
Simultaneous On-line Discovery and Improvement of Robotic Skill Options

Freek Stulp1,2, Laura Herlant1,3, Antoine Hoarau1,2, Gennaro Raiola1,2
1Robotics and Computer Vision, École Nationale Supérieure de Techniques Avancées (ENSTA-ParisTech), France

2FLOWERS Research Team, INRIA Bordeaux Sud-Ouest, Talence, France
3Robotics Institute, Carnegie Mellon University, Pittsburgh, USA

Abstract— The regularity of everyday tasks enables us to
reuse existing solutions for task variations. For instance, most
door-handles require the same basic skill (reach, grasp, turn,
pull), but small adaptations of the basic skill are required
to adapt to the variations that exist (e.g. levers vs. knobs).
We introduce the algorithm “Simultaneous On-line Discovery
and Improvement of Robotic Skills” (SODIRS) that is able
to autonomously discover and optimize skill options for such
task variations. We formalize the problem in a reinforcement
learning context, and use the PIBB algorithm [2] to continually
optimize skills with respect to a cost function. SODIRS discovers
new subskills, or “skill options”, by clustering the costs of trials,
and determining whether perceptual features are able to predict
which cluster a trial will belong to. This enables SODIRS to
build a decision tree, in which the leaves contain skill options
for task variations. We demonstrate SODIRS’ performance in
simulation, as well as on a Meka humanoid robot performing
the ball-in-cup task.

I. INTRODUCTION

In most activities of daily living, variations of related tasks
are encountered over and over again. Consider, for instance,
opening a door; a task which we perform thousands of times
per year. Although the basic actions are the same for most
door-handles – reach, grasp, rotate and pull – slight variations
are needed for different types of handles (lever or knob [1]),
and their properties (stiff or compliant).

In this paper, we present “Simultaneous On-line Discovery
and Improvement of Robotic Skills” (SODIRS), an algorithm
that is able to autonomously learn skill options for task
variations through: Optimization – Using policy improve-
ment with covariance matrix adaptation to optimize skill
options [2]. Discovery – Detecting task variations based on
clustering the costs of recent trials. Organization – Using
decision tree learning on cost clusters to determine which
perceptual features are relevant for discerning between task
variations, and associating skill options with task variations.
Key features of SODIRS are that it uses the same data for
optimization, exploration and organization, that it learns on-
line, incremental and open-ended, and that the number of task
variations and skill options need not be specified in advance.

The rest of this paper is structured as follows. We
formalize the problem in Section II, and discuss related
work in Section III. We present the SODIRS algorithm
implementation in Section IV. In our empirical evaluation in
Section V, we demonstrate SODIRS’ ability to discover and

This work was supported by INRIA/ADT (Carroman), DIGITEO (PrAc-
tIx), and the Intel Science and Technology Center - Embedded Computing.

Contact: freek.stulp@ensta-paristech.fr

Fig. 1. The ball-in-cup game, where the robot uses momentum generated
by its arm motion to pivot the ball at the end of a string into a cup [3]. See
also the video attachment. Left: demonstrating the movement to the Meka
humanoid robot. Right: A successful trial, showing the tracking of the ball
and cup. We use string lengths of 25 and 30cm, which requires the robot
to discover and optimize distinct skill options for these task variations.

optimize skill options both in simulation, and on a real robot
performing the ball-in-cup task [3], as illustrated in Fig. 1.
We summarize key features and limitations of SODIRS in
Section VI.

II. FORMALIZATION

We consider episodic reinforcement learning in continuous
state/action spaces with parameterized policies π(a|s,θ),
where θ is a vector of policy parameters. Optimizing policy
parameters with respect to a reward/cost function is known
as policy improvement, or (direct) policy search.

If we ignore the costs at individual time steps rt, and
only use the return of an episode R =

∑T
t=1 rt, policy

improvement is equivalent to black-box optimization [2],
where the black-box cost function J : Θ 7→ R takes θ as
an input, and returns the scalar return of the episode R, as
in (1). Each evaluation of J thus corresponds to one episode,
or rollout. Policy parameters that minimize this cost function
are known as optimal policy parameters θ∗ = arg min

θ
J(θ).

J : Θ 7→ R BBO Cost function J(θ) =
∑T

t=1 rt (1)

A. Task Variations and Parameterizable Skills

Different tasks require different cost functions. For exam-
ple, when turning a door handle, we may measure how far the
handle was turned, assigning lowest cost to a full successful
turn. But this cost function will be of little use for learning
how to press buttons. The same cost function, however, can
often be applied to variations of the same task. For instance,
for both a door knob and lever, the cost function is the

same (how far was the knob/lever turned), but it will return
different costs for the same action, because fully turning the
knob requires different actions from fully turning the lever.
We summarize task variations in the task parameter vector
q . For the door-handles example, the task parameter space
would be Q = {LEVER,KNOB}. To reuse the same cost
function for variations of a task, we add a task parameter
vector q to the cost function, because the cost depends on
both the policy and task parameters:

J : Θ×Q 7→ R Parameterized cost function J(θ, q) (2)

If a cost function depends on task parameters (2), then,
to be optimal, different policy parameters are required for
different task parameters. Policies therefore must take these
task parameters into account in order to be optimal. To
this end, parameterized skills calculate the policy parameters
based on the task parameters in a separate step:

Step 1 (before episode)
Π : Q 7→ Θ Policy parameter function Π(θ|q) (3)
Step 2 (during episode)
π : S ×Θ 7→ A Policy π(a|s,θ) (4)

Now there are two policies at different levels of abstrac-
tion. The upper-level policy parameter function Π, which
computes the appropriate policy parameter vector for a given
task parameter vector before an episode, and the lower-level
policy π, which computes the appropriate actions during the
episode (terminology taken from [4], [5]).

In the most general case, the policy parameter function
Π maps to the continuous policy parameter space [4]–[6],
i.e. its output is θ ∈ Θ. Alternatively, Π maps only to a
discrete number of possible policy parameter vectors, i.e.
θo ∈ {θ1,θ2, . . . ,θO} for O possible options, as defined
by Daniel et al. [7]. SODIRS addresses the problem of au-
tonomously discovering and optimizing discrete skill options
θo=1:O for an unknown number of discrete task variations.

B. Task Parameters and Features

So far, we have assumed that the task parameter space Q
is provided to the robot, as is the case in [4]–[6]. However,
we want the robot to autonomously distinguish between
different tasks. To do so, we extract a set of features from
the observations of the robot, and the policy parameter
function determines the appropriate policy parameters given
only these features:

Π : F 7→ Θ Policy parameter function Π(θ|f) (5)

The features may be an estimation of the state or task
parameters itself, but they need not be. Our aim here is to be
general, and allow the algorithm to determine which features
are relevant.

Because SODIRS uses perceptual features f to distinguish
between task variations, it is not necessary to explicitly
represent q. For instance, we vary the length of the string
in the ball-in-cup task, but do not directly provide this
information to the robot. Furthermore, the exact same cost

function is used for all task variations. The output of that cost
function clearly depends on whether a short or long string is
used, but this difference simply arises from interaction with
the world. So although task parameters q help to formalize
the problem, it is not explicitly represented in the cost
function or by the robot, and need not be provided by the
user.

C. Problem Statement
With this formalization, SODIRS addresses the questions:
• How do we determine the optimal policy parameters

θ∗ = arg min J(θ), given the cost function J? We imple-
ment this with the PIBB algorithm, an evolution strategy with
covariance matrix adaptation (Section IV-A).
• When should a novel skill option θO+1 be added

to the already available set of options {θ1, . . . ,θO}? We
implement this decision by clustering in cost space (with
DBSCAN [11]). Cost clusters imply task variations, which
require different skill options (Section IV-B).
• How do we determine which skill option should be

used for which task variation? To do so, we incrementally
learn decision trees, which implement the policy parameter
function Π(θo|f). The current task variation is thus derived
only from the features, and task variations and skill options
are organized hierarchically in a tree (Section IV-C).

III. RELATED WORK

SODIRS determines when different task contexts require
different behaviors (the options θo), and also which features
f are relevant to making this distinction. This is similar to
perceptual de-aliasing, which was considered in the context
of reinforcement learning by Chrisman [13]. Rather than
extending the state of a discrete MDP to counter partial ob-
servability, SODIRS selects immediately observable features
that are relevant to distinguishing between task variations.

In “Reinforcement Learning of Visual Classes
(RLVC)” [14], similar ideas to those in [13] are applied
to much more challenging input spaces, consisting of raw
input images. Here, the temporal-difference error is used
to decide when different visual classes require different
actions. RLVC operates on discrete action spaces and “is
unlikely to scale up to interesting robotic tasks without
support from simulation” [14]. SODIRS and RLVC are thus
complementary, in that SODIRS considers continuous action
spaces and on-line performance on physical robot systems,
whereas RLVC uses more challenging feature spaces.

Daniel et al. [7] use Hierarchical Relative Entropy Policy
Search (HiREPS), very similar to PIBB, with hierarchical pol-
icy representations. Rather than building trees starting from
a single initial skill, HiREPS chooses between a discrete
number of conditional distributions over policy parameter
vectors. This number is initially chosen to be larger than the
number of possible optima, and redundant options are deleted
as the algorithm runs, with care taken to avoid premature
deletion. Calinon et al. [15] uses a Gaussian Mixture Model
to estimate the structure of the cost function J , mapping the
cost as a probability density function that depends on the
policy parameters. Exploration noise is decayed manually,

rather than automating it with covariance matrix adaptation.
The key difference between the algorithms in [7], [15] and
SODIRS is that the former consider multiple skill options
that are able to solve the same task, whereas SODIRS
learns multiple options for multiple task variations, without
requiring the user to specify the task parameter space.

IV. THE SODIRS ALGORITHM

We now describe the implementation of skill optimization,
cost clustering and decision tree learning in SODIRS.

A. Skill Optimization through Policy Improvement with PIBB

The optimization algorithm we use is PIBB, short for
“Policy Improvement with Black-Box optimization” [2]. The
PIBB algorithm is explained and visualized in Fig. 2, where
the cost function is simply J(θ) = ||θ||, i.e. the distance to
the origin. The algorithm alternates between an exploration
phase and a parameter update phase.

1) Exploration: K policy parameter vectors θk=1...K are
sampled from a normal distribution with mean θµ and
covariance matrix Σ (6). The cost function J is then eval-
uated for each of these vectors; in policy improvement this
corresponds to executing the policy, and computing the return
by summing over the costs at each time step (7). The K
resulting rollouts are together called an epoch.

θk=1...K∼N (θµ,Σ) sample (6)
∀k Jk = J(θk) cost function (7)

∀k Pk = e

(−h(Jk−min(J))

max(J)−min(J)

)
cost-to-weight (8)

(“lower cost ⇒ higher weight”)

θnewµ =
K∑
k=1

Pkθk weighted averaging (9)

Σnew =

K∑
k=1

Pk(θk − θµ)(θk − θµ)
ᵀ weighted averaging (10)

Fig. 2. Visualization of PIBB. Left: distributions in parameter space before
(blue) and after (red) updating. The image in the background shows the
mapping from costs Jk to weights Pk . Right: Iterative updating towards
the minimum θ∗, which lies at the origin. The covariance matrix shrinks,
once the mean of the distribution (θµ) is at the optimum (θ∗).

2) Parameter Update: Given the scalar cost of each
rollout, the costs are then converted into weights with an
exponential mapping, which assigns higher weights to sam-
ples with lower costs (this function is visualized in the lower
left corner of Fig. 2). Then, the mean is computed by taking

the weighted average over the samples (9). Because of the
mapping from cost to weights, low-cost samples contribute
more to the new mean then high-cost samples, and the mean
θµ (on average) moves closer to θ∗. The same weighting
is used for the covariance matrix update (10). Fig. 2 (left)
visualizes such an update of the distribution. Updating the
distribution is iterated until the costs converge, or a fixed
number of iterations has been completed, as visualized in
Fig. 2 (right).

3) Covariance Matrix Update: Covariance matrix adap-
tation automatically adapts the exploration so as to gener-
ate more samples in the direction of the minimum. One
important property is that the covariance matrix, and thus
exploration, goes towards zero if the current mean of the
distribution is at the minimum, i.e. θµ ≈ θ∗. This adaptive
exploration can be observed in the right graph in Fig. 2.

4) Illustrative example: Before turning to task/skill hier-
archies, we illustrate the solution idea with a simple problem.
The left plot in Fig. 3 illustrates the task: passing through
a via-point at a specific time. The trajectory is generated
by a Dynamical Movement Primitive (DMP) [10], which is
parameterized by the policy parameters θ. In this example, θ
is only 2-D, for ease of visualization. Variation in the policy
parameters leads to variations in the trajectory, as depicted
in Fig. 3 (left). The DMP starts at y0 = 0, and converges
towards the goal g = 1. The aim is to pass through the
viapoint yv = 0.75 at the time step 20. The cost function
penalizes the distance to the viapoint at t = 20, as well as
the acceleration at each time step: J = δ(t−20)·||yt−yv||+∑T
t=1 10−5ÿt

2. The top row in Fig. 3 summarizes the result
of optimizing the policy parameters with covariance matrix
adaptation for yv = 0.75.

B. Skill Option Discovery through Cost Clustering

The optimization in the top row of Fig. 3 is done on
one task only, i.e. for the viapoint at yv = 0.75. If we
now provide tasks with viapoints selected equiprobably from
yv = {0.25, 0.75, 0.80}, we get learning as in Fig. 3. Here,
we see that the distribution 〈θµ,Σ〉 still converges, i.e. the
cost is stable, and the covariance matrix has shrunk to the
solution for yv = 0.75. In the learning curve however, we see
that the average costs over all K = 20 rollouts in an epoch
are still high, because this solution only generates low costs
when yv = 0.75. In fact, in the individual samples, we now
clearly see three clusters, one for each task variation/viapoint.

Given the last L rollouts, SODIRS attempts to find such
clusters, potentially leading to “low cost” and “high cost”
clusters. If clustering succeeds, SODIRS then attempts to
find a classifier that correctly assigns each of the L rollouts
to the two clusters. The classification is based on a decision
boundary in one of the perceptual features. The key idea is
that each cost cluster corresponds to one task variation, each
requiring a different skill option. And if a certain feature
enables us to distinguish between clusters in past rollouts,
it will also enable us to distinguish between task variations
in future rollouts, allowing us to apply the appropriate skill
option to future tasks.

Fig. 3. Learning progress for 1 viapoint (yv = 0.75, top) or 3 viapoints
(yv = {0.25, 0.75, 0.80}, bottom) Left: Samples trajectories in an epoch
before (black) and after (gray) optimization, as well as the search in
parameter space, visualized by error ellipses representing the distributions
〈θµ,Σ〉. Right: Learning curve, depicting costs of individual samples (gray
dots) and their average per epoch (thick line). The dashed line represents
the exploration magnitude as learning progresses. Exploration magnitude is
the largest eigenvalue of Σ. It converges towards 0 once the optimum (or
one of the optima) is found. For the 3 viapoints (bottom row), low costs
are achieved for yv = 0.75, but this solution leads to higher costs for
yv = {0.25, 0.80} (the three clusters).

Clustering itself is done with the clustering algorithm
“density-based spatial clustering of applications with noise
(DBSCAN)” [11] on the costs of the last L rollouts. L is
usually chosen to be higher than K (the number of rollouts
in an epoch, as used for one update in PIBB). Advantages of
DBSCAN over, for instance, k-means is that the number of
clusters need not be specified in advance, it deals well with
noisy data, and is able to find non-linearly separable clusters.
DBSCAN does suffer from the curse of dimensionality, but
this is not an issue for our application, as we consider only
the cost space, which is 1D. DBSCAN takes one parameter,
which specifies the minimum number of points P required
to form a cluster.

DBSCAN converts the continuous cost space into a set of
clusters, each representing a different class (e.g. ‘high cost’,
‘low cost’). In our viapoint example, DBSCAN determines
that two clusters have arisen at update 8, based on the costs
of the L = 20 rollouts preceding this update. In Fig. 4, these
20 rollouts are inside by the pink band in the top graph. The
clusters that DBSCAN detects (with P = 0.4L) are to the
left of this graph.

C. Skill Option Hierarchies through Decision Tree Learning

The next step is to determine which perceptual features
are able to predict to which class the cost will belong (e.g.
“high cost” or “low cost”). This is implemented by a decision
stump [12], which is a decision tree of depth 1. In the

Fig. 4. Optimization of the viapoint task with variations yv =
{0.25, 0.75, 0.80} with SODIRS, which discovers new skill options (at
updates 8 and 18) and optimizes them individually. Top: costs of each
individual rollout (dots) and average costs per epoch (lines) as learning
progresses, with a visualization of cost clustering with DBSCAN. Bottom:
exploration magnitude as learning progresses. Different colors highlight
different skill options, which are optimized in parallel.

viapoint example, the decision stump that best predicts which
cluster will arise is if yv < 0.5 then the cost will be in the low
cluster, else in the high one (Here, yv is provided as a feature
yv ∈ f . Section V contains more interesting examples).

Each cost cluster corresponds to a different discrete task.
Each discrete task requires a skill option. Successful cost
clustering and decision stump learning implies that the
current skill used to solve the task must be split into multiple
skill options, one for each cost cluster.

Therefore, the final step is to add subskills, e.g. ‘Option 1’
which is executed with parameters θ1 when yv < 0.5, and
the ‘Option 2’ (θ2) when yv ≥ 0.5. The policy parameters of
the subskills are initialized to the policy parameters of their
superskill. During optimization, tasks for which yv < 0.5
are now used to optimize only ‘Option 1’. These two skill
options are now optimized individually, as is visualized in
Fig. 4. These also highlight that another split occurs at update
18, for the task pair yv = {0.75, 0.80}, and we thus have
three skill options corresponding to the three task variations,
and the policy parameter function is as follows:

Π(θo|q) =


if yv ≤ 0.5 : 〈θ1µ,Σ1〉

if yv > 0.5

{
if yv ≤ 0.775 : 〈θ2.1µ ,Σ2.1〉
if yv > 0.775 : 〈θ2.2µ ,Σ2.2〉

With this tree of skill options, three parallel optimizations
are running, with one option for each task variation. When
SODIRS encounters a task for which for instance yv =
0.75, it will take a sample from N (θ2.1µ ,Σ2.1), and, if K
samples have been evaluated, update only θ2.1µ and Σ2.1,
not the parameters of the skill options in the other leaves.

Thus, execution and updating are specific to a single option,
corresponding to one leaf in the tree.

V. EXPERIMENTAL EVALUATION

A. Petanque (simulation)

In this task, a 7-DOF articulated arm, simulated in Simu-
lation Lab, learns to throw objects towards a goal position, as
depicted in Fig. 5. Three objects of the same weight, but with
different shapes are thrown. Task parameters. The different
shapes lead to different friction coefficients (set manually
in simulation), which requires different throws for the three
objects, if they are to reach the goal location. Cost function.
The cost function is the squared distance to the goal location
when the object hits the ground.

Fig. 5. The petanque task.

Features. A snapshot of the object to be thrown is
rendered. After background subtraction, the 2D eigenvectors
and eigenvalues of the locations of the pixels belonging to the
object, the number of pixels, and the average hue of the pixels
form the 6D feature vector. This is a highly idealized, noise-
free feature extraction process. Our focus in this experiment
is not on feature extraction itself (which may be tailored to
the task at hand), but rather on demonstrating how SODIRS
is able to extract relevant features from a larger set. Algo-
rithm parameters. The movement is represented by a 7-D
DMP with 5 basis functions per dimension, which generates
desired joint trajectories. For PIBB, the parameters h = 10, the
number of rollouts per epoch is K = 15, the window size for
cost clustering is L = 30, and DBSCAN’s parameter is set as
P = 0.25L. Evaluation of Covariance Matrix Updating.
With the parameter settings above, we ran four experiments:
(1) PIBB with Covariance Matrix Adaptation (CMA), with an
initial exploration magnitude λI, with λ = 25. (2-4) PIBB

with constant exploration, and λ = {25, 5, 1}.
Results. Fig. 6 visualizes the results for one of the learning

sessions with covariance matrix adaptation. It visualizes the
landing locations of the objects (variance in locations is
indirectly related to the exploration magnitude in policy
parameter space), the two splits that are made, and the
convergence of the three skills towards the minimum.

Table I shows the average ± standard deviation over 5
learning sessions for each of the four experiments. For CMA,
we see that the first/second split occurs on average after
90/267 rollouts. After on average 162 rollouts, the costs of

Fig. 6. Example learning session for the petanque task. The 2D landing
positions of the objects on the floor at different phases of learning. 15
rollouts within one epoch are shown. The goal position is indicated by the
black circle. Note that the actual search space is in the 35=7·5 dimensional
policy parameter space; these different 2D landing positions arise from
variations in the end-effector trajectories due to the search in this 35D space.

all three skill options has dropped below 10. For constant
exploration with an exploration magnitude of λ = 25 or
5, the first split is after 71/100 rollouts, but the second split
does not occur. This is because the variance in the cost due to
exploration is higher than that caused by the different tasks;
therefore, cost clusters do not arise. With an exploration
magnitude of λ = 1 both splits do occur, but very late
(after 245/323 rollouts respectively). This is because this low
exploration converges only very slowly toward the minimum.
After 600 rollouts (when the learning sessions were stopped),
not all of the skill options have a cost lower than 10.

Summary. SODIRS consistently learns different skill op-
tions for task variations. High exploration is required for
fast convergence, and low exploration is required for cost
clustering and skill option discovery. Covariance matrix
adaptation is the only method that can switch between these
two different requirements.

CMA Constant
Exploration→ λinit=25 λ=25 λ=5 λ=1

First split 90 ±30 71±8 100±46 245±77
Second split 267±61 X X 323±95

Avg. Cost < 10 162±29 168±22 225±20 X

TABLE I
PETANQUE TASK RESULTS (VALUES REPRESENT NUMBER OF ROLLOUTS)

B. Ball-in-cup (Meka humanoid)
In this experiment, the Meka humanoid robot learns to

perform the ball-in-cup game, using momentum generated
by its arm motion to lift the ball at the end of a string
into a cup [3], as illustrated in Fig. 1. The position of the
ball and cup are tracked with a Kinect, mounted from the
side, perpendicular to the floor. Task parameters. The task
parameter q is the length of the string, which is either 25
or 30cm (the demonstration is provided only for the 25cm
string). Cost function. The cost of a rollout is 0 if the ball
lands in the cup, and 10 when it hits the cup. Otherwise, it
is the horizontal distance of the ball to the cup, when the
ball is moving downward and at the same height as the cup.
This distance is specified in pixels (typically between 30-
120). Note that due to tracking inaccuracies and dynamics

Fig. 7. Left: Learning curves, showing the costs of all rollouts (dots) and their average per epoch (line). The split (dashed line) occurs after the 3rd
update, i.e. after 30 rollouts. Center: Magnitude of exploration for three joints as learning progresses. Right: The 10 rollouts in an epoch at various stages
of learning (epochs shown are highlighted by horizontal bars above the learning curve)

not captured in the demonstration, merely reproducing the
demonstration does not lead to successful task execution, i.e.
we have costs of 87± 4 and 107± 2 (over 5 rollouts for the
two string lengths 25/30cm). Features. The feature vector
f contains the 2D position of the ball and hand (in pixels)
before the movement starts. These positions could have been
transformed into a robot-centric Cartesian frame of reference,
but we have deliberately used the raw pixel values to demon-
strate that the algorithm is agnostic about the semantics
of the features. DMP representation. The movement is
represented as a 3D DMP, which generates desired joint
trajectories for the shoulder, elbow and wrist joints. The other
joints are fixed, which leads to an end-effector trajectory
approximately in a 2D plane. The DMP parameters θ are
initialized through locally weighted regression (10 basis
functions per dimension) on a demonstrated movement [10],
as shown in Fig. 1 (left). Algorithm parameters. PIBB is
parameterized as in Section V-A, except for the window size
for cost clustering (L = 20), and the number of rollouts in
an epoch (K = 10, 5 with the short string, and 5 with the
long string). For exploration, the covariance matrix for each
joint is initially set to Σ = 200 · I.

Results. Fig. 7 summarizes the results. During the first
30 rollouts, there is one skill (‘skill 1’), whose cost drops
over time after each update. Clustering the costs is possible
after 37 updates. The feature that best predicts the two cost
clusters is the height of the ball, which corresponds to our
intuition, since the initial height before movement is higher
if the string is shorter. The decision boundary for this feature
is 240 pixels, as visualized in the right two graphs in Fig. 7.
After the split, the exploration in the three joints mostly
decreases, enabling a ‘perfect’ epoch in which the robot is
successful in every trial for skill 1.1 in rollouts 60-70, and
a ‘near perfect’ epoch for skill 1.2 in rollouts 80-90.

VI. CONCLUSION

SODIRS autonomously discovers, organizes, and deter-
mines the applicability of skill options for task variations.
The key idea is to cluster the costs of recent rollouts, and
to determine decision boundaries on perceptual features that
predict which cluster a rollout belongs to. This leads to a
hierarchical structure in which skill options are applied to and
optimized separately for distinct task variations. Covariance
matrix adaptation is a key ingredient for SODIRS to work,
because it automatically switches between high exploration

(for quick convergence) and low exploration (necessary for
predictable cost clusters to arise).

The main open parameters of the algorithm are the number
of rollouts in an epoch K and the window for cost cluster-
ing L. The main limitation of the current implementation is
the decision stump, which we expect may fail when faced
with high-dimensional, redundant feature spaces, as in [14].
We are currently replacing the decision stump with more
robust classification algorithms.

REFERENCES

[1] Canada’s war on doorknobs. The Economist, Apr 19th, 2014.
[2] F. Stulp and O. Sigaud, “Robot skill learning: From reinforcement

learning to evolution strategies,” Paladyn. Journal of Behavioral
Robotics, vol. 4, no. 1, pp. 49–61, September 2013.

[3] J. Kober and J. Peters, “Policy search for motor primitives in robotics,”
in Advances in Neural Information Processing Systems (NIPS), 2008.

[4] B. da Silva, G. Konidaris, and A. Barto, “Learning parameterized
skills,” in Proc. of the 29th Int’l Conf. on Machine Learning, 2012.

[5] A. Kupcsik, M. Deisenroth, J. Peters, and G. Neumann, “Data-efficient
generalization of robot skills with contextual policy search,” in AAAI,
2013.

[6] D. Forte, A. Gams, J. Morimoto, and A. Ude, “On-line motion
synthesis and adaptation using a trajectory database,” Robotics and
Autonomous Systems, vol. 60, no. 10, pp. 1327 – 1339, 2012.

[7] C. Daniel, G. Neumann, and J. Peters, “Learning concurrent motor
skills in versatile solution spaces,” in Proceedings of the International
Conference on Robot Systems (IROS), 2012.

[8] F. Stulp, “Adaptive exploration for continual reinforcement learning,”
in International Conf. on Intelligent Robots and Systems (IROS), 2012.

[9] F. Stulp and O. Sigaud, “Path integral policy improvement with
covariance matrix adaptation,” in Proceedings of the 29th International
Conference on Machine Learning (ICML), 2012.

[10] A. Ijspeert, J. Nakanishi, P. Pastor, H. Hoffmann, and S. Schaal,
“Dynamical Movement Primitives: Learning attractor models for
motor behaviors,” Neural Computation, vol. 25, no. 2, 2013.

[11] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with
noise,” in Proceedings of the Int’l Conference on Knowledge Discovery
and Data Mining (KDD), 1996, pp. 226–231.

[12] W. I. Ai and P. Langley, “Induction of one-level decision trees,”
in Proceedings of the Ninth International Conference on Machine
Learning. Morgan Kaufmann, 1992, pp. 233–240.

[13] L. Chrisman, “Reinforcement learning with perceptual aliasing: The
perceptual distinctions approach,” in Proceedings of the Tenth National
Conference on Artificial Intelligence, 1992.

[14] J. Piater, S. Jodogne, R. Detry, D. Kraft, N. Krüger, O. Kroemer,
and J. Peters, “Learning visual representations for perception-action
systems,” Int. J. Rob. Res., vol. 30, no. 3, pp. 294–307, Mar. 2011.

[15] S. Calinon, P. Kormushev, and D. G. Caldwell, “Compliant skills ac-
quisition and multi-optima policy search with em-based reinforcement
learning,” Robotics and Autonomous Systems, vol. 61, no. 4, 2013.

	Introduction
	Formalization
	Task Variations and Parameterizable Skills
	Task Parameters and Features
	Problem Statement

	Related Work
	The SODIRS Algorithm
	Skill Optimization through Policy Improvement with PIBB
	Exploration
	Parameter Update
	Covariance Matrix Update
	Illustrative example

	Skill Option Discovery through Cost Clustering
	Skill Option Hierarchies through Decision Tree Learning

	Experimental Evaluation
	Petanque (simulation)
	Ball-in-cup (Meka humanoid)

	Conclusion
	References

