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Abstract

We develop a novel approach towards causal inference. Rather than structural
equations over a causal graph, we learn stochastic differential equations (SDEs)
whose stationary densities model a system’s behavior under interventions. These
stationary diffusion models do not require the formalism of causal graphs, let alone
the common assumption of acyclicity. We show that in several cases, they general-
ize to unseen interventions on their variables, often better than classical approaches.
Our inference method is based on a new theoretical result that expresses a station-
arity condition on the diffusion’s generator in a reproducing kernel Hilbert space.
The resulting kernel deviation from stationarity (KDS) is an objective function of
independent interest.

1 Introduction
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Figure 1: Stationary SDEs as causal models.
Bottom axes show sample paths of a station-
ary diffusion in R2 before (pale) and after
(dark) an intervention on x1. The marginals
p(xj) visualize the distribution shift.

Decision-making, e.g., in the life sciences, requires
predicting the outcomes of interventions in a system
x ∈ Rd . To achieve this, causal inference models x
with a structural causal model (SCM) (Pearl, 2009)

x = f(x, ϵ) , (1)

where ϵj ∈ R are random noise variables, and often
xj = fj(x)+ϵj . Interventions can be realized as mod-
ifications of the functions fj or ϵj , and the SCM en-
ables us to estimate the induced distribution shifts in x.
However, as xj depends recursively on x, SCMs are
generally limited to modeling acyclic causal effects.

In this work, we propose to model a system’s causal de-
pendencies and their entailed probability distributions
with stochastic differential equations (SDEs) and their
entailed stationary densities. Specifically, we replace
the SCM by its continuous-time stochastic analogue

dxt = f(xt)dt+ σ(xt)dWt . (2)

Akin to real-world processes, SDEs unroll causal dependencies over time t, yet the densities modeled
by stationary SDEs remain time-invariant, like the observations x. Just as in SCMs, interventions
may be modeled as modifications to f and σ; the SDEs then characterize how the stationary density
of x changes by propagating the perturbations through its causal mechanisms (Figure 1).

In the following, we will argue that modeling causation using stationary diffusions has several
benefits. Because dependencies get unrolled over time, SDEs can model feedback cycles, which
SCMs allow only under strong model restrictions (e.g., Mooij et al., 2011; Rothenhäusler et al.,
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2015). Since acyclicity is not a constraint, our approach does not require constrained optimization or
causal graphs. Moreover, the inference method we derive is agnostic to the system and intervention
model, contrary to many SCM approaches (e.g., Shimizu et al., 2006). Our novel objective enables
us to learn stationary SDEs via gradient-based optimization, without sampling from the model or
backpropagating gradients through time.

2 Background

To describe our approach, we first review background on kernels, SDEs, and their generators.

Kernels and reproducing kernel Hilbert spaces Let k(x,x′) : Rd × Rd → R denote a positive
definite kernel function that is four times differentiable. Additionally, let H be the reproducing kernel
Hilbert space (RKHS) of functions Rd → R associated with the kernel k and equipped with the norm
⟨·, ·⟩H. The RKHS H satisfies that k(·,x) ∈ H for all x ∈ Rd, where k(·,x) denotes the function
obtained when fixing the second argument of k at x. The RKHS H also satisfies the reproducing
property that h(x) = ⟨h, k(·,x)⟩H for all x ∈ Rd and h ∈ H. Thus, evaluations of RKHS functions
h ∈ H are inner products in H and parameterized by k(·,x). (Schölkopf and Smola, 2002).

Stochastic differential equations SDEs are a stochastic analogue to differential equations. Rather
than functions, their solutions are stochastic processes {xt}, xt ∈ Rd called diffusions. The
Wiener process {Wt}, Wt ∈ Rb can be viewed as driving noise with independent increments
Wt+s −Wt ∼ N (0, sI), where usually b = d. General SDEs as in (2) contain a drift f : Rd → Rd

and a diffusion function σ : Rd → Rd×b with some x0 ∼ p0. We assume that f and σ are Lipschitz
continuous, which ensures that the SDEs in (2) have a unique strong solution given the initial vector x0

(Øksendal, 2003, Theorem 5.2.1). The diffusion {xt} solving the SDEs is stationary if the probability
density µt(x) of xt at time t is the same for all t ≥ 0 (Ethier and Kurtz, 1986, Chapter 4, Lemma 9.1).

The infinitesimal generator The local evolution of a diffusion is described by its infinitesimal
generator. The generator A associated to a stochastic process {xt} is a linear operator that maps
functions h : Rd → R to functions of the same signature. A can be viewed as the derivative of the
semigroup of transition operators {Tt : t ≥ 0} given by (Tth)(·) = E{xt}[h(xt) |x0 = · ]:

(Ah)(x) := lim
t↓0

Tth(x)− h(x)

t
(3)

for all functions h ∈ dom(A). The domain dom(A) of the generator contains all functions for which
this limit exists for all x ∈ Rd (Ethier and Kurtz, 1986, Chapter 1.1). Intuitively, the generator tells
us how h(xt) changes infinitesimally over time t—in expectation and given an arbitrary function h.
If the stochastic process {xt} solves the SDEs (2), then its generator A can be expressed in terms of
f and σ in the SDEs for a large class of functions h. Specifically, for all h ∈ C2

c , we have A = L and
h ∈ dom(A), where L is the linear differential operator L given by (Øksendal, 2003, Theorem 7.3.3)

(Lh)(x) := f(x) · ∇xh(x) +
1
2 tr
(
σ(x)σ(x)⊤∇x∇xh(x)

)
(4)

3 The Kernel Deviation from Stationarity

Given a target density µ, how can we learn the functions f and σ of a general system of SDEs (2)
such that the diffusion solving the SDEs has the stationary density µ? In this first part, we will study
this general inference question without yet considering causality and interventions in SDEs. Our
starting point is a well-known link between the generator of a stochastic process and its stationary
density. For a stochastic process {xt}, the density µ is the stationary density if and only if

Ex∼µ

[
Ah(x)

]
= 0 (5)

for all functions h in a core for the generator A (Ethier and Kurtz, 1986, Chapter 4, Proposition
9.2). Roughly speaking, a core is a dense subset of functions in the domain dom(A) such that, if
(5) holds for the core, then (5) also holds for all h ∈ dom(A) (see Hansen and Scheinkman, 1995).
Equation (5) states that every function h of {xt} must have zero rate of change Ah(x), that is, must
be invariant with time t, in expectation over the stationary density x ∼ µ.

If we can verify that the expected infinitesimal change over a target density µ is zero for an expressive
class of test functions h (or conversely, learn a system of SDEs satisfying this), we may conclude that
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µ is a stationary density of the solution {xt} to the SDEs. This insight suggests that it is sufficient to
find the function w achieving the largest deviation from Ex∼µ[Ah(x)] = 0 among all test functions
h. In the following, we derive a closed form for this maximum deviation over a sufficiently-rich,
infinite set of functions as well as the witness function w achieving this maximum (or specifically,
supremum). We sketch our proofs and defer their formal arguments to Appendix B.

3.1 Bounding the Deviation from Stationarity

Our key idea for bounding the functional in (5) is to consider functions h in an RKHS H. We show
that this allows us to derive a closed-form expression for the supremum of (5) over an expressive,
infinite subset of functions in the RKHS. In the following, let H be the RKHS of a kernel k as
introduced in Section 2, and let F := {h ∈ H : ∥h∥H ≤ 1} be the unit ball of H.

To begin, we first focus on the closely-related functional Ex∼µ[Lh(x)] involving the operator L
instead of the generator A. Recall that the operator L coincides with the generator A of the diffusion
{xt} solving the SDEs (2) when applied to the well-behaved functions C2

c (Section 2). For this
functional, we can show that there exists a representer function gµ,L in the RKHS H, whose inner
product with any function h ∈ H allows evaluating the functional:

Lemma 1 Let µ be a probability density over Rd and assume that the functions f , σ, and the
partial1derivatives ∂/∂xi,ik(x,x) and ∂2

/∂xi,i∂xj,jk(x,x) are square-integrable under µ. Then, there
exists a unique function gµ,L ∈ H such that, for any h ∈ H,

Ex∼µ[Lh(x)] = ⟨h, gµ,L⟩H .

Moreover, gµ,L(·) = Ex∼µ[Lxk(x, · )]. Here, Lx indicates that L is applied to the argument x.

The representation in Lemma 1 allows us to derive a closed form for the supremum of Ex∼µ[Lh(x)]
over the unit ball F , because the inner product with functions of F is maximized by the unit-norm
function aligned with gµ,L, that is, by wµ,L := gµ,L/∥gµ,L∥H. Their inner product is then ∥gµ,L∥H.
We will refer to the square of this RKHS norm as the kernel deviation from stationarity KDS(L, µ;F):

Theorem 2 Under the assumptions of Lemma 1, it holds that

sup
h∈F

Ex∼µ

[
Lh(x)

]
=
√

KDS(L, µ;F) ,

where KDS(L, µ;F) := Ex∼µ[Lx Ex′∼µ[Lx′k(x,x′)]]. Under additional regularity conditions on
f, σ, k, and µ, we may interchange limits and write KDS(L, µ;F) = Ex∼µ,x′∼µ

[
LxLx′k(x,x′)

]
.

When thinking of L as the generator A, the witness wµ,L is the smooth RKHS function that is
subject to the largest infinitesimal change in the diffusion when evaluated in expectation over µ.
Moreover, the KDS measures the maximal absolute deviation from (5) of any function in F . More
broadly, the KDS relates to (5) in the same way the maximum mean discrepancy (MMD, Gretton
et al., 2012) relates to integral probability metrics (Müller, 1997), where the MMD is defined as
MMD(µ, ν;F) := suph∈F Ex∼µ[h(x)]− Ex∼ν [h(x)] for densities µ and ν. Both the KDS and the
MMD express the maximum discrepancy between a target density µ and a model (L or ν, respectively)
in a kernelized, closed form over F . We leverage this learning perspective later for learning stationary
SDEs from data, since the SDE functions f and σ enter the KDS via the operator L.

3.2 Consistency

While the KDS measures a deviation from stationarity, it may not be consistent—KDS(L, µ;F) = 0
may not guarantee that all SDEs entailing the operator L indeed induce the stationary density µ.
Guaranteeing this requires that the equality of the functional of A in (5) holds for all functions in a
core for A. However, the SDE-parameterized operator L only coincides with the generator A of the
diffusion for all h ∈ C2

c (Section 2). Moreover, H may not be dense in a core for A and thus fail to
be sufficiently rich for testing the condition in (5).

To link the KDS to A, we need to relate a core for A to the functions spanned by the RKHS H. In
general, the relationship between these two function spaces strongly depends on the generality of the

1Like Steinwart and Christmann (2008), we use ∂/∂xi,i to denote the first-order partial derivative with
respect to both function arguments, that is, ∂/∂xi,ik(x,x) := ∂/∂ui

∂/∂vik(u,v)|u:=x,v:=x.
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functions f, σ defining the SDEs (Ethier and Kurtz, 1986, Chapter 8) and the kernel k (Christmann and
Steinwart, 2010; Kanagawa et al., 2018). In the following, we show the consistency of the KDS for
the Matérn kernel kν,γ , which generalizes the Gaussian kernel kγ(x,x′) = exp(−∥x− x′∥22/2γ2)
(Appendix A). We achieve this by showing that a core for A is dense in the Matérn RKHS with
respect to a Sobolev norm. Building on this, we then prove that, for any h in the core, there always
exists a nearby RKHS element ensuring that Ex∼µ[Ah(x)] is arbitrarily small:

Theorem 3 Let kν,γ be a Matérn kernel with ν > 2 defined over Rd, and let F be the unit ball of
its RKHS. Let µ be a probability density over Rd and f, σ be bounded functions with σσ⊤ positive
definite that define the SDEs in (2). Then, µ is a stationary density of the stochastic process {xt}
solving the SDEs if and only if

KDS(L, µ;F) = 0 .

3.3 The KDS as a Learning Objective

The KDS provides a closed-form expression for the maximum stationarity violation of any h ∈ F .
Since it quantifies this violation (as an RKHS norm), the KDS serves as an objective we can minimize
to fit a system of SDEs to a target density µ. Specifically, given a dataset D = {x(1), . . .,x(N)} of
i.i.d. samples x(n) ∼ µ, we can compute the sample approximation of the KDS(L, µ;F) as

ˆKDS(L, D; k) :=
1

N2

N∑
n=1

N∑
m=1

LxLx′k(x(n),x(m)) . (6)

When the SDE model fθ, σθ is parameterized by some θ, we will indicate this in the operator L
by a superscript (here as Lθ). The KDS depends on the SDE parameters θ through the operator
Lθ. Thus, minimizing the KDS enables us to estimate the parameters of a stochastic dynamical
system without backpropagating gradients through time. The function Lθ

xLθ
x′k(x,x′) inside the

KDS is fully differentiable with respect to the model parameters θ. Notably, the KDS is exact up
to the Monte Carlo approximation of the expectations over the target µ made in (6)—there are no
SDE model components we need to sample from, roll out, reparameterize, or approximate. Appendix
C provides an explicit form of (6) and an illustration of the empirical KDS and its gradients.

4 Stationary Diffusions as Causal Models

In this section, we describe how stationary diffusions can serve as causal models. To facilitate this
exposition, we first leave the KDS aside and focus on discussing causality in SDEs, intervention
models, and related properties. To conclude, we then leverage the KDS as an objective for learning
stationary diffusions as causal models from a collection of interventional datasets.

4.1 Modeling Causal Dependencies with Stationary SDEs

Probabilistic causal models of a system x ∈ Rd entail more than the observational density of the vari-
ables. A causal model contains additional information that characterizes the interventional densities
of the system under interventions on its data-generating process (Peters et al., 2017). This information
may be in the form of, say, functions fj that explicitly relate the densities of xj and remain invariant
under interventions elsewhere, as in SCMs. Which causal model of a system is adequate depends
on the application and the level of modeling granularity (Rubenstein et al., 2017; Schölkopf, 2022).

In this work, we propose to model the causal effects of the variables x via a stationary dynamical sys-
tem of x over time t. Specifically, we model the time evolution of xt ∈ Rd with the stationary SDEs

dxt = fθ(xt)dt+ σθ(xt)dWt , (7)

with parameters θ ∈ Rk and observational stationary density µ(x). Time remains internal to the
model—only the stationary densities of the system, which are time-invariant, form the probabilistic
causal model of x and characterize its behavior under interventions. Our core idea is that the explicit
time dimension enables propagating feedback cycles in the causal dependencies of the variables.
By contrast, SCMs do not allow for cycles in the causal structure except under restrictive model
and invertibility assumptions (see Related Work in Section 5).

Similar to the structural equations in SCMs, the differential equations in SDEs provide a mechanistic
(or functional) model of the causal dependencies among the variables x (Peters et al., 2017; Schölkopf,
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2022). The causal mechanisms fj and σj model which variables in x affect the variable xj via an
explicit functional dependency that holds independent of perturbations of the variables or the functions
governing the other variables. When the mechanisms are independent, the SDEs factorize as

dxjt = fθj
(xt)j dt+ σθj

(xt)j dWt , (8)

with fj : Rd → R and σj : Rd → Rb not sharing any parameters θ = {θ1, . . .,θd}. Ultimately,
both SCMs and stationary SDEs should be thought of as different abstractions of the physical
processes underlying our measurements x ∈ Rd (e.g., Peters et al., 2017, Section 2.3.3), with SDEs
characterizing the processes explicitly over time.

4.2 Intervention Models

Interventions modifying the data-generating process of SDEs can be modeled in various ways and
often in analogy to SCMs (Eberhardt and Scheines, 2007). We formalize an intervention by a model
with parameters ϕ ∈ Rk that characterizes its effect on the SDEs. The intervention ϕ transforms
fθ and σθ into the modified mechanisms fθ,ϕ and σθ,ϕ such that the system in (7) now evolves as

dxt = fθ,ϕ(xt)dt+ σθ,ϕ(xt)dWt . (9)

The interventional density µϕ(x) denotes the stationary density of the modified SDEs in (9). For
example, some real-world perturbations may be modeled as shift-scale interventions, in which the
mechanisms fθ and σθ of a variable xj are shifted and scaled by some scalars δ, γ, respectively, as

fθ,ϕ(x)j = fθ(x)j + δ and σθ,ϕ(x)j = γ σθ(x)j (10)

where ϕ = {δ, γ}. Analogous shift interventions have been studied in acyclic and cyclic SCMs
(Zhang et al., 2021; Rothenhäusler et al., 2015).

4.3 Properties

Complexity Stationary diffusions can be modeled by arbitrary functions f, σ. Even with σ =
√
2I,

they can characterize any observational density µ via its score function f = −∇x logµ (as a Langevin
diffusion). When σ is non-diagonal, the driving noise of the equations dxt becomes correlated, which
can model confounding. Thus, the function classes of f and σ determine the complexity of the
densities modeled by the diffusion, not {Wt} alone. Besides some notable exceptions (Immer et al.,
2023), the assumptions of stationary diffusions are less restrictive than those of SCMs, where the
noise defines the distributional family a priori.

Stability Using diffusions for causal modeling relies on the stationarity, i.e., stability, of the SDEs.
For general fθ and σθ , stability is not guaranteed, particularly when randomly initializing the model
parameters θ. For example, in linear systems dxt = (a+Bxt)dt+CdWt, stability requires that
the eigenvalues of B have negative real parts (Särkkä and Solin, 2019). Guaranteeing stability under
interventions, however, is possible in certain cases: in linear systems, the shift-scale interventions in
(10) do not affect stability. More generally, Theorem 3 shows that KDS = 0 can guarantee stability
and act as a certificate, even for complex model classes.

Identifiability Causal modeling aims at generalizing to (combinations of) intervention classes
when learning a model from a set of observed interventions. Generalizing to unseen perturbations
may not require fully identifying θ. For SDEs in particular, a density µ does not uniquely identify
the true parameters θ in a model class without unverifiable assumptions: changing the speed of a
diffusion via dxt = sf(xt)dt+

√
s σ(xt)dWt for s > 0 leaves the stationary density unchanged.

The operator sL satisfies the same stationarity conditions as L (Hansen and Scheinkman, 1995).
While linear systems are identifiable up to speed scaling under specific sparsity conditions (Dettling
et al., 2022), it is, to our knowledge, not yet known to what degree multiple interventional densities
µϕ identify stationary SDEs. As we investigate in Section 6, stationary diffusions empirically allow
generalizing to unseen interventions, hence weaker notions of identifiability may be appropriate.

4.4 Learning Stationary Diffusions from Interventional Data

We can use the KDS derived in Section 3 as an objective for learning a causal stationary diffusion
model from a collection of interventional datasets. We consider the setting in which a system of
stationary SDEs fθ∗ , σθ∗ is perturbed by some interventions ϕ∗

1:m = {ϕ∗
1, . . .,ϕ∗

m}, whose param-
eters may be unknown. The observations consist of m corresponding datasets Di with x ∼ µϕ∗

i
for
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each x ∈ Di. Our goal is to learn a stationary SDE model that is jointly consistent with the observed
interventions, i.e., induces the observed stationary densities under the considered intervention class.

To infer the parameters θ, we optimize θ such that the interventional densities induced under θ and
ϕ∗

1:m fit the observed distributions µϕ∗
i
. When the model modifications ϕ∗

1:m are unknown, which is
often the case in practice, we learn ϕ1:m alongside θ. Observing multiple interventions makes this
joint inference problem well-posed, in particular when the interventions are sparse, since θ is shared
for all interventions (Schölkopf, 2022). Using the KDS, the model θ and the interventions ϕ1:m can
be learned with gradient descent. At each iteration, we draw a batch from a dataset Di and update θ
(and ϕi) using the KDS gradients of the intervened SDEs fθ,ϕi and σθ,ϕi . To mitigate overfitting,
we apply a group lasso penalty R(θj) separately to each θj to encourage sparse dependencies on the
other variables (Yuan and Lin, 2006). Overall, the optimizer steps for θ and ϕi are proportional to

∝ −∇θ,ϕi

(
ˆKDS(Lθ,ϕi, D; k) + λ

d∑
j=1

R(θj)
)
, (11)

with λ > 0. When learning both fθ and σθ, the invariance to speed scaling described in Section 4.3
can cause an instability close to convergence, as decreasing the speed s via sf(x) and

√
sσ(x)

shrinks the KDS. This can be prevented by fixing (the scale of) subsets of the parameters of f or σ,
for example, the self-regulating dependence of fj(x) on xj . Empirically, minimizing the KDS was
sufficient in combination with sparsity regularization to ensuring stability upon convergence.

5 Related Work

Causality in dynamical systems When observing dynamical systems over time, fields like Granger
causality (Granger, 1969), autoregressive modeling (Hyvärinen et al., 2010), and system identification
(Ljung, 1998) allow inferring notions of causation. Hansen and Sokol (2014) and Peters et al. (2022)
formally study interventions in SDE systems observed over time. Contrary to these time series
settings, we adopt the novel perspective of using the stationary distributions of SDEs to learn a
time-independent causal model. Our approach makes explicit that causal models, including SCMs,
are abstractions of processes taking place in time (e.g., Peters et al., 2017, Section 2.3.3)—even when
causation occurs on scales that either are not or cannot be measured as time series. Varando and
Hansen (2020) also study stationary SDEs in the linear case, but they interpret them as probabilistic
graphical models via the Lyapunov equation, not considering causality or interventions. Mooij et al.
(2013) and Bongers et al. (2022) investigate how equilibria of differential equations relate to SCMs.

Cyclic graphical modeling Several works propose to interpret SCMs in ways that enable learning
cycles (Richardson, 1996; Lacerda et al., 2008; Mooij et al., 2011; Hyttinen et al., 2012; Mooij
and Heskes, 2013; Rothenhäusler et al., 2015; Sethuraman et al., 2023). These approaches usually
assume additive noise and linearity, sometimes with restrictions on the feedback, and require a unique
solution x to the system of equations x = f(x) + ϵ given any possible ϵ (Bongers et al., 2021). Our
proposal of modeling causality with stationary SDEs shares the intuition of an equilibrium, but it
expands on the insight that cyclicity necessarily introduces a notion of time, ultimately enabling us to
drop prior model restrictions. As real-world processes evolve in time, some challenge the notion of
aggregating causality in graphical models altogether (Dawid, 2010; Aalen et al., 2016).

Statistical inference and kernels The idea of producing diffusions that imply certain densities
goes back to Wong (1964), who linked SDEs with polynomial functions f and σ to the Pearson
distributions. In econometrics, the infinitesimal generator and Equation (5) are known tools for fitting
diffusion models, but usually with specific parameterizations and test functions (see Aït-Sahalia et al.,
2010, Section 3, for an overview). The KDS extends these works by introducing a general-purpose
characterization of stationarity that covers an infinite class of test functions in closed form. Our
techniques establish novel connections between SDEs and RKHSs and build on kernel properties
previously used by, for example, kernel mean embeddings (Smola et al., 2007), the MMD (Gretton
et al., 2012), and the kernelized Stein discrepancy (Liu et al., 2016).

6 Experiments

The downstream purpose of causal modeling is to predict the effects of interventions in a system. To
evaluate this, we compare the interventional densities predicted by stationary diffusions to those by
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(a) Cyclic Linear SCMs
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(b) Cyclic Linear SDEs
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MSE
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Figure 2: Benchmarking results (d = 20 variables, Erdős-Rényi sparsity structure). Metrics are
computed from 10 test interventions on unseen target variables in 50 randomly-generated systems.
Box plots show medians and interquartile ranges (IQR). Whiskers extend to the largest value inside 1.5
times the IQR length from the boxes. Overall, stationary diffusions are the most accurate at predicting
the effects of interventions on unseen targets, measured in terms of both W2 (↓) and MSE (↓).

existing approaches. All methods first learn a causal model from interventional data with known
target variables and then predict the distributions resulting from unseen interventions by sampling
from the learned models. The test interventions are out-of-distribution, that is, on unseen targets.

Data We evaluate the methods on sparse cyclic linear systems (SCMs and stationary SDEs) and
expression data of sparse gene regulatory networks. For the latter, we simulate the SERGIO model by
Dibaeinia and Sinha (2020), which requires acyclic dependencies, without technical noise. For each
system, we sample observational data and interventional data for 10 train and 10 test interventions
on disjoint variables, each dataset containing 1000 observations. In the linear systems, we perform
shift interventions; in SERGIO, we implement overexpression gene perturbations (e.g., Norman
et al., 2019). All datasets are standardized by the mean and variance of the observational data.

Models We learn stationary diffusions with linear and MLP mechanisms f(x) and a constant
matrix σ(x) = diag(σ), σ ∈ Rd. Their model definition and group lasso regularizers are given in
Appendix D. To estimate the KDS, we use the Gaussian kernel kγ(x,x′). We compare with five
SCM approaches that learn from interventional data: GIES (Hauser and Bühlmann, 2012), IGSP
(Wang et al., 2017), and DCDI (Brouillard et al., 2020). We also benchmark LLC (Hyttinen et al.,
2012) and NODAGS (Sethuraman et al., 2023), both of which allow modeling cycles.

Metrics The test interventions performed to query the learned causal models are shift interventions
that match the interventional mean of the target variable in the held-out data. To allow comparing
methods with explicit and implicit densities, we report the Wasserstein distance W2 between the
true and predicted interventional data. We also report the mean squared error (MSE) of the true and
predicted empirical means (Zhang et al., 2022).

Results Figures 2a and 2b present the results for the cyclic linear SCM and stationary SDE systems,
respectively. Both the linear and MLP diffusions learned via the KDS achieve the most accurate
interventional density predictions in both the W2 and MSE metrics. The acyclic approaches, in
particular GIES, show competitive performance, highlighting a trade-off between model complexity
and the entailed inference challenge, even when the data qualitatively violates acyclicity. In contrast,
the cyclic SCM approaches underperform, particularly LLC, whose model assumptions—apart from
data standardization—perfectly align with this setting. The synthetic gene expression data assesses all
methods under model mismatch. Figure 2c shows that stationary diffusions, especially the nonlinear
MLP diffusion, match the best baselines DCDI and NODAGS, which also model nonlinearity.
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A Additional Background

A.1 Euler-Maruyama Method

To approximate the solutions to SDEs, we use the Euler-Maruyama method (Särkkä and Solin, 2019,
Section 8.2). The Euler-Maruyama approximation of sample paths of the diffusion solving (2) is
given by

xl+1 := xl + f(xl)∆t+ σ(xl)ξl
√
∆t (12)

for some step size ∆t and independent vectors ξl ∼ N (0, I). To generate L samples from the
stationary density µ(x) of (2), we simulate a single sample path and then select every k-th state xl·k
for l ∈ {1, . . ., L} as a sample, where k is a thinning factor as in Markov chain Monte Carlo. In our
experiments, we sample x0 ∼ N (0, I) and use a step size of ∆t = 0.01, a thinning factor of 500,
and 100 samples of burn-in, which we chose based on autocorrelation diagnostics of the thinned
Markov chains.

A.2 Sobolev Spaces

Some of our theoretical results build on the notion of Sobolev spaces. While not required here, we
recommend Adams and Fournier (2003) for a detailed introduction. The Sobolev norm ∥·∥m,p of a
function f sums the Lp norms of all its partial derivatives up to order m and is defined as

∥f∥m,p :=

( ∑
n∈Nd

0 :|n|≤m

∥∥∥ ∂n1

∂xn1
1

. . .
∂nd

∂xnd

d

f
∥∥∥p
p

)1/p

for 1 ≤ p < ∞. Here, ∥·∥p is the Lp norm defined as ∥f∥p =
(∫

Rd |f(x)|pdx
)1/p

. The Sobolev
space Wm,p contains all functions f : Rd → R such that ∥f∥m,p < ∞. Moreover, the space Wm,p

c
is defined as the closure of C∞

c in Wm,p (Adams and Fournier, 2003, Section 3.2).

A.3 Matérn Kernel

The Matérn kernel kν,γ with smoothness and scale parameters ν, σ > 0 can be seen as a generalization
of the Gaussian kernel that allows controlling the smoothness of the RKHS functions. We write the
Matérn kernel kν,γ(x,x′) in terms of the distance r = ∥x− x′∥2 as

kν,γ(r) :=
21−ν

Γ(ν)

(√
2ν r
γ

)ν
Kν

(√
2ν r
γ

)
, (13)

where Γ is the gamma function and Kν is a modified Bessel function of the second kind and order ν
(Rasmussen and Williams, 2006, Equation 4.14). Common special cases of kν,γ have the following
explicit forms:

kν=1/2,γ(r) = exp
(
− r

γ

)
kν=3/2,γ(r) =

(
1 +

√
3r
γ

)
exp

(
−

√
3r
γ

)
kν=5/2,γ(r) =

(
1 +

√
5r
γ + 5r2

3γ2

)
exp

(
−

√
5r
γ

)
The Gaussian kernel kγ(r) = exp(−r2/2γ2) is obtained from kν,γ as ν → ∞.

The following two results will be useful for proving Theorem 3. The first statement was originally
shown by Wendland (2004, Corollary 10.48) and follows from Rasmussen and Williams (2006,
Equation 4.15), linking the Matérn RKHS to the Sobolev spaces. The second result concerns the
differentiability of the Matérn kernel function:

Lemma 4 (Kanagawa et al., 2018, Example 2.8) The RKHS H of a Matérn kernel kν,γ is norm-
equivalent to the Sobolev space W ν+d/2,2. Specifically, we have h ∈ H if and only if h ∈ W ν+d/2,2.
Moreover, there exist constants c1, c2 such that c1∥h∥ν+d/2,2 ≤ ∥h∥H ≤ c2∥h∥ν+d/2,2 for all h ∈ H.

Lemma 5 (Stein, 1999, Section 2.7, p. 32) The Matérn covariance function kν,γ(r) is 2k-times
differentiable if and only if ν > k.
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B Proofs

B.1 Proof of Lemma 1

Let Bµ,L : H → R be the composition of the two operators Ex∼µ and L defined as Bµ,Lh :=
Ex∼µ[Lh(x)] for all h ∈ H. The functional Bµ,L is linear since both the expectation and L are
linear operators. Moreover, Bµ,L is continuous because the functional is bounded on the unit ball of
functions in H:
|Bµ,Lh|
= |Ex∼µ[Lh(x)]|
≤ Ex∼µ[|Lh(x)|] Jensen’s inequality

= Ex∼µ

[∣∣f(x) · ∇xh(x) +
1
2 tr(σ(x)σ(x)

⊤∇x∇xh(x))
∣∣] by definition

≤ Ex∼µ

[∣∣f(x) · ∇xh(x)|+ 1
2 |tr(σ(x)σ(x)⊤∇x∇xh(x))

∣∣] triangle inequality

≤ Ex∼µ

[
∥f(x)∥2∥∇xh(x)∥2 + 1

2∥σ(x)σ(x)⊤∥F∥∇x∇xh(x)∥F
]

Cauchy-Schwarz

= Ex∼µ

[
∥f(x)∥2

( d∑
i=1

∣∣ ∂
∂xi

h(x)
∣∣2)1/2

+ 1
2∥σ(x)σ(x)⊤∥F

( d∑
i=1

d∑
j=1

∣∣ ∂2

∂xi∂xj
h(x)

∣∣2)1/2
]

≤ ∥h∥H · Ex∼µ

[
∥f(x)∥2

( d∑
i=1

∂
∂xi,i

k(x,x)
)1/2

+ 1
2∥σ(x)σ(x)⊤∥F

( d∑
i=1

d∑
j=1

∂2

∂xi,i∂xj,j
k(x,x)

)1/2
]
. (∗)

The last inequality follows from the fact that the partial derivatives of RKHS functions h ∈ H are
bounded as∣∣ ∂
∂xi

h(x)
∣∣ ≤ ∥h∥H ·

(
∂

∂xi,i
k(x,x)

)1/2
and

∣∣ ∂2

∂xi∂xj
h(x)

∣∣ ≤ ∥h∥H ·
(

∂2

∂xi,i∂xj,j
k(x,x)

)1/2
(Steinwart and Christmann, 2008, Corollary 4.36). The notation ∂/∂xi,i was defined in Footnote 1.
By assumption, the squares of f , σ, and the partial derivatives ∂/∂xi,ik(x,x) and ∂2

/∂xi,i∂xj,jk(x,x)
are square-integrable with respect to µ, hence the expectation in (∗) is as well. Thus, when applied to
the unit ball of H, for which ∥h∥H ≤ 1, the norm of Bµ,L is bounded. Hence, Bµ,L is a continuous
linear functional, and by the Riesz representation theorem, there exists a unique gµ,L ∈ H such that

Bµ,Lh = Ex∼µ[Lxh(x)] = ⟨h, gµ,L⟩H
for all h ∈ H. We obtain the explicit form for gµ,L by substituting k( · ,x′) ∈ H for h, which yields

Ex∼µ[Lxk(x,x
′)] = ⟨k( · ,x′), gµ,L⟩H ,

where the notation Lx makes explicit that the operator L is applied to the argument x. By the
reproducing property, we have ⟨k( · ,x′), gµ,L⟩H = gµ,L(x

′) (Schölkopf and Smola, 2002). Hence,
gµ,L(x

′) = Ex∼µ[Lxk(x,x
′)], and we can read off that gµ,L(·) = Ex∼µ[Lxk(x, · )].

■

B.2 Proof of Theorem 2

Using the representer function gµ,L in Lemma 1, we can express the supremum over F as

sup
h∈F

Ex∼µ

[
Lh(x)

]
= sup

h∈F
⟨h, gµ,L⟩H =

〈 gµ,L
∥gµ,L∥H

, gµ,L
〉
H = ∥gµ,L∥H .

In the above, we used the fact that the norm ⟨h, gµ,L⟩H is maximized over h ∈ F by the unit-norm
function aligned with gµ,L, that is, by gµ,L/∥gµ,L∥H ∈ F . The squared RKHS norm ∥gµ,L∥2H can
be written in terms of the kernel as

∥gµ,L∥2H = ⟨gµ,L, gµ,L⟩H = Ex∼µ

[
Lxgµ,L(x)

]
Lemma 1

= Ex∼µ

[
Lx

[
Ex′∼µ

[
Lx′k(x′,x)

]]]
. Explicit form of gµ,L(·)

We call this expression the kernel deviation from stationarity KDS(L, µ;F).

Under additional regularity conditions on f, σ, k, and µ, we may interchange the differentials in
Lx with the integral in

∫
µ(x′)Lx′k(x′,x)dx′ (or specifically, their involved limits) and write

KDS(L, µ;F) = Ex∼µ,x′∼µ

[
LxLx′k(x,x′)

]
. For example, by the dominated convergence theorem,

one sufficient condition allowing the interchange is when the functions and their first- and second-
order partial derivatives are continuous and bounded. More general conditions are possible.

■
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B.3 Proof of Theorem 3

Let H be the RKHS of the Matérn kernel kν,γ , and let F be its unit ball. This proof uses Lemmata 4
and 5, two auxiliary results about Matérn and Sobolev spaces that are given in Appendix A.

To begin, we note that f , σ, ∂/∂xi,ikν,γ(x,x), and ∂2
/∂xi,i∂xj,jkν,γ(x,x) are all square-integrable

with respect to µ, because the functions are bounded, and any bounded function is square-integrable
with respect to a probability density. Both functions f and σ are bounded by assumption. Moreover,
Lemma 5 and ν > 2 imply that the partial derivatives ∂/∂xi,ikν,γ(x,x) and ∂2

/∂xi,i∂xj,jkν,γ(x,x)
exist and are finite. These functions of x are bounded, because the Matérn kernel function depends
only on the distance between its inputs, which is ∥x− x∥2 = 0 for any x, and thus these partial
derivatives are constant with respect to x. Given the square-integrability of f , σ, ∂/∂xi,ikν,γ(x,x),
and ∂2

/∂xi,i∂xj,jkν,γ(x,x), all assumptions of Lemma 1 and Theorem 2 are satisfied.

To prove the theorem, we leverage the fact that the smooth functions with compact support C∞
c form

a core for the generator A associated to the SDEs when f, σ are Lipschitz continuous and bounded
and the matrix σ(x)σ(x)⊤ is positive definite for all x ∈ Rd (Ethier and Kurtz, 1986, Theorem 1.6,
p. 370). We can link the core C∞

c to the Matérn RKHS H:

Lemma 6 C∞
c is a dense subset of H with respect to the Sobolev norm ∥·∥ν+d/2,2.

Proof of Lemma 6. The space Wm,p
c is defined as the closure of C∞

c in the Sobolev space
Wm,p (Appendix A.2). Therefore, the core C∞

c is dense in Wm,p
c with respect to the Sobolev norm

∥·∥m,p. Moreover, Wm,p
c = Wm,p when both spaces are defined over Rd (Adams and Fournier, 2003,

Corollary 3.23), so C∞
c is dense in Wm,p. From Lemma 4, we know that W ν+d/2,2 = H for the set

of functions. Hence, C∞
c is dense in W ν+d/2,2 = H with respect to the Sobolev norm ∥·∥ν+d/2,2.

We now prove both directions of the equivalence in the theorem:

⇐⇐ If KDS(L, µ;F) = 0, then suph∈F Ex∼µ[Lh(x)] = 0 by Theorem 2. Since the supre-
mum is nonnegative, it follows that Ex∼µ[Lh(x)] = 0 for all h ∈ F . This implies that
the equality also holds for h ∈ H, since the length of the vectors does not affect their
orthogonality. When ∥h∥H > 0, we can also see this from Ex∼µ[Lh(x)] = ⟨h, gµ,L⟩H =
∥h∥H⟨h/∥h∥H, gµ,L⟩H = ∥h∥H · 0 = 0 since h/∥h∥H ∈ F .

By Lemma 6, the core C∞
c is a subset of H, so we have Ex∼µ[Lu(x)] = 0 for all u ∈ C∞

c .
If u ∈ C∞

c , then u ∈ C2
c and thus Au = Lu. It follows that Ex∼µ[Au(x)] = 0 for all u in

the core C∞
c . This implies that µ is the stationary density (Ethier and Kurtz, 1986, Chapter

4, Proposition 9.2).

⇒⇒ If µ is the stationary density, we have Ex∼µ[Au(x)] = 0 for all functions u in the core C∞
c .

Moreover, since C∞
c ⊂ C2

c , it holds that Ex∼µ[Lu(x)] = 0.

Let h ∈ H. By Lemma 6, there exists u ∈ C∞
c such that ∥h−u∥ν+d/2,2 < ϵ. By the above,

we then have

|Ex∼µ[Lh(x)]| = |Ex∼µ[Lh(x)− Lu(x) + Lu(x)]| expanding
≤ |Ex∼µ[L(h− u)(x)]|+ |Ex∼µ[Lu(x)]| triangle inequality
= |Ex∼µ[L(h− u)(x)]|
= |⟨h− u, gµ,L⟩H| Lemma 1
≤ ∥h− u∥H ∥gµ,L∥H Cauchy-Schwarz
≤ c2∥h− u∥ν+d/2,2 ∥gµ,L∥H Lemma 4

< c2 ϵ ∥gµ,L∥H

Thus, |Ex∼µ[Lh(x)]| is bounded by ϵ times the constants c2 and ∥gµ,L∥H, which are both
independent of the function h. Hence, for all functions h ∈ H and any ϵ′ > 0, we can
choose ϵ > 0 such that |Ex∼µ[Lh(x)]| < ϵ′. It follows that Ex∼µ[Lh(x)] = 0 for all h ∈ H
and, by Theorem 2, KDS(L, µ;F) = 0.

■
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Figure 3: Components of the KDS for a stationary linear SDE and a Gaussian kernel kγ with γ = 0.5.
Expectations over µ are approximated with 1000 samples. 1: Densities of a target (µ, black) and
two alternative models. 2: KDS witness functions for the misspecified models. 3: Witnesses after
applying L, yielding their time derivatives in the diffusion. After multiplying by µ, the KDS is equal
to the integral of the shaded areas. 4-5: KDS derivatives with respect to a and c, fixing the other
parameters at those of the target model. The partial derivatives have zeroes at the true parameters of
the model inducing µ, thus gradient descent drives the incorrect a and c to their true values (indicated
by vertical, dashed lines).

C Additional Details on the Kernel Deviation from Stationary

C.1 Explicit Form

It is instructive to consider the special case of σ = I. The KDS function Lθ
xLθ

x′k is then given by

Lθ
xLθ

x′k(x,x′) = fθ(x) · ∇x∇x′k(x,x′) · fθ(x′) + 1
2fθ(x) · ∇x∆x′k(x,x′)

+ 1
2fθ(x

′) · ∇x′∆xk(x,x
′) + 1

4∆x∆x′k(x,x′) ,
(14)

where ∆x := tr∇x∇x is the Laplacian. This expression contains a matrix, two vectors, and a scalar
involving k that are all independent of the model parameters θ. Thus, we can precompute and reuse
these kernel terms for any θ, e.g., during optimization of θ with gradient descent. For general σθ,
there also exists an explicit expression, but it may be easier to leverage the operator view of Lθ and
compute the gradients of Lθ

xLθ
x′k with automatic differentiation. We provide the explicit form and

pseudocode demonstrating this case in Appendix C.

C.2 Example

Figure 3 illustrates how the KDS may be used to learn the SDE parameters θ. We consider an
instance of a target linear model dxt = (a+ bxt)dt+ cdWt with the closed-form density µ(x) =
N (x;−a/b,−c2/2b) (Jacobsen, 1993) for b < 0 and c > 0. We use the KDS, approximated by
samples from µ, to measure the fit of two models with incorrect a and c controlling the mean and
variance, respectively. The partial derivatives of the KDS have zeroes at the true parameters of the
model inducing µ and can thus be inferred with gradient descent (details in Figure 3).

D Experimental Setup

D.1 Data

D.1.1 Sparsity Structures

For benchmarking, we simulate data from randomly-generated sparse linear systems and sparse gene
regulatory network models with d = 20 variables. Following prior work (e.g., Zheng et al., 2018),
we sample random sparsity structures G ∈ {0, 1}d×d with either polynomial or power-law degree
distributions of the variables, corresponding to Erdős-Rényi and scale-free graphs, respectively.
Erdős-Rényi graphs are sampled by drawing links independently with a fixed probability (when
acyclic, restricted to an upper-triangular matrix). Scale-free graphs are generated by a sequential
preferential attachment process, where links of node j to the previous j − 1 nodes are sampled with
probability proportional to its degree and then randomly directed (when acyclic, always directed
ingoing to j). For both sparsity models, we fix the (expected) degree of the variables to 3.
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D.1.2 Cyclic Linear Systems

Models Given some G ∈ {0, 1}d×d, we generate random instances of the two cyclic linear models

x = Wx+ b+ diag(σ)ϵ with ϵ ∼ N (0, I) (Cyclic Linear SCM)

dxt = (Wxt + b)dt+ diag(σ)dWt (Cyclic Linear SDE)

where W ∈ Rd×d,b ∈ Rd, and σ ∈ Rd
>0, and W is sparse according to G. Sampling random cyclic

systems requires more caution than in the acyclic case, since both generative processes must be stable.
For SCMs, the maximum of the real-parts of the eigenvalues ρ(W) must be less than 1, for SDEs less
than 0. For an insightful evaluation, we additionally want W to be asymmetric and not approximately
diagonal, i.e., have significant causal dependencies between the variables.

To generate such systems, we first sample G ∼ p(G), W ∼ p(W), b ∼ p(b), σ ∼ p(σ). Then, we
multiply W times G elementwise along their offdiagonal elements and finally subtract ρ(W) + ϵ
from the diagonal of W, which ensures that ρ(W) ≤ −ϵ. We found that matrices W sampled by
this protocol empirically induce stronger variable correlations in the stationary distributions than the
procedure by Varando and Hansen (2020). They perform a more vacuous diagonal shift based on
the Gershgorin circle theorem, often resulting in large dominating diagonals. For our experiments,
we use p(wij) = Unif(−3,−1) ∪ (1, 3) and ϵ = 0.5 for the matrices and p(bj) = Unif(−3, 3) and
p(log σj) = Unif(−1, 1) for the biases and scales, both for the SCMs and SDEs.

To sample the SCM data, we draw ϵ ∼ N (0, I) and then compute x = (I−W)−1(b+ diag(σ)ϵ)
(Hyttinen et al., 2012). To sample from the stationary density of the SDEs, we use the Euler-Maruyama
scheme (Appendix A.1).

Interventions Given the fully-specified linear model, we sample an observational dataset
and interventional data for single-variable shift interventions on all variables, each with 1000
observations, as the interventions for the benchmark. In both SCMs and SDEs, the shift intervention
is implemented by adding a scalar δ to the bias bj of the target variable j. In our experiments, we
sample δ ∼ p(δ) with p(δ) = Unif(−15,−5) ∪ (5, 15) independently for each intervention.

D.1.3 Gene Regulatory Networks

Model Given some acyclic G ∈ {0, 1}d×d, we use the SERGIO model by Dibaeinia and Sinha
(2020) and their corresponding implementation (GNU General Public License v3.0) to sample
synthetic gene expression data. The gene expressions are simulated by a stationary dynamical system
over a sparse, acyclic regulatory network encoded by G. To simplify the experimental setup, we use
the clean gene expressions without technical measurement noise as the observations.

SERGIO models the mRNA concentration of the genes using the chemical Langevin equation, a
nonlinear geometric Brownian motion model driven by two independent Wiener processes for each
gene. The expression xj of gene j is primarily defined through its production rate pj , which depends
nonlinearly on the expression levels x of the other genes through the signed interaction parameters
K and the regulatory network G. Following Dibaeinia and Sinha (2020), we use a Hill nonlinearity
coefficient of 2 and sample the parameters kij as well as 10 master regulator rates bjc, which model
cell type heterogeneity, from kij ∼ Unif(−5,−1)∪(1, 5) and bjc ∼ Unif(1, 4), respectively. Finally,
we use an expression decay rate of λ = 0.5 and noise scale of q = 0.5, which deviates from the
values 0.8 and 1.0, respectively, used by Dibaeinia and Sinha (2020) when simulating d ≥ 100 genes.
Under their settings, the data of smaller networks does not contain sufficient signal for the any of the
benchmarked methods to learn a nontrivial model of the system.

Interventions Given the fully-specified gene regulation model, we sample an observational (wild-
type) dataset and interventional data for single-variable gain-of-function (overexpression) interven-
tions (e.g., Norman et al., 2019) on all genes, each with 1000 measured cell observations, as the
interventions for the benchmark. We evaluate overexpression rather than knockdown perturbations,
because the former are qualitatively more similar to the test-time shift interventions used to query the
models learned by the methods. The gain-of-function interventions are implemented by multiplying
the production rate pj of the target gene j by a randomly-sampled factor rj ∼ Unif(2, 10). The
half-response levels for the Hill nonlinearities are kept at the values estimated during the wild-type
simulation, so that the intervention effects propagate downstream.
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D.2 Metrics

We focus on comparing the true and predicted interventional distributions of unseen interventions
in a system. While this evaluation setting mimics real-world applications, benchmarking different
algorithms requires some care. In general, there is a mismatch between the model-level perturbation
implemented by an intervention in the ground-truth system and the query perturbation performed in a
learned causal model—not only because the true model perturbation is unknown, but also because
true and learned models may be from different model classes.

Test-time interventions To compare algorithms at test-time, we perturb each learned model by
a shift intervention on the target variable that induces the same target variable mean as the true,
held-out perturbation data (Rothenhäusler et al., 2015; Zhang et al., 2021). We perform shift
interventions because they have analogous implementations in both additive-noise SCMs (1) and
stationary diffusions (10) by adding a scalar δ to the mechanism fj(x) of the target variable j (see
also Appendix D.1.2). After performing the intervention, our metrics compare the predicted and true
interventional joint distributions. To make this protocol well-defined, we assume knowledge of the
true interventional mean of the target variable.2

For acyclic SCMs with additive noise, the test-time shift δ required for the query perturbation is
directly given by the difference between the empirical observational mean of the learned SCM and
the target interventional mean. However, cyclic SCMs and stationary diffusions may model feedback
on the target variable, where the above does not hold. For cyclic models, we individually find the
query shift δ by performing an exponential search around δ = 0 for a range estimate (δlo, δhi). At
each shift value, we simulate data from the perturbed model and compare the predicted to the target
interventional mean. Given an estimated range (δlo, δhi), we run a final grid search for the optimal
value δ ∈ {δlo, δlo + 1/10(δhi − δlo), . . ., δlo + 9/10(δhi − δlo), δhi}. Ultimately, we select the shift δ
achieving the argmin distance to the target interventional mean in the grid search.

Metrics Both metrics we report are computed based on samples from the predicted distributions,
which enables a nonparametric comparison across the different probabilistic models. For each test
intervention, we simulate 1000 samples x̂(i) ∈ D̂ from the interventional distribution of the predicted
model and compare them with the true interventional dataset of 1000 samples x(i) ∈ D.

To evaluate the overall fit of the predicted data distribution, we compute the Wasserstein distance
W2 to the ground-truth interventional data. To make W2 efficiently computable, we report the W2

distance with small entropic regularization, which interpolates between the W2 distance and the
MMD (Genevay et al., 2018) and commonly serves as an evaluation metric in machine learning
applications (e.g., Bunne et al., 2022). The entropy-regularized W2 metric between the empirical
measures of the datasets D̂ and D with |D̂| = M and |D| = N is defined as

W2(D̂,D) :=

(
min

P ∈ U

M∑
m=1

N∑
n=1

pmn∥x̂(m) − x(n)∥22 − ϵH[P]

)1/2

,

where H is the entropy defined as H[P] := −∑nm pmn(log pnm − 1), and U is the set of transport
matrices U = {P ∈ RM×N

≥0 : P1N = 1/M 1M and P⊤1M = 1/N 1N} with 1N being a vector of
N ones (Peyré et al., 2019). We found the W2 metric to be a more robust evaluation metric than the
MMD, because it does not depend on the sensitive choice of a kernel bandwidth (Gretton et al., 2012).
For ϵ > 0, the entropy-regularized W2 distance can be efficiently computed using the Sinkhorn
algorithm, which we use as implemented by the ott-jax package (Apache 2.0 Licence) with ϵ = 0.1
(Cuturi et al., 2022).

To separately assess the accuracy of the interventional means, we follow Zhang et al. (2022) and
report the mean squared error of the predicted empirical means of the d variables given by

MSE(D̂,D) :=
1

d

d∑
j=1

(m̂j −mj)
2 ,

where m̂ := 1
M

∑M
m=1 x̂

(m) and m := 1
N

∑N
n=1 x

(n) are the empirical means of the datasets.
2Outside benchmarking settings, in which we compare to a ground-truth reference dataset, the ‘true’

intervention effect on the target is always known, because it corresponds to the query we pose to the learned
causal model (e.g., when asking: “what is the genome-wide effect of over-expressing gene xj two-fold?”)
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D.3 Hyperparameter Tuning

In the experiments, we benchmark the methods on different generative processes (Appendix D.1). To
calibrate the important hyperparameters of the methods, we perform cross-validation prior to the final
evaluation that benchmarks the methods. All methods are tuned separately for each data-generating
process, that is, for cyclic linear SCMs, cyclic linear SDEs, and the synthetic gene expression data,
both for Erdős-Rényi and scale-free sparsity structures.

The experiments for all generative processes are repeated for 50 randomly-sampled systems (Figure 2,
Section 6 and Figure 4, Appendix E). Each task instance consists of an observational and 10 interven-
tional datasets for learning the model as well as 10 interventional datasets for the final evaluation,
with all interventions performed on separate target variables. To tune the hyperparameters of the
methods, we split the 10 observed interventions into 9 training and 1 validation dataset. The methods
then infer a causal model based on the 9 training interventional and the observational dataset, and
we compute the W2 metric for the unseen validation intervention. For each method, we select the
hyperparameter configuration achieving the lowest median W2 metric on 20 randomly-selected tasks.

D.4 Stationary Diffusions

Models We evaluate linear and nonlinear stationary diffusion models. Both classes of SDE systems
model d independent drift and diffusion mechanisms fj and σj that are defined by separate parameters
θj , as in (8). For both models, the corresponding group lasso regularizers R(θj) penalize the
dependence on the other variables. The models and regularizers are defined as

fθj (x)j = bj +wj · x
fθj

(x)j = bj +wj · g(Ujx+ vj)− xj

R(θj) =
∑d

i ̸=j |w
j
i |

R(θj) =
∑d

i ̸=j∥u
j
i∥2

where g(z) := exp(z)/(exp(z) + 1) the sigmoid nonlinearity, applied elementwise. The diffusion
term σ is modeled as a constant matrix with σ(x) = diag(exp(logσ)), logσ ∈ Rd. The parameters
logσ are learned in log-space to enable gradient-based optimization while respecting σ(x) ∈ Rd

>0.
To remove the speed scaling invariance, we fix wj

j = −1 in the linear and uj
j = 0 in the MLP model

(see Section 4.4). In the experiments, the MLP model uses a hidden size of h = 8 for the matrices
Uj ∈ Rh×d and vectors vj ,wj ∈ Rh.

Interventions during training In all evaluation settings and for both diffusion models, we jointly
learn shift interventions ϕj = {δj} as defined in (10, left) for the target variables of each training
environment (see Section 4.4). For the purpose of the experiments, we limit the interventions to
shifts in order to allow a direct comparison with SCMs. However, we found learning more complex
intervention parameterizations like, for example, full shift-scale interventions as in (10), generally
straightforward. More expressive interventions shift some of the burden of explaining the distribution
shift from θ to ϕj , which can help inferring robust parameters θ under model mismatch.

Optimization We learn the model θ and the intervention parameters {ϕj} jointly with gradient-
based optimization. By default for all experiments, we run 20,000 update steps on the KDS as
described in Section 4.4 using the Adam optimizer with learning rate 0.001. We compute the
empirical KDS (6) using the Gaussian kernel kγ and a batch size of |D| = 512. The parameters
θ are initialized near zero by sampling from N (0, 0.0012). We warm-start the intervention shifts
ϕj = {δj} by initializing them at the difference in means of the target variable in the interventional
and the observational datasets. Overall, the important hyperparameters are the kernel bandwidth γ
and the group lasso regularization strength λ, so we tune these for each experimental setting via a
grid search (see Table 1) using the protocol described in Appendix D.3.

Diagnostics The following intuitions may be helpful when deploying our inference approach. If
the stationary density induced by the learned SDEs overfits or collapses to a small part of the data
distribution, then the kernel bandwidth may be too small. The bandwidth range searched over in our
experiments is suitable for standardized datasets of d = 20 variables but should likely be expanded
in different settings. If the learned SDEs are unstable upon convergence or diverge during test
simulations late in training—despite a decreasing or near-zero KDS loss—then the speed scaling
invariance may not be adequately fixed (see above and Section 4.4). In this context, we find that the
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Table 1: Hyperparameter tuning for the experiments in Section 6. The hyperparameters of all methods
are selected using the protocol described in Appendix D.3.

Method Hyperparameter Range
IGSP significance level αIGSP ∈ {0.001, 0.003, 0.01, 0.03, 0.1}
DCDI sparsity regularization λDCDI ∈ {0.001, 0.01, 0.1, 1, 10}

number of MLP layers mDCDI ∈ {1, 2}
NODAGS sparsity regularization λNODAGS ∈ {0.0001, 0.001, 0.01, 0.1}

spectral norm terms nNODAGS ∈ {5, 10, 15}
learning rate ηNODAGS ∈ {0.001, 0.01, 0.1}
hidden units mNODAGS ∈ {1, 2, 3}

LLC sparsity regularization λLLC ∈ {0.001, 0.01, 0.1, 1, 10, 100}
KDS sparsity regularization λ ∈ {0.001, 0.003, 0.01, 0.03, 0.1}

kernel bandwidth γ ∈ {3, 5, 7}

fit and performance of the models empirically improves when fixing the self-regulating parameters of
fj on xj , rather than, e.g., the noise scales σj . Without any sparsity regularization, gradient descent
as in (11) may converge to models at the edge of stability, e.g., to linear models with maximum real
parts of the eigenvalues being near zero and only just negative. Sparsity regularization can mitigate
such instability and related issues in combination with fixing the speed scaling.

D.5 Baselines

GIES (Hauser and Bühlmann, 2012) assumes a linear-Gaussian SCM to infer a graph equivalence
class, from which we randomly sample a causal graph. To perform the greedy search, we run
the original R implementation of the authors using the Causal Discovery Toolbox (MIT Licence)3.
Given the DAG estimate, we use a linear-Gaussian SCM with maximum likelihood parameter and
variance estimates as the learned model. These estimates have simple closed-forms that account
for interventional data (Hauser and Bühlmann, 2012). At test time, the shift interventions are
implemented in the learned linear SCM and the data sampled as described in Appendix D.1.2.

IGSP (Wang et al., 2017) uses a Gaussian partial correlation test. We use the same closed-form
maximum likelihood parameter and variances estimates as for GIES to construct the final causal
model. For IGSP, we run the implementation provided as part of the CausalDAG package (3-Clause
BSD License)4. Using the protocol described in Appendix D.3, we tune the significance level αIGSP

of the conditional independence test for each experimental setting individually by searching over a
range of αIGSP values (see Table 1). As for GIES, the shift interventions are implemented in the
estimated linear SCM as described in Appendix D.1.2.

DCDI (Brouillard et al., 2020) learns a nonlinear, Gaussian SCM parameterized by neural networks
jointly with the noise variance. For comparison with the nonlinear stationary diffusion model, we use
the same hidden size of 8 for the neural networks. To run DCDI, we use the Python implementations
provided by the authors (MIT License). We tune the regularization strength λDCDI and the number
of layers mDCDI and otherwise leave the remaining optimization hyperparameters at the suggestions
by the authors (see Table 1). When learning from imperfect interventions, DCDI estimates a separate
model for each interventional environment. To evaluate the performance on unseen interventions, we
use the model learned for the observational dataset and implement the shift interventions by adding
the bias δ to the mean of the Gaussian modeling the target variable, analogous to the linear SCMs
and SDEs described in Appendix D.1.2.

NODAGS (Sethuraman et al., 2023) infers a nonlinear cyclic SCM using residual normalizing
flows and also estimates the noise variances. As suggested by the authors, we jointly tune the

3https://github.com/FenTechSolutions/CausalDiscoveryToolbox
4https://github.com/uhlerlab/causaldag
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regularization parameter λNODAGS, the number of terms for computing the spectral norm nNODAGS,
the learning rate ηNODAGS, and the number of hidden units mNODAGS (see Table 1). We set the
remaining hyperparameters to the recommendations of the authors and use the implementation
published alongside the original paper (Apache 2.0 Licence). At test time, the shift interventions are
implemented in the model by using U = I and otherwise as described in the paper, analogous to the
linear cyclic SCMs described in Appendix D.1.2 (see also Hyttinen et al., 2012).

LLC (Hyttinen et al., 2012) learns a linear cyclic SCM and estimates the noise variances. For the
basic implementation of the LLC algorithm, we use the code provided by the NODAGS repository.
However, we extend their implementation by the ℓ1 sparsity regularizer described in Section 6.2 of
the original paper by Hyttinen et al. (2012), solving the minimization problem with BFGS. We treat
the weight λLLC of this regularizer as a hyperparameter that is tuned via a grid search (see Table 1).
At evaluation time, the shift interventions in the learned cyclic linear SCM are performed as for GIES
and IGSP.

D.6 Compute Infrastructure

The development and experiments of this work were carried out on an internal cluster. In each
experiment, all methods ran for up to 1 hour of wall time on up to 4 CPUs and 16 GB of RAM,
adjusted individually according to the compute requirements of each method. We implement our
approach with JAX (Bradbury et al., 2018) and thus additionally provide 1 GPU, which allows for
significant speed-ups during development and the experiments. Overall, running our inference method
takes approximately one hour given the above resources, both for the linear and nonlinear model, and
including the final search for test-time intervention shifts.

E Additional Results

Nonlinear fj Acyclic SCM Cyclic SCM Stationary DiffusionMethod assumptions:
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Figure 4: Benchmarking results (d = 20 variables, scale-free sparsity structure). Metrics are
computed from 10 test interventions on unseen target variables in 50 randomly-generated systems.
Box plots show medians and interquartile ranges (IQR). Whiskers extend to the largest value inside
1.5 times the IQR length from the boxes.
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