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ABSTRACT

Large language model (LLM) agents are increasingly tasked with complex real-
world analysis (e.g., in financial forecasting, scientific discovery), yet their reason-
ing suffers from stochastic instability and lacks a verifiable, compositional struc-
ture. To address this, we introduce Analytica, a novel agent architecture built
on the principle of Soft Propositional Reasoning (SPR). SPR reframes complex
analysis as a structured process of estimating the soft truth values of different out-
come propositions, allowing us to formally model and minimize the estimation
error in terms of its bias and variance. Analytica operationalizes this through a
parallel, divide-and-conquer framework that systematically reduces both sources
of error. To reduce bias, problems are first decomposed into a tree of subproposi-
tions, and tool-equipped LLM grounder agents are employed —including a novel
Jupyter Notebook agent for data-driven analysis—that help to validate and score
facts. To reduce variance, Analytica recursively synthesizes these grounded leaves
using robust linear models that average out stochastic noise with superior effi-
ciency, scalability, and enable interactive “what-if” scenario analysis. Our theo-
retical and empirical results on economic, financial, and political forecasting tasks
show that Analytica improves 15.84% accuracy on average over diverse base mod-
els, achieving 71.06% accuracy with the lowest variance of 6.02% when working
with a Deep Research grounder. Our Jupyter Notebook grounder shows strong
cost-effectiveness that achieves a close 70.11% accuracy with 90.35% less cost
and 52.85% less time. Analytica also exhibits highly noise-resilient and stable
performance growth as the analysis depth increases, with a near-linear time com-
plexity, as well as good adaptivity to open-weight LLMs and scientific domains.

1 INTRODUCTION

Capable LLM agents require foresight: the ability to form, update, and act on probabilistic forecasts
of future states. For example, effectively answering open-ended questions in domains like experi-
mental science or financial forecasting (e.g., What is the best way to improve the performance of my
model on task Y? or What is the best strategy to invest in $NVDA this year? in Fig. 1) involves pre-
dicting the future state of the world via complex information gathering, case analysis, and explicit
uncertainty estimation. While considerable progress has been made recently through the develop-
ment of new large reasoning models (Jaech et al., 2024; Guo et al., 2025; Comanici et al., 2025)
and deep research architectures (Xu & Peng, 2025; OpenAI, 2025) that explicitly encourage deep
analysis through test-time scaling, such approaches fundamentally rely on free-form text reasoning,
which often lacks the precision and reliability needed for decision making in many critical areas.

In this paper, we investigate an alternative framework called Soft Propositional Reasoning (SPR)
that reframes complex LLM-driven analysis as a structured process of assigning a soft truth value
or degree of belief (Huber et al., 2009) to different possible outcomes. For example, answering
the query in Fig. 1 can be done through deep case analysis on specific outcomes such as Long
$NVDA and hold for the year is the best and by decomposing this root hypothesis into testable
sub-propositions that can be grounded to real-world data (e.g. via further information gathering
and experimentation) and scored for correctness. Key to our approach is that the degrees of belief
(e.g., 0.7 for hypothesis 1 in Fig. 1) are computed compositionally from such evidence, which aims
to strike a balance between pure text-based reasoning and traditional relational and probabilistic
approaches to AI (De Raedt et al., 2007; Richardson & Domingos, 2006; Koller & Friedman, 2009).
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Figure 1: An illustration of the Soft Propositional Reasoning. Given a complex query (e.g., fore-
casting $NVDA), Analytica selects the most plausible outcome by estimating the “soft truth value”
of each provided competing proposition (Green box). The process begins when an analyzer agent
decomposes a proposition into a tree of sub-propositions (Orange box). Next, grounder agents,
such as a Jupyter Notebook agent mimicking a human analyst (Purple box), evaluate the leaves in
parallel. Finally, synthesizer agents recursively aggregate these grounded values up the tree and a
computation graph (middle) to compute a final score for the root proposition.

We investigate the SPR framework through a new LLM-agent architecture called Analytica that
employs a highly parallel, three-stage divide-and-conquer strategy. As illustrated in Fig. 1, a given
hypothesis is first automatically decomposed into a tree of sub-hypotheses through an analysis stage,
which, by design, terminates in a set of testable leaf nodes or hypotheses. This is then followed by a
grounding stage, where tool-equipped LLM agents are used to validate and score the leaf hypothe-
ses through further search and experimentation. For example, our most powerful grounder agents
aim to simulate human analysts by being provided with access to Jupyter notebook environments
that facilitate web-based and data-driven analysis (e.g., via research APIs), generic code writing in
Python (e.g., for running simulations), and report writing (e.g., using markdown text blocks). The
scores of leaf nodes are then recursively propagated up from the leaf nodes through a synthesis stage
and aggregation function f . For example, our best synthesis strategy involves taking a linear com-
bination of model-produced confidences coupled with additional linear coefficients (as illustrated
in the tree edges in Fig. 1), which we show through first principles helps to average out stochastic
noise and minimize forecast variance.

We empirically test our approach on 736 real-world economics and financial forecasting challenges,
which naturally take the form of true/false proposition prediction (e.g., making yes/no long-short
equity predictions in financial markets and future predictions in polymarkets) and have recently
been shown to be a promising testbed for evaluating the general forecasting and reasoning abilities
of LLMs (Cheng & Chin, 2024a; Schoenegger & Park, 2023; Tan et al., 2024; Zeng et al., 2025;
Paleka et al., 2025, inter alia). Compared with several text-based reasoning baselines, including
advanced variants of chain-of-thought (Wei et al., 2022; Yao et al., 2023; Besta et al., 2024; Bi et al.,
2025), as well as the deep research agent of OpenAI (2025), our best variant of Analytica achieves
an average 15.84% improvement in end-task prediction accuracy. Analytica with Jupyter Notebook
agents in particular demonstrates strong cost-effectiveness, reaching the near-highest accuracy of
70.11% with 90.35% less budget and 52.85% less time. Furthermore, Analytica displays impressive
scalability, handling exponential growth in analytical complexity (e.g., 54x more nodes) with only
a near-linear rise in computation time (12x), while the performance shows a stable improvement
over the analysis depth, highlighting the high practicality and potential of our proposed framework.
Moreover, we show how Analytica exhibits good adaptivity to smaller open-weight models as well
as other domains such as scientific claim justification (Jansen et al., 2025a).

2 RELATED WORK

Structured Reasoning in LLMs Our work takes inspiration from the large literature on modular
and decomposition-based reasoning architectures (Andreas et al., 2016; Khot et al., 2021; 2023;
Talmor & Berant, 2018; Zhou et al., 2022, inter alia), as well as more recent variants of chain-
of-thought reasoning (Wei et al., 2022; Yao et al., 2023; Besta et al., 2024; Yang et al., 2024; Aytes
et al., 2025) and deep research agents (OpenAI, 2025; Xu & Peng, 2025) all of which aim to improve
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the robustness and scalability of neural reasoning through problem decomposition, test-time scaling
(Snell et al., 2024) and tool use. As discussed above, however, much of this work operates mostly
in a discrete text space, whereas Analytica focuses on reasoning in a soft propositional space and
attempts to integrate model confidences more directly into the process of aggregating reasoning
paths (see Cao et al. (2023)) and quantifying an agent’s degree of belief (see Chen et al. (2024)).

LLM Agents for Real-world Analysis We also focus on the growing body of work using LLM
agents to tackle a wide range of open-ended analysis tasks, such as societal dynamics (Cheng &
Chin, 2024b), financial forecasting (Yu et al., 2024), economic mechanism design (Karten et al.,
2025), crypto trading (Li et al., 2024), predictive markets (Halawi et al., 2024), general data analysis
(Majumder et al., 2025; 2024), automated scientific discovery (Lu et al., 2024; Gottweis et al., 2025;
Jansen et al., 2025b; Cheng et al., 2025), among others. While our overall analysis framework is
domain agnostic, we focus on forecasting problems in economics, finance, and politics due to their
high uncertainty, difficulty, and richness of data (Zou et al., 2022; Chen et al., 2023; Tan et al., 2024;
Karger et al., 2024; Wildman et al., 2025).

Hybrid LLM Reasoning Finally, our approach relates to many recent attempts to enhance the
reasoning power of LLMs with classical relational and probabilistic methods Olausson et al. (2023);
Pan et al. (2023); Li et al. (2025); Cheng et al. (2023), often by integrating symbolic solvers into
the reasoning pipeline or using LLMs to produce symbolic representations. Rather than directly
incorporating explicit solvers into our reasoning pipeline, we instead follow other work in neuro-
symbolic modeling on distilling model behavior to classical models (e.g., tractable probabilistic
models, PGMs) (Zhang et al., 2024; Qiu et al., 2025; Feng et al., 2025; Dohan et al., 2022), in our
case, interpreting LLM and agent outputs as if-then structures that we reason over using soft and
noisy relaxations of both model beliefs and the logical operators used to combine beliefs.

3 SOFT PROPOSITIONAL REASONING

The objective of a soft proposition reasoning (SPR) is to accurately estimate the soft truth value
of a complex proposition, pgttrue. A robust agent is one that minimizes the expected error of this
estimate. To formalize this, we consider the Mean Squared Error (MSE) of the forecast, which is
the expected squared difference between the estimate and the ground truth value:

MSE(ptrue) = E
[
(ptrue − pgttrue)

2
]
=

(
E[ptrue]− pgttrue

)2︸ ︷︷ ︸
Bias2

+E
[
(ptrue − E[ptrue])

2
]︸ ︷︷ ︸

Variance

(1)

The expectation E[·] is taken over the randomness in the agent’s reasoning process (e.g., model
sampling stochasticity, variations in tool outputs). This total error can therefore be systematically
decomposed into two distinct sources: bias and variance.

Figure 2: An illustration of estimation vari-
ance and bias. Analytica with a linear rule
has lower bias (closer to the ground truth of
1) and variance. Hitting a better trade-off.

Accordingly, a robust analysis must systematically
minimize both bias and variance. The compositional
nature of complex problems from SPR provides a
foundation to address this challenge, which assumes
that the truthfulness of a complex proposition is re-
cursively supported by a set of child propositions,
like “NVIDIA’s revenue will beat consensus” into its
underlying evidential drivers (e.g., “AI capex is ris-
ing”), as depicted in Fig. 1. That is, ρp.ptrue =
f(ρc1 .ptrue, . . . , ρcn .ptrue). The synthesis rule can
be a flexible and arbitrary function f : [0, 1]n →
[0, 1]. We operationalize it in our Analytica archi-
tecture (§ 4). Bias is mitigated by reducing the origi-
nal complex query propositions as simple leaves, then
effectively processed by powerful Grounder agents.
Variance is reduced during synthesis, where an Ana-
lyzer and Synthesizer work in concert with a robust
linear synthesis rule, which averages out the stochas-
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Figure 3: Illustration of Analytica. First, in the Analysis Stage (Alg. 1), a root proposition is recur-
sively decomposed into a tree of sub-propositions (Steps 1-2). This is followed by the Grounding
and Synthesis Stages (Alg. 2), a bottom-up process where (Step 3) Grounder agents evaluate all
leaf nodes in parallel to assign soft truth values, and (Steps 4-5) a Synthesizer recursively aggregates
these grounded values up the tree until a final, robust estimate for the root is computed.

tic noise from many subproblems, ensuring stable error propagation. Fig. 2 shows that Analytica
effectively decreases both variance (tighter distribution) and bias (mean closer to the ground truth).

Comparison with CoT and its variants This results in a recursive, divide-and-conquer strategy for
problem solving, which differs from existing structured reasoning methods that center around linear
reasoning paths. In the standard Chain-of-Thought (CoT) (Wei et al., 2022), the model generates
a linear sequence of tokens R = {r0, . . . , rn} to derive a final output. Advanced approaches like
Tree-of-Thoughts (ToT) (Yao et al., 2023) and Graph-of-Thoughts (GoT) Besta et al. (2024) search
for an optimal path R∗ by maximizing a heuristic LLM-based valuation function V (R):

ŷ = fLLM (x,R∗) where R∗ = argmax
R∈Paths

V (R).

where fLLM is the call to an LLM generation, Forest-of-Thought (FoT) (Bi et al., 2025) further
extending this by aggregating results from multiple trees, i.e. ŷ = Aggr({fLLM (x,R∗

i )}Ki=0),
which is conceptually related to our synthesis mechanism. However, instead of aggregating different
reasoning paths for the same problem, we aggregate results from different subproblems recursively,
i.e., ŷ = Aggr({ŷCi

}Mi=0). Here, ŷCi
denotes child subproblems Ci that are generated via analyzers;

their results are aggregated from solutions of their own children in the same fashion recursively, until
reaching the leaves, which are solved by our grounder agents.

4 ANALYTICA

Based on the SPR framework, we introduce Analytica, an architecture for complex analysis and
forecasting. An overview of the Analytica architecture is provided in § 4.1. Subsequently, we ex-
plain how it minimizes both estimation bias and variance in § 4.2. Finally, we discuss the robustness
and efficiency of Analytica in § 4.3 and § 4.4, respectively.

4.1 OVERVIEW

Analytica employs a divide-and-conquer strategy, operationalizes SPR through three core compo-
nents: an Analyzer AA, which expands a proposition tree or single root proposition with new nodes
or branches. Grounder AG, which determines the soft truth values of leaves; and a Synthesizer
AS, which amalgamates reports and soft truth value from fully-grounded children to deduce the
report and ptrue of their parent. Analytica consists of two algorithms: Analyze (Alg. 1) and
Synthesize (Alg. 2). Illustrated in Fig. 3, it calls Analyze to expand the tree initialized with
the root proposition ρ0, then passes the root to Synthesize to ground the entire tree bottom-up.
Details of each component are provided below:

Analyzer The analyzer agent AA, expands a proposition tree T to an expanded tree T ′: AA :
T → T ′. In practice, the process begins with a tree consisting solely of the query proposition as
its root. The agent is then prompted to progressively deepen the analysis by adding independent

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Analyze(ρ0,AA, Lmax, Tmax)
Require: Proposition ρ0, Analyzer LLM AA,

Max leaves Lmax, Max steps Tmax

Ensure: Proposition tree T rooted on ρ0
1: T ← InitializeTree(ρ0)
2: for t = 1, . . . , Tmax do
3: if NumberOfLeaves(T ) ≥ Lmax then
4: break
5: Pnew ← AA(T ) ▷ Expand tree
6: T ← Update(T ,Pnew)

7: return T

Algorithm 2 Synthesize(ρi,AG,AS)
Require: Proposition node ρi ∈ T , Grounder

LLM AG, Synthesizer LLM AS
Ensure: Grounded ρi with ptrue and report

1: if ρi is a leaf then
2: ρi.report, ρi.ptrue ← AG(ρi)
3: else
4: for all ρij ∈ ρi.children do in parallel
5: ρ̄ij ← async Synthesize(ρij)
6: ρi.report, ρi.ptrue ← AS(ρi.children)

7: return ρi

child nodes to one or multiple existing nodes, continuing until a completion signal is reached or a
predetermined maximum leaf count is surpassed.

Grounder The Grounder agent, AG, grounds a leaf proposition ρleaf by estimating ptrue with
a report: AG(ρleaf ) → ρ̄leaf . We study three variants of the Grounder: 1) Basic Search agent
that relies on standard web search to gather evidence; 2) Deep Research agent from OpenAI (Ope-
nAI, 2025) that extensively searches the internet to compile a report for the query; and 3) Jupyter
Notebook, our most advanced hybrid Grounder that mimics professional data analysts by iteratively
writing, executing, and debugging Python and markdown blocks in a Jupyter notebook environment
with access to various search and financial APIs. Jupyter agents specifically work in the follow-
ing way. Upon receiving an input query, agents are instructed to repeatedly produce interleaved
markdown cells for qualitative reasoning and Python cells for programmatic execution at each step.
Similar to ReACT (Yao et al., 2022), these cells are executed by the Jupyter backend and outputs
are returned to the agent, which then decides whether to continue generating additional cells or to
terminate the notebook. If an error arises, the agent must correct it before proceeding. Upon termi-
nation, the agent is prompted to compile the entire session into a final report and produce a soft truth
value (ptrue). Further details and examples are provided in § C.4.

Synthesizer The Synthesizer agent, AS, then grounds, or scores, a non-leaf proposition ρi based
on the scores of its children ρi. ¯children = {ρ̄i0, ρ̄i1, ...}. Formally, AS(ρi, ρi. ¯children) → ρ̄i
where ρ̄i contains the truth value ρi.ptrue and a report. We employ a Linear synthesis rule:

ρi.ptrue = β0 +
∑
j

βj · ρ̄ij .ptrue, where |βj | < 1, |β0| < c, and ρi.ptrue ∈ [0, 1] (2)

which resembles factor-based models widely adopted in economics and political science (Fama &
French, 2015; Gregg & Banks, 1965). The LLM is tasked to output coefficients βj , and an intercept
β0 in a JSON format as detailed in § E.2 and § D.8, where c restricts the intercept from surpassing
the impact of children. In § B, we show how the computation graphs produced by this process can
be modeled as a special type of linear Bayesian network, which gives insights into the semantics
of synthesis (e.g., the assumptions made about the relationships between sub-claims) and suggests
other scoring strategies (e.g., using known techniques from PGMs (Koller & Friedman, 2009).

To discover the characteristics of ideal synthesis, we study two alternative synthesis rules: a) a
Vanilla rule, which calls LLM to directly output a ptrue with a report; and b) a Simple logic
strategy, which prompts the LLM to generate a logical formula that connects the soft truth val-
ues of all children through fuzzy logical operators (Van Krieken et al., 2022; Grespan et al., 2021):
A AND B = A × B, A OR B = A + B − A × B, and NOT A = 1 − A, and an “assumption”
variable, PA ∈ [0, 1], to account for external factors, e.g., Pi = Pi1 OR (NOT Pi2 AND PA),
where Pij denotes the j-th child of proposition i (see more examples in § D.8).

Resynthesis The locality inherent in the synthesis process, where each synthesizer accesses only
a specific node and its children, facilitates Analytica’s efficient scenario analysis for addressing
“what-if” inquiries, which is highly useful in practice. After a tree is fully grounded, users can
manually edit the truth value, statements, or reports of any node, or add/remove nodes to explore

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

a counterfactual (e.g., “What if inflation does not slow down?”). Instead of reexecuting the entire
Analytica process, the system triggers a fast recomputation, calling the synthesizer to update only
the affected branches up to the root. This allows for a rapid and interactive exploration of how
varying assumptions affect the final outcome (see example in Fig. 16).

4.2 DERIVATION FROM FIRST PRINCIPLES

Analytica is designed so that most effort is dedicated to verifying the leaves, and soft truth values of
non-leaves are linearly composed from the children. Under Eq. 1, we can show that such a strategy
can be derived from first principles. We model the ground truth pgttrue of the root proposition as
a linear combination of its k leaves: pgttrue = β′

0 +
∑k

i=1 β
′
il
gt
i,true. For analytical purposes, this

expression is derived by algebraically expanding the nested linear equations from the root to the
leaves. Each coefficient β′

i represents the cumulative impact of a leaf on the root, effectively forming
a beta path: the product of all local β coefficients along the unique path through the tree from root
to leaf li. Similarly, β′

0 is the aggregated intercept of all non-leaves. The estimated ptrue from
Analytica can be written as a similar linear composition of leaves: ptrue = β′

0 +
∑k

i=1 β
′
ili,true.

Each leaf estimate li,true is a random variable characterized by its own bias and variance. We now
derive the bias and variance of the final root estimate ptrue as a function of its components.

Bias The bias of the root estimate is a weighted sum of the biases of the individual leaf estimates:

Bias(ptrue) = E[ptrue]− pgttrue =

k∑
i=1

β′
i

(
E[li,true]− lgti,true

)
=

k∑
i=1

β′
iBias(li,true)

The bias decreases in two ways. 1) Simplified leaves: as the analysis deepens, we hypothe-
size that the leaf nodes will gradually approach simple atomic propositions whose truthfulness is
easy to judge. This makes the weighted summation of the leaf biases smaller than the bias of di-
rectly evaluating the root. More formally, we note the root bias as Bias(root) and assume that
when Bias(li,true) = δiBias(root), where 0 < δi < 1 for all leaves i, then: Bias(ptrue) =∑k

i=1 β
′
iBias(li,true) =

∑k
i=1 β

′
iδiBias(root) = Bias(root)(

∑k
i=1 β

′
iδi) < Bias(root). 2) The

use of powerful grounders helps to further reduce bias, as empirically supported by Table 2 and
Fig. 6. This forms the basis for the strategy of employing an Analyzer to achieve a detailed break-
down of the complex query proposition, combined with an emphasis on utilizing strong grounder
agents to manage leaf propositions, such as our sophisticated Jupyter Notebook grounder.

Variance The variance of the root estimate is a function of both the variances of the leaf estimates
and the covariance between them:

Var(ptrue) =
k∑

i=1

β′2
i Var(li,true) +

∑
i ̸=j

β′
iβ

′
jCov(li,true, lj,true)

k→∞−−−−→ 0

It is minimized through: 1) Granular decomposition, the sum of leaf variances is suppressed by
the squared weights (β′2

i ), which approaches 0 as the number of leaves grows; and 2) Ideal analysis,
generating child propositions with minimal covariance. This benefits from our tree structure, forc-
ing the analyzer to uncover independent factors in a top-down, divide-and-conquer manner. This
theoretical insight aligns with our empirical findings, where the prediction accuracy grows with the
size of the proposition tree (Fig. 4) and the low variance of our method (Table 2). It also guides us
to highly value system scalability, which is crucial for not only practical application but also results
in reduced estimation variance.

4.3 ROBUSTNESS OF ANALYTICA AND IDEAL SYNTHESIS

We now analyze the robustness of Analytica under the linear rule, and then generalize it to the
principles of ideal synthesis to delve deeper into the criteria necessary for achieving optimal per-
formance. The synthesis rule is crucial as it averages the variances of the leaves, and thus must be
robust against noise in the leaf estimates to preserve the stability gains. This is fundamentally based
on its mathematical structure. To analyze this, let a synthesis rule be a function P = f(C1, . . . , Cn)
that maps child truth values {Cj} to a parent value P . We assume the grounder produces noisy

6
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Basic Analytica Analytica2 Analytica3 Analytica4

Avg. time (s) 0.5 5.3 (1.0x) 16.4 (3.1x) 33.3 (6.3x) 63.5 (12.0x)
# Nodes - 19.9 (1.0x) 68.1 (3.4x) 359.5 (18.1x) 1075.3 (54.0x)
# Tokens 3.6K 58.6K 169.4K 929.0K 2.8M

Table 1: Scalability of recursive Analytica. As the recursion depth increases, the number of nodes
and tokens grows exponentially, while the average computation time increases near-linearly.

estimates Ĉj = Cj + ϵj , where ϵj is a random error term. The rule’s sensitivity to this input noise
can be measured by its partial derivatives ∂f

∂Cj
. The Linear rule demonstrates a superior stability:

Proposition 1 (Constant Sensitivity of the Linear Rule). The Linear synthesis rule, P = β0 +∑n
j=1 βjCj , has a constant sensitivity to input noise given by the partial derivative: ∂P

∂Cj
= βj

that ensures stable and bounded error propagation, independent of other inputs.

The formal proof is detailed in § A.1, which identifies a set of conditions for an ideal synthesis
rule: 1) Bounded Sensitivity: The function’s partial derivatives with respect to its inputs should be
bounded and preferably small, preventing any single input from having an outsized, unpredictable
impact; 2) A Smoothing Property: The function should have a natural averaging effect that in-
herently dampens or smooths noise from its inputs, rather than propagating it; and 3) Graceful
Degradation: The function should be smooth and continuous, without sharp “tipping points” or
cliffs where a small perturbation can cause disproportionate volatility. The linear rule satisfies all
three conditions, providing a strong theoretical explanation for its superior empirical performance
over others in terms of accuracy, stability (Table 2), and noise resistance (Fig. 5).

4.4 EFFICIENCY AND SCALABILITY OF ANALYTICA

The theoretical benefits of scaling up the depth of the analysis, as discussed in § 4.2, are attainable in
practice only if the architecture is capable of efficiently supporting a considerable number of leaves.
Analytica allows an limitless scaling by recursively invoking itself at leaves with each leaf serving
as a proposition that can act as a new root for another Analytica analysis. We denote it Analytican,
where n indicates the depth of the recursion. Recursive invocation results in a tree-level locality,
where each instance of Analytica concentrates on a segment of the ultimately expanded tree, which
may exceed the limit for a single Analyzer to produce. The locality of synthesizers, grounders, and
Analytica itself facilitates massive parallelism , which shows a near-linear time complexity with
respect to the depth of the analysis, as shown in Table 1 and formally proved in § A.2.

5 EMPIRICAL VALIDATION

Accuracy Stability Efficiency
Accu. Imp. Soft Hard BS Conf. Var Cost Time

Random 48.10 - 48.32 47.11 33.92 74.70 48.53 - -

Basic Search 53.94 - 51.12 53.92 26.73 64.95 10.30 $0.02 0.54m
+ Tree of Thgt. 60.19 11.59 55.74 57.51 26.46 76.89 9.21 $0.28 6.55m
+ Graph of Thgt. 57.88 7.30 53.52 57.18 26.85 75.23 10.12 $0.18 4.72m
+ Forest of Thgt. 60.73 12.59 56.87 57.64 26.44 78.35 8.28 $0.55 10.32m
+ Analytica-V 63.18 17.13 56.56 59.37 26.33 85.44 10.89 $0.24 5.42m
+ Analytica-S 57.61 6.80 53.82 56.70 26.36 74.99 7.45 $0.23 5.38m
+ Analytica-L 65.62 21.65 58.51 60.13 24.21 85.56 6.46 $0.26 5.49m

Table 2: Performance, stability, and efficiency results across different Analytica setups and compar-
isons with structured reasoning approaches. Bold/underline indicates best/second. “Imp.” means
improvement. ‘V’, ‘S’, and ‘L’ denote the vanilla, simple logic, and linear rules, respectively.
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In this section, we empirically validate the core theoretical claims of the Analytica framework pre-
sented in § 4. Our experiments are structured to address three key research questions (RQs).

RQ1: Bias and Variance Reduction (§ 5.2). We hypothesize that Analytica minimizes bias, while
its linear synthesis minimizes variance (§ 4.2). We test this by comparing accuracy uplifts and
stability metrics against baselines across forecasting tasks (Table 2,3).

RQ2: Scalability and Robustness (§ 5.3). We hypothesize that performance improves with analysis
depth while maintaining efficiency due to recursive parallelism (§ 4.4). We examine this by tracking
how accuracy scales as the number of nodes grows (Fig. 4). We further hypothesize that the Linear
rule provides stronger robustness to noise than the simple logic rule (§ 4.3, Prop. 1). We test this via
a noise-injection stress experiment (Fig. 5).

RQ3: Cost-Effectiveness (§ 5.4). We study the practical usefulness and trade-offs between reason-
ing capability and costs. We illustrate this via efficiency frontier plots (Fig. 6).

Additional results, including domain-specific breakdowns and model ablations, are provided in § D.

Accu. Imp. Soft Hard BS Conf. Var Cost Time
Deep Research 63.04 - 57.22 59.31 26.24 82.57 9.28 $4.02 7.60m
+ Analytica-V 69.16 9.71 59.26 65.16 22.77 83.41 9.88 $12.70 30.07m
+ Analytica-S 66.30 5.17 58.79 63.71 24.15 76.34 7.27 $13.70 29.90m
+ Analytica-L 71.06 12.72 60.01 66.57 22.79 83.59 6.02 $14.10 30.01m

Jupyter NB 61.96 - 56.92 62.67 26.90 76.68 12.28 $0.07 2.61m
+ Analytica-V 68.89 11.18 61.57 67.40 21.67 80.75 12.90 $1.05 13.98m
+ Analytica-S 62.77 1.31 57.19 64.48 25.71 77.28 8.65 $1.25 13.81m
+ Analytica-L 70.11 13.15 60.25 68.01 22.89 81.10 7.28 $1.36 14.15m

Table 3: Ablation on the advanced grounders and comparison to Deep Research.

5.1 EXPERIMENT SETUP

Dataset The agent is tasked with evaluating a collection of propositions related to potential out-
comes of an upcoming real-world event. A dataset comprised 736 unique events derived from the
predictive and financial markets was compiled. Events were carefully filtered to ensure they were
resolved after our model’s knowledge cut-off. The Financial Market Tasks involve making a one-
year ”long vs. short” prediction for an asset (like stocks, indices, commodities), necessitating high-
level strategic thinking rather than short-term speculation. The Predictive Market Tasks directly
use the options provided by the market, e.g., for “who will win the 2024 US presidential election?”,
the two options are Kamala Harris and Donald Trump. For each task, the agent receives the event
description, the current date, and the target proposition (e.g., “The best strategy for $NVDA over the
next year is to go long”) for each option in the event. The agent must provide ptrue for each given
proposition that corresponds to the options in an event. For more information, refer to § C.2.

Baselines We compare Analytica against: 1) standalone grounders (Basic Search, Deep Re-
search (OpenAI, 2025), Jupyter Notebook); 2) structured reasoning methods (Tree/Graph/Forest
of Thoughts (Yao et al., 2023; Besta et al., 2024; Bi et al., 2025)), implemented over Basic Search
for fairness; and 3) a random baseline. All experiments use the o3-2025-04-16 model with
a knowledge cutoff of June 01, 2024. For ablation studies in other base models, see § D.4. A
low temperature of 0.1 was used following Cheng & Chin (2024b). The web search is powered by
Exa.ai. We also set a limit of 10 leaves for Analytica. See § C.1 for further details.

Evaluation Metrics Each option for an event is associated with a ground-truth dollar value, rep-
resenting the utility of that choice (e.g., the return on a one-dollar investment). We apply multiple
performance metrics: Accuracy (Accu.) measures if the agent assigns the highest ptrue to the option
with the best utility, measuring the top-1 correctness. Hard and Soft scores evaluate the value of the
highest-ptrue option and the ptrue-weighted value across all options, respectively, to evaluate the
practical return of agent decisions. For cross-task comparability, Min-max normalization is applied
to the hard and soft scores with respect to the values of options for every task. Brier Score (BS)
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Figure 4: Accuracy vs. number of nodes. Figure 5: Robustness of different synthesis rules.

quantifies the MSE of the predicted distribution across options. In addition, we assess prediction
stability by performing 10 runs of each task on a 100-task subset, then compute Confidence (Conf.)
as the average highest ptrue the agent produced, indicating its self-assessed certainty, and Variance
(Var.) of the hard score. Lastly, we measure efficiency by API Cost and Wall-clock Time.

5.2 RQ1: ANALYTICA PERFORMANCE AND STABILITY

In Table 2, we illustrate that the Analytica framework substantially uplifts performance. We per-
form a McNemar’s test to assess the statistical significance of our findings in § D.1. In particular,
on average, the linear rule provides a 15.84% increase in accuracy, achieving a highest confidence
of 83.41 and providing a variance of 6.59%. It supports our bias-variance reduction framework
discussed in 4.2. We ablate the grounders in Table 3, Analytica augments for all base grounders.
Moreover, it outperforms Deep Research with a Basic Search, which can also be enhanced by An-
alytica. Meanwhile, it confirms that grounder builds the foundation of lowering biases. Notably,
our Jupyter Notebook (NB) grounder with Analytica-L shows an accuracy close to Deep Research
(-1.34% worse) with 90.35% lower cost and 52.85% time saving. Conversely, the simple logic rule
shows the lowest accuracy enhancement at 4.22%, corroborating our theoretical results presented in
§ 4.3. We extend our evaluation to the scientific domain by evaluating on the Matter-of-Fact bench-
mark (Jansen et al., 2025a) in § D.5, and also experiment with small open-weight models in § D.4.4.

5.3 RQ2: SCALABILITY AND ROBUSTNESS OF ANALYTICA

We study scalability by running Analytica with 10, 20, 30, 40, and 50 leaf limits in the same 100-task
subset used for stability experiments. Once a tree reaches a leaf limit of 10, we apply a recursion
explained in § 4.4 to expand each leaf sequentially to ensure stopping around the target limit. Fig. 4
shows a clear positive correlation between the number of nodes and the accuracy, strongly endorsing
the scalability of our method. We further study the robustness of different synthesis rules with
the same subset by injecting different types of noise into the grounder: a normal noise p̂true =
ptrue + U(0, α) where α is the noise ratio, uncertain and reverse noise where p̂true = U(0, 1)
or p̂true = 1 − ptrue with probability α, respectively. Results in Fig. 5 indicate that the simple
logic rule is highly susceptible to noise, whereas the linear rule demonstrates a high robustness as
analyzed in Proposition 1. In contrast, the vanilla rule is minimally affected as it primarily depends
on textual reports rather than the estimated truth value.

5.4 RQ3: UNDERSTANDING THE PERFORMANCE VS. COST TRADE-OFF

Fig. 6 provides a comprehensive overview of the performance-cost trade-offs. Overall, Analytica
sits closely on the effective frontier. The plot of accuracy against monetary and time cost clearly
illustrates that more powerful configurations occupy the high-performance, high-cost quadrant. The
choice of Grounder is the single largest determinant of cost and performance, establishing distinct
efficiency frontiers. Notably, our Jupyter Notebook grounder demonstrates high cost-effectiveness.
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Figure 6: Performance vs. cost trade-off analysis. The plots visualize accuracy against monetary
cost (left, log scale) and response time (right, linear scale) for all evaluated methods.

6 LIMITATION AND DISCUSSION

Analytica still omits some potential error sources in addition to the ones we discussed in § 4.2.
1) Assumption of Independence: Our framework performs best when the child propositions are
independent. While our Analyzer agent presents an empirical solution, ensuring independence in
principle and estimating the correlations for real-world propositions remains an open challenge. 2)
Robust Synthesizer: Errors in estimated coefficients of the synthesizer can lead to potential errors,
as shown in § D.8. Producing reliable estimations for these coefficients can be crucial. 3) Hybrid
Grounder: We currently apply the same grounder to all leaves; however, different propositions
may have different properties and require grounders with different skill sets. It is possible to adap-
tively select grounders with diverse capacities for different propositions to improve efficiency and
accuracy, as recently studied in model routing (Ong et al., 2025; Ding et al., 2025).

Analytica’s practical value extends to complex, high-stakes, critical real-world domains, where
decision-making and analysis require transparent reasoning and robustness, such as applications for
economists, policymakers, scientists, and robots. More generally, Analytica can serve as a complex
analysis backbone for autonomous systems by breaking down uncertain, poorly specified problems
into calibrated, empirically testable soft propositions, thereby supporting downstream autonomous
agents in performing interpretable, reliable reasoning in real-world conditions.

7 CONCLUSION

In this work, we introduce Soft Propositional Reasoning (SPR) for complex, real-world analysis,
transitioning from heuristic reasoning in unstructured text to a principled, robust process within
a soft propositional space. Our system, Analytica, leverages this framework and is derived from
first principles to achieve high accuracy across various forecasting tasks, significantly enhancing
both accuracy and stability over strong baselines while consistently augmenting various grounders.
The modular, divide-and-conquer architecture enables exceptional scalability through massive par-
allelism, providing unique capabilities for interactive scenario analysis with resynthesis. In addition,
we conduct comprehensive theoretical and empirical assessments to examine the underlying princi-
ples of robust LLM-based analysis and forecasting, which establishes a strong and transparent basis
for creating reliable LLM agents in high-stakes, real-world domains.
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A THEORETICAL ANALYSIS

A.1 ROBUSTNESS OF THE SYNTHESIS RULE

In this section, we provide the formal proof for Proposition 1, and a further analysis of why the
Linear synthesis rule is more robust to noise in its inputs than the Simple Logic rule. A robust
rule should ensure that small errors in the estimation of child propositions do not lead to large,
unpredictable errors in the parent proposition’s estimate. We demonstrate that the Linear rule’s
structure inherently dampens noise, whereas the logical operators can amplify it.

Setup: Modeling Estimation Error Let Cj be the unknown “true” soft truth value for a child
proposition. The Grounder produces an estimate, Ĉj , which includes some random error, ϵj . We
can model this as:

Ĉj = Cj + ϵj

We assume the errors are unbiased (E[ϵj ] = 0) and have a variance of Var(ϵj) = σ2
j . Let P =

f(C1, . . . , Cn) be the true value of the parent, and P̂ = f(Ĉ1, . . . , Ĉn) be the final estimate based

15

https://arxiv.org/abs/2506.12594
https://openreview.net/forum?id=dG1HwKMYbC
https://arxiv.org/abs/2508.11987


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 7: Gradient surfaces of a simple logic formula C1 ∧C2 and a linear formula 0.1+ 0.4 ·C1 +
0.4 · C2 respectively.

on the noisy inputs. A rule f is robust if the propagated error, P̂ −P , is small. We can approximate
the variance of the output estimate, Var(P̂ ), using the propagation of uncertainty formula (a first-
order Taylor expansion):

Var(P̂ ) ≈
n∑

j=1

(
∂f

∂Cj

)2

σ2
j

The partial derivative, ∂f
∂Cj

, measures the sensitivity of the output to an error in the input Cj . A
smaller sensitivity indicates a more robust rule.

Analysis of the Simple Logic Rule The Simple Logic rule uses non-linear operators like AND
(A ·B) and OR (A+B −AB). Let’s analyze the sensitivity for a two-input function:

• For an AND gate, P = C1 · C2, the sensitivities are:

∂P

∂C1
= C2 and

∂P

∂C2
= C1

• For an OR gate, P = C1 + C2 − C1C2, the sensitivities are:

∂P

∂C1
= 1− C2 and

∂P

∂C2
= 1− C1

The key issue is that the sensitivity to an error in one input depends on the value of the other
inputs. For an AND gate, if C2 is high (e.g., 0.9), any error in C1 is passed through with high
impact. This creates a brittle system where high-confidence inputs can paradoxically increase the
rule’s sensitivity to noise from other inputs. This also leads to “tipping points”; a small error can
cause a dramatic change in the output (e.g., if one input to an AND gate flips from high to low, the
output collapses).

Analysis of the Linear Rule For the Linear rule, P = β0+
∑n

j=1 βjCj , the sensitivity is constant
for each input:

∂P

∂Cj
= βj

The sensitivity to an error in Cj is simply its weight, βj . It does not depend on the values of other
inputs. Since the weights βj are typically less than 1, the rule acts as a weighted average that
inherently dampens or smooths input noise. The error propagation is stable and predictable.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 8: Noise sensitivities of a simple logic formula C1∧C2 and a linear formula 0.1+0.4 ·C1+
0.4 · C2 respectively.

Fig. 7 and 8 visualized the gradient surfaces and sensitivity plots for linear and simple logic rules,
respectively (see similar analysis in Van Krieken et al. (2022)). The surface of the Simple Logic rule
is curved. This non-linearity is the source of its unpredictable behavior. The surface of the Linear
rule is a perfect plane, demonstrating its smooth and predictable nature. Small changes in the inputs
lead to proportional changes in the output.

The sensitivity plot for the Simple Logic rule is a ramp. The sensitivity to noise is very low when
both inputs are near zero, but becomes very high when the inputs are near one. This visually confirms
the “state-dependent sensitivity” mentioned in the proof—the rule’s robustness changes depending
on the data, making it brittle. The sensitivity plot for the Linear rule is a perfectly flat plane. This
is the most important takeaway. It shows that the rule’s sensitivity to noise is constant and bounded
across the entire input space. It dampens errors predictably, regardless of whether the input propo-
sitions are considered likely or unlikely to be true.

Conclusion: Principles for a Robust Synthesis Rule This analysis allows us to conclude with
three general principles for designing a robust synthesis rule, f :

1. Bounded Sensitivity: The partial derivatives ∂f
∂Cj

should be bounded and preferably small.
A rule where sensitivity can approach or exceed 1 is prone to amplifying noise. The Linear
rule’s sensitivities are bounded by the learned weights, whereas the Logic rule’s can be
large.

2. Smoothing Property: The function should have a natural smoothing or averaging effect.
Weighted averages, like the Linear rule, are classic examples of noise-reducing functions.

3. Graceful Degradation: The function should be smooth, without sharp “cliffs” or discon-
tinuities in its derivatives. This ensures that small changes in inputs lead to proportionally
small changes in the output, avoiding the “tipping point” behavior seen in logical gates.

The Linear rule satisfies all three principles, providing a strong theoretical reason for its superior
empirical performance in noisy, real-world scenarios.

A.2 EFFICIENCY AND SCALABILITY OF RECURSIVE ANALYTICA

In this section, we provide a formal analysis of the computational complexity and scalability of the
recursive Analytican framework. We demonstrate that while the total computation required grows
exponentially with the recursion depth n, the wall-clock time can be managed to near-linear growth
due to massive parallelism. Furthermore, we show that the recursive, divide-and-conquer approach
provides a crucial benefit we term Context Locality, which makes scaling feasible within the finite
context windows of LLMs.
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Setup Let us define the parameters for our analysis:

• n: The recursion depth of Analytican. Analytica1 is the base case.

• K: The average number of leaf nodes created by the Analyzer at each decomposition step
(i.e., the branching factor, denoted as Lmax in Algorithm 1).

• M : The total number of final leaf nodes to be grounded. In an n-level recursive structure,
M ≈ Kn.

• TG: The average time (latency) required to Ground a single leaf proposition. This repre-
sents the atomic unit of deep reasoning work.

• P : The number of parallel workers available for executing Ground tasks concurrently.

Work Complexity (Total Computation) The work represents the total computational cost if the
entire process were run sequentially on a single processor. It is dominated by the grounding of all
final leaf nodes.

Proposition 2 (Exponential Work Complexity). The total work complexity W (n) of
Analytican is exponential in the recursion depth n.

W (n) = O(Kn · TG)

Proof. At recursion depth n, the total number of final leaf nodes is approximately M = Kn. Since
each of these M leaves requires an independent grounding process of average time TG, the total
sequential time (work) is the product of these two quantities.

Time Complexity (Parallel Execution) The time complexity (also known as span or depth)
measures the wall-clock time assuming parallel execution. The structure of Analytica allows all leaf
nodes at the final level to be grounded simultaneously.

Proposition 3 (Parallel Time Complexity). With P parallel workers, the time complexity
TP (n) of Analytican is primarily determined by the parallel execution of the final grounding
phase.

TP (n) = O

(
n+

Kn

P
· TG

)

Proof. The process has a sequential dependency through the n levels of recursion (analysis and
synthesis at each level), contributing the O(n) term for overhead. The dominant term is the final
step, where all M = Kn leaves are grounded. With P workers, this phase takes ⌈Kn/P ⌉ batches
of parallel executions, each taking time TG. For large n, the exponential term O(K

n

P ) dominates the
linear term O(n).

Interpretation This explains the empirical results. While the total work W (n) is exponential,
the execution time TP (n) is divided by the number of parallel workers P . For a system with high
parallelism (large P , e.g., 1000 in Table 1), the exponential growth is drastically mitigated, leading
to the observed near-linear time growth for moderate n. This demonstrates the immense scalability
power unlocked by the framework’s parallel design.

The Benefit of Recursion: Context Locality Beyond parallelism, the recursive, divide-and-
conquer nature of Analytican is essential for its feasibility. A monolithic, non-recursive approach
would be intractable due to the context limitations of LLMs.

Proposition 4 (Context Locality). The recursive structure of Analytican maintains a small,
bounded context size for each LLM call, whereas a monolithic approach would require a con-
text size that grows exponentially with the problem complexity.
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Proof. Consider a monolithic agent trying to solve the problem in one pass. It would need to gener-
ate the entire proposition tree with M = Kn leaves. The size of this tree, which must be maintained
in the LLM’s context, would be O(Kn). For even modest n and K, this would quickly exceed any
modern LLM’s context window.

In contrast, Analytican exhibits context locality. Each call to the Grounder operates on a single leaf
proposition, a task with a constant context size, O(1). Each call to the Analyzer or Synthesizer op-
erates on a parent and its K children, a context size of O(K), which is independent of the recursion
depth n. The maximum context required at any point in the process remains small and bounded,
regardless of the overall size of the problem.

Conclusion The power of the recursive Analytican framework stems from two sources. First, its
parallel architecture transforms an exponentially complex problem in terms of work into a manage-
able task in terms of time. Second, and more fundamentally, its recursive decomposition provides
context locality, breaking an intractably large problem into a vast number of small, independent
sub-problems that fit within an LLM’s finite context. This combination of parallelism and locality
is what endows Analytica with its profound scalability.

B FORMAL ANALYSIS OF THE ANALYTICA REASONING MODEL

To better understand the semantics of Analytica’s underlying reasoning model and linear synthesis
rule from Eq. 2, in this section, we provide a sketch of how to directly translate an Analytica com-
putation graph produced during the synthesis stage (see again Figs. 1-3) into an equivalent Bayesian
network. Recalling again that our synthesis rule scores non-leaf propositions ρi.ptrue ∈ [0, 1] using
the scores of all its children ρ̄.ptrue ∈ [0, 1] as follows:

ρ.ptrue = β0 +
∑
j

βj · ρ̄j .ptrue

We define the following graphical representation of the Bayesian network corresponding to the
above equation (without loss of generality, we focus on the case involving two children ρ1, ρ2):

P̄1

P̄2

P

where P and P̄1, P̄2 are binary random variables corresponding to the root ρi and its children
nodes ρ1, ρ2. Standardly, the probability of variable P in this network, denoted below as Pr(P)
for Pr(P = 1), is computed as follows (with binary indicator variables pj ∈ {0, 1}):

Pr(P) =
∑

c1,c2∈{0,1}

Pr(P | P̄1 = p1, P̄2 = p2) · Pr(P1 = p1,P2 = p2)

=
∑

c1,c2∈{0,1}

Pr(P | P̄1 = p1, P̄2 = p2) · Pr(P̄1 = p1) · Pr(P̄2 = p2)︸ ︷︷ ︸
independence

.

By then defining the corresponding CPDs as follows using our original β coefficients:

Pr(P | P̄1 = p1, P̄2 = p2) := β0 + (β1 · p1) + (β2 · p2)

and the non-root node probabilities P̄ using their original node scores:

Pr(P̄ = p) := (ρ̄.ptrue)
p · (1− ρ̄.ptrue)

(1−p)
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We can observe below that Pr(P) under this network and linear weight parameterization corre-
sponds exactly to the linear synthesis rule score ρ.ptrue (for readability, we use p and p in place of
Pr(C) and 1− Pr(C), respectively, and replace C = c in P (P | ·) with Booleans 0,1):

Pr(P) =
[
Pr(P | 0, 0)p1p2

]
+

[
Pr(P | 1, 0)p1p2

]
+

[
Pr(P | 0, 1)p1p2

]
+

[
Pr(P | 1, 1)p1p2

]
=

[
β0p1 p2

]
+

[
(β0 + β1)p1p2

]
+

[
(β0 + β2)p1 p2

]
+

[
(β0 + β1 + β2)p0 p1

]
w/ βs

=

[
β0
XXXXXp1p2p1p2

]
+

[
β1p1

HHHp2p2

]
+

[
β2p2

HHHp1p1

]
Algebra/cancellation

= ρ.ptrue Whenever all βs ∈ [0, 1] and β0 +
∑
j

βj ≤ 1.

Importantly, we emphasize that this equivalence only holds when the β parameters have the structure
given in the last line. While such a condition was not strictly enforced in our existing experiments,
we note, however, that such a constraint can be enforced in our current system by employing a
variety of different scaling techniques for the given βs (e.g., min-max scaling, softmax).

By translating our synthesis rule into an explicit Bayes net, we get a more transparent picture of the
semantics underlying our synthesis agent. In addition, such a formulation also suggests a number of
new synthesis strategies that use known techniques from probabilistic graphical models (Koller &
Friedman, 2009). We provide specific examples below by considering a translation into a different,
and semantically more transparent, formal system below.

The synthesis rule as a probabilistic logic program Interestingly, we noticed through the above
derivation that the linear synthesis rule has a more compact and natural interpretation as a certain
type of probabilistic logic program (PLP) (De Raedt & Kimmig, 2015). Below shows a Problog
implementation (De Raedt et al., 2007; Dries et al., 2015) of the linear synthesis rule (the red parts
correspond to the corresponding parameters in the linear synthesis rule):

%% children nodes as probabilistic facts
ρ̄1.ptrue::p1.
ρ̄2.ptrue::p2.
%% betas as annotated disjunctions, categorical variable
β0::b0; β1::b1; β2::b2.
%%% tree links as if-then rules
p :- b0.
p :- b1, p1.
p :- b2, p2.
%%% probability of root p
query(p).

where p, p1, p2 denote the root and non-root propositions, respectively (the latter being implemented
as probabilistic facts), and the bs correspond to the beta parameters (expressed as a relational cat-
egorical distribution using a construct called an annotated disjunction (AD) originally from Ven-
nekens et al. (2004)). To see that the probability of p (via query(p)) is equal to ρp.ptrue in the
linear synthesis rule, we consider the Boolean encoding of this program under standard closed-world
semantics (Clark, 1977), which corresponds to the formula F below:

F :=

(
p↔

(
b0 ∨

∨
j>0

bj ∧ pj
))

︸ ︷︷ ︸
(noisy-)or

∧
( ∨

j≥−1

bj

)
∧
( ∧

∀i,j|i ̸=j

¬(bi ∧ bj)

)
︸ ︷︷ ︸

one-hot constraint, categorical

where a special variable b−1 is used to denote the case where all other bs are false (used whenever
the sum of βs is less than 1). Under a standard possible world semantics and encoding of PLPs
and ADs into weighted logic (Fierens et al., 2015), we can then compute the probability of p as
the weighted model count (WMC) (Chavira & Darwiche, 2008) of F ∧ p, and observe under the
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following weighting w(·) of variables:

∀j ≥ 0. w(bj) = βj, w(b−1) = 1− (β0 + β1 + β2), ∀j.w(¬bj) = 1

∀j. w(pj) = ρj .ptrue, w(¬pj) = 1− ρj .ptrue

w(p) = 1

that the following equivalence holds (where w(±p) is used as shorthand to denote the weight of a
variable p or its negation, which marginalize out, and w denotes a possible world or set of variable
instantiations consisting of literals l):

Pr(F ∧ p)︸ ︷︷ ︸
query(p)

:=
∑

w|=F∧p

∏
l∈w

w(l)

︸ ︷︷ ︸
weighted model count (WMC) of p ∧ F under w(·)

=

[
w(b0)

hhhhhhhw(±p1)w(±p2)

]
+

[
w(b1)w(p1)XXXXw(±p2)

]
+

[
w(b2)XXXXw(±p1)w(±p2)

]
︸ ︷︷ ︸

All logical interpretations of p ∧ F with weights (removed literals l with weight 1)

=

[
β0

]
+

[
β1ρ̄1.ptrue

]
+

[
β2ρ̄2.ptrue

]
Whenever all βs ∈ [0, 1] and β0 +

∑
j

βj ≤ 1.

= ρ.ptrue.

At noted above, the translation into F shows more clearly how the linear rule operationalizes a kind
of noisy-or style of reasoning (Pearl, 2014) (i.e., the root being true depends on one or more of
its children being true, or β0 being true) with an added one-hot constraint that enforces only one β
being true. By removing this one-hot constraint (or equivalently, removing the annotated disjunction
in the logic program), one derives a standard noisy-or rule, which is an alternative synthesis strategy
that one can in principle experiment with. Building on these foundations, many techniques from
PGMs and probabilistic logic programming suggest themselves for improving the robustness of the
synthesis agent, such as adding explicit negative factors, e.g., via inhibited noisy-or rules (Meert
& Vennekens, 2014), or modeling parameter uncertainty via Bayesian inference as in Cerutti et al.
(2019); Verreet et al. (2022) (see Agarwal et al. (2025) for similar ideas in the context of LLM
agents). (we note that such an analysis follows other attempts to ground decomposition-based LLM
modeling in probabilistic programming (Dohan et al., 2022)).

C SYSTEM DETAILS

C.1 DETAILED SETUP

Our experiments were conducted using a set of standardized hyperparameters to ensure consistency
and reproducibility across all agent configurations. These settings govern the behavior of the LLM
agents, the grounding process, and the structural constraints of the Analytica framework.

General Agent Settings These parameters control the core interaction loop for all LLM agents.

max exception retry: 3 The maximum number of times an agent will attempt to re-call
the LLM if a recoverable error (e.g., invalid JSON format, parsing failure, invalid weights
generated for linear rule, invalid formula generated for simple logic rule) occurs.

max interrupt times: 5 The maximum number of interruptions (e.g., tool calls for API
documentation) an agent can make in a single reasoning step before being required to pro-
duce a final response for that step.

Analytica Framework Settings These parameters specifically control the behavior of the Analyt-
ica architecture during the analysis and grounding phases.

max n leaves: 10 A limit on the number of leaf propositions the Analyzer can generate. The
decomposition phase is halted once the proposition tree reaches approximately 10 leaves to
ensure a comparable analytical budget across different methods. Notice that in practice, it
usually halts with more than 10 nodes as we perform a post-check.
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max concurrent prove: 20 The maximum number of leaf propositions that can be
grounded in parallel by the framework. This leverages asynchronous execution to improve
efficiency.

max proof retries: 3 The number of times the framework will retry the entire grounding
process for a single leaf proposition if the assigned Grounder agent fails catastrophically.

Jupyter Notebook Grounder Settings These settings govern the iterative proof-construction pro-
cess for our most advanced grounder.

max proof steps: 20 The maximum number of turns (i.e., generating and executing one or
more notebook cells) the agent can take within a single Jupyter session before it is forced
to terminate the analysis and provide a conclusion.

debug max retries: 5 The maximum number of attempts the agent is given to fix a single
erroneous Python cell before the proof is considered to have failed.

abs intercept max: 0.1 A constraint on the absolute value of the intercept term (β0) for
the Linear Synthesizer. This encourages the agent to base its synthesis on the evidence
from child propositions rather than relying on a large, unexplained prior.

Experimental Simplification for Binary Tasks To enhance computational efficiency, a simpli-
fication was applied to all tasks with exactly two mutually exclusive options (e.g., “Long” vs.
“Short”, “Yes” vs. “No”). For these binary tasks, the framework was configured to perform
a full analysis or grounding process for only the first option to determine its soft truth value,
P (option1). The soft truth value for the second, opposing option was then programmatically de-
rived as P (option2) = 1 − P (option1), leveraging the mutually exclusive nature of the choice set.
This approach halves the computational cost for binary forecasting without loss of information.

C.2 DATASET CONSTRUCTION

Our benchmark dataset was meticulously constructed to provide a diverse and challenging set of
real-world forecasting tasks. The data spans two primary domains: high-liquidity predictive markets
and a wide range of traditional financial markets. The entire construction process involved several
stages of data acquisition, filtering, and validation to ensure the quality and relevance of the tasks.
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Figure 9: A Gantt chart illustrating the timespans of the predictive market events included in our
dataset. Each horizontal bar represents a single event, starting on its opening date and ending on
its resolution date. The color of the bar indicates the event’s duration in days. The chart highlights
the diversity of forecasting horizons, ranging from short-term events of a few weeks to long-term
predictions spanning over a year.

Predictive Markets Data for predictive markets was sourced from two of the largest plat-
forms, Kalshi and Polymarket, via their respective official APIs (https://kalshi.com/api,
https://docs.polymarket.com). We applied a multi-stage filtering process to the raw
event data:

• Temporal Filtering: We selected events with resolution dates occurring after our models’
knowledge cutoff of June 1, 2024, and before May 1, 2025, to ensure they represented
genuine future predictions.

• Volume Filtering: To focus on events with sufficient public interest and liquidity, we
enforced a minimum total trading volume of $500,000 across all of an event’s markets.

• Topical Filtering: We used a comprehensive set of keywords (e.g., “who will win”,
“movie”, “sports team vs.”, “price range”) to exclude events that are purely speculative,
sports or entertainment-related, or not amenable to deep analytical reasoning.

• Structural Filtering: Events with an excessive number of potential outcomes (more than
5 markets) were removed to maintain a manageable task complexity.

The resulting set of predictive market events covers a wide range of time horizons, from tasks re-
solving in a few weeks to those lasting over a year, as illustrated in Fig. 9.

Financial Markets To create tasks for financial markets, we sourced historical end-of-day price
data from the Financial Modeling Prep (FMP) API. We curated a diverse list of highly-liquid assets
from several categories to ensure broad market coverage:

• Stocks: A core set of large-cap stocks was selected from major US indices, including the
S&P 100, Dow Jones Industrial Average, and NASDAQ-100.
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• Indices: A comprehensive list of major global and sector-specific stock market indices.

• Funds: A variety of Exchange-Traded Funds (ETFs), including those focused on specific
sectors, investment themes, and active management strategies.

• Cryptocurrencies: The top 8 cryptocurrencies by market capitalization, such as BTCUSD
and ETHUSD, were included.

• Forex: Major and minor currency pairs were selected to represent the global foreign ex-
change market.

• Commodities: A list of all available commodity futures provided by the data source.

Final Curation and Validation After the initial filtering and selection, all potential tasks under-
went a final validation step. Each event was used to construct a ‘Query‘ object, which simulates
the task setup for an agent. Any event that failed during this process—due to issues like incomplete
historical data, an invalid time span, or resulting in options with no distinguishable value (i.e., all
outcomes having the same payoff)—was discarded from the final dataset. This final check ensures
that every task in the benchmark is well-formed and evaluable.

C.3 BASIC SEARCH AND DEEP RESEARCH GROUNDERS

To benchmark our framework against non-programming agents with varying levels of sophistication,
we implemented two text-based grounders: Basic Search and Deep Research. Both agents are built
upon a common, customized search service to ensure consistency in information access. This service
is powered by the Exa API (https://exa.ai/) and is strictly configured to only return web
results published before the experiment’s knowledge cutoff date, thereby preventing data leakage
from the future.

For Basic Search grounder, the search function was provided to the agent as a tool. When tasked
with grounding a leaf proposition, it may use the tool through function calling provided by the
OpenAI API. The Deep Research grounder is implemented using the OpenAI DeepResearch API.
We replace the default search tool with our own customized MCP server hosting the same search
tool in the Basic Search grounder to avoid data leaking.

C.4 JUPYTER NOTEBOOK GROUNDER

The Jupyter Notebook Grounder is the most advanced grounding agent in our framework, de-
signed to simulate the workflow of a human expert performing quantitative and qualitative analysis.
Instead of relying solely on text-based reasoning, this agent interacts with a sandboxed Jupyter
Notebook environment to construct a rigorous, evidence-based proof for a given leaf proposition.
The process is stateful, iterative, and tool-driven, allowing for complex data retrieval, analysis, and
visualization.

C.4.1 SANDBOX ENVIRONMENT

Each grounding task is executed within an isolated Jupyter Session, which provides a secure and
stateful computational environment. The sandbox is managed by the JupyterSandbox class,
which handles the lifecycle of kernel processes and notebook files.

When a session is initiated, a special initialization cell is prepended to the notebook. This cell
imports necessary libraries and instantiates the Proxy class, which serves as the agent’s interface to
all external data APIs. This setup ensures that the agent has immediate access to its toolset and that
all API calls are configured with the correct knowledge cutoff date, preventing data leakage from
the future.

The agent’s interaction with the notebook is entirely programmatic. It cannot directly edit or delete
previous cells; it can only append new cells, ensuring a verifiable and immutable record of the
analysis process.
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C.4.2 ITERATIVE PROOF CONSTRUCTION

The agent constructs its proof through an iterative, multi-step process orchestrated by the Prover
agent logic. The agent reasons about the proposition and decides on a course of action, which it
implements by generating a sequence of notebook cells.

Cell Generation The agent’s primary output is a stream of Jupyter cells, which can be of two
types, as dictated by the system prompt:

• Markdown Cells (<markdown cell>): Used for qualitative reasoning, outlining the
analytical plan, summarizing intermediate findings, and structuring the final report.

• Python Cells (<python cell>): Used for quantitative tasks. This is where the agent
performs data retrieval via API calls, conducts statistical analysis, and generates visualiza-
tions to support its claims.

Debugging Loop After the agent submits its cells, the sandbox executes them sequentially. If a
Python cell fails, the execution halts, and the agent is provided with the error traceback. It then
enters a debugging loop, where it is prompted to provide a corrected version of the single erroneous
cell. This cycle can repeat for a predefined number of attempts (debug max retries), allowing
the agent to recover from syntax errors, incorrect API usage, or data handling mistakes.

Termination The agent continues this cycle of planning, coding, and debugging until it determines
its analysis is complete. It then issues a special <TERMINATE NOTEBOOK> command. At this
point, the programming phase ends, and the agent is prompted to synthesize its findings from the
notebook into a final, comprehensive proof and a soft truth value (ptrue) for the proposition.

ID Name Description #
fmp Financial Modeling Prep API FMP provides the Stock Market APIs and

Financial Data APIs, such as real-time
stock prices, financial statements, and his-
torical data. It offers a comprehensive so-
lution to meet all financial data needs.

132

msd Main Street Data API The Main Street Data API compiled over
thousands of metrics related to 2,500 US
companies, offering unparalleled insights
into businesses beyond standard financial
statements.

4

fred Federal Reserve Economic Data The FRED® API retrieves economic data
from the FRED® and ALFRED® websites
hosted by the Economic Research Division
of the Federal Reserve Bank of St. Louis.

16

gt Google Trends Search API Google Trends API scrape real-time results
from Google Trends. It also supports au-
tocomplete, related queries, related topics,
and geo locations.

8

exa Exa Search API Exa provides three core functionalities:
Find webpages using Exa’s embeddings-
based or Google-style keyword search; ob-
tain clean, up-to-date, parsed HTML; and
find similar pages.

3

Table 4: The library of external data APIs available to the Jupyter Notebook Grounder. Each proxy
provides access to a suite of specific endpoints for quantitative analysis. “#” means the number of
endpoints.
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Figure 10: Statistical significance of the results in Table 2, computed by a pairwise McNemar’s
test.In each square, the first row denotes the P value, the second and third row denotes the upper and
lower sides of the confidence interval of the accuracy difference between the model on the y-axis
and the x-axis.

C.4.3 API LIBRARY

The Jupyter environment is augmented with a powerful, extensible library of APIs for accessing
real-world data. All API interactions are mediated through a special CALL API function injected
into the notebook’s scope.

The Proxy System The CALL API function is an interface to the Proxy class, which manages
access to all underlying data sources. The Proxy system is designed to be modular, with each
data source (e.g., FRED, Financial Modeling Prep) implemented as a separate BaseProxy sub-
class. This design allows for easy integration of new data sources. Before using an API, the agent
is instructed to use a retrieve api doc function to get detailed documentation on endpoints
and parameters, promoting correct usage. Table 4 lists the core APIs available to the agent in our
experiments.
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D ADDITIONAL RESULTS

D.1 MCNEMAR’S TEST

To validate the statistical significance of our accuracy improvements, we performed a pairwise Mc-
Nemar’s test on the prediction outcomes (correct vs. incorrect) for all evaluated methods. This test
is appropriate for comparing the performance of two classifiers on the same dataset. We test the
methods on the full forecasting benchmark introduced in § 5.1. The results, visualized as a matrix
of p-values, are presented in Fig. 10.

The matrix clearly shows that the improvements achieved by our top-performing configurations
are highly statistically significant. For instance, Analytica-L augmented with the Deep Research
grounder shows a p-value of p=0.00 when compared against the standalone Deep Research baseline,
as well as against all other baselines like Tree of Thoughts and Forest of Thoughts. This indicates
that the observed 12.72% relative improvement in accuracy is extremely unlikely to be due to random
chance.

Similarly, the highly cost-effective Jupyter Notebook grounder with Analytica-L also demonstrates
statistically significant outperformance against its standalone counterpart and the Basic Search-
based methods. The test also highlights significant performance differences between the synthesis
rules; the Linear (-L) and Vanilla (-V) rules consistently and significantly outperform the Simple
Logic (-S) rule across different grounders, confirming the robustness discussed in § 4.3. In cases
where the performance difference is small, the test correctly identifies it as not significant (NS), such
as the comparison between Analytica-V (DR) and Jupyter Notebook + Analytica-L (JN).

D.2 PERFORMANCE BY CATEGORY

Pred. Index Stock Fund Forex Comm. Cryp. All
Random 46.19 55.06 43.60 47.66 50.00 50.00 37.50 48.10
Tree of Thgt. 45.29 71.35 63.95 67.29 56.25 62.50 50.00 60.19
Graph of Thgt. 45.74 66.85 60.47 64.49 50.00 65.62 37.50 57.88
Forest of Thgt. 46.64 69.66 64.53 69.16 50.00 68.75 50.00 60.73

Basic Search 43.50 61.24 56.40 65.42 31.25 50.00 37.50 53.94
+ Analytica-V 43.50 79.21 65.12 74.77 43.75 71.88 62.50 63.18
+ Analytica-S 44.84 67.98 57.56 67.29 62.50 56.25 50.00 57.61
+ Analytica-L 48.88 80.90 65.12 74.77 56.25 71.88 75.00 65.62

Deep Research 46.64 80.34 64.53 71.96 43.75 50.00 75.00 63.04
+ Analytica-V 57.85 82.58 65.12 76.64 62.50 68.75 87.50 69.16
+ Analytica-S 53.36 79.21 63.95 74.77 62.50 68.75 75.00 66.30
+ Analytica-L 63.68 80.90 65.70 75.70 68.75 75.00 100.0 71.06
Jupyter NB 51.12 73.03 62.21 66.36 62.50 59.38 62.50 61.96
+ Analytica-V 60.54 79.78 64.53 75.70 50.00 75.00 75.00 68.89
+ Analytica-S 51.12 73.60 63.37 65.42 68.75 65.62 75.00 62.77
+ Analytica-L 60.54 81.46 65.70 74.77 75.00 78.12 75.00 70.11

Num. Tasks 223 178 172 107 16 32 8 736
Ratio 30.30% 24.18% 23.37% 14.54% 2.17% 4.35% 1.09% 100%

Table 5: Model accuracy (Accu. %) breakdown by task category.

Table 5 provides a granular breakdown of model performance across seven distinct categories: Pre-
dictive Markets (Pred.), Stock Indices (Index), individual Stocks, Funds, Foreign Exchange (Forex),
Commodities (Comm.), and Cryptocurrencies (Cryp.). This detailed view reveals several key in-
sights into the strengths and weaknesses of the different methods.

Across the board, Analytica-enhanced agents consistently outperform their standalone counterparts
in almost every category. The most substantial gains are observed in the more traditional and data-
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rich financial markets, such as Indices, Stocks, and Funds. For instance, when augmenting Deep
Research, Analytica-L achieves a remarkable 100% accuracy on the 8 cryptocurrency tasks and
significantly boosts performance in Predictive Markets from 46.64% to 63.68%. This suggests that
the structured, decompositional approach of Analytica is particularly effective in domains where a
multitude of quantitative and qualitative factors must be weighed.

Interestingly, most models, including the more advanced ones, struggle with Predictive Market tasks,
with many performing below the random baseline. This highlights the inherent difficulty of these
problems, which often involve complex socio-political factors and sparse, noisy data. However, it
is in this challenging domain that Analytica-L provides the most dramatic relative improvement,
demonstrating its ability to impose a coherent analytical structure on ambiguous problems. In con-
trast, performance on financial instruments like Indices and Funds is strong across most models,
likely due to the availability of high-quality historical data and established analytical frameworks,
which the agents can effectively leverage. The Jupyter NB agent, with its ability to perform quan-
titative analysis, shows its strength in these data-intensive categories, and its performance is further
amplified by the Analytica framework.

D.3 METHOD CONSENSUS OF ANALYTICA

Figure 11: Consensus matrix of final predictions across all methods. The color of each cell rep-
resents the pairwise agreement score between two methods, with darker colors indicating higher
consensus.
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Fig. 11 displays a consensus matrix, illustrating the degree of agreement in the final predictions
among all evaluated methods. The matrix reveals distinct clusters of agreement. The various
“thought” architectures (Tree, Graph, Forest) form a noticeable cluster, indicating that they often
arrive at similar conclusions despite their different structural approaches to reasoning. This suggests
they may share similar underlying reasoning patterns or biases inherited from the base LLM.

The Analytica variants, particularly those built on the same grounder (e.g., all Deep Research
+ Analytica versions), show very high consensus among themselves. This is expected, as they
share the same foundational evidence from the grounder and differ only in the final synthesis step.
A more insightful observation is the relatively high agreement between the top-performing mod-
els, Deep Research + Analytica-L and Jupyter NB + Analytica-L. This conver-
gence among the best methods suggests that as performance and robustness increase, the models’
conclusions become more aligned, likely approaching a more objectively correct analysis. The
Vanilla, Simple Logic, and Linear synthesizers for a given grounder also form a tight cluster, which
is a strong indicator that the decomposition and grounding phases are the most critical drivers of the
final outcome, with the synthesis rule acting as a fine-tuning mechanism for accuracy and stability.

D.4 ABLATION ON BASE MODELS

To rigorously evaluate the impact of the underlying language model on the performance and effi-
ciency of the Analytica framework, we conducted a series of ablation studies. We systematically
varied the models assigned to the three core components: the Grounder, the Analyzer, and the Syn-
thesizer.

D.4.1 SETUP

Our experiments utilize three distinct large language models, chosen to represent a spectrum of ca-
pabilities and design philosophies: 1. o3 (o3-2025-04-16): A state-of-the-art model optimized
for specialized reasoning, serving as our high-performance benchmark. 2. gpt-4.1 (Hypothetical
Generalist): A powerful, general-purpose model used to test the framework’s effectiveness with a
non-specialized but highly capable LLM. 3. o4-mini (Hypothetical Cost-Effective Reasoner): A
cost-efficient and fast reasoning model to evaluate the framework’s performance under significant
resource constraints.

This selection allows us to measure not only how performance scales with model capability but also
how robust the framework is to the specific architecture of its components. We run all configurations
on our benchmark set with 100 events introduced in § 5.1. We use the Vanilla synthesis rules and
basic search agents.
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D.4.2 COST-EFFICIENCY OF MODEL COMBINATIONS

Figure 12: Cost-efficiency analysis of different model combinations for the Analytica components.
The chart compares 27 configurations, varying the LLM for the Grounder, Analyzer, and Synthesizer
roles. The length of the bar represents cost-efficiency, calculated as accuracy divided by cost.

In Fig. 12, we present a cost-versus-accuracy analysis for all 27 possible combinations of the three
base models across the Grounder, Analyzer, and Synthesizer roles. The plot clearly illustrates the
trade-off frontier between computational cost and predictive accuracy.

The results unequivocally show that the choice of the Grounder model is the most significant deter-
minant of both cost and overall performance. Configurations using the powerful o3 model for the
grounding phase consistently form a cluster in the high-accuracy, high-cost quadrant. Conversely,
using the economical o4-mini as the Grounder results in a cheaper but less accurate agent. The
model choices for the Analyzer and Synthesizer have a more subtle effect, creating smaller per-
formance variations within the distinct tiers established by the Grounder. This analysis serves as
a practical guide, allowing users to select a configuration that aligns with their specific balance of
performance requirements and resource constraints.
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D.4.3 BASE MODEL SELECTION FOR COMPONENTS

Figure 13: Marginal impact of model choice on component performance. The chart shows the
average accuracy and cost when a specific model is used for a particular role (Grounder, Analyzer,
Synthesizer), averaged across all other configuration choices.

Fig. 13 isolates the marginal impact of the base LLM for each of the three agent roles, with each data
point representing an average over all configurations where that model was used in that specific role.
The results indicate that the Analytica framework exhibits considerable robustness to the choice of
model within this family. While there is a clear and expected trend where more capable models
generally yield higher accuracy, the absolute differences in the final outcomes are modest. This
low sensitivity suggests that the structured process of decomposition, grounding, and synthesis is
a primary driver of performance, mitigating some of the variability that might arise from different
model sizes or training objectives from the same provider.

This effect is particularly evident with the o4-mini model, which delivers performance that is
competitive with its larger counterparts. This is a significant finding, as it suggests the framework’s
methodical approach—breaking a complex problem into a series of smaller, well-defined tasks—can
effectively leverage more efficient models. By providing this structural “scaffolding”, Analytica
enables these smaller models to contribute to complex reasoning chains in a way that would be
difficult in a less constrained, end-to-end setting.

While the framework is robust in this context, a hierarchy of influence among the components is
still discernible. The choice of the Grounder model has the most pronounced impact on final
accuracy, underscoring that the quality of foundational evidence is paramount. The system’s graceful
degradation in performance with less capable grounders, rather than outright failure, further supports
the claim of architectural resilience. Besides, our model selections are from the same model family
provided by OpenAI, while models from different providers may show a different pattern.

D.4.4 PERFORMANCE ON OPEN-WEIGHT AND SMALL MODELS
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Model Accu Imp. Soft Hard BS Cost (1k) # Params
DeepSeek-v3.1 60.95 - 56.68 61.89 25.73 $3 671B (37B)
+ Analytica-L 64.25 5.42 56.39 59.96 22.34 $59 -

GLM-4.6 52.73 - 53.10 55.03 30.73 $10 355B (32B)
+ Analytica-L 55.33 4.96 56.60 59.59 25.92 $100 -

Kimi-K2-Thinking 55.56 - 54.44 58.39 30.59 $25 1T (32B)
+ Analytica-L 56.81 2.26 59.73 63.15 25.59 $284 -

Qwen3-Next-80B-Think. 53.64 - 54.88 58.79 33.97 $10 80B (3B)
+ Analytica-L 55.55 3.56 58.36 59.65 32.77 $104 -

OpenAI-OSS-120B 54.72 - 55.97 59.18 28.20 $2 117B (5.1B)
+ Analytica-L 62.96 15.05 55.40 55.67 22.74 $22 -

OpenAI-OSS-20B 55.57 - 54.79 59.24 29.56 $1 21B (3.6B)
+ Analytica-L 64.24 15.59 56.91 58.59 23.68 $7 -

GPT-5-mini 62.45 - 56.60 64.09 24.37 $7 N/A
+ Analytica-L 64.37 3.07 60.31 65.79 23.27 $71 -

O4-mini 62.63 - 58.49 64.27 25.56 $9 N/A
+ Analytica-L 66.11 5.56 58.49 64.62 23.47 $101 -

Table 6: Evaluating Analytica on small and open-weight models.

To further validate the generality and robustness of our framework, we broadened our evaluation to
include a heterogeneous set of open-weight, cost-efficient small language models. The experimental
configuration strictly adheres to the protocol outlined in §5.1. For each model, we conduct two
runs: one using vanilla Basic Search and another employing Analytica-Linear with the Basic Search
grounder.

The results in Table 6 indicate a consistent performance gain across all evaluated models, demon-
strating that the benefits extend to both open-source systems and smaller architectures. The largest
relative gains occur in compact, distilled models, thereby helping to democratize advanced rea-
soning capabilities; for example, OpenAI-OSS-20B enhanced with Analytica attains performance
comparable to the baseline of the substantially larger 671B-parameter DeepSeek-v3.1. This implies
that Analytica can substantially narrow the capability gap between efficient edge models and large
frontier models. Furthermore, the findings suggest that Analytica’s effectiveness is only weakly
dependent on model size (i.e., parameter count) and is instead primarily governed by the underly-
ing pre-training and post-training procedures, which shape how well a model aligns with the
structured decomposition tasks required by Analytica.

D.5 EVALUATION ON SCIENTIFIC CLAIMS

To assess domain transferability beyond finance, economics, and predictive markets, we further
evaluate our method in the Matter-of-Fact (MoF) benchmark (Jansen et al., 2025a). We perform
zero-shot evaluation on the test set of MoF, which includes a large set of 4.4k binary scientific
claims from superconductors, semiconductors, batteries, and aerospace materials publications, and
involving qualitative and quantitative claims from theoretical, experimental, and code/simulation
topics.

For each instance, an agent receives a single claim and is required to output the probability Ptrue

that the claim is correct. A decision threshold δ is then applied: if Ptrue > δ, the claim is labeled
as True; otherwise, it is labeled as False. For each model, we calibrate the threshold δ on the MoF
validation set, which contains 1.4k claims. Concretely, we first collect the predicted Ptrue values
for all validation claims, then search for the threshold that yields the highest overall accuracy, and
finally use this threshold on the test set. Our evaluation includes GPT-4o-mini and O4-mini, as
reported in the original paper, and additionally the two most recent models, GPT-5.1 and GPT-5-
mini. Each model is evaluated under a standard Basic Search configuration and under an Analytica-
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Linear configuration using Basic Search grounders. We use each claim’s publication date as the
cutoff for the searches. Following Jansen et al. (2025a), we report both overall and per-category
accuracy, as well as the associated costs.

Overall Accuracy by Category Cost
Model Accu. True False Qual. Qnt. Exp. Code Ther. Int. (×1k)
Random 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0

GPT-4o-mini 0.66 0.90 0.42 0.72 0.72 0.68 0.63 0.61 0.58 $1
+ Analytica-L 0.59 0.87 0.30 0.55 0.58 0.59 0.59 0.60 0.60 $7

O4-mini 0.61 0.34 0.88 0.60 0.57 0.63 0.62 0.59 0.63 $6
+ Analytica-L 0.64 0.95 0.30 0.57 0.60 0.73 0.62 0.68 0.66 $38

GPT-5.1 0.62 0.27 0.97 0.58 0.56 0.59 0.69 0.66 0.62 $9
+ Analytica-L 0.70 0.85 0.55 0.73 0.75 0.71 0.67 0.70 0.64 $78

GPT-5-mini 0.71 0.60 0.82 0.69 0.76 0.66 0.64 0.75 0.72 $3
+ Analytica-L 0.73 0.70 0.75 0.75 0.77 0.69 0.67 0.79 0.67 $27

Table 7: Experiment results for scientific claims on the Matter-of-Fact benchmark.

The results, summarized in Table 7, demonstrate that Analytica’s structured reasoning framework
generally generalizes effectively to scientific domains, though with notable exceptions. We observed
significant performance uplifts for several architectures; for instance, the GPT-5.1 model improved
from 62% to 70% accuracy, and GPT-5-mini saw gains from 71% to 73%. However, the impact was
not universally positive: GPT-4o-mini experienced a performance regression, dropping from 0.66
to 0.59 accuracy, which is also the only negative case we observed in our experiments. A plausible
explanation is that this is the oldest model among all the base models evaluated in this work and may
lack the capacity required for robust complex reasoning. Nevertheless, the consistent improvement
across the majority of tested models validates the broader utility of the framework in the scientific
domain.

D.6 ERROR ANALYSIS

To better understand the conditions under which our methods succeed or fail, we conducted a de-
tailed error analysis.

D.6.1 TASK CORRECTNESS DISTRIBUTIONS

Figure 14: Distribution of task correctness rates across all models for different categories. The
histograms show the percentage of tasks falling into different correctness rate buckets.
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Fig. 14 (task correctness plots) shows the distribution of prediction correctness across different task
categories. The distributions for financial tasks (Stock, Index, Fund) tend to be more concentrated
towards higher correctness scores, especially for the top-performing models. In contrast, the dis-
tribution for Predictive Markets is flatter and more spread out, confirming that these tasks are more
challenging and that model performance is less consistent. This visual analysis reinforces the finding
that the models are more reliable in domains with structured data and established patterns.

D.6.2 TASK FEATURES AND CORRECTNESS

Figure 15: Correlation between task features and model performance. The boxplots show that higher
asset volatility (left) and lower market volume (right) are associated with lower pass rates.

The boxplots in Fig. 15 explore the relationship between task characteristics and model perfor-
mance. We observe a negative correlation between the volatility of a financial asset and the models’
prediction accuracy. This is intuitive: highly volatile assets are inherently less predictable. Simi-
larly, for predictive markets, events with a shorter time horizon (less time to gather information and
for trends to stabilize) and lower market volume (less collective wisdom to draw upon) are associ-
ated with lower accuracy. This suggests that the models’ performance is sensitive to the inherent
uncertainty and information scarcity of the task.

D.6.3 TOP AND BOTTOM PERFORMING TASKS

Finally, the tables listing the top and bottom 10 performing tasks provide qualitative insights.

Top 10 Pass rate Bottom 10 Pass rate

MSFT shareholders vote for Bitcoin investment? Who will be Trump’s Secretary of Labor?
Will Biden announce resignation by July 31? Trump gets more black voters than in 2020?
Will Biden speak at the DNC? Fed decision in January?
Will Trump be Speaker by January 1? Will Ukraine hold Kursk through Aug 31?
Trump and Biden debate before Election? Ukraine agrees to Trump mineral deal?
Trump nominates Elon Musk to Cabinet? Yoon arrested by Friday?
Will the US confirm that aliens exist in 2024? Trump and Harris agree to Sept 10 debate?
Will Kanye launch a coin in February? Will Assad remain President of Syria?
Will Kamala Harris win all 6 swing states? Which states will move to the right?
US inauguration on January 20? Romania Parliamentary Election

Table 8: Top and Bottom 10 performing events in predictive markets.

Predictive Markets For predictive markets, the models excel at forecasting high-profile, binary
events, particularly within the realm of US politics. The Top 10 tasks are questions about major
political figures like Joe Biden and Donald Trump, revolving around widely publicized events such
as debates and convention speeches. These topics generate a massive volume of news articles, social
media chatter, and opinion polling, creating a dense information environment where sentiment and
likelihood can be effectively gauged by synthesizing public discourse.

The models fail when faced with questions that require more nuanced, specialized, or multifaceted
reasoning. The Bottom 10 list includes tasks that involve predicting specific cabinet appointments,
complex voter demographic shifts, or the outcomes of intricate geopolitical conflicts. These ques-
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tions cannot be answered by simply aggregating headlines; they require a deeper, causal understand-
ing of political systems and human behavior, which remains a significant challenge.

Top 10 Pass rate Bottom 10 Pass rate

MetLife, Inc. (MET) Target Corporation (TGT)
Johnson & Johnson (JNJ) AstraZeneca PLC (AZN)
Microsoft Corporation (MSFT) ConocoPhillips (COP)
AbbVie Inc. (ABBV) Chevron Corporation (CVX)
Take-Two Interactive Software, Inc. (TTWO) PACCAR Inc (PCAR)
Bristol-Myers Squibb Company (BMY) Micron Technology, Inc. (MU)
Intuitive Surgical, Inc. (ISRG) MongoDB, Inc. (MDB)
Mondelez International, Inc. (MDLZ) Synopsys, Inc. (SNPS)
Axon Enterprise, Inc. (AXON) UnitedHealth Group Incorporated (UNH)
MercadoLibre, Inc. (MELI) Alphabet Inc. (GOOGL)

Table 9: Top and Bottom 10 performing stocks.

Stocks For individual stock (Table 9), the models demonstrate a clear preference for large, es-
tablished companies with extensive public records and relatively stable business models. The Top
10 performers include blue-chip names from diverse sectors such as insurance (MetLife), pharma-
ceuticals (Johnson & Johnson, AbbVie), technology (Microsoft), and consumer goods (Mondelez).
These companies are heavily covered by financial analysts and news media, providing a rich and
consistent stream of information for the agents to process. Their performance is often driven by
broad economic trends and predictable business cycles, which align well with the models’ ability to
synthesize macroeconomic data.

Conversely, the Bottom 10 list is populated by companies whose performance is tied to more volatile,
cyclical, or speculative factors. This includes energy giants (ConocoPhillips, Chevron) subject to
commodity price swings, semiconductor firms (Micron Technology) in a notoriously cyclical in-
dustry, and high-growth tech companies (MongoDB, Synopsys) whose valuations are sensitive to
shifting market sentiment and competitive pressures. Even large, stable companies like Target and
Alphabet appear here, suggesting that factors like consumer spending shifts or complex regulatory
challenges can introduce a level of unpredictability that is difficult for the models to capture.

Top 10 Pass rate Bottom 10 Pass rate

HANG SENG INDEX (ˆHSI) IDX30 Index (IDX30)
Oslo Bors All-Share Index (ˆOSEAX) Thailand Stock Exchange Index (SET)
New Zealand Exchange Index (ˆNZ50) Copenhagen Exchange Index (OMXC20)
ASX 200 Telecommunication (ˆAXTJ) NASDAQ Biotechnology (ˆNBI)
Toronto Stock Exchange Index (TSX60) Nikkei 225 (ˆN225)
MSCI World Index (MSCIWORLD) BIST Food Beverage Index (XGIDA.IS)
Intuitive Surgical, Inc. (ISRG) S&P/ASX 200 Energy (ˆAXEJ)
Dow Jones U.S. Semiconductors (ˆDJUSSC) Malaysia Stock Exchange Index (KLSE)
Australia Stock Exchange Index (ASX200) S&P Biotechnology Select Indust (ˆSPSIBI)
S&P Global 100 (ˆOOI) BIST Tourism Index (XTRZM)

Table 10: Top and Bottom 10 performing indices.

Indices Table 10 reveals that the models are most successful when forecasting broad, diversified,
major market indices. The Top 10 list is dominated by global or major national benchmarks like the
MSCI World Index, Australia’s ASX200, and Hong Kong’s Hang Seng Index. These indices reflect
aggregate economic activity and are driven by macroeconomic narratives that are widely discussed
and debated in public forums, making them ideal subjects for LLM-based analysis.

The models struggle significantly with more specialized or volatile indices. The Bottom 10 list
features sector-specific indices in notoriously unpredictable fields like Biotechnology (N̂BI, ŜPSIBI)
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and Energy (ÂXEJ). It also includes indices from smaller or emerging markets (Thailand, Malaysia,
Indonesia), which may be influenced by local political and economic factors that are less covered by
the global information sources the models primarily rely on. This indicates a gap in handling niche
domains and region-specific complexities.

Top 10 Pass rate Bottom 10 Pass rate

Capital Group Dividend Value ETF (CGDV) Global X Copper Miners ETF (COPX)
Fidelity Total Bond ETF (FBND) iShares U.S. Home Construction ETF (ITB)
iShares Global Infrastructure ETF (IGF) Direxion Semiconductor Bull 3X (SOXL)
The Industrial Select Sector SPDR Fund (XLI) iShares Global Clean Energy ETF (ICLN)
Vanguard Communication Services ETF (VOX) iShares Biotechnology ETF (IBB)
BlackRock U.S. Carbon Transition ETF (LCTU) Global Upstream Natural Resources (GUNR)
First Trust NASDAQ-100-Technology (QTEC) The Energy Select Sector SPDR Fund (XLE)
Vanguard Global ex-U.S. Real Estate (VNQI) JPM Nasdaq Equity Premium Income (JEPQ)
VanEck Gold Miners ETF (GDX) Dimensional U.S. Targeted Value ETF (DFAT)
Invesco Aerospace & Defense ETF (PPA) Vanguard Materials Index Fund ETF (VAW)

Table 11: Top and Bottom 10 performing funds.

Funds Similar to the stock and index categories (Table 11), the models perform best with broad,
diversified, and well-established ETFs. The Top 10 includes funds representing core sectors of the
economy, such as Industrials (XLI), Infrastructure (IGF), and Communication Services (VOX), as
well as bond funds (FBND) and funds tracking precious metals (GDX). These investment vehicles
are generally less volatile than individual stocks, and their performance is tied to clearer, more
persistent macroeconomic trends.

The Bottom 10 is almost exclusively composed of highly cyclical, thematic, or leveraged ETFs. This
includes funds focused on volatile sectors like Copper Miners (COPX), Home Construction (ITB),
Clean Energy (ICLN), and Biotechnology (IBB). The inclusion of a 3x leveraged semiconductor
ETF (SOXL) is particularly telling, as these instruments are designed for short-term trading and are
extremely sensitive to market volatility, making long-term forecasting exceptionally difficult.

Top 10 Pass rate Bottom 10 Pass rate

TRON (TRXUSD) Solana (SOLUSD)
Micro Gold Futures (MGC) Micro E-mini Russell 2000 Futures (RTY)
Dogecoin (DOGEUSD) Ethereum (ETHUSD)
Mini DJI Index Futures (YMUSD) Artificial Liquid Intelligence (ALIUSD)
E-Mini S&P 500 Futures (EMUSD) Brent Crude Oil (BZUSD)
XRP (XRPUSD) AUD/EUR (AUDEUR)
Feeder Cattle Futures (GFUSX) Rough Rice Futures (ZRUSD)
Soybean Oil Futures (ZLUSX) USD/CNY (USDCNY)
Bitcoin (BTCUSD) NZD/USD (NZDUSD)
Micro Silver Futures (SILUSD) CHF/CAD (CHFCAD)

Table 12: Top and Bottom 10 performing commodity, forex, or crypto.

Other (Commodity, Forex, Crypto) In Table 12, performance is mixed, but a pattern emerges.
The Top 10 includes futures contracts on major stock indices (E-Mini S&P 500, Mini DJI), which
are driven by the same broad market sentiment that makes the underlying indices predictable. It also
includes some of the largest and most discussed cryptocurrencies (Bitcoin, XRP, Dogecoin), where
the sheer volume of online discourse may provide sufficient signal for the models to latch onto.

The Bottom 10 list highlights the difficulty of forecasting assets driven by complex and interlocking
global factors. It features several currency pairs (AUD/EUR, USD/CNY, NZD/USD), whose move-
ments are determined by the interplay of multiple national economies’ monetary policies, trade bal-
ances, and political stability. It also includes volatile commodities like Brent Crude Oil and Rough
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Rice, alongside major but notoriously volatile cryptocurrencies like Ethereum and Solana, reinforc-
ing the conclusion that high intrinsic volatility remains a primary obstacle to accurate forecasting.

D.7 RESYNTHESIS

Figure 16: An example of the resynthesis feature for “what-if” scenario analysis. An analyst man-
ually changes the probability of a leaf node (P2.1) to reflect a counterfactual assumption. The
framework efficiently recalculates only the affected branch, providing a rapid update to the root
proposition’s probability and quantifying the impact of the change.

A key feature of the Analytica framework is its support for efficient, interactive “what-if” scenario
analysis via a process called resynthesis. As described in § 4.1, once a proposition tree is fully
grounded and synthesized, a user can manually alter the truth value of any node to explore a coun-
terfactual scenario. The framework’s locality principle ensures that only the affected branch of the
tree needs to be re-synthesized, making the process computationally inexpensive.

Fig. 16 provides a concrete example of this process. The initial analysis (left) of the proposition
“Federal Reserve will cut rates this year” results in a probability of 0.58. An analyst wishing to
test the system’s sensitivity to labor market conditions can pose the counterfactual: “What if the
Labor market suddenly shows a hard recession?”. This is implemented by manually changing the
probability of the relevant leaf node, P2.1, from its original value to 0.0, reflecting the new assump-
tion. The Resynthesis process is triggered, and the new probability is propagated up its branch. The
truth values of unaffected nodes (like P1) remain unchanged. The fast recalculation yields a new
root probability of 0.48, providing an immediate quantitative measure of the labor market’s impact
on the overall forecast. This capability transforms Analytica from a static forecasting tool into a
dynamic environment for decision-making and risk assessment.
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Random Basic Search Deep Research Jupyter Notebook

w/o Analytica 48.10 53.94 63.04 61.96

Linear - 65.62 71.06 70.11
Average - 63.59 67.39 66.71
Random - 62.09 66.44 65.90

Table 13: Replace the weights with random values, or make the models an unweighted average.

D.8 SYNTHESIS RULES

Figure 17: Distribution of the learned weights (βj) and intercept (β0) for the Linear synthesis rule.
The concentration of weights at low positive values demonstrates the rule’s noise-dampening prop-
erty, as formally proven in § A.1.

Linear Rule The stability of the Linear rule, P = β0+
∑

βjCj , is predicated on its ability to act as
a weighted average that dampens noise from its inputs. Our experiments confirm that the Synthesizer
learns to implement this property. Fig. 17 shows the distribution of all learned child weights (βj)
and intercept terms (β0) across our experiments. The child weights are predominantly positive and
concentrated in the [0, 0.5] range, ensuring that no single child proposition has an outsized impact
and that errors are smoothed rather than amplified. The intercept term, β0, is tightly centered around
zero, indicating that the agent relies primarily on the evidence provided by the child propositions
rather than a strong independent bias. This behavior is encouraged by constraining the intercept’s
absolute value (e.g., |β0| < 0.1), which prevents the model from ignoring the grounded evidence.

In Table 13, we replace all the weights by random numbers (‘Average’), or degrade the linear rule
to a simple unweighted average (‘Average’) while removing the intercept, and compare it with the
Analytica with the linear rule for different grounder and the grounder itself without Analytica. The
degraded performance shows that the linear weights provide an informative ensemble of evidence.
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Formula Assumption PA

(P1.1.1) OR (P1.1.2 AND
P1.1.3) OR (P1.1.2 AND PA)

Fuel costs stay stable, capacity constraints
are manageable, and Fed policy avoids a
significant slowdown.

0.65

(P1 AND P2 AND P3 AND PA) No unmodeled political or platform de-
velopments (e.g., surprise rule changes,
debate-definition di sputes, or market tech-
nical disruptions) will materially alter P1,
P2, or P3.

0.8

(P1 AND P2 AND P3) OR PA Residual catalysts (ETF flows, China re-
opening travel, idiosyncratic M&A) can
occasionally override modeled drivers to
make long KWEB best even if one core
condition fails.

0.05

(P1 AND P2 AND P3 AND PA) No large unmodeled regime shifts or
market-structure shocks beyond those cap-
tured in P1–P3.

0.85

(P1.1 AND P1.2 AND P1.3 AND
P1.5 AND NOT P1.4) OR PA

Additional supportive factors (e.g., fiscal
policy, corporate buybacks, cross-border
flows) remain in place, offsetting valuation
headwinds.

0.7

(P1.1 AND P1.3 AND P1.4 AND
(P1.2 OR PA))

No major geopolitical or macroeconomic
shocks will trigger a risk-off shift in market
sentiment.

0.75

(P1 AND P2) AND PA Assumes that platform execution, liquidity,
and unmodeled market/political tail-risks
do not invalidate P1 or P2 before resolu-
tion.

0.8

(P1.1 AND P1.2) OR (P1.5 AND
P1.6) OR (P1.3 AND P1.4 AND
PA)

PA captures other supporting factors
(global risks, post-election fiscal changes)
that bolster a hike under loose financial and
expansionary fiscal conditions.

0.5

P1 AND (P2 OR PA) Residual factors (e.g. large M&A, extraor-
dinary buybacks, regulatory shifts in agri-
culture, geopolitical events) may still tip
returns in favor of long DE even if short’s
modeled inferiority weakens.

0.1

(P1 AND P2 AND PA) No extreme political shocks, contract re-
designs, or acute liquidity dislocations oc-
cur to invert the EV or risk-adjusted rank-
ing of the PC contract relative to alterna-
tives.

0.85

Table 14: Random real examples of logical formulas, assumption descriptions, and assumption
probabilities (PA) generated by the Simple Logic Synthesizer agent.

Simple Logic Rule Table 14 presents a selection of formulas generated by the agent in our experi-
ments. These examples showcase how the agent uses a combination of AND, OR, and NOT operators,
along with the PA variable, to build a causal or evidential case for the parent proposition. For in-
stance, a proposition might be true if several core conditions are met (P1 AND P2 AND PA) or if
one of several alternative scenarios occurs ((P1.1 AND P1.2) OR (P1.3 AND PA)).
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E PROMPTS

E.1 ANALYZER

System Prompt for Analyzer

You are an expert logical strategist and project manager for a team of advanced research
agents (grounders) in financial, economic, business, social, and political analysis. Your
primary mission is to decompose a complex ‘Proposition to Analyze‘ into a tree of financial,
economic, business, social, and political propositions, where the truthfulness of the parent
proposition is based on the truthfulness of the children.

You should firstly give an analysis and planning of how to decompose the proposition, and
explain your framework of analysis, use the professional knowledge and analysis framework
in financial, economic, business, social, and political analysis. You are encouraged to apply
professional analysis framework that are used in academia or industry. Please refer to them
in your analysis. A proposition tree is like the following:

• Parent Proposition
– Child Proposition 1

* Child Proposition 1.1
* Child Proposition 1.2
* ...

– Child Proposition 2
* Child Proposition 2.1
* Child Proposition 2.2
* ...

– ...
You should progressively derive it in your analysis. Then, provide your proposition tree in a
list of JSON objects wrapped in a single ‘‘‘json ... ‘‘‘ in the following format:

‘‘‘json [
{
"parent": "proposition id", # the id of the parent

proposition
"children": {
"proposition id": "proposition content", # the content

of the child proposition
...

},
"causality": "..." # the causality of how the children

lead to, imply, support, or impact the parent proposition
},
{...}

]
‘‘‘

Each JSON object should be a single proposition and its children. You should mark each
child with a *unique* proposition id. The id of input proposition is always ”P0”. Then
mark the children with ”P1”, ”P2”, ”P1.2”, ”P1.3.2.1”, etc. It is not allowed to reuse the
same proposition id for different propositions. The propositions should form a tree structure
rooted at ”P0”.

Notes:

1. A proposition is a single sentence statement, with financial, economic, business,
social, and political meaning that can be associated with a boolean value True or
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False. The decomposition should illustrate the causal relation that how children
factors lead to, imply, support, or impact the truthfulness of the parent proposition.

2. The decomposed propositions should be self-contained, not dependent on the par-
ent proposition. Which means it can be understood without the parent proposition
as context. For example, it should not refer to the parent proposition using terms
like ”it”, ”this metric”, ”this event”, etc.

3. You are not expected to decompose the proposition into low-level fine-grained
propositions. Instead, it is ideal to decompose the proposition into high-level and
meaningful financial, economic, business, social, and political factors, assump-
tions, hypotheses, etc.

4. You should keep the tree to be in-depth but not redundant, this means that you
do not need to create commonsense as a child proposition. You can have some
compromise on rigorousness, the key is to illustrate clear, indepth and professional
analysis.

5. Try to provide really insightful information from your analysis and the outcome de-
composition tree that creates ”alpha” for the user. Think comprehensively, deeply,
and professionally. You are encouraged to give a really deep analysis and very deep
decomposition tree.

6. Do not make redundant propositions, such as the rewrite of the same proposition or
the ones that can be simply derived from the negation of other children.

Ideal Decomposition (Example for Linear rule):

Ideally, a parent proposition can be represented as a multiple linear combination of its
children’s propositions, i.e. P true = beta 0 + beta 1*P true1 + beta 2*P true2 + ... +
beta n*P true n + eps, where P true is the probability of the parent proposition being true;
beta 0 is the intercept, representing a bias probability of the parent proposition being true
that reflects the information beyond the children propositions; beta 1, beta 2, ..., beta n are
the weights of the children’s P true; and eps is the error term. As a result, an ideal set of
child propositions should be less correlated with each other, and representing the most dom-
inant factors that affect the parent proposition. Left those less important factors to the parent
proposition as the intercept and explain your decisions in your analysis process.

E.2 SYNTHESIZER

System Prompt for Synthesizer (Vanilla)

You are an expert for a team of advanced research agents (grounders) in financial, eco-
nomic, business, social, and political analysis. The grounders have access to external
databases and information sources that support their analysis. They also possess qualitative
and quantitative analysis skills using Jupyter Notebook to help them analyze the proposition.

Your task is to aggregate the analysis of children’s propositions from the grounders, and
estimate the probability of truthfulness (P true) of a proposition based on their proofs and
estimated P true. Each proposition contains a financial, economic, business, social, or
political statement, which can be associated with a boolean value, True or False, represented
as a float number P true between 0 and 1, where 0 means False and 1 means True. And
they are decomposed into a set of child propositions that may have causal, evidential, or
other relationships with the parent proposition, which are already analyzed by the grounders.

You will need to use your professional skills and analytical frameworks in financial,
economic, business, social, and political analysis to estimate the P true of the parent
proposition, with a comprehensive, natural language ”Proof” that explains your entire
reasoning process, which proves or disproves the parent proposition that supports your
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estimated P true.

### INSTRUCTIONS

You will receive a JSON object with the parent proposition information and its children,
along with their proofs and P true. First, write a comprehensive and in-depth ”Proof” that
explains your entire reasoning process. Then, reweight the children’s proposition factors
based on your confidence in their proofs and their importance to the parent proposition. You
are also required to provide a risk assessment of the proposition, and explain the risk factors
that might lead to the proposition being false. Please make your analysis more specific and
detailed as possible, do not miss any important information especially the data and evidence
from the grounders. You are encouraged to present the data and evidence in a table and
other visualizations. Finally, synthesize the probability of the parent proposition based on
the reweighted children factors, and provide your conclusion in a single ‘‘‘json ...
‘‘‘ in the following format:

‘‘‘json
{
"p true": <float> # the probability of the proposition

being true, between 0 and 1
"key factor": <string> # the key factors that why the

proposition likely to be true or false, one or two sentences
}
‘‘‘

### NOTES

1. You are encouraged to use the knowledge and theory from academia or industry
and cite them in your proof.

2. You need to think beyond the given data and provide a more comprehensive, in-
depth, and broad analysis especially for the points that might be omitted by the
grounders.

3. It is also your task to check the consistency of the children’s proofs and their P true,
as well as the quality of the proofs themselves.

System Prompt for Synthesizer (Linear)

You are an expert for a team of advanced research agents (grounders) in financial, eco-
nomic, business, social, and political analysis. The grounders have access to external
databases and information sources that support their analysis. They also possess qualitative
and quantitative analysis skills using Jupyter Notebook to help them analyze the proposition.

Your task is to aggregate the analysis of children’s propositions from the grounders, and
estimate the probability of truthfulness (P true) of a proposition based on their proofs and
estimated P true. Each proposition contains a financial, economic, business, social, or
political statement, which can be associated with a boolean value, True or False, represented
as a float number P true between 0 and 1, where 0 means False and 1 means True. And
they are decomposed into a set of child propositions that may have causal, evidential, or
other relationships with the parent proposition, which are already analyzed by the grounders.

You will need to use your professional skills and analytical frameworks in financial,
economic, business, social, and political analysis to estimate the P true of the parent
proposition, with a comprehensive, natural language ”Proof” that explains your entire
reasoning process, which proves or disproves the parent proposition that supports your
estimated P true. The P true of the parent proposition is represented as a multiple linear
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combination of the children’s P true, i.e. P true = beta 0 + beta 1*P true1 + beta 2*P true2
+ ... + beta n*P true n + eps, where beta 0 is the intercept, representing a bias probability
of the parent proposition being true based on your own knowledge and analysis; beta 1,
beta 2, ..., beta n are the weights of the children’s P true, based on your confidence of the
value from their proofs and your judgment of their importance to the parent proposition;
and eps is the error term.

### INSTRUCTIONS

You will receive a JSON object with the parent proposition information and its children,
along with their proofs and P true. First, write a comprehensive and in-depth ”Proof” that
explains your entire reasoning process. You are also required to provide a risk assessment
of the proposition, and explain the risk factors that might lead to the proposition being false.
Then, analyze the weights of the children’s proposition factors based on your confidence in
their proofs and your judgment of their importance to the parent proposition. Please make
your analysis more specific and detailed as possible, do not miss any important information
especially the data and evidence from the grounders. You should try to compute the
resulting P true of the parent proposition based on the weights and the intercept you derived
and iteratively refine them, to make sure the final P ture is reasonable and valid (between 0
and 1). The eps is usually small and can be ignored, do not include it in your final result.
You are encouraged to present the data and evidence in a table and other visualizations.
Finally, provide your conclusion in a single ‘‘‘json ... ‘‘‘ in the following format:

‘‘‘json
{{
"beta": {{
"beta 0": <float>, # the intercept, the key must be

"beta 0"
"<child proposition id>": <float>, # for example, "P1",

"P2", "P1.1", "P1.2", etc.
... # the weights of the children’s proposition factors,

all children must be included
}}
"key factor": <string> # the key factors that why the

proposition likely to be true or false, one or two sentences
}}
‘‘‘

### NOTES

1. You are encouraged to use the knowledge and theory from academia or industry
and cite them in your proof.

2. You need to think beyond the given data and provide a more comprehensive, in-
depth, and broad analysis especially for the points that might be omitted by the
grounders, they are the core factors you need to consider in deriving the intercept,
the intercept can be seen as an assumption of those omitted factors and the risk
factors, remember to clearly state those assumptions in your proof and explain how
they affect the intercept.

3. The weights do not necessary to be from 0 to 1, it can be any real number, and
the intercept beta 0 can be negative, but its absolute value should be less than
{abs intercept max}, the final P true after the weights and intercept are applied
must be between 0 and 1. Please compute yourself first to make sure the final
P true is valid before providing your conclusion in the JSON block.
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System Prompt for Synthesizer (Simple Logic)

You are an expert for a team of advanced research agents (grounder) in financial, eco-
nomic, business, social, and political analysis. The grounders have access to external
databases and information sources that support their analysis. They also possess qualitative
and quantitative analysis skills using Jupyter Notebook to help them analyze the proposition.

Your task is to aggregate the analysis of children’s propositions from the grounders, and
estimate the probability of truthfulness (P true) of a proposition based on their proofs and
estimated P true. Each proposition contains a financial, economic, business, social, or
political statement, which can be associated with a boolean value, True or False, represented
as a float number P true between 0 and 1, where 0 means False and 1 means True. And
they are decomposed into a set of child propositions that may have causal, evidential, or
other relationships with the parent proposition, which are already analyzed by the grounders.

You will need to use your professional skills and analytical frameworks in financial,
economic, business, social, and political analysis to estimate the P true of the parent propo-
sition, with a comprehensive, natural language ”Proof” that explains your entire reasoning
process. The P true of the parent proposition is represented as a logical combination of the
children’s P true, i.e. P true = (P true1 AND P true2) OR (P true3 AND P true4) OR ...
OR (P true n-1 AND P true n), where P true1, P true2, ..., P true n are the probabilities
of the children propositions being true. Here we use a probabilistic logic to represent the
logical combination, where a logical AND of P true1 and P true2 is represented as: P true1
AND P true2 = P true1 * P true2; a logical OR of P true1 and P true2 is represented as:
P true1 OR P true2 = P true1 + P true2 - P true1 * P true2; and a logical NOT of P true1 is
represented as: NOT P true1 = 1 - P true1, you can also use NOT to negate the parentheses.

### INSTRUCTIONS

You will receive a JSON object with the parent proposition information and its children,
along with their proofs and P true. First, write a comprehensive and in-depth ”Proof” that
explains your entire reasoning process. You are also required to provide a risk assessment
of the proposition, and explain the risk factors that might lead to the proposition being false.
Then, analyze the logical combination of the children’s proposition factors based on your
confidence in their proofs and your judgment of their importance to the parent proposition.
Please make your analysis more specific and detailed as possible, do not miss any important
information especially the data and evidence from the grounders. Specially, you can include
a special assumption variable to capture the less important factors, and include it in the
formula. Notice that the assumption variable id in the formula should ALWAYS BE ”PA”,
and all the other variables in the formula should be the proposition id of the children in
the input proposition information. You should use ALL the children propositions in the
formula, and the formula should be a valid logical combination of the children’s P true.
You are encouraged to present the data and evidence in a table and other visualizations.
Finally, provide your conclusion in a single ‘‘‘json ... ‘‘‘ in the following format:

‘‘‘json
{{
"formula": <string>, # e.g., (P1 AND P2) OR (P3 AND NOT

PA)
"assumption": {{
"detail": <string>, # detailed assumptions, one or two

sentences
"probability": <float>, # the probability of the

assumption being true, between 0 and 1
}}
"key factor": <string> # key factors, one or two sentences

}}
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‘‘‘

### NOTES

1. You are encouraged to use the knowledge and theory from academia or industry
and cite them in your proof.

2. You need to think beyond the given data and provide a more comprehensive, in-
depth, and broad analysis especially for the points that might be omitted by the
grounders, they are the core factors you need to consider in deriving the formula,
remember to clearly state those assumptions in your proof and explain how they
affect the formula.

3. The assumption variable id in the formula should ALWAYS BE ”PA”, and all the
other variables in the formula should be the proposition id of the children in the
input proposition information.

4. You should use ALL the children propositions in the formula, and the formula
should be a valid logical combination of the children’s P true.

5. You are encouraged to present the data and evidence in a table and other visualiza-
tions.

6. The available operators include AND, OR, NOT and parentheses.

E.3 GROUNDER

General Grounder Prompt

You are an expert in financial, economic, business, social, and political analysis. You
will be provided with a proposition, and your task is to provide a comprehensive proof
that either proves or disproves the proposition. It should include the bullet points of your
analysis, such as the key findings, data, evidence, and quantitative analysis. Please be more
specific and detailed as possible, do not miss any important information especially the data
and evidence. You are encouraged to present the data and evidence in a table and other
visualizations.

After you have written the complete textual proof, append a single ‘‘‘json ... ‘‘‘
block. Inside this block, provide a single JSON object with exactly two keys:

1. "p true": Your estimated probability (a float between 0.00 and 1.00) that the
proposition is true, based on your proof and notebook analysis.

2. "key factor": A brief (1-2 sentences maximum) statement of the single most
critical factor from your analysis that influenced this probability.

Example of the final part of your response:
... (end of your textual proof) ...
The evidence strongly suggests the proposition is false due to factor X and factor Y.

‘‘‘json
{
"p true": 0.12,
"key factor": "The consistent downtrend in the primary

dataset combined with negative macroeconomic indicators."
}
‘‘‘
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System Prompt for Jupyter Notebook Grounder

You are an expert in financial, economic, business, social, and political analysis. You
primarily use propositional logic and are skilled in both qualitative and quantitative methods
for your analysis. Your primary goal is to prove or disprove the given proposition. The final
outcome will be the probability of the proposition to be true, accompanied by a detailed
proof or disproof. You use a Jupyter Notebook environment as your analysis tool. You will
progressively write code and markdown cells in the notebook to analyze the proposition and
construct your proof. Please read these instructions carefully.

## Jupyter Notebook Environment

You will work by generating content for a Jupyter Notebook. Every time you respond, you
will provide one or more cells.

1. Python Cells: Wrap Python code in <python cell> </python cell> tags.
Use these for quantitative analysis, data processing, API calls, visualizations (using
matplotlib or plotly, avoid altair due to rendering issues), etc.

2. Markdown Cells: Wrap markdown content in <markdown cell>
</markdown cell> tags. Use these for notes, qualitative analysis, inter-
mediate reports, summaries, and to structure your overall analysis.

3. Cell Order: Cells are added to the notebook in the order you provide them.
4. Sequential Execution: Cells are executed sequentially.
5. Error Handling: If a Python cell execution fails, you will be informed of the error

and required to provide a corrected version of *that specific cell*. The notebook
will then re-run from the corrected cell.

6. Immutability: You cannot delete or edit previously submitted cells. Each response
appends new cells.

7. Output Availability: You will only receive the outputs of the cells you wrote in
the *current* response. Outputs from previous turns are part of the dialog history.

## API Library Usage

You have access to an API library within your <python cell> blocks. The system will
execute these for you:

CALL API(api path: str, api params: dict): Use this to call an API end-
point.

• Example: response = CALL API("fmp/crypto/ end-of-day/
historical-price-eod/full", {{"symbol": "BTCUSD",
"from": "2023-01-01"}})

A directory of available APIs is provided below.

1. Consult Documentation First: ALWAYS make sure you have retrieved and read
the documents of the API endpoints you are going to use *before* you write a
Python cell that uses CALL API function, unless you have retrieved that specific
documentation earlier in this session. This prevents incorrect API usage.

2. Use CALL API: ALWAYS use the CALL API function to interact with APIs. API
keys are managed by the backend.

## Terminating Analysis

When your analysis is complete and you are ready to construct your final proof, use the
following instruction *by itself* in your response (do not include any <python cell> in
that same response):
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‘‘‘
<TERMINATE NOTEBOOK>
‘‘‘
You will then be prompted to provide your final proof and conclusion.

## API Directory

—
{api directory}
—

Additional Notes:

• Avoid rendering libraries like Altair due to potential display issues. Matplotlib or
Plotly are preferred for visualizations.

• Do not repeatedly request the same API documentation if you’ve already retrieved
it.

• It’s generally more efficient to retrieve documentation for several APIs you antici-
pate using in one go, rather than retrieve multiple rounds of dialogs.

Concluding Instructions for grounder

Please conclude your analysis into a report of your analysis. First, provide a comprehensive
proof that either proves or disproves the proposition. This proof should be based on your
entire analysis in the Jupyter notebook, summarizing the key findings, data, and reasoning
steps. It should include the bullet points of your analysis, such as the key findings, data,
evidence, and quantitative analysis. Please be more specific and detailed as possible, do not
miss any important information especially the data and evidence. You are encouraged to
present the data and evidence in a table and other visualizations.

After you have written the complete textual proof, append a single ‘‘‘json ... ‘‘‘
block. Inside this block, provide a single JSON object with exactly two keys:

1. "p true": Your estimated probability (a float between 0.00 and 1.00) that the
proposition is true, based on your proof and notebook analysis.

2. "key factor": A brief (1-2 sentences maximum) statement of the single most
critical factor from your analysis that influenced this probability.

Example of the final part of your response:
... (end of your textual proof) ...
The evidence strongly suggests the proposition is false due to factor X and factor Y.

‘‘‘json
{
"p true": 0.12,
"key factor": "The consistent downtrend in the primary

dataset combined with negative macroeconomic indicators."
}
‘‘‘
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F EXAMPLES

F.1 PROPOSITION TREE WITH LINEAR SYNTHESIS

P0: Long stock NVDA and hold for one year is the best option (Ptrue = 0.872)

• Proof key point: Superior risk-adjusted return for longs (P2) combined with mate-
rially higher carrying costs for shorts (P3) makes long NVDA the best option. (See
full report below)

• Formula: P0 = 0.05 + 0.2 ∗ P1 + 0.3 ∗ P2 + 0.3 ∗ P3 + 0.15 ∗ P4

• Causality: If NVIDIA is expected to rise (P1), offers a better risk-reward (P2),
while shorts incur higher costs (P3) and face an upside-skewed distribution (P4),
then going long and holding for a year dominates going short, making it the best
option.

Proof report of P0

We assess the proposition “Long stock NVDA and hold for one year is the best option” by in-
tegrating four independent dimensions—absolute upside potential (P1), relative risk-adjusted
performance (P2), asymmetric carrying costs (P3), and return distribution skewness (P4)—
and by explicitly considering omitted macro, competitive, and regulatory factors that shape
the baseline probability (intercept).

1. Synthesis of Child Propositions
• P1 (ptrue = 0.7895): Positive total shareholder return over 12 months
• P2 (ptrue = 0.9040): Long’s risk-adjusted return ¿ short’s
• P3 (ptrue = 0.9320): Shorting NVDA is materially more expensive
• P4 (ptrue = 0.7550): One-year returns are positively skewed

Causality: If NVDA is likely to rise (P1), delivering superior risk-adjusted returns (P2), while
shorts face higher costs (P3) and the upside greatly dominates downside (P4), then a long +
hold dominates a short + hold.

2. Omitted Factors and Intercept (β0 = +0.05)
We set a modest +5% baseline bias to capture:

• Equity risk premium and upward drift in broad markets (Ibbotson & Chen, 2003)
• Management execution, capital allocation optionality (M&A, partnerships)
• Secular AI tailwinds beyond near-term catalysts
• Regulatory, geopolitical, or macro shocks that affect longs and shorts symmetrically

Netting these, we assume a small positive baseline that reflects the default tendency for well-
capitalized, growth-oriented equities to outperform shorts in normal conditions.

3. Weight Allocation
We allocate weights based on each factor’s direct bearing on the “best option” judgment and
our confidence in the children’s proofs. The weights sum to 1− β0 = 0.95:
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Child Proposition ptrue Weight (βi) Justification
P1 0.7895 0.20 Underpins absolute upside, but influenced

by valuation and macro.
P2 0.9040 0.30 Directly compares long vs. short on risk-

adjusted terms.
P3 0.9320 0.30 Captures a persistent cost drag on shorts

that alone tips the balance.
P4 0.7550 0.15 Shapes payoff asymmetry; a strong posi-

tive skew favors longs.

Sum 0.95

4. Computation of Ptrue

Ptrue ≃ β0 +
∑

βi · ptruei

= 0.05 + (0.20 · 0.7895) + (0.30 · 0.9040) + (0.30 · 0.9320) + (0.15 · 0.7550)
= 0.05 + 0.1579 + 0.2712 + 0.2796 + 0.1133

≃ 0.8720 (87.2%)

5. Risk Assessment
Key risks that could materially lower this probability include:

• A sudden, deep global recession or credit-market shock reversing equity drift
• Unanticipated, severe export controls on NVIDIA’s China business
• Technological leapfrogging by AMD, Intel, or hyperscaler custom silicon
• Rapid Fed tightening that compresses high-growth multiple far more than growth

beat justifies
• Corporate-governance or execution missteps on next-gen product ramps

Each of these will reduce one or more child factors (P1–P4) or introduce asymmetric shocks
not captured above.

Conclusion: The combination of robust upside potential, dominant risk-adjusted profile for
longs, elevated costs for shorts, and a fat right tail yields a high probability (∼87%) that long
+ hold is the best option over one year.

P1: NVIDIA stock is likely to deliver a positive total shareholder return
over the next twelve months. (Ptrue = 0.790)

• Proof key point: Robust AI-driven earnings growth combined with stable/expanding
valuation multiples, supported by buybacks and potential consensus upside, makes
positive TSR highly likely. (See full report below)

• Formula: P1 = 0.05 + 0.25 ∗ P1.1 + 0.25 ∗ P1.2 + 0.3 ∗ P1.3 + 0.15 ∗ P1.4

• Causality: Sustained fundamental growth that meets/exceeds expectations (P1.1 &
P1.2), combined with stable or expanding multiples (P1.3) in a supportive macro
backdrop (P1.4), yields a high probability of positive total return.
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Proof report for P1

Proof for Proposition P1
We evaluate the proposition “NVIDIA stock is likely to deliver a positive total shareholder
return (TSR) over the next twelve months” by combining four pillars:

1. Fundamental growth (P1.1): NVIDIA’s revenue and earnings are set to grow strongly
in FY2025 (ptrue = 0.855). Explosive AI-accelerator demand, secured advanced-node
supply, and a durable performance/ecosystem moat underpin this forecast.

2. Consensus upside (P1.2): Market expectations are too conservative and likely to be
exceeded (ptrue = 0.79). Independent TAM estimates and the upcoming Blackwell
launch imply material beats vs. consensus.

3. Valuation support (P1.3): Multiples should remain stable or expand as growth mo-
mentum persists (ptrue = 0.815). A scarcity premium for pure-play AI hardware and
outsized upward earnings revisions offset interest-rate pressures.

4. Macro backdrop (P1.4): Broad macro/sector conditions will remain supportive of
high-growth semiconductor equities (ptrue = 0.5586) given likely Fed easing and sec-
ular tailwinds in AI/5G/cloud, partially offset by recession risk and geopolitical head-
winds.

Positive TSR requires (a) earnings growth ≥ required return hurdle, (b) stable or expanding
P/E, and (c) no severe drawdown from macro or idiosyncratic shocks. Each child proposition
addresses one of these drivers.

Omitted Factors and Intercept (β0)
• NVIDIA’s large buyback program (> $7 B/year) further boosts TSR.
• No dividend: TSR = price return + buybacks + optionality.
• Downside risks: sharper Fed tightening, broad tech de-rating, surprise supply-chain

disruptions, accelerated competitive inroads by AMD/Intel or in-house hyperscaler
chips.

• Net of these, we assume a small positive bias from buybacks and optionality, setting
β0 = +0.05.

Weight Allocation
We allocate relative importance based on each pillar’s direct influence on TSR and our confi-
dence in the underlying analysis:

• Fundamentals (P1.1): 0.25 – the primary driver of intrinsic value via earnings growth.
• Consensus upside (P1.2): 0.25 – reinforces the growth beat narrative and a will-to-pay

premium.
• Valuation support (P1.3): 0.30 – critical to convert earnings into price return; a con-

traction would erase gains.
• Macro backdrop (P1.4): 0.15 – shapes discount-rate trends; less certain given mixed

cyclical signals.
• Intercept (β0): 0.05 – captures buybacks and optionality net of unmodeled risks.

Calculation

ptrue(parent) = β0 + β1 · P1.1 + β2 · P1.2 + β3 · P1.3 + β4 · P1.4

= 0.05 + 0.25 · 0.855 + 0.25 · 0.79 + 0.30 · 0.815 + 0.15 · 0.5586
= 0.05 + 0.2138 + 0.1975 + 0.2445 + 0.0838

≈ 0.7896 (79.0%)

Risk Assessment

50



2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

• Macroeconomic risk: A sharper-than-expected Fed tightening cycle or deep recession
could reverse valuation multiples and curb enterprise AI spending.

• Valuation rotation: A rotation out of high-growth/AI into value or cyclicals would
compress NVIDIA’s P/E.

• Competitive disruption: Faster-than-expected inroads by AMD, Intel, Google TPU,
or custom hyperscaler silicon could erode pricing power.

• Geopolitical/supply shocks: New export restrictions, Taiwan-China tensions, or
foundry yield setbacks could throttle shipments.

• Execution risk: Unforeseen delays in Blackwell ramp or disappointing AI software
adoption could dent earnings beats.

Conclusion
Given the strength of AI-driven fundamentals, anticipated consensus beats, supportive valua-
tions, and a moderately favorable macro backdrop—offset by identifiable downside risks—we
estimate a ≈ 79% probability that NVIDIA stock will deliver a positive total shareholder return
over the next twelve months.

P1.1: NVIDIA’s revenue and earnings will grow strongly year-on-year in
FY2025 driven by accelerating demand for AI accelerators. (Ptrue = 0.855)

• Proof key point: Explosive AI-accelerator demand combined with secured advanced-
node supply and a durable performance/ecosystem moat underpins strong FY2025 rev-
enue and earnings growth. (See full report below)

• Formula: P1.1 = −0.05 + 0.4 ∗ P1.1.1 + 0.35 ∗ P1.1.2 + 0.25 ∗ P1.1.3

• Causality: Explosive demand (P1.1.1) convert to realized revenue only if NVIDIA
can supply product (P1.1.2) and maintain competitive lead (P1.1.3); together they drive
strong earnings growth.

Proof report for P1.1

Proof for Proposition P1.1
We assess NVIDIA’s likelihood of delivering “strong” year-on-year (YoY) growth in revenue
and earnings for FY2025 by synthesizing three critical child propositions:

• P1.1.1 (Global AI compute demand > 50% YoY)
• P1.1.2 (NVIDIA’s supply chain can ramp advanced-node GPUs)
• P1.1.3 (NVIDIA maintains a performance and ecosystem lead)

Strong top-line growth requires (a) sufficient end-user demand, (b) the ability to supply prod-
uct to meet that demand, and (c) a competitive moat that supports pricing power and margin
leverage.

1. Demand driver (P1.1.1, ptrue = 0.90, weight = 0.40)
• Q1 FY2025 Data Center revenue grew 427% YoY to $22.6 B, dwarfing the 50%

baseline.
• Q2 guidance implies 50%+ YoY growth in total revs, with Data Center above that.
• Hyperscalers (AWS/Azure/GCP) and analysts (IDC, Gartner, McKinsey) uni-

formly forecast > 50% annual growth through 2025.
Conclusion: Global demand for AI accelerators is exploding, driving strong revenue
potential.
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2. Supply ramp (P1.1.2, ptrue = 0.90, weight = 0.35)
• NVIDIA has locked in wafer allocations at TSMC’s 5 nm and 3 nm nodes; TSMC

is expanding both via extra shifts (5 nm) and new fabs (3 nm in Q2 2024 ramp,
Arizona setup).

• Long-lead times are mitigated by multi-year reservations and customer prioritiza-
tion.

• No reported delays in ASML EUV tool deliveries or foundry capacity build-outs.
Conclusion: The supply chain is aligned to meet surging GPU orders, removing a key
constraint on YoY growth.

3. Competitive moat (P1.1.3, ptrue = 0.92, weight = 0.25)
• Real-world MLPerf benchmarks show NVIDIA’s sustained throughput 30–50%

above AMD/Google offerings, preserving performance leadership.
• CUDA’s deep software ecosystem (20+ optimized libraries, mature debug-

ging/profiling tools, and > 230 active open-source projects) far outstrips ROCm
and TPU stacks.

• This fosters sticky customer relationships, premium pricing, and less vulnerability
to competitor inroads.

Conclusion: NVIDIA’s performance and ecosystem advantage secures pricing power
and margin expansion.

Model and Weight Allocation
Combining these factors, we model the parent probability as:

ptrue(parent) = β0 + β1 · 0.90 + β2 · 0.90 + β3 · 0.92

We choose:
• β1 = 0.40 (demand is the primary driver),
• β2 = 0.35 (supply ramp is essential),
• β3 = 0.25 (competitive moat underpins pricing/margins),
• β0 = −0.05 to account for macro-risk (potential enterprise capex caution, geopoliti-

cal/export controls, chip pricing pressure, or supply-chain disruptions).

Calculation

P = −0.05 + 0.40× 0.90 + 0.35× 0.90 + 0.25× 0.92

= −0.05 + 0.36 + 0.315 + 0.23

= 0.855 (85.5%)

This comfortably lies between 0 and 1 and reflects strong—but not certain—growth given resid-
ual macro and execution risks.

Risk Assessment
• Macroeconomic slowdown: A broader IT capex pullback or cautious forecasting by

enterprises could damp order timing.
• Geopolitical/export controls: New U.S. or Chinese export restrictions could hamper

shipment volumes or prolong lead times.
• Competitive catch-up: AMD, Intel, or custom AI chips from hyperscalers may nar-

row NVIDIA’s edge faster than expected.
• Pricing pressure: In highly competitive bids, NVIDIA may need targeted price ad-

justments that compress margins.
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P1.1.1: Global demand for generative AI compute by hyperscalers and enterprises
will grow at > 50% year-on-year through 2025. (Ptrue = 0.900)

Proof key point: NVIDIA’s Q1 Data Center revenue grew 427% YoY, establishing a concrete
basis that hyperscaler demand for generative AI compute is expanding far beyond 50% annually.
(See full report below)

Proof report for P1.1.1

Final Proof: Global Demand for Generative AI Compute ≥
50% YoY Through 2025
We evaluate the proposition by synthesizing (1) NVIDIA’s Q1 FY2025 actuals and Q2 FY2025
guidance, (2) hyperscaler infrastructure announcements, and (3) third-party market forecasts.

1. NVIDIA Q1 FY2025 Actuals vs. Q1 FY2024 Baseline
Metric Q1 FY2024 Q1 FY2025 YoY Growth
Data Center Revenue $4.29 B $22.60 B +427%
Compute (GPU) Revenue $3.77 B* $19.00 B* > 5× YoY (≈> 400%)

*Estimates derived from disclosed growth multiples in transcript.

Key Evidence
• Management: “Data Center revenue of $22.6 B. . . up 427% YoY. . . ”

• “Compute revenue grew more than 5× from last year.”

These exceptional Q1 results far exceed the 50% threshold.

2. NVIDIA Q2 FY2025 Guidance vs. Q2 FY2024 Baseline
Metric Q2 FY2024 (Actual) Q2 FY2025 (Guidance) Implied YoY Growth

Total Revenue $16 B $24 B +50%

Key Evidence
• Transcript: “Revenue of $26 B. . . well above our outlook of $24 B.”

• Baseline Q2 FY2024 revenue was $16 B.

• $24 B guidance implies exactly +50% YoY; given the Data Center segment is the fastest-growing
part, its compute sub-revenue will exceed 50%.

3. Hyperscaler Infrastructure Announcements
We surveyed public hyperscaler news (AWS, Azure, GCP) for signs of compute-capacity scaling:

• AWS launched multiple H100 GPU clusters (P5 instances) in every major region in H1 2024.

• Azure introduced “ND series v5” supercomputers powered by H100 GPUs in April 2024.

• GCP expanded “A3” TPU and “A2” A100 GPU pods with > 2× capacity versus prior genera-
tion.

These deployments indicate professional-scale growth trajectories well above 50% YoY in compute ca-
pacity.

4. Third-Party Market Forecasts
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Source Forecast Horizon CAGR / YoY Growth Notes

IDC (2023) 2023–2025 56% CAGR “AI infrastructure spending
to grow > 50% annually.”

Gartner (2023) 2023–2025 52% CAGR Enterprise and hyperscaler
capex combined.

McKinsey (2024) 2023–2025 50%+ YoY Focus on generative AI
compute budgets.

Key Evidence
All major industry analysts project well above 50% annual growth in AI infrastructure spend through 2025.

Logical Synthesis
1. Empirical Baseline: NVIDIA’s Q1 FY2025 YoY growth in Data Center and compute segments

is +400%+, far surpassing 50%.

2. Forward Guidance: Q2 FY2025 guidance implies at least +50% total revenue YoY; Data Cen-
ter will exceed this benchmark.

3. Hyperscaler Behavior: AWS/Azure/GCP public launches confirm > 50% YoY capacity ex-
pansion plans.

4. Analyst Consensus: IDC, Gartner, and McKinsey forecasts all predict > 50% YoY growth for
generative AI infrastructure.

Therefore, global demand for generative AI compute by hyperscalers and enterprises will grow at
> 50% YoY through 2025.

For the remaining propositions, we will omit the proof reports as they are similar to the examples
above.

P1.1.2: NVIDIA can secure sufficient advanced-node supply from TSMC and its sup-
ply chain to meet increasing GPU orders. (Ptrue = 0.900)

Proof key point: TSMC’s confirmed 3 nm ramp timelines and NVIDIA’s advance wafer reser-
vations for 5 nm/3 nm nodes drive high confidence in supply sufficiency.

P1.1.3: Competing accelerator offerings lag NVIDIA in performance and in the
depth of the CUDA software ecosystem. (Ptrue = 0.920)

Proof key point: Real-world sustained MLPerf benchmarks consistently show NVIDIA’s Ten-
sor Cores deliver 30–50% higher throughput combined with a far more mature CUDA toolchain.

P1.2: Consensus market expectations for NVIDIA’s growth are still too conser-
vative and are likely to be exceeded.(Ptrue = 0.790)

• Proof key point: Systemic underestimation of AI-accelerator TAM and proven
architecture-led outperformance combine to bias consensus growth forecasts materi-
ally downward.

• Formula: P1.2 = 0.07 + 0.45 ∗ P1.2.1 + 0.45 ∗ P1.2.2

• Causality: If TAM and new product impact are under-modeled (P1.2.1, P1.2.2), actual
results are likely to beat consensus, supporting price appreciation.
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P1.2.1: Equity analysts underestimate the total addressable market for AI accelera-
tors in 2024-2025. (Ptrue = 0.850)

Proof key point: Implied NVIDIA market share falls below its historical 80–90% range under
consensus forecasts, signaling an artificially small TAM.

P1.2.2: The forthcoming Blackwell architecture, shipping by Q4 2024, will provide
incremental upside to revenue versus current estimates. (Ptrue = 0.750)

Proof key point: Management guidance and historical architecture-led outperformance indicate
Blackwell’s revenue impact is underappreciated in consensus estimates.

P1.3: Valuation multiples for NVIDIA are likely to remain stable or expand as
growth momentum persists. (Ptrue = 0.815)

• Proof key point: The combination of concentrated investor demand for scarce pure-
play AI hardware and outsized upward earnings revisions underpins stable or expand-
ing valuation multiples for NVIDIA.

• Formula: P1.3 = 0.05 + 0.45 ∗ P1.3.1 + 0.45 ∗ P1.3.2

• Causality: High demand for scarce AI exposure (P1.3.1) and rising earnings (P1.3.2)
keep or expand NVIDIA’s valuation multiple.

P1.3.1: Investor risk appetite for leading AI platform companies will stay elevated
due to scarcity of pure AI hardware plays. (Ptrue = 0.850)

Proof key point: The scarcity of publicly traded pure-play AI hardware names concentrates
investor demand into the few available leaders, sustaining elevated valuation multiples.

P1.3.2: Upward earnings revisions will offset potential multiple compression pres-
sures. (Ptrue = 0.930)

Proof key point: NVIDIA’s median historical EPS growth of 50% exceeds the 43% needed to
offset even 30% P/E compression.

P1.4: Macro-economic and sector conditions will remain supportive of high-
growth semiconductor equities over the next year. (Ptrue = 0.559)

• Proof key point: Fed-induced rate cuts are the dominant driver lowering the equity
discount rate, making semiconductor valuations sensitive to monetary easing.

• Formula: P1.4 = 0.05 + 0.5 ∗ P1.4.1 + 0.3 ∗ P1.4.2

• Causality: Lower discount rates (P1.4.1) and healthy capex (P1.4.2) create a support-
ive macro environment for growth tech equities.

P1.4.1: The U.S. Federal Reserve is expected to shift to modest rate cuts, lowering
the equity discount rate. (Ptrue = 0.800)

Proof key point: The persistent decline in market-implied short-term yields and easing yield-
curve inversion signaling priced-in Fed rate cuts.
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P1.4.2: The U.S. economy is projected to avoid recession and maintain robust tech
capex in 2024-2025. (Ptrue = 0.362)

Proof key point: The persistent yield curve inversion—negative spread on every trading day
over the last six months—dominates all other expansion signals.

P2: The risk-adjusted return profile of a long position in NVIDIA is supe-
rior to that of a short position over the next twelve months. (Ptrue = 0.904)

• Proof key point: Continuous cost drag and extreme-loss asymmetry for shorts
severely degrades their Sharpe ratio and tail-risk profile relative to longs.

• Formula: P2 = 0.1 + 0.25 · P2.1 + 0.2 · P2.2 + 0.4 · P2.3

• Causality: Because risk of extreme loss and ongoing costs are higher for shorts
(P2.1-P2.3), the risk-adjusted return is better for longs given similar absolute ex-
pected move.

P2.1: A long equity position has losses capped at 100% of capital, whereas a
short position has theoretically unlimited loss potential. (Ptrue = 1.000)

Proof key point: The mathematical derivation that stock prices cannot go below zero bounds
long-position losses at –100%, while short losses are unbounded.

P2.2: Realized volatility in NVIDIA is positively skewed; large upward price
gaps on earnings releases impose greater risk on shorts. (Ptrue = 0.850)

Proof key point: The earnings-day gap distribution shows a heavy right tail—2 out of 26 events
(¿7.7%) had +5%+ jumps and none had comparable negative gaps.

P2.3: Stock-borrow fees and collateral requirements increase drawdown risk
and lower the Sharpe ratio for a short position. (Ptrue = 0.960)

Proof key point: The continuous cost drag (borrow fee + collateral) worsened the short Sharpe
from -1.73 to -1.82 and deepened drawdown from -90.22% to -90.90%.

P3: Market frictions and structural costs make maintaining a short posi-
tion in NVIDIA materially more expensive than holding a long position.
(Ptrue = 0.932)

• Proof key point: Persistently high borrow fees and substantial margin financing
costs—driven by constrained lendable float and corporate actions—make shorting
NVDA materially more expensive than holding a long.

• Formula: P3 = 0.02 + 0.38 · P3.1 + 0.42 · P3.2 + 0.2 · P3.3

• Causality: Persistent borrow fees (P3.1), financing costs (P3.2) and corporate-action
risk (P3.3) raise the effective hurdle rate for a profitable short, making it less attractive
than a long.
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P3.1: Short-borrow fees for NVIDIA shares are elevated due to high demand
and limited lendable float from index funds. (Ptrue = 0.850)

Proof key point: The extremely low days-to-cover ( 0.9 trading days) of lendable NVDA shares
indicates a severe supply squeeze driving high borrow fees.

P3.2: Short sellers must post collateral and are subject to margin calls, increas-
ing financing cost over time. (Ptrue = 0.950)

Proof key point: High probability ( 66% per year) of collateral-requiring margin calls under
NVDA’s volatility combined with an 8.2% annual financing cost.

P3.3: Corporate actions such as share buybacks and potential stock splits can
increase borrow difficulty and cost for shorts. (Ptrue = 0.950)

Proof key point: Sustained share buybacks substantially reduce the available lendable float,
directly tightening supply and driving up borrow costs.

P4: The probability distribution of NVIDIA’s future one-year price out-
comes is positively skewed, offering asymmetric upside to longs and asym-
metric risk to shorts. (Ptrue = 0.755)

• Proof key point: High-frequency, high-impact upside catalysts generate a fat right
tail that outweighs the partially discounted downside risks.

• Formula: P4 = 0.05 + 0.6 ∗ P4.1 + 0.3 ∗ P4.2

• Causality: Because upside catalysts (P4.1) carry larger potential price impact than
the partially-priced downside risks (P4.2), the distribution is positively skewed, fa-
voring longs over shorts.

P4.1: Multiple upside catalysts—including new architecture launches, strategic
AI partnerships, index weight increases, and aggressive buybacks—could drive
large positive price moves. (Ptrue = 0.800)

Proof key point: Discrete jump events (architecture launches and partnerships) generate con-
sistent, large positive returns, producing a fat right tail in return distribution. (See full report
below)

P4.2: Key downside risks (export controls to China, competitive pressure, macro
slowdown) are at least partially discounted in current valuation. (Ptrue =
0.850)

Proof key point: NVIDIA’s 22.3% trailing P/E contraction over the past year despite strong
fundamentals indicates material risk discounting.

57



3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026
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