
Learning Space-Time Continuous Neural PDEs from
Partially Observed States

Valerii Iakovlev Markus Heinonen Harri Lähdesmäki
Department of Computer Science, Aalto University, Finland

{valerii.iakovlev, markus.o.heinonen, harri.lahdesmaki}@aalto.fi

Abstract

We introduce a novel grid-independent model for learning partial differential
equations (PDEs) from noisy and partial observations on irregular spatiotemporal
grids. We propose a space-time continuous latent neural PDE model with an
efficient probabilistic framework and a novel encoder design for improved data
efficiency and grid independence. The latent state dynamics are governed by a
PDE model that combines the collocation method and the method of lines. We
employ amortized variational inference for approximate posterior estimation and
utilize a multiple shooting technique for enhanced training speed and stability.
Our model demonstrates state-of-the-art performance on complex synthetic and
real-world datasets, overcoming limitations of previous approaches and effectively
handling partially-observed data. The proposed model outperforms recent methods,
showing its potential to advance data-driven PDE modeling and enabling robust,
grid-independent modeling of complex partially-observed dynamic processes.

1 Introduction

Modeling spatiotemporal processes allows to understand and predict the behavior of complex systems
that evolve over time and space (Cressie and Wikle, 2011). Partial differential equations (PDEs)
are a popular tool for this task as they have a solid mathematical foundation (Evans, 2010) and can
describe the dynamics of a wide range of physical, biological, and social phenomena (Murray, 2002;
Hirsch, 2007). However, deriving PDEs can be challenging, especially when the system’s underlying
mechanisms are complex and not well understood. Data-driven methods can bypass these challenges
(Brunton and Kutz, 2019). By learning the underlying system dynamics directly from data, we
can develop accurate PDE models that capture the essential features of the system. This approach
has changed our ability to model complex systems and make predictions about their behavior in a
data-driven manner.

While current data-driven PDE models have been successful at modeling complex spatiotemporal
phenomena, they often operate under various simplifying assumptions such as regularity of the spatial
or temporal grids (Long et al., 2018; Kochkov et al., 2021; Pfaff et al., 2021; Li et al., 2021; Han et al.,
2022; Poli et al., 2022), discreteness in space or time (Seo et al., 2020; Pfaff et al., 2021; Lienen and
Günnemann, 2022; Brandstetter et al., 2022), and availability of complete and noiseless observations
(Long et al., 2018; Pfaff et al., 2021; Wu et al., 2022). Such assumptions become increasingly limiting
in more realistic scenarios with scarce data and irregularly spaced, noisy and partial observations.

We address the limitations of existing methods and propose a space-time continuous and grid-
independent model that can learn PDE dynamics from noisy and partial observations made on
irregular spatiotemporal grids. Our main contributions include:

Source code and datasets can be found in our github repository.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/yakovlev31/LatentNeuralPDEs

• Development of an efficient generative modeling framework for learning latent neural PDE
models from noisy and partially-observed data;

• Novel PDE model that merges two PDE solution techniques – the collocation method and the
method of lines – to achieve space-time continuity, grid-independence, and data efficiency;

• Novel encoder design that operates on local spatiotemporal neighborhoods for improved
data-efficiency and grid-independence.

Our model demonstrates state-of-the-art performance on complex synthetic and real-world datasets,
opening up the possibility for accurate and efficient modeling of complex dynamic processes and
promoting further advancements in data-driven PDE modeling.

2 Problem Setup

In this work we are concerned with modeling of spatiotemporal processes. For brevity, we present
our method for a single observed trajectory, but extension to multiple trajectories is straightforward.
We observe a spatiotemporal dynamical system evolving over time on a spatial domain Ω. The
observations are made at M arbitrary consecutive time points t1:M := (t1, . . . , tM) and N arbitrary
observation locations x1:N := (x1, . . . ,xN), where xi ∈ Ω. This generates a sequence of obser-
vations u1:M := (u1, . . . ,uM), where ui ∈ RN×D contains D-dimensional observations at the N

observation locations. We define uj
i as the observation at time ti and location xj . The number of

time points and observation locations may vary between different observed trajectories.

We assume the data is generated by a dynamical system with a latent state z(t,x) ∈ Rd, where t is
time and x ∈ Ω is spatial location. The latent state is governed by an unknown PDE and is mapped
to the observed state u(t,x) ∈ RD by an unknown observation function g and likelihood model p:

∂z(t, x)

∂t
= F (z(t,x), ∂xz(t,x), ∂

2
xz(t,x), . . .), (1)

u(t,x) ∼ p(g(z(t,x))), (2)
where ∂•

xz(t,x) denotes partial derivatives wrt x.

In this work we make two assumptions that are highly relevant in real-world scenarios. First, we
assume partial observations, that is, the observed state u(t,x) does not contain all information about
the latent state z(t,x) (e.g., z(t,x) contains pressure and velocity, but u(t,x) contains information
only about the pressure). Second, we assume out-of-distribution time points and observation locations,
that is, their number, positions, and density can change arbitrarily at test time.

3 Model

Figure 1: Model sketch. Initial latent
state z(t1,x) is evolved via Fθdyn to the
following latent states which are then
mapped to the observed states by gθdec .

Here we describe the model components (Sec. 3.1) which
are then used to construct the generative model (Sec. 3.2).

3.1 Model components

Our model consists of four parts: space-time continuous
latent state z(t,x) and observed state u(t,x), a dynamics
function Fθdyn governing the temporal evolution of the
latent state, and an observation function gθdec mapping the
latent state to the observed state (see Figure 1). Next, we
describe these components in detail.

Latent state. To define a space-time continuous latent state z(t,x) ∈ Rd, we introduce z(t) :=
(z1(t), . . . ,zN (t)) ∈ RN×d, where each zi(t) ∈ Rd corresponds to the observation location xi.
Then, we define the latent state z(t,x) as a spatial interpolant of z(t):

z(t,x) := Interpolate(z(t))(x), (3)
where Interpolate(·) maps z(t) to an interpolant which can be evaluated at any spatial location
x ∈ Ω (see Figure 2). We do not rely on a particular interpolation method, but in this work we use
linear interpolation as it shows good performance and facilitates efficient implementation.

2

Figure 2: Latent state z(t,x)
defined as an interpolant of
z(t) := (z1(t), ...,z4(t)).

Latent state dynamics. Given a space-time continuous latent state,
one can naturally define its dynamics in terms of a PDE:

∂z(t, x)

∂t
= Fθdyn(z(t,x), ∂xz(t,x), ∂

2
xz(t,x), . . .), (4)

where Fθdyn is a dynamics function with parameters θdyn. This is
a viable approach known as the collocation method (Kansa, 1990;
Cheng, 2009), but it has several limitations. It requires us to de-
cide which partial derivatives to include in the dynamics function,
and also requires an interpolant which has all the selected partial
derivatives (e.g., linear interpolant has only first order derivatives).
To avoid these limitations, we combine the collocation method with
another PDE solution technique known as the method of lines (Schiesser, 1991; Hamdi et al., 2007),
which approximates spatial derivatives ∂•

xz(t,x) using only evaluations of z(t,x), and then let the
dynamics function approximate all required derivatives in a data-driven manner. To do that, we define
the spatial neighborhood of x as NS(x), which is a set containing x and its spatial neighbors, and
also define z(t,NS(x)), which is a set of evaluations of the interpolant z(t,x) at points in NS(x):

NS(x) := {x′ ∈ Ω : x′ = x or x′ is a spatial neighbor of x}, (5)

z(t,NS(x)) := {z(t,x′) : x′ ∈ NS(x)}, (6)

and assume that this information is sufficient to approximate all required spatial derivatives at x.
This is a reasonable assumption since, e.g., finite differences can approximate derivatives using only
function values and locations of the evaluation points. Hence, we define the dynamics of z(t,x) as

∂z(t,x)

∂t
= Fθdyn(NS(x), z(t,NS(x))), (7)

which is defined only in terms of the values of the latent state, but not its spatial derivatives.

Figure 3: Example of
NS(xi). Instead of us-
ing the observation lo-
cations (dots) to define
spatial neighbors, we
use spatial locations ar-
ranged in a fixed prede-
fined pattern (crosses).

One way to define the spatial neighbors for x is in terms of the observa-
tion locations x1:N (e.g., use the nearest ones) as was done, for example,
in (Long et al., 2018; Pfaff et al., 2021; Lienen and Günnemann, 2022).
Instead, we utilize continuity of the latent state z(t,x), and define the spa-
tial neighbors in a grid-independent manner as a fixed number of points
arranged in a predefined patter around x (see Figure 3). This allows to
fix the shape and size of the spatial neighborhoods in advance, making
them independent of the observation locations. In this work we use the
spatial neighborhood consisting of two concentric circles of radius r and
r/2, each circle contains 8 evaluation points as in Figure 3. In Appendix
D we compare neighborhoods of various shapes and sizes.

Equation 7 allows to simulate the temporal evolution of z(t,x) at any
spatial location. However, since z(t,x) is defined only in terms of a spatial
interpolant of z(t) (see Eq. 3), with zi(t) = z(t,xi), it is sufficient to
simulate the latent state dynamics only at the observation locations x1:N .
Hence, we can completely characterize the latent state dynamics in terms
of a system of N ODEs:

dz(t)

dt
:=


dz1(t)

dt
...

dzN (t)
dt

 =


∂z(t,x1)

∂t
...

∂z(t,xN)
∂t

 =

 Fθdyn(NS(x1), z(t,NS(x1)))
...

Fθdyn(NS(xN), z(t,NS(xN)))

 . (8)

For convenience, we define z(t; t1, z1, θdyn) := ODESolve(t; t1, z1, θdyn) as the solution of the ODE
system in Equation 8 at time t with initial state z(t1) = z1 and parameters θdyn. We also define
z(t,x; t1, z1, θdyn) as the spatial interpolant of z(t; t1, z1, θdyn) as in Equation 3. We solve the ODEs
using off the shelf differentiable ODE solvers from torchdiffeq package (Chen, 2018). Note that we
solve for the state z(t) only at the observation locations x1:N , so to get the neighborhood values
z(t,NS(xi)) we perform interpolation at every step of the ODE solver.

3

Observation function. We define the mapping from the latent space to the observation space as a
parametric function gθdec with parameters θdec:

u(t,x) ∼ N (gθdec(z(t,x)), σ
2
uID), (9)

where N is the Gaussian distribution, σ2
u is noise variance, and ID is D-by-D identity matrix.

3.2 Generative model

Figure 4: Multiple shooting
splits a trajectory with one ini-
tial state (top) into two sub-
trajectories with two initial
states (bottom) and tries to
minimize the gap between sub-
trajectories (orange arrow).

Training models of dynamic systems is often challenging due to long
training times and training instabilities (Ribeiro et al., 2020; Metz
et al., 2021). To alleviate these problems, various heuristics have
been proposed, such as progressive lengthening and splitting of the
training trajectories (Yildiz et al., 2019; Um et al., 2020). We use
multiple shooting (Bock and Plitt, 1984; Voss et al., 2004), a simple
and efficient technique which has demonstrated its effectiveness in
ODE learning applications (Jordana et al., 2021; Hegde et al., 2022).
We extent the multiple shooting framework for latent ODE models
presented in (Iakovlev et al., 2023) to our PDE modeling setup by
introducing spatial dimensions in the latent state and designing an
encoder adapted specifically to the PDE setting (Section 4.2).

Multiple shooting splits a single trajectory {z(ti)}i=1,...,M with
one initial state z1 into B consecutive non-overlapping sub-
trajectories {z(ti)}i∈Ib

, b = 1, . . . , B with B initial states s1:B :=
(s1, . . . , sB) while imposing a continuity penalty between the sub-
trajectories (see Figure 4). The index set Ib contains time point
indices for the b’th sub-trajectory. We also denote the temporal posi-
tion of sb as t[b] and place sb at the first time point preceding the b’th sub-trajectory (except s1 which
is placed at t1). Note that the shooting states sb have the same dimension as the original latent state
z(t) i.e., sb ∈ RN×d. Multiple shooting allows to parallelize the simulation over the sub-trajectories
and shortens the simulation intervals thus improving the training speed and stability. In Appendix D
we demonstrate the effect of multiple shooting on the model training and prediction accuracy.

We begin by defining the prior over the unknown model parameters and initial states:

p(s1:B , θdyn, θdec) = p(s1:B |θdyn)p(θdyn)p(θdec), (10)

where p(θdyn) and p(θdec) are zero-mean diagonal Gaussians, and the continuity inducing prior
p(s1:B |θdyn) is defined as in (Iakovlev et al., 2023)

p(s1:B |θdyn) = p(s1)

B∏
b=2

p(sb|sb−1, θdyn). (11)

Intuitively, the continuity prior p(sb|sb−1, θdyn) takes the initial latent state sb−1, simulates it forward
from time t[b−1] to t[b] to get µ[b] = ODESolve(t[b]; t[b−1], sb−1, θdyn), and then forces µ[b] to
approximately match the initial state sb of the next sub-trajectory, thus promoting continuity of the
full trajectory. We assume the continuity inducing prior factorizes across the grid points, i.e.,

p(s1:B |θdyn) =

 N∏
j=1

p(sj1)

 B∏
b=2

N∏
j=1

p(sjb|sb−1, θdyn)

 , (12)

=

 N∏
j=1

p(sj1)

 B∏
b=2

N∏
j=1

N
(
sjb|z(t[b],xj ; t[b−1], sb−1, θdyn), σ

2
cId

) , (13)

where p(sj1) is a diagonal Gaussian, and parameter σ2
c controls the strength of the prior. Note

that the term z(t[b],xj ; t[b−1], sb−1, θdyn) in Equation 13 equals the ODE forward solution
ODESolve(t[b]; t[b−1], sb−1, θdyn) at grid location xj .

4

Finally, we define our generative in terms of the following sampling procedure:

θdyn, θdec, s1:B ∼ p(θdyn)p(θdec)p(s1:B |θdyn), (14)
z(ti) = z(ti; t[b], sb, θdyn), b ∈ {1, ..., B}, i ∈ Ib, (15)

uj
i ∼ p(uj

i |gθdec(z(ti,xj)), i = 1, . . . ,M, j = 1, . . . , N, (16)

with the following joint distribution (see Appendix A for details about the model specification.):

p(u1:M , s1:B , θdyn, θdec) =

B∏
b=1

∏
i∈Ib

N∏
j=1

[
p(uj

i |sb, θdyn, θdec)
]
p(s1:B |θdyn)p(θdyn)p(θdec). (17)

4 Parameter Inference, Encoder, and Forecasting

4.1 Amortized variational inference

We approximate the true posterior over the model parameters and initial states p(s1:B , θdyn, θdec|u1:M)
using variational inference (Blei et al., 2017) with the following approximate posterior:

q(θdyn, θdec, s1:B) = q(θdyn)q(θdec)q(s1:B) = qψdyn(θdyn)qψdec(θdec)

B∏
b=1

N∏
j=1

qψj
b
(sjb), (18)

where qψdyn , qψdec and qψj
b

are diagonal Gaussians, and ψdyn, ψdec and ψj
b are variational parameters.

To avoid direct optimization over the local variational parameters ψj
b , we use amortized variational

inference (Kingma and Welling, 2013) and train an encoder hθenc with parameters θenc which maps
observations u1:M to ψj

b (see Section 4.2). For brevity, we sometimes omit the dependence of
approximate posteriors on variational parameters and simply write e.g., q(sjb).

In variational inference the best approximation of the posterior is obtained by minimizing the
Kullback-Leibler divergence: KL

[
q(θdyn, θdec, s1:B)∥p(θdyn, θdec, s1:B |u1:N)

]
, which is equivalent

to maximizing the evidence lower bound (ELBO), defined for our model as:

L =

B∑
b=1

∑
i∈Ib

N∑
j=1

Eq(sb,θdyn,θdec)

[
log p(uj

i |sb, θdyn, θdec)
]

︸ ︷︷ ︸
(i) observation model

−
N∑
j=1

KL
[
q(sj1)∥p(s

j
1)
]

︸ ︷︷ ︸
(ii) initial state prior

−
B∑

b=2

N∑
j=1

Eq(θdyn,sb−1)

[
KL

[
q(sjb)∥p(s

j
b|sb−1, θdyn)

]]
︸ ︷︷ ︸

(iii) continuity prior

−KL
[
q(θdyn)∥p(θdyn)

]︸ ︷︷ ︸
(iv) dynamics prior

−KL
[
q(θdec)∥p(θdec)

]︸ ︷︷ ︸
(v) decoder prior

.

The terms (ii), (iv), and (v) are computed analytically, while terms (i) and (iii) are approximated
using Monte Carlo integration for expectations, and numerical ODE solvers for initial value problems.
See Appendix A and B approximate posterior details and derivation and computation of the ELBO.

4.2 Encoder

Here we describe our encoder which maps observations u1:M to local variational parameters ψj
b

required to sample the initial latent state of the sub-trajectory b at time point t[b] and observation
location xj . Similarly to our model, the encoder should be data-efficient and grid-independent.

Similarly to our model (Section 3.1), we enable grid-independence by making the encoder operate on
spatial interpolants of the observations u1:M (even if they are noisy):

ui(x) := Interpolate(ui)(x), i = 1, . . . ,M, (19)

where spatial interpolation is done separately for each time point i. We then use the interpolants
ui(x) to define the spatial neighborhoods NS(x) in a grid-independent manner.

5

Figure 5: Spatiotemporal neighborhood of a multiple shooting time point t[b] = ti and location
xj , u[t[b],xj] (denoted by green, blue and orange crosses and the dots inside), is mapped to the
variational parameters ψj

b via the encoder.

To improve data-efficiency, we assume ψj
b does not depend on the whole observed sequence u1:M ,

but only on some local information in a spatiotemporal neighborhood of t[b] and xj . We define the
temporal neighborhood of t[b] as

NT(t[b]) := {k : |tk − t[b]| ≤ δT , k = 1, . . . ,M}, (20)

where δT is a hyperparameter controlling the neighborhood size, and then define the spatiotemporal
neighborhood of t[b] and xj as

u[t[b],xj] := {uk(x) : k ∈ NT(t[b]),x ∈ NS(xj)}. (21)

Our encoder operates on such spatiotemporal neighborhoods u[t[b],xj] and works in three steps
(see Figure 5). First, for each time index k ∈ NT(t[b]) it aggregates the spatial information
{uk(x)}x∈N (xj) into a vector αS

k. Then, it aggregates the spatial representations αS
k across time into

another vector αT
[b] which is finally mapped to the variational parameters ψj

b as follows:

ψj
b = hθenc(u[t[b],xj]) = hread(htemporal(hspatial(u[t[b],xj]))). (22)

Spatial aggregation. Since the spatial neighborhoods are fixed and remain identical for all spatial
locations (see Figure 5), we implement the spatial aggregation function hspatial as an MLP which
takes elements of the set {uk(x)}x∈NS(xj) stacked in a fixed order as the input.

Temporal aggregation. We implement htemporal as a stack of transformer layers (Vaswani et al.,
2017) which allows it to operate on input sets of arbitrary size. We use time-aware attention and
continuous relative positional encodings (Iakovlev et al., 2023) which were shown to be effective
on data from dynamical systems observed at irregular time intervals. Each transformer layer takes
a layer-specific input set {ξin

k }k∈NT(t[b]), where ξin
k is located at tk, and maps it to an output set

{ξout
k }k∈NT(t[b]), where each ξout

k is computed using only the input elements within distance δT from
tk, thus promoting temporal locality. Furthermore, instead of using absolute positional encodings
the model assumes the behavior of the system does not depend on time and uses relative temporal
distances to inject positional information. The first layer takes {αS

k}k∈NT(t[b]) as the input, while the
last layer returns a single element at time point t[b], which represents the temporal aggregation αT

[b].

Variational parameter readout. Since αT
i is a fixed-length vector, we implement hread as an MLP.

6

Figure 6: Top: SHALLOW WATER dataset contains observations of the wave height in a pool of water.
Middle: NAVIER-STOKES dataset contains observations of the concentration of a species transported
in a fluid via buoyancy and velocity field. Bottom: SCALAR FLOW dataset contains observations of
smoke plumes raising in warm air.

4.3 Forecasting

Given initial observations ũ1:m at time points t1:m, we predict the future observation ũn at a time
point tn > tm as the expected value of the approximate posterior predictive distribution:

p(ũn|ũ1:m,u1:M) ≈
∫

p(ũn|s̃m, θdyn, θdec)q(s̃m)q(θdyn)q(θdec)ds̃mdθdyndθdec. (23)

The expected value is estimated via Monte Carlo integration (see Appendix C.4 for details).

5 Experiments

We use three challenging datasets: SHALLOW WATER, NAVIER-STOKES, and SCALAR FLOW which
contain observations of spatiotemporal system at N ≈ 1100 grid points evolving over time (see
Figure 6). The first two datasets are synthetic and generated using numeric PDE solvers (we use scikit-
fdiff (Cellier, 2019) for SHALLOW WATER, and PhiFlow (Holl et al., 2020) for NAVIER-STOKES),
while the third dataset contains real-world observations (camera images) of smoke plumes raising
in warm air (Eckert et al., 2019). In all cases the observations are made at irregular spatiotemporal
grids and contain only partial information about the true system state. In particular, for SHALLOW
WATER we observe only the wave height, for NAVIER-STOKES we observe only the concentration of
the species, and for SCALAR FLOW only pixel densities are known. All datasets contain 60/20/20
training/validation/testing trajectories. See Appendix C for details.

We train our model for 20k iterations with constant learning rate of 3e-4 and linear warmup. The
latent spatiotemporal dynamics are simulated using differentiable ODE solvers from the torchdiffeq
package (Chen, 2018) (we use dopri5 with rtol=1e-3, atol=1e-4, no adjoint). Training is done on a
single NVIDIA Tesla V100 GPU, with a single run taking 3-4 hours. We use the mean absolute error
(MAE) on the test set as the performance measure. Error bars are standard errors over 4 random seeds.
For forecasting we use the expected value of the posterior predictive distribution. See Appendix C
for all details about the training, validation, and testing setup.

Latent state dimension. Here we show the advantage of using latent-space models on partially
observed data. We change the latent state dimension d from 1 to 5 and measure the test MAE.
Note that for d = 1 we effectively have a data-space model which models the observations without
trying to reconstruct the missing states. Figure 7 shows that in all cases there is improvement in
performance as the latent dimension grows. For SHALLOW WATER and NAVIER-STOKES the true
latent dimension is 3. Since SCALAR FLOW is a real-world process, there is no true latent dimension.
As a benchmark, we provide the performance of our model trained on fully-observed versions of the
synthetic datasets (we use the same architecture and hyperparameters, but fix d to 3). Figure 7 also
shows examples of model predictions (at the final time point) for different values of d. We see a huge
difference between d = 1 and d = 3, 5. Note how apparently small difference in MAE at d = 1 and
d = 5 for SCALAR FLOW corresponds to a dramatic improvement in the prediction quality.

7

Figure 7: Left: Test MAE vs latent state dimension d. Black lines are test MAE on fully-observed
versions of the datasets (± standard error). Right: Model predictions for different d.

Figure 8: Predictions on spatial grids of dif-
ferent density (linear interpolant, test data).

Grid independence. In this experiment we demon-
strate the grid-independence property of our model
by training it on grids with ≈ 1100 observation lo-
cations, and then testing on a coarser, original, and
finer grids. We evaluate the effect of using differ-
ent interpolation methods by repeating the experiment
with linear, k-nearest neighbors, and inverse distance
weighting (IDW) interpolants. For SHALLOW WA-
TER and NAVIER-STOKES the coarser/finer grids con-
tain 290/4200 nodes, while for SCALAR FLOW we
have 560/6420 nodes, respectively. Table 1 shows the
model’s performance for different spatial grids and in-
terpolation methods. We see that all interpolation meth-
ods perform rather similarly on the original grid, but
linear interpolation and IDW tend to perform better
on finer/coarser grids than k-NN. Performance drop
on coarse grids is expected since we get less accurate
information about the system’s initial state and simu-
late the dynamics on coarse grids. Figure 8 also shows
examples of model predictions (at the final time point) for different grid sizes and linear interpolant.

Table 1: Test MAE for different interpolation methods.

Dataset Grid k-NN Linear IDW

Coarser 0.046± 0.002 0.034± 0.001 0.038± 0.002
Shallow Water Original 0.017± 0.002 0.016± 0.002 0.017± 0.003

Finer 0.031± 0.003 0.017± 0.003 0.030± 0.002

Coarser 0.087± 0.006 0.069± 0.009 0.066± 0.006
Navier Stokes Original 0.048± 0.009 0.041± 0.003 0.045± 0.010

Finer 0.054± 0.009 0.044± 0.004 0.049± 0.002

Coarser 0.041± 0.021 0.032± 0.009 0.035± 0.012
Scalar Flow Original 0.019± 0.001 0.018± 0.000 0.018± 0.001

Finer 0.040± 0.016 0.026± 0.006 0.028± 0.007

Comparison to other models. We
test our model against recent spa-
tiotemporal models from the litera-
ture: Finite Element Networks (FEN)
(Lienen and Günnemann, 2022), Neu-
ral Stochastic PDEs (NSPDE) (Salvi
et al., 2021), MAgNet (Boussif et al.,
2022), and DINo (Yin et al., 2023).
We also use Neural ODEs (NODE)
(Chen et al., 2018) as the baseline. We
use the official implementation for all
models and tune their hyperparame-
ters for the best performance (see App.
C for details). For SHALLOW WATER and NAVIER-STOKES we use the first 5 time points to infer
the latent state and then predict the next 20 time points, while for SCALAR FLOW we use the first
10 points for inference and predict the next 10 points. For synthetic data, we consider two settings:
one where the data is fully observed (i.e., the complete state is recorded) – a setting for which most
models are designed – and one where the data is partially observed (i.e., only part of the full state

8

is given, as discussed at the beginning of this section). The results are shown in Table 2. We see
that some of the baseline models achieve reasonably good results on the fully-observed datasets,
but they fail on partially-observed data, while our model maintains strong performance in all cases.
Apart from the fully observed SHALLOW WATER dataset where FEN performs slightly better, our
method outperforms other methods on all other datasets by a clear margin. See Appendix C for
hyperparameter details. In Appendix E we demonstrate our model’s capability to learn dynamics
from noisy data. In Appendix F we show model predictions on different datasets.

Table 2: Test MAE for different models.

Model Shallow Water
(Full)

Shallow Water
(Partial)

Navier Stokes
(Full)

Navier Stokes
(Partial) Scalar Flow

NODE 0.036± 0.000 0.084± 0.001 0.053± 0.001 0.109± 0.001 0.056± 0.001
FEN 0.011± 0.002 0.064± 0.005 0.031± 0.001 0.108± 0.002 0.062± 0.005
SNPDE 0.019± 0.002 0.033± 0.001 0.042± 0.004 0.075± 0.002 0.059± 0.002
DINo 0.027± 0.001 0.063± 0.003 0.047± 0.001 0.113± 0.002 0.059± 0.001
MAgNet NA 0.061± 0.001 NA 0.103± 0.003 0.056± 0.003
Ours 0.014± 0.002 0.016± 0.002 0.024± 0.003 0.041± 0.003 0.042± 0.001

6 Related Work

Closest to our work is Ayed et al. (2022), where they considered the problem of learning PDEs from
partial observations and proposed a discrete and grid-dependent model that is restricted to regular
spatiotemporal grids. Another related work is that of Nguyen et al. (2020), where they proposed a
variational inference framework for learning ODEs from noisy and partially-observed data. However,
they consider only low-dimensional ODEs and are restricted to regular grids.

Other works considered learning the latent space PDE dynamics using the “encode-process-decode”
approach. Pfaff et al. (2021) use GNN-based encoder and dynamics function and map the observations
to the same spatial grid in the latent space and learn the latent space dynamics. Sanchez et al. (2020)
use a similar approach but with CNNs and map the observations to a coarser latent grid and learn the
coarse-scale dynamics. Wu et al. (2022) use CNNs to map observations to a low-dimensional latent
vector and learn the latent dynamics. However, all these approaches are grid-dependent, limited to
regular spatial/temporal grids, and require fully-observed data.

Interpolation has been used in numerous studies for various applications. Works such as (Alet et al.,
2019; Jiang et al., 2020; Han et al., 2022) use interpolation to map latent states on coarse grids to
observations on finer grids. Hua et al. (2022) used interpolation as a post-processing step to obtain
continuous predictions, while Boussif et al. (2022) used it to recover observations at missing nodes.

Another approach for achieving grid-independence was presented in neural operators (Li et al., 2021;
Lu et al., 2021), which learn a mapping between infinite-dimensional function spaces and represent
the mapping in a grid-independent manner.

7 Conclusion

We proposed a novel space-time continuous, grid-independent model for learning PDE dynamics
from noisy and partial observations on irregular spatiotemporal grids. Our contributions include
an efficient generative modeling framework, a novel latent PDE model merging collocation and
method of lines, and a data-efficient, grid-independent encoder design. The model demonstrates
state-of-the-art performance on complex datasets, highlighting its potential for advancing data-driven
PDE modeling and enabling accurate predictions of spatiotemporal phenomena in diverse fields.
However, our model and encoder operate on every spatial and temporal location which might not be
the most efficient approach and hinders scaling to extremely large grids, hence research into more
efficient latent state extraction and dynamics modeling methods is needed.

9

References
Ferran Alet, Adarsh Keshav Jeewajee, Maria Bauza Villalonga, Alberto Rodriguez, Tomas Lozano-

Perez, and Leslie Kaelbling. Graph element networks: adaptive, structured computation and
memory. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pages 212–222. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/
v97/alet19a.html.

Ibrahim Ayed, Emmanuel de Bézenac, Arthur Pajot, and Patrick Gallinari. Modelling spatiotemporal
dynamics from earth observation data with neural differential equations. Machine Learning, 111
(6):2349–2380, 2022. doi: 10.1007/s10994-022-06139-2. URL https://doi.org/10.1007/
s10994-022-06139-2.

David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational inference: A review for statisticians.
Journal of the American Statistical Association, 112(518):859–877, Apr 2017. ISSN 1537-274X.
doi: 10.1080/01621459.2017.1285773. URL http://dx.doi.org/10.1080/01621459.2017.
1285773.

H.G. Bock and K.J. Plitt. A multiple shooting algorithm for direct solution of optimal control
problems*. IFAC Proceedings Volumes, 17(2):1603–1608, 1984. ISSN 1474-6670. doi: https://doi.
org/10.1016/S1474-6670(17)61205-9. URL https://www.sciencedirect.com/science/
article/pii/S1474667017612059. 9th IFAC World Congress: A Bridge Between Control
Science and Technology, Budapest, Hungary, 2-6 July 1984.

Oussama Boussif, Yoshua Bengio, Loubna Benabbou, and Dan Assouline. MAgnet: Mesh agnostic
neural PDE solver. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho,
editors, Advances in Neural Information Processing Systems, 2022. URL https://openreview.
net/forum?id=bx2roi8hca8.

Johannes Brandstetter, Daniel E. Worrall, and Max Welling. Message passing neural PDE solvers. In
International Conference on Learning Representations, 2022. URL https://openreview.net/
forum?id=vSix3HPYKSU.

Steven L. Brunton and J. Nathan Kutz. Data-Driven Science and Engineering: Machine Learning, Dy-
namical Systems, and Control. Cambridge University Press, 2019. doi: 10.1017/9781108380690.

Nicolas Cellier. scikit-fdiff, 2019. URL https://gitlab.com/celliern/scikit-fdiff.

Ricky T. Q. Chen. torchdiffeq, 2018. URL https://github.com/rtqichen/torchdiffeq.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary
differential equations, 2018.

Alexander H.-D. Cheng. Radial basis function collocation method. In Computational Mechanics,
pages 219–219, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ISBN 978-3-540-75999-7.

N. Cressie and C. K. Wikle. Statistics for Spatio-Temporal Data. Wiley, 2011. ISBN 9780471692744.
URL https://books.google.fi/books?id=-kOC6D0DiNYC.

Marie-Lenat Eckert, Kiwon Um, and Nils Thuerey. Scalarflow: A large-scale volumetric data set of
real-world scalar transport flows for computer animation and machine learning. ACM Transactions
on Graphics, 38(6):239, 2019.

L. C. Evans. Partial Differential Equations. American Mathematical Society, 2010. ISBN
9780821849743.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Yee Whye Teh and Mike Titterington, editors, Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of
Machine Learning Research, pages 249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May
2010. PMLR. URL https://proceedings.mlr.press/v9/glorot10a.html.

10

https://proceedings.mlr.press/v97/alet19a.html
https://proceedings.mlr.press/v97/alet19a.html
https://doi.org/10.1007/s10994-022-06139-2
https://doi.org/10.1007/s10994-022-06139-2
http://dx.doi.org/10.1080/01621459.2017.1285773
http://dx.doi.org/10.1080/01621459.2017.1285773
https://www.sciencedirect.com/science/article/pii/S1474667017612059
https://www.sciencedirect.com/science/article/pii/S1474667017612059
https://openreview.net/forum?id=bx2roi8hca8
https://openreview.net/forum?id=bx2roi8hca8
https://openreview.net/forum?id=vSix3HPYKSU
https://openreview.net/forum?id=vSix3HPYKSU
https://gitlab.com/celliern/scikit-fdiff
https://github.com/rtqichen/torchdiffeq
https://books.google.fi/books?id=-kOC6D0DiNYC
https://proceedings.mlr.press/v9/glorot10a.html

S. Hamdi, W. E. Schiesser, and G. W Griffiths. Method of lines. Scholarpedia, 2(7):2859, 2007. doi:
10.4249/scholarpedia.2859. revision #26511.

Xu Han, Han Gao, Tobias Pfaff, Jian-Xun Wang, and Liping Liu. Predicting physics in mesh-reduced
space with temporal attention. In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=XctLdNfCmP.

Pashupati Hegde, Cagatay Yildiz, Harri Lähdesmäki, Samuel Kaski, and Markus Heinonen. Vari-
ational multiple shooting for bayesian ODEs with gaussian processes. In The 38th Conference
on Uncertainty in Artificial Intelligence, 2022. URL https://openreview.net/forum?id=
r2NuhIUoceq.

Charles Hirsch. Numerical computation of internal and external flows: The fundamentals of compu-
tational fluid dynamics. Elsevier, 2007.

Philipp Holl, Vladlen Koltun, Kiwon Um, and Nils Thuerey. phiflow: A differentiable pde
solving framework for deep learning via physical simulations. In NeurIPS Workshop on Dif-
ferentiable vision, graphics, and physics applied to machine learning, 2020. URL https:
//montrealrobotics.ca/diffcvgp/assets/papers/3.pdf.

Chuanbo Hua, Federico Berto, Michael Poli, Stefano Massaroli, and Jinkyoo Park. Efficient contin-
uous spatio-temporal simulation with graph spline networks. In ICML 2022 2nd AI for Science
Workshop, 2022. URL https://openreview.net/forum?id=PBT0Vftuji.

Valerii Iakovlev, Cagatay Yildiz, Markus Heinonen, and Harri Lähdesmäki. Latent neural ODEs
with sparse bayesian multiple shooting. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=moIlFZfj_1b.

Chiyu lMaxr Jiang, Soheil Esmaeilzadeh, Kamyar Azizzadenesheli, Karthik Kashinath, Mustafa
Mustafa, Hamdi A. Tchelepi, Philip Marcus, Mr Prabhat, and Anima Anandkumar. Mesh-
freeflownet: A physics-constrained deep continuous space-time super-resolution framework. SC20:
International Conference for High Performance Computing, Networking, Storage and Analysis,
Nov 2020. doi: 10.1109/sc41405.2020.00013. URL http://dx.doi.org/10.1109/SC41405.
2020.00013.

Armand Jordana, Justin Carpentier, and Ludovic Righetti. Learning dynamical systems from noisy
sensor measurements using multiple shooting, 2021.

E.J. Kansa. Multiquadrics—a scattered data approximation scheme with applications to computational
fluid-dynamics—ii solutions to parabolic, hyperbolic and elliptic partial differential equations.
Computers and Mathematics with Applications, 19(8):147–161, 1990. ISSN 0898-1221. doi:
https://doi.org/10.1016/0898-1221(90)90271-K. URL https://www.sciencedirect.com/
science/article/pii/089812219090271K.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2013.

Dmitrii Kochkov, Jamie A. Smith, Ayya Alieva, Qing Wang, Michael P. Brenner, and Stephan
Hoyer. Machine learning–accelerated computational fluid dynamics. Proceedings of the National
Academy of Sciences, 118(21):e2101784118, 2021. doi: 10.1073/pnas.2101784118. URL https:
//www.pnas.org/doi/abs/10.1073/pnas.2101784118.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=c8P9NQVtmnO.

Marten Lienen and Stephan Günnemann. Learning the dynamics of physical systems from sparse ob-
servations with finite element networks. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=HFmAukZ-k-2.

11

https://openreview.net/forum?id=XctLdNfCmP
https://openreview.net/forum?id=r2NuhIUoceq
https://openreview.net/forum?id=r2NuhIUoceq
https://montrealrobotics.ca/diffcvgp/assets/papers/3.pdf
https://montrealrobotics.ca/diffcvgp/assets/papers/3.pdf
https://openreview.net/forum?id=PBT0Vftuji
https://openreview.net/forum?id=moIlFZfj_1b
http://dx.doi.org/10.1109/SC41405.2020.00013
http://dx.doi.org/10.1109/SC41405.2020.00013
https://www.sciencedirect.com/science/article/pii/089812219090271K
https://www.sciencedirect.com/science/article/pii/089812219090271K
https://www.pnas.org/doi/abs/10.1073/pnas.2101784118
https://www.pnas.org/doi/abs/10.1073/pnas.2101784118
https://openreview.net/forum?id=c8P9NQVtmnO
https://openreview.net/forum?id=HFmAukZ-k-2

Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. PDE-net: Learning PDEs from data. In
Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 3208–3216.
PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/long18a.html.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning nonlin-
ear operators via deeponet based on the universal approximation theorem of operators. Nature Ma-
chine Intelligence, 3(3):218–229, Mar 2021. ISSN 2522-5839. doi: 10.1038/s42256-021-00302-5.
URL http://dx.doi.org/10.1038/s42256-021-00302-5.

Luke Metz, C. Daniel Freeman, Samuel S. Schoenholz, and Tal Kachman. Gradients are not all you
need, 2021.

James D. Murray. Mathematical Biology I. An Introduction, volume 17 of Interdisciplinary Applied
Mathematics. Springer, New York, 3 edition, 2002. doi: 10.1007/b98868.

Duong Nguyen, Said Ouala, Lucas Drumetz, and Ronan Fablet. Variational deep learning for the
identification and reconstruction of chaotic and stochastic dynamical systems from noisy and
partial observations. ArXiv, abs/2009.02296, 2020.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-based
simulation with graph networks. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=roNqYL0_XP.

Michael Poli, Stefano Massaroli, Federico Berto, Jinkyoo Park, Tri Dao, Christopher Re, and Stefano
Ermon. Transform once: Efficient operator learning in frequency domain. In ICML 2022 2nd AI
for Science Workshop, 2022. URL https://openreview.net/forum?id=x1fNT5yj41N.

Antônio H. Ribeiro, Koen Tiels, Jack Umenberger, Thomas B. Schön, and Luis A. Aguirre. On the
smoothness of nonlinear system identification. Automatica, 121:109158, 2020. ISSN 0005-1098.
doi: https://doi.org/10.1016/j.automatica.2020.109158. URL https://www.sciencedirect.
com/science/article/pii/S0005109820303563.

Cristopher Salvi, Maud Lemercier, and Andris Gerasimovics. Neural stochastic pdes: Resolution-
invariant learning of continuous spatiotemporal dynamics, 2021.

Alvaro Sanchez, Dmitrii Kochkov, Jamie Alexander Smith, Michael Brenner, Peter Battaglia, and
Tobias Joachim Pfaff. Learning latent field dynamics of pdes. 2020. We are submitting to Machine
Learning and the Physical Sciences workshop with a submission deadline on October 2nd.

William E. Schiesser. The numerical method of lines: Integration of partial differential equations.
1991.

Sungyong Seo, Chuizheng Meng, and Yan Liu. Physics-aware difference graph networks for sparsely-
observed dynamics. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=r1gelyrtwH.

Kiwon Um, Robert Brand, Yun Fei, Philipp Holl, and Nils Thuerey. Solver-in-the-Loop: Learning
from Differentiable Physics to Interact with Iterative PDE-Solvers. Advances in Neural Information
Processing Systems, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Henning Voss, J. Timmer, and Juergen Kurths. Nonlinear dynamical system identification from
uncertain and indirect measurements. International Journal of Bifurcation and Chaos, 14, 01 2004.

Tailin Wu, Takashi Maruyama, and Jure Leskovec. Learning to accelerate partial differential equations
via latent global evolution. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho,
editors, Advances in Neural Information Processing Systems, 2022. URL https://openreview.
net/forum?id=xvZtgp5wyYT.

12

https://proceedings.mlr.press/v80/long18a.html
http://dx.doi.org/10.1038/s42256-021-00302-5
https://openreview.net/forum?id=roNqYL0_XP
https://openreview.net/forum?id=x1fNT5yj41N
https://www.sciencedirect.com/science/article/pii/S0005109820303563
https://www.sciencedirect.com/science/article/pii/S0005109820303563
https://openreview.net/forum?id=r1gelyrtwH
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=xvZtgp5wyYT
https://openreview.net/forum?id=xvZtgp5wyYT

Cagatay Yildiz, Markus Heinonen, and Harri Lähdesmäki. Ode2vae: Deep generative second order
odes with bayesian neural networks. ArXiv, abs/1905.10994, 2019.

Yuan Yin, Matthieu Kirchmeyer, Jean-Yves Franceschi, Alain Rakotomamonjy, and patrick gallinari.
Continuous PDE dynamics forecasting with implicit neural representations. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=B73niNjbPs.

13

https://openreview.net/forum?id=B73niNjbPs
https://openreview.net/forum?id=B73niNjbPs

A Appendix A

A.1 Model specification.

Here we provide all details about our model specification. The joint distribution for our model is

p(u1:M , s1:B , θdyn, θdec) = p(u1:N |s1:B , θdyn, θdec)p(s1:B |θdyn)p(θdyn)p(θdec). (24)

Next, we specify each component in detail.

Parameter priors. The parameter priors are isotropic zero-mean multivariate normal distributions:

p(θdyn) = N (θdyn|0, I), (25)
p(θdec) = N (θdec|0, I), (26)

where N is the normal distribution, 0 is a zero vector, and I is the identity matrix, both have an
appropriate dimensionality dependent on the number of encoder and dynamics parameters.

Continuity prior. We define the continuity prior as

p(s1:B |θdyn) = p(s1)

B∏
b=2

p(sb|sb−1, θdyn), (27)

=

 N∏
j=1

p(sj1)

 B∏
b=2

N∏
j=1

p(sjb|sb−1, θdyn)

 , (28)

=

 N∏
j=1

N (sj1|0, I)

 B∏
b=2

N∏
j=1

N
(
sjb|z(t[b],xj ; t[b−1], sb−1, θdyn), σ

2
cI

)
.

 , (29)

where N is the normal distribution, 0 ∈ Rd is a zero vector, I ∈ Rd×d is the identity matrix, and
σc ∈ R is the parameter controlling the strength of the prior. Smaller values of σc tend to produce
smaller gaps between the sub-trajectories.

Observation model

p(u1:N |s1:B , θdyn, θdec) =

B∏
b=1

∏
i∈Ib

N∏
j=1

p(uj
i |sb, θdyn, θdec) (30)

=

B∏
b=1

∏
i∈Ib

N∏
j=1

p(uj
i |gθdec(z(ti,xj ; t[b], sb, θdyn))) (31)

=

B∏
b=1

∏
i∈Ib

N∏
j=1

N (uj
i |gθdec(z(ti,xj ; t[b], sb, θdyn)), σ

2
uI), (32)

where N is the normal distribution, σ2
u is the observation noise variance, and I ∈ RD×D is the

identity matrix. Note again that z(ti,xj ; t[b], sb, θdyn) above equals the ODE forward solution
ODESolve(ti; t[b], sb, θdyn) at grid location xj .

A.2 Approximate posterior specification.

Here we provide all details about the approximate posterior. We define the approximate posterior as

q(θdyn, θdec, s1:B) = q(θdyn)q(θdec)q(s1:B) = qψdyn(θdyn)qψdec(θdec)

B∏
b=1

N∏
j=1

qψj
b
(sjb). (33)

Next, we specify each component in detail.

14

Dynamics parameters posterior. We define qψdyn(θdyn) as

qψdyn(θdyn) = N (θdyn|γdyn,diag(τ
2
dyn)), (34)

where γdyn and τ 2
dyn are vectors with an appropriate dimension (dependent on the number of dynamics

parameters), and diag(τ 2
dyn) is a matrix with τ 2

dyn on the diagonal. We define the vector of variational
parameters as ψdyn = (γdyn, τ

2
dyn). We optimize directly over ψdyn and initialize γdyn using Xavier

(Glorot and Bengio, 2010) initialization, while τdyn is initialized with each element equal to 9 · 10−4.

Decoder parameters posterior. We define qψdec(θdec) as

qψdec(θdec) = N (θdec|γdec,diag(τ
2
dec)), (35)

where γdec and τ 2
dec are vectors with an appropriate dimension (dependent on the number of decoder

parameters), and diag(τ 2
dec) is a matrix with τ 2

dec on the diagonal. We define the vector of variational
parameters as ψdec = (γdec, τ

2
dec). We optimize directly over ψdec and initialize γdec using Xavier

(Glorot and Bengio, 2010) initialization, while τdec is initialized with each element equal to 9 · 10−4.

Shooting variables posterior. We define qψj
b
(sjb) as

qψj
b
(sjb) = N (sjb|γ

j
b ,diag([τ

j
b]

2))), (36)

where the vectors γj
b , τ

j
b ∈ Rd are returned by the encoder hθenc , and diag([τ j

b]
2) is a matrix with

[τ j
b]

2 on the diagonal. We define the vector of variational parameters asψj
b = (γj

b , [τ
j
b]). Because the

variational inference for the shooting variables is amortized, our model is trained w.r.t. the parameters
of the encoder network, θenc.

B Appendix B

B.1 Derivation of ELBO.

For our model and the choice of the approximate posterior the ELBO can be written as

L =

∫
q(θdyn, θdec, s1:B) ln

p(u1:M , s1:B , θdyn, θdec)

q(θdyn, θdec, s1:B)
dθdyndθdecds1:B (37)

=

∫
q(θdyn, θdec, s1:B) ln

p(u1:M |s1:B , θdyn, θdec)p(s1:B |θdyn)p(θdyn)p(θdec)

q(s1:B)q(θdyn)q(θdec)
dθdyndθdecds1:B

(38)

=

∫
q(θdyn, θdec, s1:B) ln p(u1:M |s1:B , θdyn, θdec)dθdyndθdecds1:B (39)

−
∫

q(θdyn, θdec, s1:B) ln
q(s1:B)

p(s1:B |θdyn)
dθdyndθdecds1:B (40)

−
∫

q(θdyn, θdec, s1:B) ln
q(θdyn)

p(θdyn)
dθdyndθdecds1:B (41)

−
∫

q(θdec, θdec, s1:B) ln
q(θdec)

p(θdec)
dθdyndθdecds1:B (42)

= L1 − L2 − L3 − L4. (43)

15

Next, we will look at each term Li separately.

L1 =

∫
q(θdyn, θdec, s1:B) ln p(u1:M |s1:B , θdyn, θdec)dθdyndθdecds1:B (44)

=

∫
q(θdyn, θdec, s1:B) ln

 B∏
b=1

∏
i∈Ib

N∏
j=1

p(uj
i |sb, θdyn, θdec)

dθdyndθdecds1:B (45)

=

B∑
b=1

∑
i∈Ib

N∑
j=1

∫
q(θdyn, θdec, s1:B) ln

[
p(uj

i |sb, θdyn, θdec)
]
dθdyndθdecds1:B (46)

=

B∑
b=1

∑
i∈Ib

N∑
j=1

∫
q(θdyn, θdec, sb) ln

[
p(uj

i |sb, θdyn, θdec)
]
dθdyndθdecdsb (47)

=

B∑
b=1

∑
i∈Ib

N∑
j=1

Eq(θdyn,θdec,sb) ln
[
p(uj

i |sb, θdyn, θdec)
]
. (48)

L2 =

∫
q(θdyn, θdec, s1:B) ln

q(s1:B)

p(s1:B |θdyn)
dθdyndθdecds1:B (49)

=

∫
q(θdyn, θdec, s1:B) ln

[
q(s1)

p(s1)

B∏
b=2

q(sb)

p(sb|sb−1, θdyn)

]
dθdyndθdecds1:B (50)

=

∫
q(θdyn, θdec, s1:B) ln

 N∏
j=1

q(sj1)

p(sj1)

dθdyndθdecds1:B (51)

+

∫
q(θdyn, θdec, s1:B) ln

 B∏
b=2

N∏
j=1

q(sjb)

p(sjb|sb−1, θdyn)

dθdyndθdecds1:B (52)

=

N∑
j=1

∫
q(θdyn, θdec, s1:B) ln

[
q(sj1)

p(sj1)

]
dθdyndθdecds1:B (53)

+

B∑
b=2

∫
q(θdyn, θdec, s1:B)

N∑
j=1

ln

[
q(sjb)

p(sjb|sb−1, θdyn)

]
dθdyndθdecds1:B (54)

=

N∑
j=1

∫
q(sj1) ln

[
q(sj1)

p(sj1)

]
dsj1 (55)

+

B∑
b=2

∫
q(θdyn, sb−1, sb)

N∑
j=1

ln

[
q(sjb)

p(sjb|sb−1, θdyn)

]
dθdyndsb−1dsb (56)

=

N∑
j=1

∫
q(sj1) ln

[
q(sj1)

p(sj1)

]
dsj1 (57)

+

B∑
b=2

∫
q(θdyn, sb−1)

N∑
j=1

[∫
q(sjb) ln

q(sjb)

p(sjb|sb−1, θdyn)
dsjb

]
dθdyndsb−1 (58)

=

N∑
j=1

KL
(
q(sj1)∥p(s

j
1)
)
+

B∑
b=2

Eq(θdyn,sb−1)

 N∑
j=1

KL
(
q(sjb)∥p(s

j
b|sb−1, θdyn)

) , (59)

where KL is Kullback–Leibler (KL) divergence. Both of the KL divergences above have a closed
form but the expectation w.r.t. q(θdyn, sb−1) does not.

L3 = KL(q(θdyn)∥p(θdyn)), L4 = KL(q(θdec)∥p(θdec)). (60)

16

B.2 Computation of ELBO.

We compute the ELBO using the following algorithm:

1. Sample θdyn, θdec from qψdyn(θdyn), qψdec(θdec).

2. Sample s1:B by sampling each sjb from qψj
b
(sjb) with ψj

b = hθenc(u[t[b],xj]).

3. Compute u1:M from s1:B as in Equations 14-16.

4. Compute ELBO L (KL terms are computed in closed form, for expectations we use Monte
Carlo integration with one sample).

Sampling is done using reparametrization to allow unbiased gradients w.r.t. the model parameters.

C Appendix C

C.1 Datasets.

SHALLOW WATER. The shallow water equations are a system of partial differential equations
(PDEs) that simulate the behavior of water in a shallow basin. These equations are effectively a
depth-integrated version of the Navier-Stokes equations, assuming the horizontal length scale is
significantly larger than the vertical length scale. Given these assumptions, they provide a model
for water dynamics in a basin or similar environment, and are commonly utilized in predicting the
propagation of water waves, tides, tsunamis, and coastal currents. The state of the system modeled
by these equations consists of the wave height h(t, x, y), velocity in the x-direction u(t, x, y) and
velocity in the y-direction v(t, x, y). Given an initial state (h0, u0, v0), we solve the PDEs on a
spatial domain Ω over time interval [0, T]. The shallow water equations are defined as:

∂h

∂t
+

∂(hu)

∂x
+

∂(hv)

∂y
= 0, (61)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ g

∂h

∂x
= 0, (62)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ g

∂h

∂y
= 0, (63)

where g is the gravitational constant.

The spatial domain Ω is a unit square with periodic boundary conditions. We set T = 0.1 sec. The
solution is evaluated at randomly selected spatial locations and time points. We use 1089 spatial
locations and 25 time points. The spatial end temporal grids are the same for all trajectories. Since we
are dealing with partially-observed cases, we assume that we observe only the wave height h(t, x, y).

For each trajectory, we start with zero initial velocities and the initial height h0(x, y) generated as:

h̃0(x, y) =

N∑
k,l=−N

λkl cos(2π(kx+ ly)) + γkl sin(2π(kx+ ly)), (64)

h0(x, y) = 1 +
h̃0(x, y)−min(h̃0)

max(h̃0)−min(h̃0)
, (65)

where N = 3 and λkl, γkl ∼ N (0, 1).

The datasets used for training, validation, and testing contain 60, 20, and 20 trajectories, respectively.

We use scikit-fdiff (Cellier, 2019) to solve the PDEs.

NAVIER-STOKES. For this dataset we model the propagation of a scalar field (e.g., smoke concen-
tration) in a fluid (e.g., air). The modeling is done by coupling the Navier-Stokes equations with the
Boussinesq buoyancy term and the transport equation to model the propagation of the scalar field.
The state of the system modeled by these equations consists of the scalar field c(t, x, y), velocity in
x-direction u(t, x, y), velocity in y-direction v(t, x, y), and pressure p(t, x, y). Given an initial state

17

(c0, u0, v0, p0), we solve the PDEs on a spatial domain Ω over time interval [0, T]. The Navier-Stokes
equations with the transport equation are defined as:

∂u

∂x
+

∂v

∂y
= 0, (66)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ ν

(
∂2u

∂x2
+

∂2u

∂y2

)
, (67)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+ ν

(
∂2v

∂x2
+

∂2v

∂y2

)
+ c, (68)

∂c

∂t
= −u

∂c

∂x
− v

∂c

∂y
+ ν

(
∂2c

∂x2
+

∂2c

∂y2

)
, (69)

where ν = 0.002.

The spatial domain Ω is a unit square with periodic boundary conditions. We set T = 2.0 sec, but
drop the first 0.5 seconds due to slow dynamics during this time period. The solution is evaluated
at randomly selected spatial locations and time points. We use 1089 spatial locations and 25 time
points. The spatial and temporal grids are the same for all trajectories. Since we are dealing with
partially-observed cases, we assume that we observe only the scalar field c(t, x, y).

For each trajectory, we start with zero initial velocities and pressure, and the initial scalar field c0(x, y)
is generated as:

c̃0(x, y) =

N∑
k,l=−N

λkl cos(2π(kx+ ly)) + γkl sin(2π(kx+ ly)), (70)

c0(x, y) =
c̃0(x, y)−min(c̃0)

max(c̃0)−min(c̃0)
, (71)

where N = 2 and λkl, γkl ∼ N (0, 1).

The datasets used for training, validation, and testing contain 60, 20, and 20 trajectories, respectively.

We use PhiFlow (Holl et al., 2020) to solve the PDEs.

Figure 9: Spa-
tial grid used for
SCALAR FLOW
dataset.

SCALAR FLOW. This dataset, proposed by Eckert et al. (2019), consists
of observations of smoke plumes rising in hot air. The observations are post-
processed camera images of the smoke plumes taken from multiple views. For
simplicity, we use only the front view. The dataset contains 104 trajectories,
where each trajectory has 150 time points and each image has the resolution
1080 × 1920. Each trajectory was recorded for T = 2.5 seconds.

To reduce dimensionality of the observations we sub-sample the original spatial
and temporal grids. For the temporal grid, we remove the first 50 time points,
which leaves 100 time points, and then take every 4th time point, thus leaving
20 time points in total. The original 1080 × 1920 spatial grid is first down-
sampled by a factor of 9 giving a new grid with resolution 120 × 213, and then
the new grid is further sub-sampled based on the smoke density at each node.
In particular, we compute the average smoke density at each node (averaged
over time), and then sample the nodes without replacement with the probability
proportional to the average smoke density (thus, nodes that have zero density
most of the time are not selected). See example of a final grid in Figure 9. This
gives a new grid with 1089 nodes.

We further smooth the observations by applying Gaussian smoothing with the
standard deviation of 1.5 (assuming domain size 120 × 213).

We use the first 60 trajectories for training, next 20 for validation and next 20 for testing.

In this case the spatial domain is non-periodic, which means that for some observation location xi

some of its spatial neighbors NS(xi) might be outside of the domain. We found that to account for
such cases it is sufficient to mark such out-of-domain neighbors by setting their value to −1.

18

Time grids used for the three datasets are shown in Figure 10.

Figure 10: Time grids used for SHALLOW WATER (top), NAVIER-STOKES (middle), and SCALAR
FLOW (bottom).

C.2 Model architecture and hyper-parameters.

Dynamics function. For all datasets we define Fθdyn as an MLP. For SHALLOW WATER/NAVIER-
STOKES/SCALAR FLOW we use 1/3/3 hidden layers with the size of 1024/512/512, respectively. We
use ReLU nonlinearities.

Observation function. For all datasets we define gθdec as a selector function which takes the latent
state z(t, x) ∈ Rd and returns its first component.

Encoder. Our encoder hθenc consists of three function: hθspatial , hθtemporal , and hθread . The spatial
aggregation function hθspatial is a linear mapping to R128. The temporal aggregation function hθtemporal

is a stack of transformer layers with temporal attention and continuous relative positional encodings
(Iakovlev et al., 2023). For all datasets, we set the number of transformer layers to 6. Finally, the
variational parameter readout function hθread is a mapping defined as

ψj
b = hθread(α

T
[b]) =

(
γj
b

τ j
b

)
=

(
Linear(αT

[b])

exp(Linear(αT
[b]))

)
, (72)

where Linear is a linear layer (different for each line), and γj
b and τ j

b are the variational parameters
discussed in Appendix A.

Spatial and temporal neighborhoods. We use the same spatial neighborhoods NS(x) for both the
encoder and the dynamics function. We define NS(x) as the set of points consisting of the point x
and points on two concentric circles centered at x, with radii r and r/2, respectively. Each circle
contains 8 points spaced 45 degrees apart (see Figure 11 (right)). The radius r is set to 0.1. For
SHALLOW WATER/NAVIER-STOKES/SCALAR FLOW the size of temporal neighborhood (δT) is set
to 0.1/0.1/0.2, respectively.

Multiple Shooting. For SHALLOW WATER/NAVIER-STOKES/SCALAR FLOW we split the full
training trajectories into 4/4/19 sub-trajectories, or, equivalently, have the sub-trajectory length of
6/6/2.

C.3 Training, validation, and testing setup.

Data preprocessing. We scale the temporal grids, spatial grids, and observations to be within the
interval [0, 1].

Training. We train our model for 20000 iterations using Adam (Kingma and Ba, 2017) optimizer
with constant learning rate 3e-4 and linear warmup for 200 iterations. The latent spatiotemporal
dynamics are simulated using differentiable ODE solvers from the torchdiffeq package (Chen, 2018)
(we use dopri5 with rtol=1e-3, atol=1e-4, no adjoint). The batch size is 1.

19

Validation. We use validation set to track the performance of our model during training and save the
parameters that produce the best validation performance. As performance measure we use the mean
absolute error at predicting the full validation trajectories given some number of initial observations.
For SHALLOW WATER/NAVIER-STOKES/SCALAR FLOW we use the first 5/5/10 observations. The
predictions are made by taking one sample from the posterior predictive distribution (see Appendix
C.4 for details).

Testing. Testing is done similarly to validation, except that as the prediction we use an estimate of
the expected value of the posterior predictive distribution (see Appendix C.4 for details).

C.4 Forecasting.

Given initial observations ũ1:m at time points t1:m, we predict the future observation ũn at a time
point tn > tm as the expected value of the approximate posterior predictive distribution:

p(ũn|ũ1:m,u1:M) ≈
∫

p(ũn|s̃m, θdyn, θdec)q(s̃m)q(θdyn)q(θdec)ds̃mdθdyndθdec. (73)

The expected value is estimated via Monte Carlo integration, so the algorithm for predicting ũn is:

1. Sample θdyn, θdec from q(θdyn), q(θdec).

2. Sample s̃m from q(s̃m) =
∏N

j=1 qψj
m
(s̃jm), where the variational parameters ψj

m are given
by the encoder hθenc operating on the initial observations ũ1:m as ψj

m = hθenc(ũ[tm,xj]).
3. Compute the latent state z̃(tn) = z(tn; tm, s̃m, θdyn).

4. Sample ũn by sampling each ũj
n from N (ũj

n|gθdec(z̃(tn,xj))), σ
2
uI).

5. Repeat steps 1-4 n times and average the predictions (we use n = 10).

C.5 Model comparison setup.

NODE. For the NODE model the dynamics function was implemented as a fully connected
feedforward neural network with 3 hidden layers, 512 neurons each, and ReLU nonlinearities.

FEN. We use the official implementation of FEN. We use FEN variant without the transport term
as we found it improves results on our datasets. The dynamics were assumed to be stationary and
autonomous in all cases. The dynamics function was represented by a fully connected feedforward
neural network with 3 hidden layers, 512 neurons each, and ReLU nonlinearities.

NSPDE. We use the official implementation of NSPDE. We set the number of hidden channels to
16, and set modes1 and modes2 to 32.

DINo. We use the official implementation of DINo. The encoder is an MLP with 3 hidden layers,
512 neurons each, and Swish non-linearities. The code dimension is 100. The dynamics function is
an MLP with 3 hidden layers, 512 neurons each, and Swish non-linearities. The decoder has 3 layers
and 64 channels.

MAgNet. We use the official implementation of MAgNet. We use the graph neural network variant
of the model. The number of message-passing steps is 5. All MLPs have 4 layers with 128 neurons
each in each layer. The latent state dimension is 128.

D Appendix D

D.1 Spatiotemporal neighborhood shapes and sizes.

Here we investigate the effect of changing the shape and size of spatial and temporal neighborhoods
used by the encoder and dynamics functions. We use the default hyperparameters discussed in
Appendix C and change only the neighborhood shape or size. A neighborhood size of zero implies
no spatial/temporal aggregation.

20

Initially, we use the original circular neighborhood displayed in Figure 11 for both encoder and
dynamics function and change only its size (radius). The results are presented in Figures 12a and 12b.
In Figure 12a, it is surprising to see very little effect from changing the encoder’s spatial neighborhood
size. A potential explanation is that the dynamics function shares the spatial aggregation task with the
encoder. However, the results in Figure 12b are more intuitive, displaying a U-shaped curve for the
test MAE, indicating the importance of using spatial neighborhoods of appropriate size. Interestingly,
the best results tend to be achieved with relatively large neighborhood sizes. Similarly, Figure 12c
shows U-shaped curves for the encoder’s temporal neighborhood size, suggesting that latent state
inference benefits from utilizing local temporal information.

We then examine the effect of changing the shape of the dynamics function’s spatial neighborhood.
We use ncircle neighborhoods, which consist of n equidistant concentric circular neighborhoods (see
examples in Figure 11). Effectively, we maintain a fixed neighborhood size while altering its density.
The results can be seen in Figure 13. We find that performance does not significantly improve when
using denser (and presumably more informative) spatial neighborhoods, indicating that accurate
predictions only require a relatively sparse neighborhood with appropriate size.

Figure 11: Left: original circular neighborhood (1circle). Center: circular neighborhood with
increased size. Right: circular neighborhood of a different shape (2circle).

(a) (b) (c)

Figure 12: (a),(b): Test MAE vs spatial neighborhood sizes of the encoder and dynamics function,
respectively. (c): Test MAE vs temporal neighborhood size of the encoder. Note that the spatial and
temporal domains are normalized, so their largest size in any dimension is 1.

Figure 13: Test MAE vs spatial neighborhood shape.

21

D.2 Multiple shooting.

Here we demonstrate the effect of using multiple shooting for model training. In Figure 14 (left), we
vary the sub-trajectory length (longer sub-trajectories imply more difficult training) and plot the test
errors for each sub-trajectory length. We observe that in all cases, the best results are achieved when
the sub-trajectory length is considerably smaller than the full trajectory length. In Figure 14 (right)
we further show the training times, and as can be seen multiple shooting allows to noticeably reduce
the training times.

Figure 14: Test MAE vs training sub-trajectory length.

E Appendix E

Noisy Data. Here we show the effect of observation noise on our model and compare the results
against other models. We train all models with data noise of various strengths, and then compute test
MAE on noiseless data (we still use noisy data to infer the initial state at test time). Figure 15 shows
that our model can manage noise strength up to 0.1 without significant drops in performance. Note
that all observations are in the range [0, 1].

Figure 15: Test MAE vs observation noise σu.

F Appendix F

F.1 Model Predictions

We show (Fig. 16) predictions of different models trained on different datasets (synthetic data is
partially observed).

F.2 Visualization of Prediction Uncertainty

Figures 17, 18, and 19 demonstrate the prediction uncertainty across different samples from the
posterior distribution.

22

Figure 16: Predictions from different models. Only forecasting is shown.

Figure 17: Left: Test prediction for a single trajectory on SHALLOW WATER dataset. Show are
data (top), mean prediction (middle), and standard deviation of the predictions (bottom). Columns
show predictions at consecutive time points. Right: Ground truth observations (dashed black) and
predictions (colored) with standard deviation plotted over time at two spatial locations.

Figure 18: Left: Test prediction for a single trajectory on NAVIER-STOKES dataset. Show are
data (top), mean prediction (middle), and standard deviation of the predictions (bottom). Columns
show predictions at consecutive time points. Right: Ground truth observations (dashed black) and
predictions (colored) with standard deviation plotted over time at two spatial locations.

23

Figure 19: Left: Test prediction for a single trajectory on SCALAR FLOW dataset. Show are
data (top), mean prediction (middle), and standard deviation of the predictions (bottom). Columns
show predictions at consecutive time points. Right: Ground truth observations (dashed black) and
predictions (colored) with standard deviation plotted over time at two spatial locations.

24

	Introduction
	Problem Setup
	Model
	Model components
	Generative model

	Parameter Inference, Encoder, and Forecasting
	Amortized variational inference
	Encoder
	Forecasting

	Experiments
	Related Work
	Conclusion
	Appendix A
	Model specification.
	Approximate posterior specification.

	Appendix B
	Derivation of ELBO.
	Computation of ELBO.

	Appendix C
	Datasets.
	Model architecture and hyper-parameters.
	Training, validation, and testing setup.
	Forecasting.
	Model comparison setup.

	Appendix D
	Spatiotemporal neighborhood shapes and sizes.
	Multiple shooting.

	Appendix E
	Appendix F
	Model Predictions
	Visualization of Prediction Uncertainty

