorem 4.1 is the dependency on p′ instead of p.
In practice, p can be much larger than p′ and even on the order of T . In such a setting, learning all
matrices A⋆k becomes impossible if N is not large enough and one does not take advantage of the
length T of the sequences. One can instead misspecify the student with a context length of p′ ≪ p
such that NT ≫ p′d2, so that the first p′ matrices are still learned.

Lastly, we briefly remark that Theorem 4.1 provides a rate for the case where p < p′. The
latter case can be seen under a well-specified setting by rewriting the ground truth model as
A⋆ = (A⋆1, . . . , A

⋆
p, 0d, . . . , 0d) where the last p′−p indices are padded with null matrices. Learning

in such a case is then answered by Theorem 4.1 with a worsened rate that depends on p′.

5 DISCUSSION

We now discuss the rates obtained in Section 4 and compare them with previous results obtained for
linear dynamical systems. In particular, we comment the “learning-without-mixing” phenomenon,
introduced by Simchowitz et al. (2018) for the first-order linear dynamical systems.

6
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Adaptation of first-order techniques (p = 1) to the long-context setting. Here, we explain why
techniques developed in the p = 1 setting, in particular those of (Simchowitz et al., 2018; Sarkar
& Rakhlin, 2019), do not work for the p > 1 setting and why, even if adapted, they would fail to
achieve the desired sharp dependency on p.

Observe that the multi-step dynamics can be cast as a 1-step dynamic using block companion ma-
trices. Let X(n)

t = (x
(n),⊤
t , . . . , x

(n),⊤
t+p−1)

⊤ ∈ Rpd, Ξ(n)
t = (0, . . . , 0, (ξ

(n)
t )⊤)⊤ ∈ Rpd and let

A⋆ ∈ Rpd×pd be the companion matrix associated to A⋆:

A⋆ =


0d Id · · · 0d
...

. . . . . .
...

0d · · · 0d Id
A⋆p A⋆p−1 · · · A⋆1

 . (12)

We have the relation X
(n)
t+1 = A⋆X(n)

t +Ξ
(n)
t , reducing the problem to the p = 1 case by increasing

the dimension from d to pd. First, brute-force adapting previous results to this case (e.g. Basu et al.,
2019; Simchowitz et al., 2018; Sarkar & Rakhlin, 2019) is not possible since these works assume
that the noise covariance of the additive noise added at each step (Ξ(n)

t here) is the identity matrix,
or at least is positive definite. In our case, the noise covariance is the pd×pd block-diagonal matrix,
with p − 1 blocks equal to 0d and the last one to Id. The covariance matrix is thus non-invertible,
preventing the use of previous works.

In addition, arguments based on system excitation (e.g. Basu et al., 2019; Simchowitz et al., 2018)
are bound to incur an additional dependence on p, on top of the factors expected due to the dimen-
sionality of the problem. In particular, as seen in the small-ball martingales argument by Simchowitz
et al. (2018, Section 2.3), evaluating quantities like ∥(A−A⋆)X(n)

t ∥2 for the (k, ν, q)-block mar-
tingale small-ball assumption requires k ⩾ p as p represents the minimum number of steps for noise
to propagate in every direction. Consequently, these analyses lead to a suboptimal p dependency.

Moreover, adapting the techniques developed in the p = 1 setting (Sarkar & Rakhlin, 2019) which
relies on explicit factorization of the OLS estimator is challenging. In the p > 1 case, the higher-
order dynamics complicate the factorization, and the data matrix takes a Toeplitz form, which is
more difficult to handle.

Learning-without-mixing. We explain why our rates exhibit “learning-without-mixing”. We be-
gin by defining “learning-with-mixing” and discussing the factors that influence the mixing time
τmix. We then introduce the concept of “learning-without-mixing” as exemplified by Simchowitz
et al. (2018) and show that our bounds exhibit similar properties.

Let τmix be the mixing time of the Markov chain (X
(n)
t )t⩾0. In the i.i.d. setting (for which τmix =

1), the OLS estimator obtains the optimal rate ∥ÂOLS − A⋆∥2F = O(pd2/NT ), since pd2 is the
dimension of the inputs. With non-i.i.d. but Markovian data, a naive strategy would be to emulate
i.i.d.-ness and take only a sample every τmix steps of the trajectory to compute the OLS estimator,
thus having data that are approximately i.i.d. while dividing the number of samples by τmix. This
naive “learning-with-mixing” estimator would yield ∥Ânaive −A⋆∥2F = Õ(τmixpd

2/NT ), where
the mixing time appears as a cost of non-i.i.d.-ness.

In our case, two components contribute to the mixing time, τmix. The first component is related to
the stability or the excitability of the system and scales as 1/(1 − ρ), where ρ = ∥MA⋆∥op < 1.
When ρ ≪ 1, this component has no impact, while ρ tends to 1, the system is less stable and the
Markov chain mixes more slowly. The second component is directly related to the context length p
of the process. Regardless of the factor 1/(1 − ρ) above, the mixing time of our Markov chain is
larger than p: since noise is added only in the last block in the recursion X

(n)
t+1 = A⋆X(n)

t + Ξ
(n)
t ,

starting from a given state, p iterations at least are needed to eventually forget this given state. The
naive learning-with-mixing benchmark rate is thus ∥Â −A⋆∥2F ⩽ max (1/ (1− ρ) , p) pd2/NT .

In contrast, a rate of convergence that exhibits “learning-without-mixing” is a rate of the form ∥Â−
A⋆∥2F ⩽ Cpd2/NT where C ≪ τmix. Such a rate means that the matrix A⋆ is learned without
paying the cost of non-i.i.d.-ness. For instance, in the p = 1 case, the rate of Simchowitz et al.
(2018) does not worsen as ρ tends to 1—in fact, ρ→ 1 actually improves their rates.
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The bound presented in Theorem 4.1 takes the form Õ(D2κ2pd2/(N(T − p))) where Õ hides the
logarithmic terms. Importantly, the dependencies on the underlying Markov chain are only through
D and κ, which do not have a direct dependency on the mixing time. The dependency on D is merely
an operator norm upper bound and does not diverge as the mixing time grows to∞. Similarly, κ is
logarithmic in T for systems of interest, as we discuss below.

System stability and κ. We now explain the behavior of κ defined in Definition 3.6. First, by
Lemma B.11, we have that σmin(L⋆) ⩾ 1

D+1 and, thus, it is sufficient to upper bound

ζ(T ) := sup
i,j∈[T ]

∥L(i,j)
⋆ ∥op ⩾ sup

i,j∈[T ]

∥L(i,j)
⋆ ∥F√
d

⩾
∥L⋆∥F√

dT
⩾
∥L⋆∥op√

dT
, (13)

to control κ. Equation (13) implies that if the noise at step i contributes to step j, as measured by
L
(i,j)
⋆ , at a polynomial rate in (j − i), then κ grows at most logarithmically in T . For such a κ, the

resulting dependency on T is of order lnT and mild. Instead, if it is exponential in (j − i), then κ
grows linearly in T and the dependency on T cancels out in the rate.

We use the quantity ζ(T ) to define strictly stable, marginally stable and explosive systems:
Definition 5.1. An LDS as defined in Equation (3) is called

strictly stable if: ζ(T ) = O(ρT ) for some ρ < 1 ,

marginally stable if: ζ(T ) = O(T k) for some k ∈ N ,

explosive if: ζ(T ) = O(ρT ) for some ρ > 1 .

Definition 5.1 is similar to the notions of strictly stable, marginally stable and explosive systems
considered in (Simchowitz et al., 2018; Sarkar & Rakhlin, 2019) for p = 1. Let ρ(A⋆) := λmax(A

⋆)
be the spectral radius of A⋆ and V ΛV −1 be the Jordan normal form of A⋆. Then,

∥L(i,j)
⋆ ∥op = ∥ (A⋆)j−i ∥op = ∥V Λj−1V −1∥op ⩽ ∥V ∥op∥Λj−i∥op∥V −1∥op .

Note that ∥V ∥op and ∥V −1∥op are constants. For upper bounding ∥Λj−i∥op, consider the Jordan
blocks {Λk} of Λ, associated with the eigenvalues λk of A⋆. Then, ∥Λj−i∥op ⩽ supk ∥Λj−ik ∥op and

∥Λj−ik ∥op = ∥ (λkIn +Nn)
j−i ∥op =

∥∥∥∥∥∥
max {j−i,n−1}∑

m=0

λmk

(
j − i

m

)
Nm
n

∥∥∥∥∥∥
op

⩽
max {j−i,n−1}∑

m=0

ρ(A⋆)j−i
(
j − i

m

)
,

where n is the block size for the Jordan block Λk. Note here that n does not scale with T .

In particular, for strictly stable systems of Simchowitz et al. (2018); Sarkar & Rakhlin (2019) with
ρ < 1, ζ(T ) = O(ρT ). For marginally stable systems of Sarkar & Rakhlin (2019) with ρ < 1 + γ

T

with some constant γ > 0, ρ(A⋆)j−i ⩽ eγ and ζ(T ) = O(T k) for some fixed k that depends on
the largest Jordan block of A⋆. For explosive systems of Sarkar & Rakhlin (2019) with ρ > 1,
ζ(T ) = O(ρT ). Thus, Definition 5.1 provides a general categorization of the systems based on the
growth of ζ(T ) in p > 1 case. Furthermore, our analysis yields sharp rates for strictly stable and
marginally stable systems previously considered only in the p = 1 setting.

Search space diameter D. Our analysis is based on the assumption that the diameter D of the
search space is bounded and, hence, not directly applicable to the OLS estimator in Equation (4).
However, Corollary B.7 in Appendix B.1 extends the results of Theorems 4.1 to 4.3 to minimizers
without a constraint on the diameter of the search space. This extension does not change the rates
but requires the additional assumption that NT = Ω̃(p′2dr).1 In the case of Theorem 4.1, this
corresponds to a result for the OLS estimator, but necessitating a number of samples quadratic in
context length. Below, we comment on why the diameter restrictions is required when NT ≪ p′2dr.

1We use the convention that r = d, p′ = p for Theorem 4.1.
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As mentioned earlier in comparison with (Simchowitz et al., 2018; Sarkar & Rakhlin, 2019), the
simple OLS factorization in the p = 1 case does not generalize to the p > 1 and the data matrix has
a Toeplitz structure that is more difficult to control. In order to deal with these issues, as explained
in the sketch of proof in Section 6, we rely on techniques from empirical process theory. These
techniques are applied to quantify the probability of the event in Equation (14), which hold for
any empirical risk minimizer of the square loss. This leads us to the study of the concentration of
the martingales defined in Equation (16) around their predictable variation, which is a key step in
our analysis. A uniform concentration is possible only if there is a uniform lower bound on the
variations of the martingales, which can be achieved using a set of well-behaved matrices ∥MA −
MA⋆∥F /∥MA − MA⋆∥op. In order to translate these conditions on the design matrices without
additional dimensional dependencies, we introduce the operator norm constraint.

Lastly, it is possible to extend our analysis to unconstrained OLS by establishing a general coarse
upper bound on the operator norm ∥MÂ∥op ⩽ K. This allows us to consider uniform lower bounds
to matrices A with ∥MA∥op ⩽ K, which lead to a rate for the OLS estimator in a similar manner.

Upper bound on D′. The misspecification result in Theorem 4.3 requires the additional assump-
tion given in Assumption 3.9. In Remark B.4, we show that a good upper bound on D′ is possible
when D < 1, i.e., the system is strictly stable, by using the bound ∥L⋆∥op ⩽ 1/(1 − D). How-
ever, misspecification results are not, a priori, applicable to marginally stable systems, which limits
the practical applicability of our results. We leave the investigation of misspecification results for
marginally stable systems for future work.

6 SKETCH OF PROOF

We provide a sketch of proof for Theorem 4.1. The proofs of Theorems 4.2 and 4.3 are similar and
can be found in Appendix B. In the following, ∆A is a shorthand for MA −MA⋆ and E ∈ RTd×N
is the matrix that collects the noise concatenated over time, as explained in Definition B.1.

The empirical risk minimizer Â satisfies the following optimality condition:

L(Â) ⩽ L(A⋆) , or written differently,
∥∥∆ÂL⋆E

∥∥2 ⩽ 2Tr
(
E⊤L⊤

⋆ ∆
⊤
Â
E
)
, (14)

due to the well-specified setting, i.e., A⋆ ∈ A(D). The condition in Equation (14) is of interest as

∀A ∈ A(D) , E
[∥∥∆ÂL⋆E

∥∥2] = σ2N∥∆ÂL⋆∥2F > 0 = E
[
Tr
(
E⊤L⊤

⋆ ∆
⊤
Â
E
)]

.

This inequality hints that if for a set of matrices A′(D) ⊆ A(D), there is a uniform result

E :=
{
∀A ∈ A′(D) :

∥∥∆ÂL⋆E
∥∥2 ⩾ 2Tr

(
E⊤L⊤

⋆ ∆
⊤
Â
E
)}

, (15)

with high probability as seen from their means, then the empirical risk minimizer Â belongs to the
set A(D) \A′(D) with the same high probability by a simple Bayesian argument. Hence, the proof
of Theorem 4.1 is reduced to proving Equation (15) for a suitable set of matrices.

Fix a A ∈ A′(D) and study the martingale series defined through the differences sequences

d
(n)
t,i =

(
(A−A⋆)x

(n)
t

)
i

(
ξ
(n)
t

)
i
/σ2 , (16)

where the series is first ordered in i, then in t, and finally in n. The sum of the differences is then

YA =
∑
n,t,i

d
(n)
t,i =

∑
n,t

〈
(A−A⋆)x

(n)
t , ξ

(n)
t

〉
=

1

σ2
Tr
(
E⊤L⊤

⋆ ∆
⊤
AE
)
,

and the quadratic predictable variation of the series is

WA =
∑
n,t,i

E(
ξ
(n)
t

)
i

[(
d
(n)
t,i

)2]
=

1

σ2

∑
n,t

∥∥∥(A⋆ −A)x
(n)
t

∥∥∥2 =
1

σ2
∥∆AL⋆E∥2 .

The condition that is asked in Equation (15) is then that the sum of the differences YA is large
compared to the quadratic predictable variation WA, i.e., E = {∀A ∈ A′(D) : WA ⩽ 2YA} .

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

In order to prove probabilistic statements on E , we use Freedman’s inequality (Freedman, 1975;
Dzhaparidze & Van Zanten, 2001) which gives control on YA and WR

A for a particular A:

P
(
YA ⩾ rY ,WR

A ⩽ rW
)
⩽ exp

(
− r2Y /2

rW +RrY

)
, (17)

where WR
A = WA +

∑
n,t,i 1d(n)

t,i >R

(
d
(n)
t,i

)2
and rY , rW , R > 0 are arbitrary constants. As the

noise is sub-Gaussian, it is possible to upper bound WR
A with WA:∑

n,t,i

(
d
(n)
t,i

)2
⩽ sup
n,t,i

(
ξ
(n)
t

)
i
·
∑
n,t

∥ (A−A⋆)x
(n)
t ∥2

w.h.p
=⇒ ∀A : WR

A ⩽
(
1 + 2c′2σ2 ln dTN

)
WA .

Further, assume that there are uniform upper and lower bounds on YA and WA, respectively:
∃0 < αL < αU such that ∀A ∈ A′(D) : YA ⩽ αU and αL ⩽ WA ⩽ WR

A . (18)

Then, letting γ = 2
(
1 + 2c′2σ2 ln dTN

)
and k′ such that Rk

′
αL ⩾ γαU , we have

P (WA ⩽ 2γYA) ⩽ P
(
WR

A ⩽ γYA

)
⩽ ∪k′k=1P

(
WR

A ⩽ RkαL, γYA ⩾ Rk−1αL
)
.

Each of the terms in the union can be controlled by the Freedman’s inequality in Equation (17) with
the choices of rY = αLR

k−1 and rW = αLR
k:

P (WA ⩽ 2YA) ⩽
k′∑
k=1

exp
(
−αLRk−2/4

)
⩽ exp

(
−αL
4R

+ ln ln
2eαU
RαL

)
. (19)

As can be seen from Equation (19), the probability of the event {WA ⩽ 2YA} is largely controlled
with the lower bound αL as the ratio αU/αL only matters logarithmically. This is crucial as the two
bounds differ with the condition number κ of the linear operator L⋆, which can scale with T .

Therefore, it possible to control the event E with a union bound over an ϵ-net ofA′(D). In particular,
αL needs to be uniformly bounded below such that αL/R is of scale ln |Nϵ(A′(D))|. And, this is
achieved by Hanson-Wright inequality (Hanson & Wright, 1971) which allows us to derive the
needed uniform lower and upper bounds in Equation (18) with high probability as long as A′(D) is
composed of matrices that satisfy

∥∆A∥2F
∥∆A∥2op

⩾ ln |Nϵ(A′(D))| , where ϵ ∼ polysqrt(p, d,N, T, eκ)

1 + c2 ln 1
δ

.

Here, we pick up the dependency on κ as ϵ scales with κ. This is needed to bound the worst-case
errors while transitioning from point-wise bounds on the ϵ-net Nϵ(A′(D)) to the whole set A′(D).

Finally, since there is a uniform bound on ∥∆A∥op ⩽ 2D implied by Assumption 3.4, setting

A′(D) =

{
A | ∥∆A∥2F ⩾ CD2 pdr

N
polylog(p, d,N, T, κ)

}
,

for some C = O( 1δ ) is sufficient to deduce Â ∈ A(D) \ A′(D) with probability 1 − δ. The proof
of Theorem 4.1 is then complete as ∥∆A∥2F = ∥MA −MA⋆∥2F ⩾ (T − p)∥A−A⋆∥2F .

7 CONCLUSION

In this work, we extend non-asymptotic linear system identification theory and derive upper bounds
on the sample complexity of learning long-context linear autoregressive models. Our bounds im-
prove upon the existing arguments specific to first-order systems by employing a uniform concen-
tration argument over prediction differences. We further establish improved statistical rates when
learning under a low-rank assumption. Finally, we show that even with long or unbounded gen-
erative contexts, misspecification still allows the estimation of the matrices with a reduced sample
complexity and for stable systems.

While this work makes significant progress for non-asymptotic linear system identification theory,
several technical questions remain open for further investigation. Can the OLS operator norm be
coarsely controlled to derive rates for unconstrained OLS in the NT = Ω(pdr) regime? Is it
possible to find efficient algorithms that would benefit from low-rank assumptions? Lastly, can
misspecification be beneficial for marginally stable systems?
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Vianney Perchet, and Philippe Rigollet (eds.), Proceedings of the 31st Conference On Learning
Theory, volume 75 of Proceedings of Machine Learning Research, pp. 439–473. PMLR, 06–09
Jul 2018. URL https://proceedings.mlr.press/v75/simchowitz18a.html.

Alex Simpkins. System identification: Theory for the user, 2nd edition (ljung, l.; 1999). IEEE
Robotics and Automation Magazine, 19(2):95–96, 1999. doi: 10.1109/MRA.2012.2192817.

Nilesh Tripuraneni, Chi Jin, and Michael Jordan. Provable meta-learning of linear representa-
tions. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Con-
ference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pp. 10434–10443. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/
v139/tripuraneni21a.html.

Anastasios Tsiamis, Ingvar Ziemann, Nikolai Matni, and George J Pappas. Statistical learning theory
for control: A finite-sample perspective. IEEE Control Systems Magazine, 43(6):67–97, 2023.

Stephen Tu, Roy Frostig, and Mahdi Soltanolkotabi. Learning from many trajectories, 2023.

Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace, Scotts Valley,
CA, 2009. ISBN 1441412697.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Martin J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge Series
in Statistical and Probabilistic Mathematics. Cambridge University Press, 2019. doi: 10.1017/
9781108627771.

F. T. Wright. A Bound on Tail Probabilities for Quadratic Forms in Independent Random Vari-
ables Whose Distributions are not Necessarily Symmetric. The Annals of Probability, 1(6):1068
– 1070, 1973. doi: 10.1214/aop/1176996815. URL https://doi.org/10.1214/aop/
1176996815.
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ORGANIZATION OF THE APPENDIX

The appendix is organized as follows,

• In Appendix A, we provide preliminary tools needed for our analyses: Hanson-Wright and
Freedman inequalities, supremum of sub-Gaussian processes and proof of Proposition 3.5.

• In Appendix B, we prove Theorems 4.1 to 4.3 jointly under Theorem B.5.
• In Appendix C, we provide numerical experiments to verify our theoretical findings.

A PRELIMINARY TOOLS

A.1 HANSON-WRIGHT INEQUALITY

We use Hanson-Wright inequality (Hanson & Wright, 1971; Wright, 1973; Rudelson & Vershynin,
2013) to show concentration of certain second-order terms.
Theorem A.1. (Hanson-Wright) Let Z = (Z1, . . . , Zn) ∈ Rn be a random vector with independent
components Zi which satisfy E[Zi] = 0 and ∥Zi∥ψ2 ⩽ K. Let P be an n × n matrix. Then, for
every r ⩾ 0,

P
(∣∣Z⊤PZ − E

[
Z⊤PZ

]∣∣ > r
)
⩽ 2 exp

(
−CHW min

(
r2

K4∥P∥2F
,

r

K2∥P∥op

))
.

The bound can be turned into a one-sided bound by dropping the constant 2.
Remark A.2. For data regime considered in this paper, K = cσ in Theorem A.1.

A.2 FREEDMAN’S INEQUALITY

We use an extension of Freedman’s inequality (Freedman, 1975) to non-bounded differences by
Dzhaparidze & Van Zanten (2001) to show concentration of certain second-order terms. For the
sake of completeness, we provide the original Freedman’s inequality. We also remark that it is
possible to use the original Freedman’s inequality in our proofs to deal with any bounded noise.
Theorem A.3. (Freedman’s inequality) Let Y0, . . . , Yn be a real-valued martingale series that
is adapted to the filtration F0, . . . ,Fn where Y0 = 0. Let d1, . . . , dn be the difference sequence
induced, i.e.,

di = Yi − Yi−1 for i = 1, . . . , n.

Assume that di is upper bounded by some R, i.e., |di| ⩽ R for all i. Let Wi be the quadratic
variation of the martingale series, i.e.,

Wi =

i∑
j=1

E[d2j | Fj−1] for i = 1, . . . , n.

Then, for any r,W > 0,

P (∃k ⩾ 0 : Yk ⩾ r and Wk ⩽ W ) ⩽ exp

(
− r2/2

W +Rr

)
.

Theorem A.4. (Freedman’s inequality with non-bounded differences) Let Y0, . . . , Yn be a real-
valued martingale series that is adapted to the filtration F0, . . . ,Fn where Y0 = 0. Let d1, . . . , dn
be the difference sequence induced, i.e.,

di = Yi − Yi−1 for i = 1, . . . , n.

Let WR
i be the quadratic variation of the martingale series plus an error term for large differences,

WR
i =

i∑
j=1

E[d2j | Fj−1] + d2i1{|di|>R} for i = 1, . . . , n. (20)

We set Wi = W 0
i for ease of notation. Then, for any r,R,W > 0,

P
(
∃k ⩾ 0 : Yk ⩾ r and WR

k ⩽ W
)
⩽ exp

(
− r2/2

W +Rr

)
.
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We extend these theorems in Lemma A.5 to compare the quadratic variation with the martingale
series itself. This is useful in our proofs to show certain events necessarily implied by empirical risk
minimization do not occur with high probability.
Lemma A.5. Let E be the following event

E =
{
WR
n ⩾ αL

}
∩ {Yn ⩽ αU} ,

where 0 ⩽ αL ⩽ αU , R > 1 are constants and WR
n and Yn are defined as in Theorem A.4. Then,

for any γ > 0, we have the following concentration inequality

P
({

WR
n ⩽ γYn

}
∩ E
)
⩽ exp

(
− αL
2Rγ

+ ln

(
ln

(
αU
RαL

)
+ 1

))
.

Proof. Without loss of generality, we assume γ = 1 as it is possible to scale the martingale series
with 1

γ and set R← 1
γR,αL ← 1

γ2αL and αU ← 1
γαU .

Let G =
{
αL, RαL, . . . , R

kαL
}

where k is the smallest positive integer such that

RkαL ⩾ αU .

Then, by a union bound,

P
(
WR
n ⩽ Yn ∩ E

)
⩽ P

(
∪ki=1

({
WR
n ⩽ RiαL, Yn ⩾ Ri−1αL

}
∩ E
))

⩽ P
(
∪ki=1

({
WR
n ⩽ RiαL, Yn ⩾ Ri−1αL

}))
⩽

k∑
i=1

P
({

WR
n ⩽ RiαL, Yn ⩾ Ri−1αL

})
.

By applying Theorem A.4 with r = Ri−1αL and W = RiαL, we obtain

P
(
WR
n ⩽ RiαL, Yn ⩾ Ri−1αL

)
⩽ exp

(
−αLRi−2/4

)
,

for each i = 1, . . . , k. The result follows by noting that
k∑
i=1

P
({

WR
n ⩽ RiαL, Yn ⩾ Ri−1αL

})
⩽

k∑
i=1

exp
(
−αLRi−2/4

)
⩽ exp

(
−αL
4R

+ ln k
)

⩽ exp

(
−αL
4R

+ ln

(
ln

(
αU
RαL

)
+ 1

))
.

A.3 SUPREMUM OF THE NOISE

We need the following lemma to control the supremum of the noise in our proofs.
Lemma A.6. Let X1, . . . , Xn be i.i.d. mean zero and σ2-sub-Gaussian random variables (in the
sense provided in Assumption 3.1). Then, there exist a universal constant c′ such that for any t > 0,

P
(

sup
i=1,...,n

Xi > c′σ
√
2 lnn+ t

)
⩽ 2 exp

(
− t2

2c′σ2

)
.

Proof. By the sub-Gaussian property, we have a universal constant c′ such that

P (Xi ⩾ r) ⩽ exp

(
− r2

2c′2σ2

)
.

Then, by the union bound,

P
(

sup
i=1,...,n

Xi ⩾ r

)
⩽ ∪iP (Xi ⩾ r) ⩽ n exp

(
− r2

2c′2σ2

)
.

The result follows by setting r = c′σ
√
2 lnn+ t.
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Corollary A.7. For any δ > 0, there exists a universal constant c′(δ) = O
(√

ln 1
δ

)
such that

sup
t,n
∥ξ(n)t ∥∞ ⩽ c′(δ)σ

√
2 ln dTN ,

with probability 1− δ.

Proof. Each component
(
ξ
(n)
t

)
i

are i.i.d. of each other and sub-Gaussian with parameter σ. There-
fore, by Lemma A.6, we have

P
(
sup
t,n
∥ξ(n)t ∥∞ > c′σ

√
2 ln dTN + r

)
⩽ dNT exp

(
− r2

2c′2σ2

)
.

Select r = c′σ
√

2
(
ln dTN + ln 1

δ

)
to obtain the desired confidence level of δ. Note that

r ⩽ c′σ
√
2

(
√
ln dTN +

√
ln

1

δ

)
,

and the constant c′(δ) need to satisfy

c′(δ) ⩽ 1 +

√
ln 1

δ

ln dTN
⩽ 1 +

√
1

ln 2

√
ln

1

δ
,

as dTN > p ⩾ 2. Thus, c′(δ) can be picked such that it is a universal constant in δ.

A.4 PROOF OF PROPOSITION 3.5

Proof. Using Lemma B.12, we have ∥MA⋆∥op ⩽
√
p∥A⋆∥op, directly leading to (ii).

For (i), we have

∥MA⋆∥op ⩽
p∑
i=1

∥MA⋆,(i)∥op , where A⋆,(i) =

0d, 0d, . . . , 0d︸ ︷︷ ︸
i−1 times

,A⋆,i, 0d, . . . , 0d

 .

Then, it is easy to see that
∥MA⋆,(i)∥op ⩽ ∥A⋆

i ∥op.

B PROOF OF THEOREMS 4.1 TO 4.3

Before proving the main theorems, we recall certain definitions from the main body of the paper:
Definition B.1. For any A ∈ Rd×pd, let ∆A = ∆A,p′ be defined as follows

∆A,i = (MAi −MA⋆
i
) ,

where Ai = (A1, . . . , Ai, 0d, . . . , 0d) ,A
⋆
i = (A⋆1, . . . , A

⋆
i , 0d, . . . , 0d) .

Let ξ(i) ∈ RTd be the whole noise concatenated in time, i.e.,

ξ(i) =
(
ξ
(i)
1 , . . . , ξ

(i)
T

)
,

and let E ∈ RTd×N be the matrix that collects the noise for all sequences, i.e.,

E =
(
ξ(1), . . . , ξ(n)

)
.

Proposition B.2. With the definitions of Definition B.1, we have the following properties:∑
n,t

⟨(Ai −A⋆
i )X

(n)
t , ξ

(n)
t ⟩ = Tr(E⊤∆A,iL⋆E) ,

∑
n,t

∥∥∥(Ai −A⋆
i )X

(n)
t

∥∥∥2 =
∥∥(MAi

−MA⋆
i
)L⋆E

∥∥2
F
= ∥∆A,iL⋆E∥2F .
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Definition B.3. LetAr,p(D) and Sr,p(C,D) be the search and solution set for constants C,D ⩾ 1:

Ar,p′(D) =
{
A ∈ Rd×pd

∣∣∣ ∥∆A∥op ⩽ D, rank(Ai) ⩽ r, Ap′+1 = · · · = Ap = 0
}
,

Sr,p′(C,D) =

{
A ∈ A(D)

∣∣ ∥A−A⋆
p′∥2F ⩽ CD2η2

p′dr (ln τ)
2

N(T − p′)

}
,

where η is a constant that captures an additional factor for the misspecified setting,

η =


1 if p′ = p ,

max

{
1, 1 +

∥∥∥(MA⋆ −MA⋆
p′

)
L⋆

∥∥∥
op

}
if p′ < p ,

and τ is the following term:

τ = eσcond(L⋆)
√
p′dNT

√
T

T − p′
.

Let Gr,p′(C,D) be defined as follows,

Gr,p′(C,D) =

{
A ∈ Ar,p(D)

∣∣∣ ∥∆A∥2F
∥∆A∥2op

⩽ Cη2
p′dr (ln τ)

2

N

}
.

We set Ar,p′ = Ar,p′(∞) and G(C)r,p′ = G(C,∞). Lastly, we drop the subscript r, p′ when the
statement is valid for all r, p′.
Remark B.4. For strictly stable systems with ∥MA⋆∥op < 1 and ∥MA⋆

p′
∥op < 1, the factor η is

controlled by Corollary B.10. However, for marginally stable systems or explosive systems, there is
no a prior good upper bound on η, implying that the misspecification results only applies to strictly
stable systems.

B.1 THEOREM STATEMENT

In this subsection, we state Theorem B.5 that generalizes the statements in Theorems 4.1 to 4.3. We
give a proof that reduces Theorem B.5 to a uniform concentration result in Theorem B.6. The proof
of Theorem B.6 is deferred to Appendix B.5. Lastly, Corollary B.7 gives a corollary that removes
the constraints on the diameter of the search set.
Theorem B.5. Let Assumptions 3.1 and 3.4 hold. Furthermore, let Assumption 3.7 for r < d and
Assumption 3.9 for p′ < p hold. Let Â be the following estimator:

Â = argminA∈A(D) L(A) .

Then, for any small δ > 0, there exist C(δ) = O(ln(1/δ)) such that

P
(
Â ∈ S(C(δ), D)

)
⩾ 1− δ .

Proof. Let EA be the following event

EA = {∥∆AL⋆E∥2F ⩽ 2ηTr(E⊤∆AL⋆E)} .
By Corollary B.13, G(C,D) ⊂ S(C,D) and thus, for any random choice of A,

P ({A ∈ S(C(δ), D)}) ⩾ P ({A ∈ G(C,D)}) = 1− P ({A ∈ A(D) \ G(C,D)}) .
For the choice of Â, P

(
EÂ
)
= 1 by Corollary B.15 and

P
({

Â ∈ S(C(δ), D)
})

⩾ 1− P
({

Â ∈ A(D) \ G(C,D)
}
| EÂ

)
.

By Bayes rule, we have

P
({

Â ∈ S(C(δ), D)
})

⩾ 1− P
(
EÂ |

{
Â ∈ A(D) \ G(C,D)

})
P
({

Â ∈ A(D) \ G(C,D)
})

⩾ 1− P
(
EÂ |

{
Â ∈ A(D) \ G(C,D)

})
.

Then, the proof is complete by applying Theorem B.6 to the right-hand side.
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Theorem B.6. Let all the assumptions of Theorem B.5 hold. Then, for any small δ > 0, there exist
a constant C(δ) = O(ln(1/δ)) such that

P
(
∃A ∈ A(D) \ G(C(δ), D) : ∥∆AL⋆E∥2F ⩽ 2ηTr(E⊤∆AL⋆E)

)
⩽ δ . (21)

Corollary B.7. Let all the assumptions of Theorem B.5 hold and consider the following estimator:

ÂOLS = argminA∈A(∞) L(A) .

Then, for any small δ > 0, there exist C(δ) = O(ln(1/δ)) such that

P
(
ÂOLS ∈ S(C(δ), D)

)
⩾ 1− δ ,

given that NT satisfies the following condition:

N(T − p′) ⩾ Cη2p′2dr(ln τ)2 ln lnD . (22)

Proof. Assume that D is sufficiently large such that

A(D)o ⊂ G(C,D) ,

i.e., the interior of A(D) contains G(C,D). We have the following relation:

A(∞) =
{
A′ = αA | A ∈ A(D) \ G(C,D), α ⩾ 1 ∈ R

}
.

Then, by Theorem B.6, we have

P
(
∃A ∈ A(∞) \ G(C(δ), D) : ∥∆AL⋆E∥2F ⩽ 2ηTr(E⊤∆AL⋆E)

)
= P

(
∃α ⩾ 1 ∈ R,A ∈ A(D) \ G(C(δ), D) : ∥∆αAL⋆E∥2F ⩽ 2ηTr(E⊤∆αAL⋆E)

)
= P

(
∃A ∈ A(D) \ G(C(δ), D) : ∥∆AL⋆E∥2F ⩽ 2ηTr(E⊤∆AL⋆E)

)
⩽ δ ,

as ∀α ⩾ 1, we have the following:

∥∆AL⋆E∥2F ⩽ 2ηTr(E⊤∆AL⋆E) =⇒ ∥∆αAL⋆E∥2F ⩽ 2ηTr(E⊤∆αAL⋆E) .

Thus, the result is complete by applying the same argument as in Theorem B.5 where A(D) is
replaced by A(∞).

We only need to provide a D such that A(D)o ⊂ G(C,D). It is easier to ensure the inclusion
A(D)o ⊂ S(C,D). For any A ∈ S(C,D), we have

∥∆A∥2op ⩽ p′∥A∥2op ⩽ p′∥A∥2F ⩽ CD2η2
p′2dr (ln τ)

2

N(T − p′)
,

from Lemma B.12. Therefore, we need to find a D such that

D2 ⩾ CD2η2
T

T − p

p′dr (ln τ)
2

N
ln lnD , (23)

where we make the ln lnD factor in C explicit. See Appendix B.5 for the details why this constant
is needed. Lastly, Equation (23) is satisfied for large enough N and T that verifies the condition in
Equation (22).

B.2 TECHNICAL LEMMAS

In this subsection, we present simple technical results on L⋆,MA and ∆A that are used in the proof
of Theorem B.5.

Lemma B.8. L⋆ and MA⋆ satisfy the following relations:

L⋆ = MA⋆L⋆ + I, MA⋆ = (L⋆ − I)L−1
⋆ , L⋆ = (I −MA⋆)−1 .

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Proof. The first relation follows from a direct computation. For the second, note that L⋆ is invertible
since it is a lower triangular matrix with non-zero diagonals. Lastly,

L⋆ = I +MA⋆L⋆

= I +MA⋆ +M2
A⋆L⋆

= · · ·
= I +MA⋆ +M2

A⋆ + · · ·+MT−1
A⋆

= (I −MA⋆)−1 ,

where we have used the fact that MT
A⋆ = 0Td.

Lemma B.9. Assume that ∥MA⋆∥op < 1. Then, the operator norm and minimum singular value of
L⋆ are bounded as follows,

1

1 + ∥MA⋆∥op
⩽ ∥L⋆∥op ⩽

1

1− ∥MA⋆∥op
,

1

2
⩽ σmin (L⋆) .

Proof. By Weyl’s inequality for singular values on the identity L⋆ = MA⋆L⋆+ I from Lemma B.8,

∥L⋆∥op ⩽ ∥I∥op + ∥MA⋆L⋆∥op ⩽ 1 + ∥MA⋆∥op∥L⋆∥op ,
∥L⋆∥op ⩾ ∥I∥op − ∥MA⋆L⋆∥op ⩾ 1− ∥MA⋆∥op∥L⋆∥op .

This implies the desired inequalities for ∥L⋆∥op. For the lower bound on minimal singular value,
use Lemma B.8,

σmin (L⋆) = σmin

(
(I −MA⋆)−1

)
=

1

∥I −MA⋆∥op
⩾

1

1 + ∥MA⋆∥op
⩾

1

2
.

Corollary B.10. Assume that ∥MA⋆∥op < 1 and ∥MA⋆
p′
∥op < 1. Then, we have

η ⩽
2

1− ∥MA⋆∥op
.

Proof. Applying Lemma B.9,

η ⩽
∥∥∥MA⋆ −MA⋆

p′

∥∥∥
op
∥L⋆∥op ⩽

1

1− ∥MA⋆∥op

(
∥MA⋆∥op +

∥∥∥MA⋆
p′

∥∥∥
op

)
⩽

2

1− ∥MA⋆∥op
.

Lemma B.11. Assume that ∥MA⋆∥op ⩽ D. Then, the operator norm and minimum singular value
of L⋆ are bounded as follows,

∥L⋆∥op ⩽
DT − 1

D − 1
,

1

D + 1
⩽ σmin (L⋆) .

Proof. By Weyl’s inequality for singular values on the identity L⋆ = I +MA⋆ + · +MT−1
A⋆ from

Lemma B.8,

∥L⋆∥op ⩽ ∥I∥op +

T−1∑
t=1

∥M t
A⋆∥op ⩽

T−1∑
t=0

Dt ⩽
DT − 1

D − 1
.

For the lower bound on minimal singular value, use Lemma B.8,

σmin (L⋆) = σmin

(
(I −MA⋆)−1

)
=

1

∥I −MA⋆∥op
⩾

1

1 + ∥MA⋆∥op
⩾

1

D + 1
.
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Lemma B.12. For any A ∈ Rd×pd,

∥A∥op ⩽ ∥MA∥op ⩽
√

p′∥A∥op ,
1

T
∥∆A∥2F ⩽ ∥A−A⋆

p′∥2F ⩽
1

T − p′
∥∆A∥2F .

Proof. Let u = (u1, . . . , uT ) ∈ RTd be an arbitrary vector with ∥u∥22 = 1. Then, setting u−a = 0
for any a ⩾ 0,

∥MAu∥22 =

T∑
i=1

∥ (MAu)i ∥22 =

T∑
i=1

∥
p∑
k=1

Akui−k∥22

=

T∑
i=1

∥A:p′ui−p′:i−1∥22 ⩽
T∑
i=1

∥A:p′∥2op∥ui−p′:i−1∥22

⩽ ∥A∥2op
T∑
i=1

p′∥ui∥22 = p′∥A∥2op.

The left-hand side of the first inequality follows by picking up′+1:T = 0 and u1:p′ as the maximal
singular vector of A:p′ with unit length. The second inequality follows by a simple computation.

Corollary B.13. For any A ∈ A(D),

∥A−A⋆
p′∥2F ⩽

D2

T − p′
∥∆A∥2F
∥∆A∥2op

.

Proof. By definition of A(D),

D2

T − p′
∥∆A∥2F
∥∆A∥2op

⩾
1

T − p′
∥∆A∥2F ,

and the result follows by Lemma B.12.

Proposition B.14. The empirical risk minimizer Â, i.e.,

Â ∈ argminA∈A(D) L(A) , (24)

implies L(Â) ⩽ L(A⋆
p′), which can be rewritten as follows:∥∥∆ÂL⋆E

∥∥2
F
⩽ 2Tr

(
E⊤L⊤

⋆ ∆
⊤
Â

(
I −MA⋆

p′

)
L⋆E

)
. (25)

Proof. By Lemma B.8,

L(A) = ∥(MA − I)L⋆E∥22 = ∥[(MA −MA⋆)L⋆ − I]E∥2F
=
∥∥∥[(MA −MA⋆

p′

)
L⋆ +

(
MA⋆

p′
−MA⋆

)
L⋆ − I

]
E
∥∥∥2
F

=
∥∥∥(MA −MA⋆

p′

)
L⋆E

∥∥∥2
F
+
∥∥∥[(MA⋆

p′
−MA⋆

)
L⋆ − I

]
E
∥∥∥2
F

+ 2Tr

(
E⊤L⊤

⋆

(
MA −MA⋆

p′

)⊤ [(
MA⋆

p′
−MA⋆

)
L⋆ − I

]
E

)
=
∥∥∥(MA −MA⋆

p′

)
L⋆E

∥∥∥2
F
+
∥∥∥(MA⋆

p′
− I
)
L⋆E

∥∥∥2
F
+ 2Tr

(
E⊤L⊤

⋆

(
MA −MA⋆

p′

)⊤ (
MA⋆

p′
− I
)
L⋆E

)
.

Then, for Â that satisfy L(Â) ⩽ L(A⋆
p′), we have

L(Â)− L(A⋆
p′) =

∥∥∥(MÂ −MA⋆
p′

)
L⋆E

∥∥∥2
F
+ 2Tr

(
E⊤L⊤

⋆

(
MÂ −MA⋆

p′

)⊤ (
MA⋆

p′
− I
)
L⋆E

)
⩽ 0 ,

which implies the desired result.
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Corollary B.15. Observe that for p′ = p, Proposition B.14 reads∥∥∆ÂL⋆E
∥∥2
2
⩽ 2Tr

(
E⊤∆ÂL⋆E

)
.

For p′ < p, one can write the following relaxed condition for any Â:∥∥∆ÂL⋆E
∥∥2
2
⩽ 2
∥∥∥(I −MA⋆

p′

)
L⋆

∥∥∥
op

Tr
(
E⊤∆ÂL⋆E

)
= 2
∥∥∥ITd + (MA⋆ −MA⋆

p′

)
L⋆

∥∥∥
op

Tr
(
E⊤∆ÂL⋆E

)
⩽ 2

(
1 +

∥∥∥(MA⋆ −MA⋆
p′

)
L⋆

∥∥∥
op

)
Tr
(
E⊤∆ÂL⋆E

)
= 2ηTr

(
E⊤∆ÂL⋆E

)
.

B.3 LOWER AND UPPER ISOMETRIES

In Theorem B.16, we present a uniform lower bound on ∥∆AL⋆E∥2F . In order to establish this lower
bound, we first start with a point-wise lower bounds in Lemma B.19 that relies on Hanson-Wright
inequality for bounding the deviation of quadratic forms of sub-Gaussian vectors. Then, we use
Lemmas B.21 and B.22 with a discretization argument in Theorem B.16 to establish uniform isome-
tries. Finally, with Corollary B.17, we have a uniform control over the range of both ∥∆AL⋆E∥2F
and Tr(E⊤∆AL⋆E).
Theorem B.16. Let δ > 0 be small and fixed. Then, there exist a constant 1 ⩽ C(δ) = ln( 1δ ) such
that the following holds uniformly for all A ∈ A(D) \ G(C,D) and C ⩾ C(δ):

∥∆AL⋆E∥2F ⩾
σ2

8
σmin(L⋆)

2N∥∆A∥2F , (26)

with probability at least 1− δ.

Proof. By Lemmas B.19 and B.20, with probability at least 1− δ1 − δ2, the following holds:

∥∆AL⋆E∥2F ⩾ σ2
(
1− c2ν1

)
σmin(L⋆)

2N∥∆A∥2F , (27)

for any arbitrary A ∈ A(D) \ G(C,D) where

δ1 = exp
(
−CHWCν21p

′dr ln τ
)
, δ2 = exp

(
−CHWCν22p

′dr ln τ
)
.

Let B(C,D) be the normalized A(D) \ G(C,D),

B(C,D) =

{
A

∥A∥F
| A ∈ A(D) \ G(C,D)

}
.

Then, since the conditions are homogeneous, Equation (27) holds for any A ∈ B(C,D) with prob-
ability 1− δ1 − δ2.

Let Nϵ(D) be ϵ-net over the set B(C,D). Hence, with probability at least

1− δ0 = 1− |Nϵ(D)|(δ1 + δ2),

the condition Equation (27) holds ∀A ∈ Nϵ(D). Moreover, by Lemmas B.21 to B.23, we have

∥∆AL⋆E∥2F ⩾
1

2
σ2
(
1− c2ν1

)
σmin(L⋆)

2N∥∆A∥2F − σ2(1 + c2ν3)ϵ
2∥L⋆∥2opp′dNT

Tr(E⊤∆AL⋆E) ⩽ σ2c2ν2∥L⋆∥op
√
Cp′drN ln τ∥∆A∥F + σ2(1 + c2ν3)ϵ∥L⋆∥op

√
p′dNT ,

∀A ∈ B(C,D) with probability at least 1− δ0 − δ3 where

δ3 = exp (−CHW ν3dNT ) , .

Recall that
∥∆A∥2F ⩾ (T − p)∥A∥2F = T − p ,

for any A ∈ B(C,D) due to the normalization.
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Setting ν1 = 1
4c2 , ν2 = 1

4c2 and ϵ such that

ϵ =
1

2 (1 + c2ν3)
·
√

T − p′

T
min

{
1

σcond(L⋆)

√
r

dNT
,

√
1

p′d

}
,

and recalling that C ⩾ 1 and ln τ ⩾ 1,

1

2
σ2
(
1− c2ν1

)
σmin(L⋆)

2N∥∆A∥2F − σ2(1 + c2ν3)ϵ
2∥L⋆∥2opp′dNT ⩾

σ2

8
σmin(L⋆)

2N∥∆A∥2F ,

σ2c2ν2∥L⋆∥op
√
Cp′drN ln τ∥∆A∥F + σ2(1 + c2ν3)ϵ∥L⋆∥op

√
p′dNT

⩽
σ2

2
∥L⋆∥op

√
Cp′drN ln τ∥∆A∥F ,

∀A ∈ B(C,D) with probability 1− δ0 − δ3.

By homogeneity, this implies that ∀A ∈ A(D) \ G(C,D), with probability at least 1− δ0 − δ3,

∥∆AL⋆E∥2F ⩾
σ2

8
σmin(L⋆)

2N∥∆A∥2F ,

Tr(E⊤∆AL⋆E) ⩽
σ2

2
∥L⋆∥op

√
Cp′drN ln τ∥∆A∥F .

Lastly, we can ensure that δ3 < δ/2 with the choice of

ν3(δ) =
ln 1

δ/2

CHW
>

ln 1
δ/2

CHW dNT
.

Moreover, the ϵ-net size can be bounded as follows:

|Nε(D)| ⩽
(
9

ϵ

)(p′d+d+1)r

⩽ exp

(
3p′dr ln

9

ϵ

)
⩽ exp

(
9p′dr ln

1

ϵ

)
.

For more details on ϵ-nets on low-rank matrices, see Candès & Plan (2011, Lemma 3.1). Then,

δ0 = |Nϵ(D)| (δ1 + δ2) ⩽ exp

((
9− 1

16c4
CHWC

)
p′dr ln τ + 9p′dr ln

(
1 +

c2

CHW
ln

1

δ/2

))
,

where we use that 1
ϵ < τ

(
1 +

c2

CHW
ln 1

δ/2

)
. Thus, δ0 < δ/2 can be made with the choice of

C(δ) =
16c4

CHW

(
9 + ln

1

δ/2
+ 9 ln

(
1 +

c2

CHW
ln

1

δ/2

))

>
16c4

CHW

9 +
ln 1

δ/2

p′dr ln τ
+ 9

ln

(
1 +

c2

CHW
ln 1

δ/2

)
ln τ

 .

Here, C(δ) is a constant that is independent of p, p′, d, r,N, T such that C(δ) = O(ln(1/δ)).

Corollary B.17. For any small δ > 0, there exists a constant 1 ⩽ C(δ) = O(ln(1/δ)) such that the
following holds uniformly for all A ∈ A(D) \ G(C,D) and C ⩾ C(δ):

inf
A∈A(D)\G(C,D)

∥∆AL⋆E∥2F ⩾
σ2

8
σmin(L⋆)

2Cη2D2p′dr (ln τ)
2
,

sup
A∈A(D)\G(C,D)

Tr(E⊤∆AL⋆E) ⩽
σ2

2
∥L⋆∥opCηDp′dr (ln τ)

3/2
,

(28)

Proof. Plug in the results from Theorem B.16 and use the definition of the setA(D)\G(C,D).
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Definition B.18. For applying Theorem A.1 in our setup, consider the following objects:

Ẽ = (ξ(1)
⊤
, . . . , ξ(N))

⊤ ∈ RNTd ,
∆̃A = diag(∆A) ∈ RNTd × RNTd ,

where diag(P ) puts P in the diagonal blocks of a larger diagonal matrix.
Lemma B.19. For any A ∈ A \ G(C) and ν ∈ (0, 1), with probability at least

1− exp
(
−CHWCν2p′dr ln τ

)
,

we have the following
∥∆AL⋆E∥2F ⩾ σ2

(
1− c2ν

)
σmin(L⋆)

2N∥∆A∥2F .

Proof. First, observe that
∥∆AL⋆E∥2F ⩾ σmin(L⋆)

2∥∆AE∥2F .

Applying Theorem A.1 with P = ∆̃⊤
A∆̃A and r = c2σ2ν∥∆̃A∥2F ,

P
(
Ẽ⊤∆̃⊤

A∆̃AẼ − E[Ẽ⊤∆̃⊤
A∆̃AẼ] ⩾ c2σ2ν∥∆̃A∥2F

)
⩽ exp

(
−CHW min

{
ν2
∥∆̃A∥4F
∥∆̃⊤

A∆̃A∥2F
, ν

∥∆̃A∥2F
∥∆̃⊤

A∆̃A∥op

})
.

Observe that Ẽ⊤∆̃⊤
A∆̃AẼ = Tr(E⊤∆⊤

A∆AE) = ∥∆AE∥2F and

E
[
Ẽ⊤∆̃⊤

A∆̃AẼ
]
= E

[
Tr
(
ẼẼ⊤∆̃⊤

A∆̃A

)]
= σ2∥∆̃A∥2F = σ2N∥∆A∥2F .

Furthermore, ∥∆̃A∥4F = N2∥∆A∥4F , ∥∆̃⊤
A∆̃A∥2F = N∥∆⊤

A∆A∥2F and ∥∆̃⊤
A∆̃A∥op =

∥∆⊤
A∆A∥op = ∥∆A∥2op. Plugging these into the bound,

P
(
∥∆AE∥2F − σ2N∥∆A∥2F ⩾ c2σ2νN∥∆A∥2F

)
⩽ exp

(
−CHW min

{
ν2N

∥∆A∥4F
∥∆⊤

A∆A∥2F
, νN

∥∆A∥2F
∥∆A∥2op

})
.

Then, using ∥∆⊤
A∆A∥2F ⩽ ∥∆A∥2F ∥∆A∥2op and ν < 1,

P
(
∥∆AE∥2F ⩾ σ2(1− c2ν)N∥∆A∥2F

)
⩾ 1− exp

(
−CHW ν2N

∥∆A∥2F
∥∆A∥2op

)
.

The result follows from the definition of set A \ G(C).

Lemma B.20. For any A ∈ A \ G(C) and ν ∈ (0, 1), with probability at least

1− exp
(
−CHWCν2p′dr ln τ

)
,

we have the following

Tr(E⊤∆AL⋆E) ⩽ c2σ2ν∥L⋆∥op
√
Cp′drN ln τ∥∆A∥F .

Proof. First, by the properties of trace and Frobenius norm, we have

Tr(E⊤∆AL⋆E) ⩽ ∥L⋆∥op Tr(E⊤∆AE) .

Applying Theorem A.1 with P = ∆̃A and r = c2σ2ν
√
Cp′dr ln τ∥∆̃A∥F ,

P
(
Ẽ⊤∆̃AẼ − E[Ẽ⊤∆̃AẼ] ⩾ c2σ2ν

√
Cp′dr ln τ∥∆̃A∥F

)
⩽ exp

(
−CHW min

{
ν2Cp′dr ln τ, ν

√
Cp′dr ln τ

∥∆̃A∥F
∥∆̃A∥op

})
.

Noting E[Ẽ⊤∆̃AẼ] = 0 and rewriting,

P
(
Tr
(
E⊤∆AE

)
⩽ c2σ2ν

√
Cp′drN ln τ∥∆A∥F

)
⩾

1− exp

(
−CHW min

{
ν2Cp′dr ln τ, ν

√
Cp′drN ln τ

∥∆A∥F
∥∆A∥op

})
.

The result follows from the definition of set A \ G(C).

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Lemma B.21. For any ν ⩾ 1, with probability at least

1− exp (−CHW νdNT ) ,

we have the following
∥E∥2F − σ2dNT ⩽ c2σ2νdNT.

Proof. Applying Theorem A.1 with P = IdTN , r = c2σ2νdNT ,

P
(
Ẽ⊤Ẽ − E[Ẽ⊤Ẽ] ⩾ c2σ2νdNT

)
⩽ exp (−CHW νdNT ) .

The result follows after a simple computation.

Lemma B.22. For any A1,A2 ∈ A,

∥∆A2
L⋆E∥2F ⩾

1

2
∥∆A1

L⋆E∥2F − p′∥A1 −A2∥2op∥L⋆∥2op∥E∥2F . (29)

Proof. By the properties of Frobenius norm and Lemma B.12,

∥∆A1L⋆E∥2F = ∥(∆A1 −∆A2 +∆A2)L⋆E∥2F
⩽ 2∥∆A2

L⋆E∥2F + 2∥(∆A1
−∆A2

)L⋆E∥2F
⩽ 2∥∆A2L⋆E∥2F + 2∥∆A1 −∆A2∥2op∥L⋆∥2op∥E∥2F
⩽ 2∥∆A2L⋆E∥2F + 2p′∥A1 −A2∥2op∥L⋆∥2op∥E∥2F .

(30)

The results readily follows by reordering terms.

Lemma B.23. For any A1,A2 ∈ A,

Tr(E⊤∆A2L⋆E) ⩽ Tr(E⊤∆A1L⋆E) +
√

p′∥A1 −A2∥op∥L⋆∥op∥E∥2F , (31)

Proof. By the properties of trace and Lemma B.12,

Tr(E⊤∆A2L⋆E) = Tr
(
E⊤(∆A2 −∆A1 +∆A1)L⋆E

)
= Tr

(
E⊤∆A1

L⋆E
)
+Tr

(
E⊤(∆A2

−∆A1
)L⋆E

)
⩽ Tr

(
E⊤∆A1L⋆E

)
+ ∥∆A2 −∆A1∥op∥L⋆∥op∥E∥2F

⩽ Tr
(
E⊤∆A1

L⋆E
)
+
√
p′∥A1 −A2∥op∥L⋆∥op∥E∥2F .

(32)

B.4 CONCENTRATION INEQUALITIES

In Remark B.24, we show that the quantities of interest that show up in Equation (21) are related
to a martingale series and its predictable quadratic variation. This allow us to use Lemma A.5 in
Theorem B.26 to quantify the probability of the event in Equation (21) for finite sets of A.

Remark B.24. Fix A ∈ A(D). Consider the martingale differences sequences

d
(n)
t,i =

((
A−A⋆

p′
)
x
(n)
t

)
i

(
ξ
(n)
t

)
i
/σ2 ,

where the series is first ordered in i, then in t, and finally in n. Let Y be the sum of the martingale
differences, i.e.,

Y =
∑
i,t,n

d
(n)
i,t .

Let WR
A be the quadratic variation of the series plus an error term as in Theorem A.4, i.e.,

WR
A =

∑
i,t,n

E(
ξ
(n)
t

)
i

[(
d
(n)
i,t

)2]
+
∑
n,t,i

1
d
(n)
t,i >R

(
d
(n)
t,i

)2
,
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Then, we have the following computations:

YA =
1

σ2

∑
n,t

⟨(A−A⋆
p′)X

(n)
t , ξ

(n)
t ⟩ =

1

σ2
Tr
(
E⊤∆AL⋆E

)
,

WA := W 0
A =

1

σ2

∑
n,t

∥∥∥(A−A⋆
p′
)
X

(n)
t

∥∥∥2 =
1

σ2
∥∆AL⋆E∥2F .

Proposition B.25. Let R > 0 be a constant and δ > 0 be small. Then, there exist a constant
C ′(δ) = O(ln 1

δ ) such that

∀A ∈ A(D), C ′(δ) ln dTN ·WA ⩾ WR
A , (33)

with probability 1− δ.

Proof. By Corollary A.7, there exist a constant c′(δ) = O
(√

ln 1
δ

)
,

sup
t,n
∥ξ(n)t ∥∞ ⩽ c′(δ)σ

√
2 ln dTN .

Therefore, for any A ∈ A(D), we have

WR
A = WA +

∑
n,t,i

1
d
(n)
t,i >R

(
d
(n)
t,i

)2
⩽ WA + 2c′(δ)2 ln dTN

∑
n,t,i

1
d
(n)
t,i >R

((
A−A⋆

p′
)
x
(n)
t

)2
i

⩽ WA + 2c′(δ)2 ln dTN
∑
n,t,i

((
A−A⋆

p′
)
x
(n)
t

)2
i

⩽ WA + 2c′(δ)2 ln dTN ·WA .

Then, by rearranging terms, we have(
1 + 2c′(δ)2 ln dTN

)
WA ⩾ WR

A .

Theorem B.26. Let S ⊆ A(D) be a set and let E(S) be the following event

E(S) =
{

inf
A∈S

WA ⩾ αL

}
∩
{
sup
A∈S

YA ⩽ αU

}
,

where αL, αU > 0 are two constants. Then, for any γ > 0, R > 1 and δ > 0 small, there exist a
constant C ′(δ) = O(ln 1

δ ) such that

P (∃A ∈ S : WA ⩽ γYA) ⩽ |S| exp
(
− αL
2C ′(δ)Rγ ln dTN

+ ln

(
ln

(
αU
RαL

)
+ 1

))
+ P

(
E(S)C

)
+ δ .

Proof. The statement is trivial for αL ⩽ αU so we consider the case αL < αU .

For any A, let EA be the following event:

EA =
{
WR

A ⩾ αL
}
∩ {γYA ⩽ αU} .

Then, by union bound, we have

P
({
∃A ∈ S : WR

A ⩽ γYA

})
= P

({
∃A ∈ S : WR

A ⩽ γYA

}
∩ E(S)

)
+ P

({
∃A ∈ S : WR

A ⩽ γYA

}
∩ E(S)C

)
⩽ P

({
∃A ∈ S : WR

A ⩽ γYA

}
∩ E(S)

)
+ P

(
E(S)C

)
⩽
∑
A∈S

P
({

WR
A ⩽ γYA

}
∩ E(S)

)
+ P

(
E(S)C

)
⩽
∑
A∈S

P
({

WR
A ⩽ γYA

}
∩ EA

)
+ P

(
E(S)C

)
.
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For any A ∈ S,

P
(
WR

A ⩽ γYA ∩ EA
)
⩽ exp

(
− αL
2Rγ

+ ln ln

(
αU
RαL

))
.

by Lemma A.5 which implies that

P
({
∃A ∈ S : WR

A ⩽ γYA

})
⩽ |S| exp

(
− αL
2Rγ

+ ln

(
ln

(
αU
RαL

)
+ 1

))
+ P

(
E(S)C

)
.

Finally, let C ′(δ) be the constant from Proposition B.25 and Eδ be the event in Equation (33). Then,

P ({∃A ∈ S : WA ⩽ γYA}) ⩽ P ({∃A ∈ S : WA ⩽ γYA} ∩ Eδ) + P
(
ECδ
)

⩽ P
({
∃A ∈ S : WR

A ⩽ C ′(δ)γ ln dTN · YA

}
∩ Eδ

)
+ δ

⩽ P
({
∃A ∈ S : WR

A ⩽ C ′(δ)γ ln dTN · YA

})
+ δ .

B.5 PROOF OF THEOREM B.6

By Corollary B.17, there exist a constant C(δ/4) such that for all C ⩾ C(δ/4)

inf
A∈A(D)\G(C,D)

∥∆AL⋆E∥2F ⩾
σ2

8
σmin(L⋆)

2Cη2D2p′dr (ln τ)
2
,

sup
A∈A(D)\G(C,D)

Tr(E⊤∆AL⋆E) ⩽
σ2

2
∥L⋆∥opCηDp′dr (ln τ)

2
,

(34)

with probability 1− δ/4.

Let S be an ϵ-net over A(D) \ G(C,D). Then, by Theorem B.26, there exist a constant C ′(δ/4)
such that

P
(
∃A ∈ S : ∥∆AL⋆E∥2F ⩽ γ Tr(E⊤∆AL⋆E)

)
⩽

|S| exp
(
− αL
2C ′(δ/4)Rγ ln dTN

+ ln

(
ln

(
αU
RαL

)
+ 1

))
+

2δ

4
,

where αL and αU are the lower and upper bounds in Equation (34) scaled with σ2:

αL =
1

8
σmin(L⋆)

2Cη2D2p′dr (ln τ)
2
,

αU =
1

2
∥L⋆∥opCηDp′dr (ln τ)

3/2
.

Therefore, we have

P
(
∃A ∈ S : ∥∆AL⋆E∥2F ⩽ γ Tr(E⊤∆AL⋆E)

)
⩽

|S| exp
(
−

1
8σmin(L⋆)

2Cη2D2p′dr (ln τ)
2

2C ′(δ/4)Rγ ln dTN
+ ln

(
ln

(
4∥L⋆∥op

Rσmin(L⋆)2ηD

)
+ 1

))
+

δ

2
.

(35)

Recall that Lemmas B.21 to B.23 imply

∥∆A2
L⋆E∥2F ⩾

1

2
∥∆A1L⋆E∥2F − σ2(1 + c2

ln 4
δ

CHW
)p′dNTϵ2∥L⋆∥2op ,

Tr(E⊤∆A2
L⋆E) ⩽ Tr(E⊤∆A1

L⋆E) + σ2(1 + c2
ln 4

δ

CHW
)
√

p′dNTϵ∥L⋆∥op ,

with probability at least 1− δ/4. We set ϵ as follows:

ϵ = min


1
2∥L⋆∥opCηDp′dr (ln τ)

3/2

(1 + c2
ln 4

δ

CHW
)
√
p′dNT∥L⋆∥op

,
1

2

√√√√√ 1
8σmin(L⋆)

2Cη2D2p′dr (ln τ)
2

(1 + c2
ln 4

δ

CHW
)p′dNT∥L⋆∥2op

 .
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In particular, ϵ is small such that for any A1 ∈ A(D) \ G(C,D),

∃A2 ∈ S : ∥∆A1L⋆E∥2F ⩽
1

4
∥∆A2L⋆E∥2F , Tr(E⊤∆A1L⋆E) ⩽ 2Tr(E⊤∆A2L⋆E) .

Then, Equation (35) implies that

P
(
∃A ∈ A(D) \ G(C,D) : ∥∆AL⋆E∥2F ⩽ γ Tr(E⊤∆AL⋆E)

)
⩽

|S| exp
(
−

1
8σmin(L⋆)

2Cη2D2p′dr (ln τ)
2

16C ′(δ/4)Rγ ln dTN
+ ln

(
ln

(
4∥L⋆∥op

Rσmin(L⋆)2ηD

)
+ 1

))
+

3δ

4
,

(36)

by the following computation:

P
(
∃A ∈ A(D) \ G(C,D) : ∥∆AL⋆E∥2F ⩽ γ Tr(E⊤∆AL⋆E)

)
⩽ P

(
∃A ∈ S : ∥∆AL⋆E∥2F ⩽

γ

8
Tr(E⊤∆AL⋆E)

)
.

We now have to show that the right-hand side of Equation (36) for γ = 2 is upper bounded by δ.
That is, we need to prove

σmin(L⋆)
2Cη2D2p′dr (ln τ)

2

⩾ 256C ′(δ/4)R ln dTN

(
ln |S|+ ln

(
ln

(
4∥L⋆∥op

Rσmin(L⋆)2ηD

)
+ 1

)
+ δ/4

)
.

In order to simplify the expressions, we set R = 4, plug in lower bound for σmin(L⋆) and upper
bound for ∥L⋆∥op from Lemma B.11, lower bound η with 1, upper bound ln dTN with 2 ln τ and
derive the following looser condition:

C
D2

(D + 1)2
p′dr ln τ ⩾ 2048C ′(δ/4)

(
ln |S|+ ln

(
ln

((
DT − 1

)
(D + 1)

2

(D − 1)D

)
+ 1

)
+ δ/4

)
.

(37)

The cardinality of S is smaller than the cardinality of an ϵ-net S ′ covering all ofA(D) \ G(C,D) ⊂
A(D). Therefore, we have the following upper bound on ln |S|:

ln |S| ⩽ 9p′dr ln
D

ϵ
⩽ 9p′dr ln

(
4
√
2

(
1 + c2

ln 4
δ

CHW

)
NTσcond(L⋆)

)
, (38)

where we grossly upper bound 1
ϵ similar to Equation (37). Then, Equation (37) is satisfied if:

Cp′dr ln τ ⩾ 2048C ′(δ/4)
(D + 1)2

D2

(
18p′dr ln τ + 9 ln

(
4
√
2

(
1 + c2

ln 4
δ

CHW

)))
+ 2048C ′(δ/4)

(D + 1)2

D2

(
ln

(
ln

((
DT − 1

)
(D + 1)

2

(D − 1)D

)
+ 1

)
+ δ/4

)
,

(39)

where we plug in the upper bound in Equation (38) and then bound NTσcond(L⋆) with τ2. Now,
note that there exist a constant C ′′(D) such that

ln

(
ln

((
DT − 1

)
(D + 1)

2

(D − 1)D

)
+ 1

)
⩽ C ′′(D) lnT ⩽ C ′′(D) ln τ .

Therefore, Equation (39) is satisfied for a constant C = O(ln 1
δ ).

Finally, observe that the dependencies of C on c are due to the noise concentration inequalities
and are the results of applications of Lemma B.21. Therefore, one can completely remove this
dependency by fixing δ > exp(−νdNT ) + δ′ where ν = ν(c) is a well-chosen constant and δ′ > 0
is small and arbitrary. The ln lnD dependency, however, is due to the martingale concentration
inequalities in Theorem B.26. Therefore, the dependency of C on D can only be removed by
improving the concentration arguments.
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C EXPERIMENTS

All experiments in this section are implemented with Python 3 (Van Rossum & Drake, 2009) under
PSF license and PyTorch (Paszke et al., 2019) under BSD-3-Clause license. In addition, we use
NumPy (Harris et al., 2020) under BSD license.

For all the experiments, A⋆ is generated as follows. First, p orthogonal matrices of shape d× d are
sampled. These are then scaled down by α · p where α is arbitrarily set to 0.5. In cases where A
needs to be initialized, we use the same recipe for the student model with p′ instead of p and set
α = 1. For experiments with low-rank ground truth, we set arbitrary d − r singular values to 0
following a SVD decomposition. Each experiment in this section has been run over 3 independent
seeds and the average is plotted. As the variance is small and the plots usually overlap, we opt to not
plot it for visual clarity.

Theorems 4.1 to 4.3 provide rates on estimation error for empirical minimizers. In the following,
we study these rates empirically for various values of p′, p, d,N, T and r where r = d for full-rank
experiments or r = 5 for low-rank experiments and p′ = p except it is stated otherwise. We use two
quantities, β = NT , the number of total tokens, γ = pdr, the number of parameters to estimate,
to summarize information in the plots. For Theorems 4.1 and 4.3, Â is computed with the OLS
estimator and for Theorem 4.2, Â is learned with gradient descent with learning rate α on the group-
norm regularized loss in Equation (10). The parameter λ and learning rate α are tuned by a grid
search.

Figure 1 plots the estimation error for d ∈ {5, 10, 15}, p ∈ {5, 10, 15}, N ∈ {1, 5, 10} and
T ∈ {1, 5, 10, 25, 50} × pdr/N . The upper bound in Theorem 4.1 scales with the ratio β/γ up
to logarithmic terms as empirically verified by Figure 1. In Figure 2, we verify that there is no
individual trend to p and d, which implies that the error depends only on γ. Furthermore, we
show the trend in N can be accounted for by incorporating the logarithmic term into β to obtain
β̃ = β/ ln(1 +

√
N).

0 10 20 30 40 50
β/γ

10−1

100

‖Â
−
A
?
‖2 F

N = 1 N = 5 N = 10

Figure 1: Scaling of estimation error with respect to the ratio β/γ = NT/pd2 with the OLS estima-
tor. The black dashed line plots γ/β for reference.

Figure 3 plots the estimation error for different degrees of misspecification where the context length
is fixed to p = 15. The curves for various p′ ∈ {5, 10, 15} overlap, which verify the rate γ/β =
p′d2/NT predicted by Theorem 4.3 holds.

Figure 4 repeats the same plots for low-rank experiments where d = 15, r = 5 are fixed and p,N
and T are varied as before. Good estimation of A is not straightforward as λ has to be appropri-
ately tuned. Yet, we see that the group-nuclear norm regularized estimators found with gradient
descent after tuning on regularization problem λ ∈

{
10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7

}
and learning rate α ∈

{
10−1, 10−2, 10−3

}
obtain improved estimation errors than non-regularized

OLS estimator. Particularly, the sample efficiency benefits of the group-nuclear norm regularization
are amplified in the low-data regime. We leave the analysis of group-nuclear norm regularization as
a future work.
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p = 5 p = 10 p = 15
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β/γ

10−1

100

‖Â
−
A
?
‖2 F

d = 5 d = 10 d = 15

0 20 40 60

β̄/γ

10−1

100

‖Â
−
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‖2 F

N = 1 N = 5 N = 10

Figure 2: Scaling of estimation error for different values of p, d and N with the OLS estimator.
Recall that β = NT, γ = pd2 and β̄ = β/ ln(1 +

√
N). Black dashed lines are drawn for reference

and equals to
√

γ/β.
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Figure 3: Scaling of estimation error with respect to the ratio β/γ = NT/p′d2 for different p′ =
5, 10, 15 with the OLS estimator. The black dashed line plots γ/β for reference.
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Figure 4: Scaling of estimation error with respect to β/γ = NT
pdr for different context windows

p = 5, 10, 15 with the OLS estimator (λ = 0) and group-nuclear norm regularized estimators.
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