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Abstract

Subgraph GNNs enhance message-passing GNNs expressivity by representing
graphs as sets of subgraphs, demonstrating impressive performance across various
tasks. However, their scalability is hindered by the need to process large numbers
of subgraphs. While previous approaches attempted to generate smaller subsets
of subgraphs through random or learnable sampling, these methods often yielded
suboptimal selections or were limited to small subset sizes, ultimately compromis-
ing their effectiveness. This paper introduces a new Subgraph GNN framework
to address these issues. Our approach diverges from most previous methods by
associating subgraphs with node clusters rather than with individual nodes. We
show that the resulting collection of subgraphs can be viewed as the product of
coarsened and original graphs, unveiling a new connectivity structure on which we
perform generalized message passing.
Crucially, controlling the coarsening function enables meaningful selection of
any number of subgraphs. In addition, we reveal novel permutation symmetries
in the resulting node feature tensor, characterize associated linear equivariant
layers, and integrate them into our Subgraph GNN. We also introduce novel node
marking strategies and provide a theoretical analysis of their expressive power
and other key aspects of our approach. Extensive experiments on multiple graph
learning benchmarks demonstrate that our method is significantly more flexible
than previous approaches, as it can seamlessly handle any number of subgraphs,
while consistently outperforming baseline approaches. Our code is available at
https://github.com/BarSGuy/Efficient-Subgraph-GNNs.

1 Introduction

Subgraph GNNs [4, 12, 39, 8, 27, 29, 38, 3] have recently emerged as a promising direction in
graph neural network research, addressing the expressiveness limitations of Message Passing Neural
Networks (MPNNs) [24, 35, 25]. In essence, a Subgraph GNN operates on a graph by transforming
it into a collection of subgraphs, generated based on a specific selection policy. Examples of
such policies include removing a single node from the original graph or simply marking a node
without changing the graph’s original connectivity [26]. The model then processes these subgraphs
using an equivariant architecture, aggregates the derived representations, and makes graph- or node-
level predictions. The growing popularity of Subgraph GNNs stems not only from their enhanced
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expressive capabilities over MPNNs but also from their impressive empirical results, as notably
demonstrated on well-known molecular benchmarks [38, 12, 3].

Unfortunately, Subgraph GNNs are hindered by substantial computational costs as they necessitate
message-passing operations across all subgraphs within the bag. Typically, the number of subgraphs
is the number of nodes in the graph, n— for bounded degree graphs, this results in a time complexity
scaling quadratically (O(n2)), in contrast to the linear complexity of a standard MPNN. This
significant computational burden makes Subgraph GNNs impractical for large graphs, hindering their
applicability to important tasks and widely used datasets. To overcome this challenge, various studies
have explored methodologies that process only a subset of subgraphs from the bag. These methods
range from simple random sampling techniques [8, 4, 40, 3] to more advanced strategies that learn to
select the most relevant subset of the bag to process [5, 20, 29]. However, while random sampling
of subgraphs yields subpar performance, more sophisticated learnable selection strategies also have
significant limitations. Primarily, they rely on training-time discrete sampling which complicates the
optimization process, as evidenced by the high number of epochs required to train them [20, 5, 29].
As a result, these methods often allow only a very small bag size, yielding only modest performance
improvements compared to random sampling and standard MPNNs.

Our approach. The goal of this paper is to devise a Subgraph GNN architecture that can flexibly
generate and process variable-sized bags, and deliver strong experimental results while sidestepping
intricate and lengthy training protocols. Specifically, our approach aims to overcome the common
limitation of restricting usage to a very small set of subgraphs.
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Figure 1: Product graph construction. Left: Transforming of the
graph into a coarse graph; Right: Cartesian product of the coars-
ened graph with the original graph. The vertical axis corresponds
to the subgraph dimension (super-nodes), while the horizontal
axis corresponds to the node dimension (nodes).

Our proposed method builds
upon and extends an observa-
tion made by Bar-Shalom et al.
[3], who draw an analogy be-
tween using Subgraph GNNs
and performing message-passing
operations over a larger “prod-
uct graph”. Specifically, it was
shown that when considering
the maximally expressive (node-
based) Subgraph GNN suggested
by [38]2, the bag of subgraphs
and its update rules can be ob-
tained by transforming a graph
through the graph cartesian product of the original graph with itself, i.e., G□G, and then processing
the resulting graph using a standard MPNN. In our approach, we propose to modify the first term of
the product and replace it with a coarsened version of the original graph, denoted T (G), obtained
by mapping nodes to super-nodes (e.g., by applying graph clustering, see Figure 1(left)), making
the resulting product graph T (G)□G significantly smaller. This construction is illustrated in Fig-
ure 1(right). This process effectively associates each subgraph – a row in Figure 1(right) – with a set
of nodes produced by the coarsening function T . Different choices of T allow for both flexible bag
sizes and a simple, meaningful selection of the subgraphs.

While performing message passing on T (G)□G serves as the core update rule in our architecture, we
augment our message passing operations with another set of operations derived from the symmetry
structure of the resulting node feature tensor, which we call symmetry-based updates. Specifically,
our node feature tensor is indexed by pairs (S, v) where S is a super-node and v is an original node.
Accordingly, X is a T × n× d tensor, where d is the feature dimension, and T is the number of
super-nodes (a constant hyper-parameter). As super-nodes are sets of nodes, X can also be viewed
as a (very) sparse 2n × n× d tensor where 2n is the number of all subsets of the vertex set. Since
the symmetric group Sn acts naturally on this representation, we use it to develop symmetry based
updates.

Interestingly, we find that this node feature tensor, X , adheres to a specific set of symmetries,
which, to the best of our knowledge, is yet unstudied in the context of machine learning: applying

2The architecture suggested in [38] was shown to be at least as expressive as all previously studied node-based
Subgraph GNNs
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a permutation σ ∈ Sn to the nodes in S and to v results in an equivalent representation of our
node feature tensor. We formally define the symmetries of this object and characterize all the affine
equivariant operations in this space. We incorporate these operations into our message-passing by
encoding the parameter-sharing schemes [30] as additional edge features. These additional update
rules significantly improve experimental results. We note that our symmetry analysis may be useful
for processing bags derived from other high-order generation policies [29, 20] by treating tuples of
nodes as sets.

Inspired by these symmetries and traditional binary-based [4] and shortest path-based [38] node-
marking strategies, we propose four natural marking strategies for our framework. Interestingly,
unlike the full-bag scenario, they vary in expressiveness, with the shortest path-based technique being
the most expressive.
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Figure 2: The performance landscape of Subgraph GNNs with
varying number of subgraphs: Our method leads in the lower
bag-size set, outperforming other approaches in nearly all cases.
Additionally, our method matches the performance of state-of-the-
art Subgraph GNNs in the full-bag setting. The full mean absolute
error (MAE) scores along with standard deviations are available
in Table 9 in the appendix.

The flexibility and effectiveness
of our full framework are illus-
trated in Figure 2, depicting de-
tailed experimental results on the
popular ZINC-12K dataset [31].
Our method demonstrates a sig-
nificant performance boost over
baseline models in the small bag
setting (for which they are de-
signed), while achieving results
that compare favourably to state-
of-the-art Subgraph GNNs in the
full bag setting. Additionally,
we can obtain results in-between
these two regimes.

Contributions. The main con-
tributions of this paper are: (1)
the development of a novel, flexi-
ble Subgraph GNN framework
that enables meaningful con-
struction and processing of bags
of subgraphs of any size; (2) a
characterization of all affine invariant/equivariant layers defined on our node feature tensors; (3)
a theoretical analysis of our framework, including the expressivity benefits of our node-marking
strategy; and (4) a comprehensive experimental evaluation demonstrating the advantages of the new
approach across both small and large bag sizes, achieving state-of-the-art results, often by a significant
margin.

2 Related work

Original Graph Subgraphs
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Subgraph GNNs. Subgraph GNNs [39, 8, 27, 4, 40, 26, 12, 29, 17, 38, 3] rep-
resent a graph as a collection of subgraphs, obtained by a predefined generation
policy. For example, each subgraph can be generated by marking exactly one
node in the original graph (see inset 3) – an approach commonly referred to as
node marking [26]; this marked node is considered the root node in its subgraph.
Several recent papers focused on scaling these methods to larger graphs, starting
with basic random selection of subgraphs from the bag, and extending beyond
with more sophisticated techniques that aim to learn how to select subgraphs. To
elaborate, [5] introduced Policy-Learn (PL), an approach based on two models,
where the first model predicts a distribution over the nodes of the original graph,
and the second model processes bags of subgraphs sampled from this distribution.
MAG-GNN [20] employs a similar approach utilizing Reinforcement Learning.
Similarly to our approach, this method permits high-order policies by associating subgraphs with
tuples rather than individual nodes, allowing for the marking of several nodes within a subgraph.

3The Figure was taken with permission from [3]
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However, as mentioned before, these approaches involve discrete sampling while training, making
them very hard to train (1000-4000 epochs vs. ∼400 epochs of state-of-the-art methods [3, 38] on
the ZINC-12K dataset), and limiting their usage to very small bags. Finally, we mention another
high-order method, OSAN, introduced by [29], which learns a distribution over tuples that represent
subgraphs with multiple node markings. In contrast to these previous approaches, we suggest a
simpler and more effective way to select subgraphs and also show how to leverage the resulting
symmetry structure to augment our message-passing operations.

Symmetries in graph learning. Many previous works have analyzed and utilized the symmetry
structure that arises from graph learning setups [22, 23, 18, 2]. Specifically relevant to our paper is
the work of [22] that characterized basic equivariant linear layers for graphs, the work of [1] that
characterizes equivariant maps for many other types of incidence tensors that arise in graph learning,
and the works [4, 12] that leveraged group symmetries for designing Subgraph GNNs in a principled
way.

3 Preliminaries

Notation. Let G be a family of undirected graphs, and consider a graph G = (V,E) within this
family. The adjacency matrix A ∈ Rn×n defines the connectivity of the graph4, while the feature
matrix X ∈ Rn×d represents the node features. Here, V and E represent the sets of nodes and
edges, respectively, with |V | = n indicating the number of nodes. We use the notation v1 ∼A v2 to
denote that v1 and v2 are neighboring nodes according to the adjacency A. Additionally, we define
[n] := {1, 2, . . . n}, and P([n]) as the power set of [n].

Subgraph GNNs as graph products. In a recent work, [3] demonstrated that various types of update
rules used by current Subgraph GNNs can be simulated by employing the Cartesian graph product
between the original graph and another graph, and running standard message passing over that newly
constructed product graph. Formally, the cartesian product of two graphs G1 (n1 nodes) and G2 (n2

nodes), denoted by G1□G2, forms a graph with vertex set V (G1)× V (G2). Two vertices (u1, u2)
and (v1, v2) are adjacent if either u1 = v1 and u2 is adjacent to v2 in G2, or u2 = v2 and u1 is
adjacent to v1 in G1. We denote by A ∈ Rn1·n2×n1·n2 and X ∈ Rn1·n2×d the adjacency and node
feature matrices of the product graph; in general, we use calligraphic letters to denote the adjacency
and feature matrices of product graphs, while capital English letters are used for those of the original
graphs. In particular, for the graph cartesian product, G1□G2, the following holds:

AG1□G2
= A1 ⊗ I + I ⊗A2. (1)

For a detailed definition of the cartesian product of graphs, please refer to Definition A.1. As a
concrete example for the analogy between Subgraph GNNs and the Cartesian product of graphs,
we refer to a result by [3], which states that the maximally expressive node-based Subgraph GNN
architecture GNN-SSWL+ [38], can be simulated by an MPNN on the Cartesian product of the
original graph with itself, denoted as G□G. As we shall see, our framework utilizes a cartesian
product of the original graph and a coarsened version of it, as illustrated in Figure 1 (right).

Equivariance. A function L : U → W is called equivariant if it commutes with the group action.
More formally, given a group element, g ∈ G, the function L should satisfy L(g · v) = g · L(v) for
all v ∈ U and g ∈ G. L is said to be invariant if L(g · v) = L(v).

4 Coarsening-based Subgraph GNN

Overview. This section introduces the Coarsening-based Subgraph GNN (CS-GNN) framework.
The main idea is to select and process subgraphs in a principled and flexible manner through the
following approach: (1) coarsen the original graph via a coarsening function, T – see Figure 1(left);
(2) Obtain the product graph – Figure 1(right) defined by the combination of two adjacencies, AT (G)

(red edges),AG (grey edges), which arise from the graph Cartesian product operation (details follow);
(3) leveraging the symmetry of this product graph to develop symmetry-based updates, described by
AEquiv (this part is not visualized in Figure 1). The general update of our suggested layer takes the
following form 4,

4Edge features are also allowed but are omitted here for simplicity
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X t+1(S, v) = f t
(
X (S, v)t, (2)

{{X (S′, v′)t}}(S′,v′)∼AG
(S,v)︸ ︷︷ ︸

Original connectivity (horizontal)

, {{X (S′, v′)t}}(S′,v′)∼AT (G)
(S,v)︸ ︷︷ ︸

Induced connectivity (vertical)

, {{X (S′, v′)t}}(S′,v′)∼AEquiv (S,v)︸ ︷︷ ︸
Symmetry-based updates

)
,

where the superscript t indicates the layer index. In what follows, we further elaborate on these three
steps (in Sections 4.1 to 4.2).

We note that each connectivity in Equation (2) is processed using a distinct MPNN, and after
stacking of those layers, we apply a pooling layer5 to obtain a graph representation; that is, ρ(X T) =

MLPT
(∑

S

(∑n
v=1 X T(S, v)

))
; T denotes the final layer.

For more specific implementation details, we refer to Appendix F.

4.1 Construction of the coarse product graph

As mentioned before, a maximally expressive node-based Subgraph GNN can be realized via the
Cartesian product of the original graph with itself G□G. In this work, we extend this concept by
allowing the left operand in the product to be the coarsened version of G, denoted as T (G), as defined
next. This idea is illustrated in Figure 1.

Graph coarsening. Consider a graph G = (V,E) with n nodes and an adjacency matrix A. Graph
coarsening is defined by the function T : G → G, which maps G to a new graph T (G) = (V T , ET )
with an adjacency matrix AT ∈ R2n×2n and a feature matrix XT ∈ R2n×d. Here, V T , the vertex
set of the new graph represents super-nodes – defined as subsets of [n] . Additionally, we require
that nodes in V T induce a partition over the nodes of the original graph6. The connectivity ET is
extremely sparse and induced from the original graph’s connectivity via the following rule:

AT (S1, S2) =

{
1 if ∃v ∈ S1,∃v ∈ S2 s.t. A(v, u) = 1,

0 otherwise,
(3)

To clarify, in our running example (Figure 1), it holds that AT ({a, b, c, d}, {e}) = 1, while
AT ({e}, {f}) = 0. For a more formal definition, refer to Definition A.3.

More specifically, our implementation of the graph coarsening function T employs spectral cluster-
ing7 [33] to partition the graph into T clusters, which in our framework controls the size of the bag.
This results in a coarsened graph with fewer nodes and edges than G. We highlight and stress that the
space complexity of this sparse graph, T (G), is upper bounded by that of the original graph G (we
do not store 2n nodes).

Defining the (coarse) product graph T (G)□G. We define the connectivity of the product graph,
see Figure 1(right), by applying the cartesian product between the coarsened graph, T (G), and the
original graph, G. The product graph is denoted by T (G)□G, and is represented by the matrices
AT (G)□G ∈ R(2n×n)×(2n×n) and X ∈ R2n×n×d8, where by recalling Equation (1), we obtain,

AT (G)□G =

≜AT (G)︷ ︸︸ ︷
AT ⊗ I +

≜AG︷ ︸︸ ︷
I ⊗A . (4)

The connectivity in this product graph induces the horizontal (AG) and vertical updates (AT (G)) in
Equation (2), visualized in Figure 1(right) via grey and red edges, respectively.

5For some of the theoretical analysis, this pooling operation is expressed as: ρ(X T) =
MLPT

(∑
S

(
MLPT

(∑n
v=1 X

T(S, v)
)))

6Our method also supports the case of which it is not a partition.
7Other graph coarsening or clustering algorithms can be readily used as well.
8We note that while the node matrix of the product graph, X , can be initialized in various ways, e.g., deep sets-

based architecture [37], in our implementation we simply use the original node features, i.e., X (S, v) = X(v),
given that X is the node feature matrix of the original graph.
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4.2 Symmetry-based updates

In the previous subsection, we used a combination of a coarsening function and the graph Cartesian
product to derive the two induced connectivities AG,AT (G) of our product graph. We use these
connectivities to to perform message-passing on our product graph (see Equation (2)).

Inspired by recent literature on Subgraph GNNs [12, 3, 38], which incorporates and analyzes
additional non-local updates arising from various symmetries (e.g., updating a node’s representation
via all nodes in its subgraphs), this section aims to identify potential new updates that can be utilized
over our product graph. To that end, we study the symmetry structure of the node feature tensor in our
product graph, X (S, v).The new updates described below will result in the third term in Equation (2),
dubbed Symmetry-based updates (AEquiv). For better clarity in this derivation, we change the notation
from nodes (v) to indices (i).

4.2.1 Symmetries of our product graph

Since the order of nodes in the original graph G is arbitrary, each layer in our architecture must exhibit
equivariance to any induced changes in the product graph. This requires maintaining equivariance to
permutations of nodes in both the original graph and its transformation T (G). As a result, recalling
that A ∈ R(2n×n)×(2n×n) and X ∈ R2n×n×d represent the adjacency and feature matrices of the
product graph, the symmetries of the product graph are defined by an action of the symmetric group
Sn. Formally, a permutation σ ∈ Sn acts on the adjacency and feature matrices by:

(σ · A)
(
S1, i1, S2, i2

)
= A

(
σ−1(S1), σ

−1(i1), σ
−1(S2), σ

−1(i2)
)
, (5)

(σ · X )(S, i) = X
(
σ−1(S), σ−1(i)

)
, (6)

where we define the action of σ ∈ Sn on a set S = {i1, i2, . . . , ik} of size k as: σ · S :=
{σ−1(i1), σ

−1(i2), . . . , σ
−1(ik)} := σ−1(S).

4.2.2 Derivation of linear equivariant layers for the node feature tensor

We now characterize the linear equivariant layers with respect to the symmetry defined above,
focusing on Equation (6). We adopt a similar notation to [22], and assume for simplicity that the
number of feature channels is d = 1 (extension to multiple features is straightforward [22]). In
addition, our analysis considers the case where V T encompasses all potential super-nodes formed by
subsets of [n] (i.e we use the sparse coarsened adjacency9).

Our main tool is the characterization of linear equivariant layers for permutation symmetries as
parameter-sharing schemes [34, 30, 22]. In a nutshell, this characterization states that the parameter
vectors of the biases, invariant layers, and equivariant layers can be expressed as a learned weighted
sum of basis tensors, where the basis tensors are indicators of the orbits induced by the group action
on the respective index spaces. We focus here on presenting the final results and summarize them
in Proposition 4.1 at the end of this subsection. Detailed discussion and derivations are available in
Appendix E.

Equivariant bias and invariant layers. The bias vectors of the linear layers in our space are in
R2n×n. As shown in Figure 3(right), the set of orbits induced by the action of Sn satisfies:

(P([n])× [n])/Sn := {γk∗
: k = 1, . . . , n; ∗ ∈ {+,−}}. (7)

Here, γk+

corresponds to all pairs (S, i) ∈ P([n])× [n] with |S| = k and i /∈ S, and γk−
to all pairs

with |S| = k and i ∈ S.

As stated in [34, 30, 22], the tensor set {Bγ
S,i}γ∈(P([n])×[n])/Sn

where:

Bγ
S,i =

{
1, if (S, i) ∈ γ;

0, otherwise.
(8)

are a basis of the space of bias vectors of the invariant linear layers induced by the action of Sn.

9This is because the action of Sn is well defined over the index set P (V [[n]])× [n] but not over V × V T
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Figure 3: Visualization via heatmaps (different colors correspond to different parameters) of the
parameter-sharing scheme determined by symmetries for a graph with n = 6 nodes, zooming-in on
the block which corresponds to sets of size two. Left: Visualization of the weight matrix for the
equivariant basis BΓ

S1,i1;S2,i2
(a total of 35 parameters in the block). Right: Visualization of the bias

vector for the invariant basis Bγ
S,i (a total of 2 parameters in the block). Symmetry-based updates

reduce parameters more effectively than previously proposed linear equivariant layers by treating
indices as unordered tuples (see Appendix E.3 for a discussion).

Weight matrices. Following similar reasoning, consider elements (S1, i1, S2, i2) ∈ (P([n]) ×
[n]× P([n])× [n]). In Appendix E we characterize the orbits of Sn in this space as a partition in
which each partition set is defined according to six conditions. Some of these conditions include
the sizes of S1, S2 and S1 ∩ S2, which remain invariant under permutations. Given an orbit,
Γ ∈ (P([n])× [n]× P([n])× [n])/Sn, we define a basis tensor, BΓ ∈ R2n×n×2n×n by setting:

BΓ
S1,i1;S2,i2 =

{
1, if (S1, i1, S2, i2) ∈ Γ;

0, otherwise.
(9)

A visualization of the two basis vectors in Equations (8) and (9), is available in Figure 3. The following
(informal) proposition summarizes the results in this section (the proof is given in Appendix G),

Proposition 4.1 (Basis of Invariant (Equivariant) Layers). The tensors Bγ (BΓ) in Equation (8)
(Equation (9)) form an orthogonal basis (in the standard inner product) of the invariant layers and
biases (Equivariant layers – weight matrix) .

4.2.3 Incorporating symmetry-based updates in our framework

In the previous subsection, we derived all possible linear invariant and equivariant operations that
respect the symmetries of our product graph. We now use this derivation to define the symmetry-based
updates in Equation (2), which correspond to the construction of AEquiv and the application of an
MPNN.

To begin, we note that any linear equivariant layer can be realized through an
MPNN [13] applied to a fully connected graph with appropriate edge features.
This is formally stated in Lemma F.1,
the main idea is to encode the param-
eters on the edges of this graph (see
visualization inset). Thus, the natural
construction of AEquiv corresponds to a fully connected graph, with appropriate edge features derived
from the parameter-sharing scheme we have developed.
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However, one of our main goals and guidelines in develop-
ing our flexible framework is to maintain efficiency, and to
align with the (node-based) maximally expressive GNN,
namely GNN-SSWL+ [38, 3], for the case of a trivial
coarsening function, T (G) = G (which correspond to
the full-bag setting). To achieve this, we opt for a sparser
choice by using only a subset of the basis vectors (defined
in Equation (9)) to construct AEquiv. Specifically, the ma-
trix AEquiv corresponding to the chosen subset of basis
vectors is visualized inset – the parameter-sharing scheme is represented by edges with matching
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colors. To clarify, the nodes (S, v) that satisfy v ∈ S “send messages” (i.e., broadcast their rep-
resentation) to all the nodes (S′, v′) such that v = v′. A more formal discussion regarding our
implementation of those symmetry based updates is given in Appendix F.4.

Maintaining sparsity. While the updates above are defined over the sparse representation of the
coarse product graph, in practice we use its dense representation, treating it as a graph over the
set of nodes V × V T , which requires space complexity O(T · |V |). The update rules above are
adapted to this representation simply by masking all nodes (S, v) in the sparse representation such
that S /∈ V T . We note the models using the resulting update rule remain invariant to the action of Sn.
See discussion in [1].

4.3 Marking Strategies and Theoretical Analysis

One of the key components of subgraph architectures is their marking strategy. Two widely used
approaches in node-based subgraph architectures are binary-based node marking [4] and distance-
based marking [38], which were proven to be equally expressive in the full-bag setup [38]. Empirically,
distance-based marking has been demonstrated to outperform other strategies across several standard
benchmarks. In this section, our aim is to develop and theoretically justify an appropriate marking
strategy, specifically tailored to the structure of our product graph. We present and discuss here our
main results, and refer to Appendix C for a more formal discussion.

Building on existing marking strategies and considering the unique structure of our product graph,
we propose two natural extensions to both the binary node marking [4] and distance-based marking
strategies [38]. Extending binary node marking, we first suggest Simple Marking (πS), where an
element (S, v) is assigned a binary feature that indicates whether node v belongs to subgraph S
(v ∈ S). The second extension, Node + Size Marking (πSS), builds on the simple marking by
assigning an additional feature that encodes the size of the super-node S.

For distance-based strategies, we propose Minimum Distance (πMD), where each element (S, v)
is assigned the smallest (minimal) shortest path distance (SPD) from node v to any node u ∈ S.
Finally, Learned Distance Function (πLD) extends this further by assigning to each element (S, v)
the output of a permutation-invariant learned function, which takes the set of SPDs between node v
and the nodes in S as input.

Surprisingly, unlike the node-based full-bag case, we find that these marking strategies are not all
equally expressive. We conveniently gather the first three strategies as Π = {πS , πSS , πMD} and
summarize the relation between all variants as follows:
Proposition 4.2 (Informal – Expressivity of marking strategies.). (i) Strategies in Π are all equally
expressive, independently of the transformation function T . (ii) The strategy πLD is at least as
expressive as strategies in Π. Additionally, there exists transformation functions s.t. it is strictly more
expressive than all of them.

The above is formally stated in Propositions C.1 and C.2, and more thoroughly discussed in Ap-
pendix C. In light of the above proposition, we instatiate the learned distance function πLD strategy
when implementing our model, as follows,

XS,v ←
∑
u∈S

zdG(v,u) (10)

where dG(v, u) denotes the shortest path distance between nodes v and u in the original G10.

Coarsening Function and Expressivity. We investigate whether our CS-GNN framework offers
more expressiveness compared to directly integrating information between the coarsened graph and
the original graph.

The two propositions below illustrate that a simple, straight forward integration of the coarsen
graph with the original graph (this integration is referred to as the sum graph – formally defined in
Definition D.2), and further processing it via standard message-passing, results in a less expressive
architecture. Furthermore, when certain coarsening functions are employed within the CS-GNN
framework, our resulting architecture becomes strictly more expressive than conventional node-based

10To facilitate this, we maintain a lookup table where each index corresponds to a shortest path distance,
assigning a learnable embedding, zdG(v,u) ∈ Rd, to each node (S, v).
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subgraph GNNs. These results suggest that the interplay between the coarsening function and the
subgraph layers we have developed enhances the model’s overall performance. We summarize this
informally below and provide a more formal discussion in Appendix D.

Proposition 4.3 (Informal – CS-GNN goes beyond coarsening). For any transformation function T ,
CS-GNN can implement message-passing on the sum graph, hence being at least as expressive. Also,
there exist transformations T ’s s.t. CS-GNN is strictly more expressive than that.

Proposition 4.4 (Informal – CS-GNN vs node based subgraphs). There exist transformations T ’s s.t.
our CS-GNN model using T as its coarsening function is strictly more expressive than GNN-SSWL+.

5 Experiments

Table 1: Results on ZINC-12K dataset.
Top two results are reported as First and
Second.

Method Bag size ZINC (MAE ↓)

GIN [35] T = 1 0.163 ± 0.004

OSAN [29] T = 2 0.177 ± 0.016
Random [20] T = 2 0.131 ± 0.005
PL [5] T = 2 0.120 ± 0.003
Mag-GNN [20] T = 2 0.106 ± 0.014
Ours T = 2 0.109 ± 0.005

Random [20] T = 3 0.124 ± N/A
Mag-GNN [20] T = 3 0.104 ± N/A
Ours T = 3 0.096 ± 0.005

Random [20] T = 4 0.125 ± N/A
Mag-GNN [20] T = 4 0.101 ± N/A
Ours T = 4 0.090 ± 0.003

Random [5] T = 5 0.113 ± 0.006
PL [5] T = 5 0.109 ± 0.005
Ours T = 5 0.095 ± 0.003

GNN-SSWL+ [38] Full 0.070 ± 0.005
Subgraphormer [3] Full 0.067 ± 0.007
Subgraphormer+PE [3] Full 0.063 ± 0.001
Ours Full 0.062 ± 0.0007

We experimented extensively over seven different datasets
to answer the following questions: (Q1) Can CS-GNN
outperform efficient Subgraph GNNs operating on small
bags? (Q2) Does the additional symmetry-based updates
boost performance? (Q3) Does CS-GNN offer a good so-
lution in settings where full-bag Subgraph GNNs cannot
be applied? (Q4) Does CS-GNN in the full-bag setting
validate its theory and match state-of-the-art full-bag Sub-
graph GNNs?

In the following sections, we present our main results and
refer to Appendix F for additional experiments and details.

Baselines. For each task, we include several baselines.
The RANDOM baseline corresponds to random subgraph
selection. We report the best performing random baseline
from all prior work [5, 20, 29, 3]. The other two (non-
random) baselines are: (1) LEARNED [5, 20, 29], which
represents methods that learn the specific subgraphs to be
used; and (2) FULL [38, 3], which corresponds to full-bag
Subgraph GNNs.

ZINC. We experimented with both the ZINC-12K and
ZINC-FULL datasets [31, 14, 10], adhering to a 500k
parameter budget as prescribed. As shown in Table 1,
CS-GNN outperforms all efficient baselines by a significant margin, with at least a +0.008 MAE
improvement for bag sizes T ∈ {3, 4, 5}. Additionally, in the full-bag setting, our method recovers
state-of-the-art results. The results for ZINC-FULL are available in Table 8 in the Appendix.

OGB. We tested our framework on several datasets from the OGB benchmark collection [16]. Table 4
shows the performance of our method compared to both efficient and full-bag Subgraph GNNs.
Our CS-GNN outperforms all baselines across all datasets for bag sizes T ∈ {2, 5}, except for the
MOLHIV dataset with T = 2, where PL achieves the best results and our method ranks second. In the
full-bag setting, CS-GNN is slightly outperformed by the top-performing Subgraph GNNs but still
offers comparable results.

Table 2: Results on PEPTIDES dataset.

Model ↓ / Dataset → PEPTIDES-FUNC PEPTIDES-STRUCT
(AP ↑) (MAE ↓)

GCN [19] 0.5930±0.0023 0.3496±0.0013

GIN [35] 0.5498±0.0079 0.3547±0.0045

GatedGCN [7] 0.5864±0.0077 0.3420±0.0013

GatedGCN+RWSE [9] 0.6069±0.0035 0.3357±0.0006

Random [3] 0.5924±0.005 0.2594±0.0021

Ours 0.6156±0.0080 0.2539±0.0015

Peptides. We experimented on the PEPTIDES-
FUNC and PEPTIDES-STRUCT datasets [9] –
which full-bag Subgraph GNNs already strug-
gle to process – evaluating CS-GNN’s ability
to scale to larger graphs. The results are sum-
marized in Table 2. CS-GNN outperforms all
MPNN variants, even when incorporating struc-
tural encodings such as GATEDGCN+RWSE.
Additionally, our method surpasses the ran-
dom11 baseline on both datasets.

11For the PEPTIDES datasets, we benchmarked our model against the random variant of Subgraphormer
+ PE, which similarly incorporates information from the Laplacian eigenvectors. To ensure a fair comparison,
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Table 3: Ablation study.

Bag size w/ w/o

T=2 0.109±0.005 0.143±0.003

T=3 0.096±0.005 0.101±0.006

T=4 0.090±0.003 0.106±0.001

T=5 0.095±0.003 0.104±0.005

Ablation study – symmetry-based updates. We assessed
the impact of the symmetry-based update on the performance
of CS-GNN. Specifically, we ask, do the symmetry-based up-
dates significantly contribute to the performance of CS-GNN?
To evaluate this, we conducted several experiments using the
ZINC-12K dataset across various bag sizes, T ∈ {2, 3, 4, 5},
comparing CS-GNN with and without the symmetry-based up-
date. The results are summarized in Table 3. It is clear that the symmetry-based updates play a key
role in the performance of CS-GNN. For a bag size of T = 2, the inclusion of the symmetry-based
update improves the MAE by a significant 0.034. For other bag sizes, the improvements range from
0.005 to 0.016, clearly demonstrating the benefits of including the symmetry-based updates.

Table 4: Results on OGB datasets. The top two
results are reported as First and Second.

Model ↓ / Dataset → Bag size MOLHIV MOLBACE MOLESOL
(ROC-AUC ↑) (ROC-AUC ↑) (RMSE ↓)

GIN [35] T = 1 75.58±1.40 72.97±4.00 1.173±0.057

Random [5] T = 2 77.55±1.24 75.36±4.28 0.951±0.039

PL [5] T = 2 79.13±0.60 78.40±2.85 0.877±0.029

Mag-GNN [20] T = 2 77.12±1.13 - -
Ours T = 2 77.72±0.76 80.58±1.04 0.850±0.024

OSAN [29] T = 3 - - 0.959±0.184

OSAN [29] T = 5 - 76.30±3.00 -
PL [5] T = 5 78.49±1.01 78.39±2.28 0.883±0.032

Random [5] T = 5 77.30±2.56 78.14±2.36 0.900±0.032

Ours T = 5 79.09±0.90 79.64±1.43 0.863±0.029

GNN-SSWL+ [38] Full 79.58±0.35 82.70±1.80 0.837±0.019

Subgraphormer Full 80.38±1.92 81.62±3.55 0.832±0.043

Subgraphormer + PE Full 79.48±1.28 84.35±0.65 0.826±0.010

Ours Full 79.44±0.87 80.71±1.76 0.814±0.021

Discussion. In what follows, we address re-
search questions Q1 to Q4. (A1) Tables 1, 2
and 4 clearly demonstrate that we outperform
efficient Subgraph GNNs (which operate on
a small bag) in 10 out of 12 dataset and bag
size combinations. (A2) Our ablation study
on the ZINC-12K dataset, as shown in Table 3,
clearly demonstrates the benefits of the symme-
try-based updates across all the considered bag
sizes. (A3) Table 2 demonstrates that CS-GNN
provides an effective solution when the full-bag
setting cannot be applied, outperforming all
baselines. (A4) On the ZINC-12K dataset (see
Table 1), CS-GNN achieves state-of-the-art re-
sults compared to Subgraph GNNs. On the
OGBG datasets (see Table 4), our performance
is comparable to these top-performing Subgraph GNNs.

6 Conclusions

In this work, we employed graph coarsenings and leveraged the insightful connection between
Subgraph GNNs and the graph Cartesian product to devise CS-GNN, a novel and flexible Subgraph
GNN that can effectively generate and process any desired bag size. Several directions for future
research remain open. Firstly, we experimented with spectral clustering based coarsening, but other
strategies are possible and are interesting to explore. Secondly, in our symmetry-based updates, we
have only considered a portion of the whole equivariant basis we derived: evaluating the impact of
other basis elements deserve further attention, both theoretically and in practice. Finally, whether
Higher-Order Subgraph GNNs can benefit from our developed parameter-sharing scheme remains an
intriguing open question.

Limitations. Our method operates over a product graph. Although we provide control over the size
of this product graph, achieving better performance requires a larger bag size. This can become a
complexity bottleneck, particularly when the original graph is large.
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we used a single vote and the same exact bag size of 35 subgraphs. Additionally, since Subgraphormer + PE
employs GAT [32] as the underlying MPNN, we also utilized GAT for this specific experiment to maintain
consistency and fairness.
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Appendix

The appendix is organized as follows:

• In Appendix A, we provide some basic definitions that will be used in later sections of the
paper.

• In Appendix B we discuss some theoretical aspects of our model implementation, and its
relation to Equation (2).

• In Appendix C we define four natural general node marking policies and analyze their
theoretical effects on our model, as well as their relation to some node-based node marking
policies. Finally, we provide a principled derivation of one of these policies using the natural
symmetry of our base object.

• In Appendix D.1 we compare our model to node-based subgraph GNNs, which are the most
widely used variant of subgraph GNNs. Additionally, we demonstrate that different choices
of coarsening functions can recover various existing subgraph GNN designs.

• In Appendix D.2 we demonstrate how our model can leverage the information provided by
the coarsening function in an effective way, comparing its expressivity to a natural baseline
which also leverages the coarsening function. We show that for all coarsening functions, we
are at least as expressive as the baseline and that for some coarsening functions, our model
is strictly more expressive.

• In Appendix E we delve deeper into the characterization of all linear maps L : RP([n])×[n] →
RP([n])×[n] that are equivariant to the action of the symmetric group.

• In Appendix F we provide experimental details to reproduce the results in Section 5, as well
as a comprehensive set of ablation studies.

• In Appendix G we provide detailed proofs to all propositions in this paper.

A Basic Definitions

We devote this section to formally defining the key concepts of this paper, as well as introducing
new useful notation. We start by defining the two principle components of our pipeline, the cartesian
product graph and the coarsening function:
Definition A.1 (Cartesian Product Graph). Given two graphs G1 and G2, their Cartesian product
G1□G2 is defined as:

• The vertex set V (G1□G2) = V (G1)× V (G2).

• Vertices (u1, u2) and (v1, v2) in G1□G2 are adjacent if:

– u1 = v1 and u2 is adjacent to v2 in G2, or
– u2 = v2 and u1 is adjacent to v1 in G1.

Definition A.2 (Coarsening Function). A Coarsening function T (·) is defined as a function that,
given a graph G = (V,E) with vertex set V = [n] and adjacency matrix A ∈ Rn×n, takes A as input
and returns a set of "super-nodes" T (A) ⊆ P([n]). The function T (·) is considered equivariant if,
for any permutation σ ∈ Sn, the following condition holds:

T (σ ·A) = σ · T (A). (11)

Here, σ ·A, and σ · T (A) represent the group action of the symmetric group Sn on Rn×n, and P([n])
respectively.

A coarsening function allows us to naturally define a graph structure on the "super-nodes" obtained
from a given graph in the following way:
Definition A.3 (Coarsened Graph). Given a coarsening function T (·) and a graph G = (V,E) with
vertex set V = [n] , adjacency matrix A ∈ Rn×n, we abuse notation and define the coarsened graph
T (G) = (V T , ET ) as follows:

• V T = T (A)
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• ET = {{S, S′} | S, S′ ∈ T (A), ∃i ∈ S, i′ ∈ S′ s.t. Ai,i′ = 1}.

The adjacency matrix of the coarsened graph can be expressed in two ways. The dense representation
AT

dense ∈ R|V T |×|V T | is defined by:

AT
dense(S, S

′) =

{
1 {S, S′} ∈ ET

0 otherwise.
(12)

The sparse representation AT
sparse ∈ RP([n])×P([n]) is defined by:

AT
sparse(S, S

′) =

{
1 S, S′ ∈ V T , {S, S′} ∈ ET

0 otherwise.
(13)

We note that if the coarsened graph T (G) has a corresponding node feature map X : V T → Rd, it
also has sparse and dense vector representations defined similarly. Though the dense representation
seems more natural, the sparse representation is also useful, as the symmetric group Sn acts on it by:

σ ·AT
sparse(S, S

′) = AT
sparse(σ

−1(S), σ−1(S′)). (14)

When the type of representation is clear from context, we abuse notation and write AT . Note also
that in the above discussion, we have used the term "node feature map". Throughout this paper,
in order to denote the node features of a graph G = (V,E) with |V | = n, we use both the vector
representation X ∈ Rn×d and the map representation X : V → Rd interchangeably. Now, recalling
that our pipeline is defined to create and update a node feature map X (S, v) supported on the nodes
of the product graph G□T (G), we define a general node marking policy, the following way:
Definition A.4 (General Node Marking Policy). A general node marking policy π(·, ·), is a function
which takes as input a graph G = (V,E), and a coarsening function T (·), and returns a node feature
map X : V T × V → Rd.

In Appendix C We provide four different node marking policies, and analyze the effect on our pipeline.
We now move on to define the general way in which we update a given node feature map on the
product graph.
Definition A.5 (General CS-GNNLayer Update). Given a graph G = (V,E) and a coarsening
function T (·), let X t(S, v) : V × V T → Rd denote the node feature map at layer t. The general
CS-GNNlayer update is defined by:

X t+1(S, v) = f t

(
X t(S, v),

aggt
1{{(X t(S, v′), ev,v′) | v′ ∼G v}},

aggt
2{{(X t(S′, v), ẽS,S′) | S′ ∼GT S}},

aggt
3{{(X t(S′, v), z(S, v, S′, v)) | S′ ∈ V T s.t. v ∈ S′}},

aggt4{{(X t(S, v′), z(S, v, S, v′)) | v′ ∈ V s.t. v′ ∈ S}}
)
.

(15)

Here, f t is an arbitrary (parameterized) continuous function, aggt
i, i = 1, . . . 4 are learnable

permutation invariant aggregation functions, ev,v′ , ẽS,S′ are the (optional) edge features of G and
T (G) respectively and the function z : P([n])× [n]×P([n])× [n]→ Rd maps each tuple of indices
v = (S, v, S′, v′) to a vector uniquely encoding the orbit of v under the action of Sn as described in
73.

We note that for brevity, the notation used in the main body of the paper omits the aggregation
functions aggt

1, . . . , aggt
4 and the edge features from the formulation of some of the layer updates.

However, we explicitly state each component of the update, as we heavily utilize them in later proofs.
We also note that this update is different than the general layer update presented in Equation (2), as
it doesn’t use all global updates characterized in 9. The reason for this is that some of the global
updates have an asymptotic runtime of Õ(n2)where n is the number of nodes in the input graph. As
our goal was to create models that improve on the scalability of standard subgraph GNNs which have
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an asymptotic runtime of Õ(n2), We decided to discard some of the general global updates and keep
only the ones that are induced by the last two entries in equation 15 which all have a linear runtime.
After a stacking of the layers in Equation (15), we employ the following pooling procedure on the
final node feature map X T :

ρ(X T ) = MLP2

( ∑
S ∈V T

(
MLP1

(∑
v∈V

X T (S, v)
)))

. (16)

Finally, we define the set of all functions that can be expressed by our model:
Definition A.6 (Expressivity of Family of Graph Functions). Let F be a family of graph functions,
we say that F can express a graph function g(·) if for every finite family of graphs G there exists a
function f ∈ F such that:

f(G) = g(G) ∀G ∈ G. (17)
Here, G is a finite family of graphs if all possible values of node/edge features of the graphs in G form
a finite set, and the maximal size of the graphs within G is bounded.

Definition A.7 (Family of Functions Expressed By CS-GNN). Let π be a general node marking
policy and T be a coarsening function. Define S(T , π) to be the family of graph functions, which
when given input graph G = (V,E), first compute X 0(S, v) using π(G, T ), then update this node
feature map by stacking T layers of the form 15, and finally pooling X 0(S, v) using equation 16. We
define CS-GNN(T , π) to be the set of all functions that can be expressed by S(T , π).

B Theoretical Validation of Implementation Details

In this section, we provide implementation details of our model and prove that they enable us to
recover the conceptual framework of the model discussed thus far. First, we note that in Section 4.2,
we characterized all equivariant linear maps L : RP([n])×[n] → RP([n])×[n] in order to incorporate
them into our layer update. Given the high dimensionality of the space of all such linear maps, and in
order to save parameters, we demonstrate that it is possible to integrate these layers into our layer
update by adding edge features to a standard MPNN model. This is formalized in the following
proposition:
Lemma B.1 (Parameter Sharing as MPNN). Let B1, . . . Bk : Rn×n be orthogonal matrices with
entries restricted to 0 or 1, and let W1, . . .Wk ∈ Rd×d′

denote a sequence of weight matrices. Define
B+ =

∑k
i=1 Bi and choose z1, . . . zk ∈ Rd∗

to be a set of unique vectors representing an encoding
of the index set. The function that represents an update via parameter sharing:

f(X) =

k∑
i=1

BiXWi, (18)

can be implemented on any finite family of graphs G, by a stack of MPNN layers of the following
form [13],

ml
v =

∑
u∈NB+

(v)

M l(X l
u, eu,v), (19)

X l+1
v = U l(X l

v,m
l
v), (20)

where U l,M l are multilayer perceptrons (MLPs). The inputs to this MPNN are the adjacency matrix
B+, node feature vector X , and edge features – the feature of edge (u, v) is given by:

eu,v =

k∑
i=1

zi ·Bi(u, v). (21)

Here, Bi(u, v) denotes the (u, v) entry to matrix Bi.

The proof is given in Appendix G. The analysis in Section 4.2 demonstrates that the basis of the space
of all equivariant linear maps L : RP([n])×[n] → RP([n])×[n] satisfies the conditions of Lemma F.1.
Additionally, we notice that some of the equivariant linear functions have an asymptotic runtime of
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Õ(n2) where n is the number of nodes in the input graph. As our main goal is to construct a more
scalable alternative to node-based subgraph GNNs, which also have a runtime of Õ(n2), we limit
ourselves to a subset of the basis for which all maps run in linear time. This is implemented by adding
edge features to the adjacency matrices AP1 and AP2 , defined later in this section.

We now move on to discussing our specific implementation of the general layer update from Defini-
tion A.5.

Given a graph G = (V,E) and a coarsening function T , we aim to implement this general layer
update by combining several standard message passing updates on the product graph G□T (G).
In the next two definitions, we define the adjacency matrices supported on the node set V × V T ,
which serve as the foundation for these message passing procedures, and formalize the procedures
themselves.

Definition B.1 (Adjacency Matrices on Product Graph). Let G = (V,E) be a graph with adjacency
matrix A and node feature vector X , and let T (·) be a coarsening function. We define the following
four adjacency matrices on the vertex set V T × V :

AG(S, v, S
′, v′) =

{
1 v ∼G v′, S = S′

0 otherwise.
(22)

AT (G)(S, v, S
′, v′) =

{
1 S ∼T (G) S

′, v = v′

0 otherwise.
(23)

AP1
(S, v, S′, v′) =

{
1 v ∈ S′, v = v′

0 otherwise.
(24)

AP2
(S, v, S′, v′) =

{
1 v′ ∈ S, S′ = S

0 otherwise.
(25)

Given edge features {ev,v′ | v ∼G v′} and {ẽS,S′ | s ∼T (G) s′} corresponding to the graphs G
and T (G), respectively, we can trivially define the edge features corresponding to AG and AGT as
follows:

eG(S, v, S
′, v′) = ev,v′ , (26)

eT (G)(S, v, S
′, v′) = ẽS,S′ . (27)

In addition, for i = 1, 2, we define the edge features corresponding to adjacency matrices APi as
follows:

ePi
(S, v, S′, v′) = z(S, v, S′, v′). (28)

Here, the function z : P([n]) × [n] × P([n]) × [n] → Rd maps each tuple v = (S, v, S′, v′) to a
vector uniquely encoding the orbit of v under the action of Sn as described in Equation 73.

Definition B.2 (CS-GNN Update Implementation). Given a graph G = (V,E), and a coarsening
function T (·), let A1 . . . A4 enumerate the set of adjacency matrices {AG, AT (G), AP1

, AP2
}. We

define a CS-GNN layer update in the following way:

X t
i (S, v) = U t

i

(1 + ϵti) · X t(S, v) +
∑

(S′,v′)∼Ai
(S,v)

M t(X t(S′, v′) + ei(S, v, S
′, v′))

 . (29)

X t+1(S, v) = Ut
fin

(
4∑

i=1

X t
i (S, v)

)
. (30)

Here X t(S, v) and X t+1(S, v) denote the node feature maps of the product graph at layers t and
t + 1, respectively. e1(S, v, S′, v′), . . . , e4(S, v, S′, v′) denote the edge features associated with
adjacency matrices A1, . . . , A4. ϵt1, . . . , ϵ

t
4 represent learnable parameters in R, and U t

1, . . . , U
t
4,

U t
fin, M t all refer to multilayer perceptrons.
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The next proposition states that using the layer update defined in equations 29 and 30 is enough to
efficiently recover the general layer update defined in equation 15.

Proposition B.1 (Equivalence of General Layer and Implemented Layer). Let T (·) be a coarsening
function, π be a generalized node marking policy, and G be a finite family of graphs. Applying a stack
of t general layer updates as defined in Equation 15 to the node feature map X (S, v) induced by
π(G, T ), can be effectively implemented by applying a stack of t layer updates specified in Equations
29 and 30 to X (S, v). Additionally, the depths of all MLPs that appear in 29 and 30 can be bounded
by 4.

C Node Marking Policies – Theoretical Analysis

In this section, we define and analyze various general node marking policies, starting with four natural
choices.

Definition C.1 (Four General Node Marking policies). Let G = (V,E) be a graph with adjacency
matrix A ∈ Rn×n and node feature vector X ∈ Rn×d, and let T (·) be a coarsening function. All of
the following node marking policies take the form:

π(G, T ) = X (S, v) = [Xu, bπ(S, v)], (31)

where [·, ·] denotes the concatenation operator. We focus on four choices for bπ(S, v):

1. Simple Node Marking:

bπ(S, v) =

{
1 if v ∈ S,

0 if v /∈ S.
(32)

We denote this node marking policy by πS.

2. Node + Size Marking:

bπ(S, v) =

{
(1, |S|) if v ∈ S,

(0, |S|) if v /∈ S.
(33)

We denote this node marking policy by πSS.

3. Minimum Distance:
bπ(S, v) = min

v′∈S
dG(v, v

′) (34)

where dG(v, v
′) is the shortest path distance between nodes v and v′ in the original graph.

We denote this node marking policy by πMD.

4. Learned Distance Function:

bπ(S, v) = ϕ({dG(v, v′) | v′ ∈ S}) (35)

where ϕ(·) is a learned permutation-invariant function. We denote this node marking policy
by πLD.

We note that when using the identity coarsening function T (G) = G, our general node marking
policies output node feature maps supported on the product V × V . Thus, they can be compared
to node marking policies used in node-based subgraph GNNs. In fact, in this case, both πS and
πSS reduce to classical node-based node marking, while πMD and πLD reduce to distance encoding.
The definitions of these can be found in [38]. Interestingly, even though in the case of node-based
subgraph GNNSs, both distance encoding and node marking were proven to be maximally expressive
[38], in our case for some choices of T , πLD is strictly more expressive than the other three choices.
The exact effect of each generalized node marking policy on the expressivity of our model is explored
in the following two propositions.

Proposition C.1 (Equal Expressivity of Node Marking Policies). For any coarsening function T (·)
the following holds:

CS-GNN(T , πS) = CS-GNN(T , πSS) = CS-GNN(T , πMD). (36)
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Proposition C.2 (Expressivity of Learned Distance Policy). For any coarsening function T (·) the
following holds:

CS-GNN(T , πS) ⊆ CS-GNN(T , πLD). (37)
In addition, for some choices of T (·) the containment is strict.

The proofs of both propositions can be found in Appendix G. Finally, we provide a principled
approach to deriving a generalized node marking policy based on symmetry invariance, and prove its
equivalence to πSS. Given a graph G = (V,E) with V = [n], adjacency matrix A, and node feature
vector X ∈ Rn×d, along with a coarsening function T (·), We define an action of the symmetric
group Sn on the space RP([n])×[n] as follows:

σ · X (S, v) = X (σ−1(S), σ−1(v)) for σ ∈ Sn,X ∈ RP([n])×[n]. (38)

Now, for each orbit γ ∈ (P([n])× [n])/Sn, we define 1γ ∈ RP([n])×[n] as follows:

1γ(S, v) =

{
1 (S, v) ∈ γ,

0 otherwise.
(39)

Choosing some enumeration of the orbit set (P([n])× [n])/Sn = {γ1, . . . , γk}, We now define the
invariant generalized node marking policy πinv by first setting:

bsparse
πinv

(S, v) : P([n])× [n]→ Rk

and
bπinv : V

T × V → Rk

as follows:

bsparse
πinv

(S, v) = [1γ1(S, v), . . . ,1γk
(S, v)] S ∈ P(V ), v ∈ V, (40)

bπinv(S, v) = bsparse
πinv

(S, v) S ∈ V T , v ∈ V. (41)

Then, we define the node feature map induced by πinv as:

X πinv(S, v) = [Xv, bπinv(S, v)]. (42)

Interestingly, πinv, derived solely from the group action of Sn on P([n])× [n], is equivalent to the
generalized node marking policy πSS. This is stated more rigorously in the following proposition:
Proposition C.3 (Node + Size Marking as Invariant Marking). Given a graph G = (V,E) with node
feature vector X ∈ Rn×d, and a coarsening function T (·), let X πSS ,X πinv be the node feature maps
induced by πSS and πinv respectively. Recall that:

X πSS(S, v) = [Xv, bπSS(S, v)], (43)
X πinv(S, v) = [Xv, bπinv(S, v)]. (44)

The following now holds:

bπinv(S, v) = OHE(bπSS(S, v)) ∀S ∈ V T , ∀v ∈ V. (45)

Here, OHE denotes a one-hot encoder, independent of the choice of both G and T .

The proof of proposition C.3 can be found in Appendix G.

D Expressive Power of CS-GNN

D.1 Recovering Subgraph GNNs

In this section, we demonstrate that by choosing suitable coarsening functions, our architecture can
replicate various previous subgraph GNN designs. We begin by focusing on node-based models,
which are the most widely used type. We define a variant of these models which was proven in [38]
to be maximally expressive, and show that our approach can recover it.
Definition D.1 (Maximally Expressive Subgraph GNN). We define MSGNN(πNM) as the set of all
functions expressible by the following procedure:
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1. Node Marking: The representation of tuple (u, v) ∈ V × V is initially given by:

X 0(u, v) =

{
1 if u = v,

0 if u ̸= v.
(46)

2. Update: The representation of tuple (u, v) is updated according to:

X t+1(u, v) = f t

(
X t(u, v),X t(u, u),X t(v, v),

aggt1{{(X t(u, v′), ev,v′) | v′ ∼ v}},

aggt2{{(X t(v, u′), eu,u′) | u′ ∼ u}}
)
.

(47)

3. Pooling: The final node feature vector X T (u, v) is pooled according to:

MLP2

(∑
u∈V

MLP1

(∑
v∈V

X T (u, v)

))
. (48)

Here, for any t ∈ [T ], f t is any continuous (parameterized) functions, aggt
1, , aggt2 are any continuous

(parameterized) permutation-invariant functions and MLP1,MLP2 are multilayer preceptrons.

Proposition D.1 (CS-GNN Can Implement MSGNN). Let T (·) be the identity coarsening function
defined by:

T (G) = {{v} | v ∈ V } ∀G = (V,E). (49)
The following holds:

CS-GNN(T , πS) = MSGNN(πNM). (50)

The proof of proposition D.1 can be found in Appendix G. We observe that, similarly, by selecting
the coarsening function:

T (G) = E ∀G = (V,E), (51)
one can recover edge-based subgraph GNNs. An example of such a model is presented in [4] (DS-
GNN), where it was proven capable of distinguishing between two 3-WL indistinguishable graphs,
despite having an asymptotic runtime of Õ(m2), where m is the number of edges in the input graph.
This demonstrates our model’s ability to achieve expressivity improvements while maintaining a
(relatively) low asymptotic runtime by exploiting the graph’s sparsity through the coarsening function.
Finally, we note that by selecting the coarsening function:

T (G) = {S ∈ P(V ) | |S| = k} G = (V,E), (52)
We can recover an unordered variant of the k-OSAN model presented in [29].

D.2 Comparison to Natural Baselines

In this section, we demonstrate how our model can leverage the information provided by the coars-
ening function T (·) in an effective way. First, we define a baseline model that incorporates T in a
straightforward manner. We then prove that, for any T (·), our model is at least as expressive as this
baseline. Additionally, we show that for certain choices of T (·), our model exhibits strictly greater
expressivity. To construct the baseline model, we first provide the following definition:
Definition D.2 (Coarsened Sum Graph). Given a graph G = (V,E) and a coarsening function T (·),
we define the coarsened sum graph GT

+ = (V T
+ , ET

+ ) by:

• V T
+ = V ∪ V T .

• ET
+ = E ∪ ET ∪ {{S, v} | S ∈ V T , v ∈ V v ∈ S}.

If graph G had a node feature vector X ∈ Rn×d, we define the node feature vector of GT
+ as:

Xv =

{
[Xv, 1] v ∈ V

0d+1 v ∈ V T . (53)

Here we concatenated a 1 to the end of node features of V to distinguish them from the nodes of V T .
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The connectivity of the sum graph (for our running example Figure 1) is
visualized inset.

We now define our baseline model:

Definition D.3 (Coarse MPNN). Let T (·) be a coarsening function. De-
fine MPNN+(T ) as the set of all functions which can be expressed by the
following procedure:

1. Preprocessing: We first construct the sum graph GT
+ of the input

graph G, along with a node feature map X 0 : V T
+ → Rd defined according to equation 53.

2. Update: The representation of node v ∈ V T
+ is updated according

to:

For v ∈ V : X t+1(v) = f t
V

(
X t(v), aggt1{{(X t(u), eu,v) | u ∼G v}},

aggt2{{X t(S) | S ∈ V T , v ∈ S}}
)
,

For S ∈ V T : X t+1(S) = f t
V T

(
X t(S), aggt

1{{(X t(S′), eS,S′) | S′ ∼T (G) S}},
aggt2{{X t(v) | v ∈ V, v ∈ S

}
}}).

(54)

3. Pooling: The final node feature vector X T (·) is pooled according
to:

MLP

 ∑
v∈V T

+

X T (v)

 . (55)

Here, for t ∈ [T ], f t
V ,, f t

V T are continuous (parameterized) functions and , aggt1, aggt2T are
continuous (parameterized) permutation invariant functions. Finally, we notice that for the trivial
coarsening function defined by

T∅(G) = ∅, (56)

the update in Equation (54) devolves into a standard MPNN update, as defined in [13] and so we
define:

MPNN = MPNN+(T∅). (57)

In essence, given an input graph G = (V,E), the MPNN+(T ) pipeline first constructs the coarsened
graph T (G). It then adds edges between each super-node S ∈ V T and the nodes it is comprised
of (i.e., any v ∈ S). This is followed by a standard message passing procedure on the graph. The
following two propositions suggest that this simple approach to incorporating T into a GNN pipeline
is less powerful than our model.

Proposition D.2 (CS-GNN Is at Least as Expressive as Coarse MPNN ). For any coarsening function
T (·) the following holds:

MPNN ⊆ MPNN+(T ) ⊆ CS-GNN(T , πS) (58)

Proposition D.3 (CS-GNN Can Be More Expressive Than MPNN+). Let T (·) be the identity
coarsening function defined by:

T (G) = {{v} | v ∈ V } G = (V,E). (59)

The following holds:

MPNN = MPNN+(T ). (60)

Thus:
MPNN+(T ) ⊂ CS-GNN(T , πS), (61)

where this containment is strict.
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The proofs to the last two propositions can be found in Appendix G. Proposition D.3 demonstrates
that CS-GNNis strictly more expressive than MPNN+ when using the identity coarsening function.
However, this result extends to more complex coarsening functions as well. We briefly discuss one
such example. Let T (·) be the coarsening function defined by:

T△(G) = {v1, v2, v3 | G[v1, v2, v3] ∼= △}, (62)

i.e. for an input graph G, the set of super-nodes is composed of all triplets of nodes whose induced
subgraph is isomorphic to a triangle. To see that CS-GNN is strictly more expressive then MPNN+

when using T△(·), we look at the two graphs G and H depicted in Figure 4. In the figure, we see the
two original graphs, G and H , their corresponding sum graphs GT△

+ and H
T△
+ , and a subgraph of their

corresponging product graphs G□T△(G) and H□T△(H) induced by the sets {(S0, v) | v ∈ VG}
and {(S0, v) | v ∈ VH} respectively (this can be thought of as looking at a single subgraph from
the bag of subgraphs induced by CS-GNN). One can clearly see that both the original graphs and
their respective sum graphs are 1-WL indistinguishable. On the other hand, the subgraphs induced by
our method are 1-WL distinguishable. Since for both G and H the "bag of subgraphs" induced by
CS-GNN is composed of 6 isomorphic copies of the same graph, this would imply that our method
can distinguish between G and H , making it strictly mor expressive then MPNN+.

Figure 4: Rows 1 and 3 depict two 1-WL indistinguishable graphs> Rows 2 and 4 depict the sum
graph of each of these graphs, as well as one subgraph of their product graphs induced by all node,
super-node tuples whose super-node is fixed.
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We conclude this section with the following proposition, showing there exists coarsening functions
which, when combined with CS-GNN, results in an architecture that is strictly more expressive then
node-based subgraph GNNs.
Proposition D.4 (CS-GNN can be strictly more expressive then node-based subgraph GNNs). Let T
be the coarsening function defined by:

T (G) = {{v} | v ∈ V } ∪ E G = (V,E). (63)

The following holds:

1. Let G1, G2 be a pair of graphs such that there exists a node-based subgraph GNN model
M where M(G1) ̸= M(G2). There exists a CS-GNNmodel M ′ which uses T such that
M ′(G1) ̸= M ′(G2).

2. There exists a pair of graphs G1, G2 such that for any subgraph GNN model M it holds
that M(G1) = M(G2), but there exists a CS-GNNmodel M ′ which uses T such that
M ′(G1) ̸= M ′(G2).

This proposition is proved in Appendix G.

E Linear Invariant (Equivariant) Layer – Extended Section

We introduce some key notation. In the matrix X , the i-th row corresponds to
the i-th subset S arranged in the lexicographic order of all subsets of [n], namely,
[{0}, {0, 1}, {0, 2}, . . . , {0, 1, 2, . . . , n}]. Each i-th position in this sequence aligns with the i-th row
index in X . It follows, that the standard basis for such matrices in R2n×n is expressed as e(S) · e(i)T ,
where e(S) is a 1-hot vector, with the value 1 positioned according to S in the lexicographic order.
For a matrix X ∈ Ra×b, the operation of vectorization, denoted by vec(X), transforms X into a
single column vector in Rab×1 by sequentially stacking its columns; in the context of X , the basis
vectors of those vectors are e(i) ⊗ e(S). The inverse process, reshaping a vectorized matrix back to
its original format, is denoted as [vec(X)] = X . We also denote an arbitrary permutation by σ ∈ Sn.
The actions of permutations on vectors, whether indexed by sets or individual indices, are represented
by PS ∈ GL(2n) and PI ∈ GL(n), respectively. This framework acknowledges Sn as a subgroup
of the larger permutation group S2n , which permutes all 2n positions in a given vector vS ∈ R2n .

Let L ∈ R1×2n·n be the matrix representation of a general linear operator L : R2n×n → R in the
standard basis. The operator L is order-invariant iff

L vec(PT
SXPI) = L vec(X ). (64)

Similarly, let L ∈ R2n·n×2n·n denote the matrix for L : R2n×n → R2n×n. The operator L is
order-equivariant if and only if

[L vec(PT
SXPI)] = PT

S [L vec(X )]PI . (65)

Using properties of the Kronecker product (see Appendices E.1 and E.2 for details), we derive the
following conditions for invariant and equivariant linear layers:

Invariant L : PI ⊗PS vec(L) = vec(L), (66)
Equivariant L : PI ⊗PS ⊗PI ⊗PS vec(L) = vec(L). (67)

Solving Equations (66) and (67). Let σ ∈ Sn denote a permutation corresponding to the permutation
matrix P. Let P ⋆ L denote the tensor that results from expressing L after renumbering the nodes in
V T , V according to the permutation σ. Explicitly, for L ∈ R2n×n, the (σ(S), σ(i))-entry of P ⋆ L
equals to the (S, i)-entry of L. The matrix that corresponds to the operator P⋆ in the standard basis,
e(i) ⊗ e(S) is the kronecker product PI ⊗PS . Since vec(L) is exactly the coordinate vector of the
tensor L in the standard basis we have,

vec(P ⋆ L) = PI ⊗PS vec(L), (68)

following the same logic, the following holds for the equivariant case, where L ∈ R2n·n×2n·n,

vec(P ⋆ L) = PI ⊗PS ⊗PI ⊗PS vec(L). (69)
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Given Equations (66) and (68) and Equations (67) and (69), it holds that we should focus on solving,
P ⋆ L = L, ∀P permutation matrices, (70)

for both cases where L ∈ R2n×n and L ∈ R2n×n×2n×n, corresponding to the bias term, and linear
term.

Bias. To this end, let us define an equivalence relation in the index space of a tensor in R2n×n. Given
a pair (S, i) ∈ P([n]) × [n], we define γk+

to correspond to all pairs (S, i) such that |S| = k and
i /∈ S. Similarly, γk−

corresponds to all pairs (S, i) such that |S| = k and i ∈ S. We denote this
equivalence relation as follows:

(P([n])× [n])/∼ ≜ {γk∗
: k = 1, . . . , n; ∗ ∈ {+,−}}. (71)

For each set-equivalence class γ ∈ (P([n]) × [n])∼, we define a basis tensor, Bγ ∈ R2n×n by
setting:

Bγ
S,i =

{
1, if (S, i) ∈ γ;

0, otherwise.
(72)

Following similar reasoning, consider elements (S1, i1, S2, i2) ∈ (P([n]) × [n] × P([n]) × [n]).
We define a partition according to six conditions: the relationship between i1 and i2, denoted as
i1 ↔ i2, which is determines by the condition: i1 = i2 or i1 ̸= i2; the cardinalities of S1 and
S2, denoted as k1 and k2, respectively; the size of the intersection S1 ∩ S2, denoted as k∩; the
membership of il in Sl for l ∈ {1, 2}, denoted as δsame ∈ {1, 2, 3, 4}; and the membership of il1 in
Sl2 for distinct l1, l2 ∈ {1, 2}, denoted as δdiff ∈ {1, 2, 3, 4}. The equivalence relation thus defined
can be represented as:

(P([n])× [n]× P([n])× [n])/∼ ≜ {Γ↔;k1;k2;k
∩;δsame;δdiff}. (73)

For each set-equivalence class Γ ∈ (P([n]) × [n] × P([n]) × [n])/∼, we define a basis tensor,
BΓ ∈ R2n×n×2n×n by setting:

BΓ
S1,i1;S2,i2 =

{
1, if (S1, i1, S2, i2) ∈ Γ;

0, otherwise.
(74)

The following two proposition summarizes the results in this section,
Lemma E.1 (γ (Γ) are orbits). The sets {γk∗

: k = 1, . . . , n; ∗ ∈ {+,−}} and {Γ↔;k1;k2;k
∩;δsame;δdiff}

are the orbits of Sn on the index space (P([n])× [n]) and (P([n])× [n]×(P([n])× [n]), respectively.

Proposition E.1 (Basis of Invariant (Equivariant) Layer). The tensors Bγ (BΓ) in Equation (72)
(Equation (74)) form an orthogonal basis (in the standard inner product) to the solution of Equa-
tion (66) (Equation (67)).

The proofs are given in Appendix G.

E.1 Full Derivation of Equation (66).

Our goal is to transition from the equation,
L vec(PT

SXPI) = L vec(X ) (64)
to the form,

PI ⊗PS vec(L) = vec(L) (66)
We introduce the following property of the Kronecker product,

vec(ABC) = (CT ⊗A)vec(B). (75)
Using Equation (75) on the left side of Equation (64), we obtain

LPT
I ⊗PT

S vec(X ) = L vec(X ), (76)
since this should be true for any X ∈ R2n×n, we derive

LPT
I ⊗PT

S = L. (77)
Applying the transpose operation on both sides, and noting that (PT

I ⊗PT
S )

T = PI ⊗PS , we obtain
PI ⊗PSL

T = LT . (78)
Recalling that L ∈ R1×2n·n, and thus LT ∈ R2n·n×1, we find that LT = vec(L). Substituting this
back into the previous equation we achieve Equation (66).
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E.2 Full Derivation of Equation (67).

Our goal is to transition from the equation,

[L vec(PT
SXPI)] = PT

S [L vec(X )]PI (65)

to the form,
PI ⊗PS ⊗PI ⊗PS vec(L) = vec(L). (67)

Applying the property in Equation (75), after the reverse operation of the vectorization, namely,

[vec(ABC)] = [(CT ⊗A)vec(B)] (79)

on the right hand side of Equation (65), for

A ≜ PT
S ; (80)

B ≜ [L vec(X )]; (81)

C ≜ PI , (82)

we obtain,
[L vec(PT

SXPI)] = [PT
I ⊗PT

SL vec(X )]. (83)

Thus, by omitting the revere-vectorization operation,

L vec(PT
SXPI) = PT

I ⊗PT
SL vec(X ). (84)

Noting that (PT
I ⊗PT

S )
−1 = PI ⊗PS , and multiplying by this inverse both sides (from the left),

we obtain,
PI ⊗PSL vec(PT

SXPI) = L vec(X ). (85)

Applying, again, the property in Equation (75), we obtain,

PI ⊗PSLP
T
I ⊗PT

S vec(X ) = L vec(X ). (86)

Since this should be true for any X ∈ R2n×n, we derive,

PI ⊗PSLP
T
I ⊗PT

S = vec(L). (87)

Again, applying Equation (75) on the left side, where,

A ≜ PI ⊗PS ; (88)

B ≜ L; (89)

C ≜ PT
I ⊗PT

S , (90)

we get the following equality,

PI ⊗PSLP
T
I ⊗PT

S = PI ⊗PS ⊗PI ⊗PS vec(L). (91)

By substituting this to the left side of Equation (87) we obtain Equation (67).

E.3 Comparative Parameter Reduction in Linear Equivariant Layers

To demonstrate the effectiveness of our parameter-sharing scheme, which results from considering
unordered tuples rather than ordered tuples, we present the following comparison. 3-IGNs [22] are
structurally similar to our approach, with the main difference being that they consider indices as
ordered tuples, while we consider them as sets. Both approaches use a total of six indices, as shown
in the visualized block in Figure 3, making 3-IGNs a natural comparator. By leveraging our scheme,
we reduce the number of parameters from 203 (the number of parameters in 3-IGNs) to just 35!
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Table 5: Overview of the graph learning datasets.

Dataset # Graphs Avg. # nodes Avg. # edges Directed Prediction task Metric
ZINC-12K [31] 12,000 23.2 24.9 No Regression Mean Abs. Error
ZINC-FULL [31] 249,456 23.2 49.8 No Regression Mean Abs. Error
OGBG-MOLHIV [16] 41,127 25.5 27.5 No Binary Classification AUROC
OGBG-MOLBACE [16] 1513 34.1 36.9 No Binary Classification AUROC
OGBG-MOLESOL [16] 1,128 13.3 13.7 No Regression Root Mean Squ. Error

PEPTIDES-FUNC [9] 15,535 150.9 307.3 No 10-task Classification Avg. Precision
PEPTIDES-STRUCT [9] 15,535 150.9 307.3 No 11-task Regression Mean Abs. Error

F Extended Experimental Section

F.1 Dataset Description

In this section we overview the eight different datasets considered; this is summarized in Table 5.

ZINC-12K and ZINC-FULL Datasets [31, 14, 10]. The ZINC-12K dataset includes 12,000
molecular graphs sourced from the ZINC database, a compilation of commercially available chemical
compounds. These molecular graphs vary in size, ranging from 9 to 37 nodes, where each node
represents a heavy atom, covering 28 different atom types. Edges represent chemical bonds and there
are three types of bonds. The main goal when using this dataset is to perform regression analysis on
the constrained solubility (logP) of the molecules. The dataset is divided into training, validation, and
test sets with 10,000, 1,000, and 1,000 molecular graphs respectively. The full version, ZINC-FULL,
comprises approximately 250,000 molecular graphs, ranging from 9 to 37 nodes and 16 to 84 edges
per graph. These graphs also represent heavy atoms, with 28 distinct atom types, and the edges
indicate bonds between these atoms, with four types of bonds present.

OGBG-MOLHIV, OGBG-MOLBACE, OGBG-MOLESOL Datasets [16]. These datasets are used for
molecular property prediction and have been adopted by the Open Graph Benchmark (OGB, MIT
License) from MoleculeNet. They use a standardized featurization for nodes (atoms) and edges
(bonds), capturing various chemophysical properties.

PEPTIDES-FUNC and PEPTIDES-STRUCT Datasets [9]. The PEPTIDES-FUNC and PEPTIDES-
STRUCT datasets consist of atomic graphs representing peptides released with the Long Range Graph
Benchmark (LRGB, MIT License). In PEPTIDES-FUNC, the task is to perform multi-label graph
classification into ten non-exclusive peptide functional classes. Conversely, PEPTIDES-STRUCT is
focused on graph regression to predict eleven three-dimensional structural properties of the peptides.

We note that for all datasets, we used the random splits provided by the public benchmarks.

F.2 Experimental Details

Implementation Details. Our implementation of Equation (2) is given by:

X (l+1) = MLP

(
3∑

i=1

MPNN(l+1,i) (X ,Ai)

)
, (92)

where A1 = AG, A2 = AT (G), and A3 = AEquiv.

For all considered datasets, namely, ZINC-12K, ZINC-FULL, OGBG-MOLHIV, OGBG-MOLBACE,
and OGBG-MOLESOL, except for the PEPTIDES-FUNC and PEPTIDES-STRUC datasets, we use a
GINE [15] base encoder. Given an adjacency matrix A, and defining e(S′,v′),(S,v) to denote the edge
features from node (S′, v′) to node (S, v), it takes the following form:

X (S, v) = MLP
(
(1 + ϵ) · X (S, v) +

∑
(S′,v′)∼A(S,v)

ReLU
(
X (S′, v′) + e(S′,v′),(S,v)

))
. (93)

We note that for the symmetry-based updates, we switch the ReLU to an MLP12 to align with the
theoretical analyses13 (Appendix B), stating that we can implement the equivariant update developed

12With the exception of the OGB datasets, to avoid overfitting.
13The theoretical analysis assumes the usage of an MLP for all three considered updates.
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in Section 4.2. A more thorough discussion regarding the implementation of the symmetry-based
updates is given in Appendix F.4.

When experimenting with the PEPTIDES-FUNC and PEPTIDES-STRUC datasets, we employ GAT [32]
as our underlying MPNN to ensure a fair comparison with the random baseline—the random variant of
Subgraphormer + PE [3]. To clarify, we consider the random variant of Subgraphormer + PE as
a natural random baseline since it incorporates the information in the eigenvectors of the Laplacian
(which we also do via the coarsening function). To maintain a fair comparison, we use a single vote
for this random baseline, and maintained the same hyperparameters.

Our experiments were conducted using the PyTorch [28] and PyTorch Geometric [11] frameworks
(resp. BSD and MIT Licenses), using a single NVIDIA L40 GPU, and for every considered experi-
ment, we show the mean ± std. of 3 runs with different random seeds. Hyperparameter tuning was
performed utilizing the Weight and Biases framework [6] – see Appendix F.3. All our MLPs feature a
single hidden layer equipped with a ReLU non-linearity function. For the encoding of atom numbers
and bonds, we utilized learnable embeddings indexed by their respective numbers.

In the case of the OGBG-MOLHIV, OGBG-MOLESOL, OGBG-MOLBACE datasets, we follow Frasca
et al. [12], therefore adding a residual connection between different layers. Additionally, for those
datasets (except OGBG-MOLHIV), we used linear layers instead of MLPs inside the GIN layers.
Moreover, for these four datasets, and for the PEPTIDES datasets, the following pooling mechanism
was employed

ρ(X ) = MLP

(∑
S

(
1

n

n∑
v=1

X (s, v)

))
. (94)

For the PEPTIDES datasets, we also used a residual connection between layers.

F.3 HyperParameters

In this section, we detail the hyperparameter search conducted for our experiments. Besides standard
hyperparameters such as learning rate and dropout, our specific hyperparameters are:

1. Laplacian Dimension: This refers to the number of columns used in the matrix U , where
L = UTλU , for the spectral clustering in the coarsening function.

2. SPD Dimension: This represents the number of indices used in the node marking equation.
To clarify, since |S| might be large, we opt for using the first k indices that satisfy i ∈ S,
sorted according to the SPD distance.

SPD Dimension. For the Laplacian dimension, we chose a fixed value of 10 for all bag sizes for
both ZINC-12K and ZINC-FULL datasets. For OGBG-MOLHIV, we used a fixed value of 1, since
the value 10 did not perform well. For the PEPTIDES datasets, we also used the value 1. For the
OGBG-MOLESOL and OGBG-MOLBACE datasets, we searched over the two values {1, 2}.
Laplacian Dimension. For the Laplacian dimension, we searched over the values {1, 2} for all
datasets.

Standard Hyperparameters. For ZINC-12K, we used a weight decay of 0.0003 for all bag sizes,
except for the full bag size, for which we used 0.0001.

All of the hyperparameter search configurations are presented in Table 6, and the selected hyperpa-
rameters are presented in Table 7.

Table 6: Hyperparameters search for CS-GNN.
Dataset Bag size Num. layers Learning rate Embedding size Epochs Batch size Dropout Laplacian dimension SPD dimension

ZINC-12K T = 2 6 0.0005 96 400 128 0 {1, 2} 10
ZINC-12K T ∈ {3, 4, 5, 8, 18} 6 0.0007 96 400 128 0 {1, 2} 10
ZINC-12K T = “full” 6 0.0007 96 500 128 0 {1, 2} 10

ZINC-FULL T = 4 6 0.0007 96 400 128 0 {1, 2} 10
ZINC-FULL T = “full” 6 {0.001, 0.0005} 96 500 128 0 {1, 2} 10

OGBG-MOLHIV T ∈ {2, 5, “full”} 2 0.01 60 100 32 0.5 {1, 2} 1
OGBG-MOLESOL T ∈ {2, 5, “full”} 3 0.001 60 100 32 0.3 {1, 2} { 1, 2 }
OGBG-MOLBACE T ∈ {2, 5, “full”} {2, 3} 0.01 60 100 32 0.3 {1, 2} { 1, 2 }

PEPTIDES-FUNC T = 30 5 {0.01, 0.005} 96 200 128 0 {1, 2} 1
PEPTIDES-STRUC T = 30 4 {0.01, 0.005} 96 200 128 0 {1, 2} 1

27



Table 7: Chosen Hyperparameters for CS-GNN.
Dataset Bag size Num. layers Learning rate Embedding size Epochs Batch size Dropout Laplacian dimension SPD dimension

ZINC-12K T = 2 6 0.0005 96 400 128 0 1 10
ZINC-12K T = 3 6 0.0007 96 400 128 0 2 10
ZINC-12K T = 4 6 0.0007 96 400 128 0 1 10
ZINC-12K T = 5 6 0.0007 96 400 128 0 1 10
ZINC-12K T = 8 6 0.0007 96 400 128 0 1 10
ZINC-12K T = 18 6 0.0007 96 400 128 0 1 10
ZINC-12K T = “full” 6 0.0007 96 500 128 0 N/A 10

ZINC-FULL T = 4 6 0.0007 96 400 128 0 1 10
ZINC-FULL T = “full” 6 0.0005 96 500 128 0 N/A N/A

OGBG-MOLHIV T = 2} 2 0.01 60 100 32 0.5 1 1
OGBG-MOLHIV T = 5 2 0.01 60 100 32 0.5 1 1
OGBG-MOLHIV T = “full” 2 0.01 60 100 32 0.5 N/A N/A

OGBG-MOLESOL T = 2 3 0.001 60 100 32 0.3 1 2
OGBG-MOLESOL T = 5 3 0.001 60 100 32 0.3 1 2
OGBG-MOLESOL T = “full” 3 0.001 60 100 32 0.3 N/A N/A

OGBG-MOLBACE T = 2 3 0.01 60 100 32 0.3 1 1
OGBG-MOLBACE T = 5 3 0.01 60 100 32 0.3 1 2
OGBG-MOLBACE T = “full” 3 0.01 60 100 32 0.3 N/A N/A

PEPTIDES-FUNC T = 30 5 0.005 96 200 128 0 1 1
PEPTIDES-STRUC T = 30 4 0.01 96 200 128 0 1 1

Optimizers and Schedulers. For the ZINC-12K and ZINC-FULL datasets, we employ the Adam
optimizer paired with a ReduceLROnPlateau scheduler,factor set to 0.5, patience at 4014, and a
minimum learning rate of 0. For the OGBG-MOLHIV dataset, we utilized the ASAM optimizer [21]
without a scheduler. For both OGBG-MOLESOL and OGBG-MOLBACE, we employed a constant
learning rate without any scheduler. Lastly, for the PEPTIDES-FUNC and PEPTIDES-STRUCT datasets,
the AdamW optimizer was chosen in conjunction with a cosine annealing scheduler, incorporating 10
warmup epochs.

F.4 Implementation of Linear Equivariant and Invariant layers – Extended Section

In this section, in a more formal discussion, we specify how to integrate those invariant and equivariant
layers to our proposed architecture. We start by drawing an analogy between parameter sharing in
linear layers and the operation of an MPNN on a fully connected graph with edge features in the
following lemma,

Lemma F.1 (Parameter Sharing as MPNN). Let B1, . . . Bk : Rn×n be orthogonal matrices with
entries restricted to 0 or 1, and let W1, . . .Wk ∈ Rd×d′

denote a sequence of weight matrices. Define
B+ =

∑k
i=1 Bi and choose z1, . . . zk ∈ Rd∗

to be a set of unique vectors representing an encoding
of the index set. The function, which represents an update via parameter sharing:

f(X) =

k∑
i=1

BiXWi, (95)

can be implemented by a stack of MPNN layers of the following form [13],

ml
u =

∑
v∈NB+

(u)

M l(X l
v, eu,v), , (96)

X l+1
u = U l(X l

v,m
l
v), (97)

where U l,M l are multilayer preceptrons (MLPs). The inputs to this MPNN are the adjacency matrix
B+, node feature vector X , and edge features – the feature of edge (u, v) is given by:

eu,v =

k∑
i=1

zi ·Bi(u, v). (98)

Here, Bi(u, v) denotes the (u, v) entry to matrix Bi.

The proof is given in Appendix G.

14For ZINC-12K, T ∈ {2, “full”}, we used a patience of 50.
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Table 8: Comparison over the ZINC-FULL molecular dataset under 500k parameter budget. The best
performing method is highlighted in blue, while the second best is highlighted in red.

Model ↓ / Dataset → ZINC-FULL
(MAE ↓)

MAG-GNN [20] (T = 4) 0.030±0.002

Ours (T = 4) 0.027±0.002

GNN-SSWL [38] (T = “full”) 0.026±0.001

GNN-SSWL+ [38] (T = “full”) 0.022±0.001

Subgraphormer [3](T = “full”) 0.020±0.002

Subgraphormer + PE [3] (T = “full”) 0.023±0.001

Ours (T = “full”) 0.021±0.001

Thus, our implementation for the global update is as follows,

X (S, i) = MLP

(1 + ϵ) · X (S, i) +
∑

(S′,i′)∼AEquiv (S,i)

MLP
(
X (S′, i′) + e(S′,i′),(S,i)

) , (99)

where e(S′,i′),(S,i) =
∑

Γ zΓ ·BΓ
S,i;S′,i′ and zΓ are orthogonal 1-hot vectors for different Γ’s. The

connectivity AEquiv is such that AEquiv(S, v, S
′, v′) contains the value one iff v ∈ S, v = v′.

This corresponds to choosing only several Γ’s in the partition, and since each Γ is invariant to the
permutation, this choice still maintains equivariance.

F.5 Additional Results

ZINC-FULL. Below, we present our results on the ZINC-FULL dataset for a bag size of T = 4 and the
full-bag. For the bag size T = 4, we benchmark against MAG-GNN [20], which in their experiments
used the best out of the bag sizes T ∈ {2, 3, 4}; however, they did not specify which one performed
the best. The results are summarized in Table 8.

ZINC-12K – additional results. We present all the results from Figure 2, along with some additional
ones, in Table 9.

Runtime comparison. We compare the training time and prediction performance on the ZINC-12K
dataset. For all methods, we report the training and inference times on the entire training and test sets,
respectively, using a batch size of 128. Our experiments were conducted using an NVIDIA L40 GPU,
while for the baselines, we used the timing reported in [5], which utilized an RTX A6000 GPU. The
runtime comparison is presented in Table 10.

F.6 ZINC12K Product Graph Visualization

In this subsection, we visualize the product graph derived from the first graph in the ZINC12K
dataset. Specifically, we present the right part of Figure 1, for the case of the real-world graphs in the
ZINC12K dataset. We perform this visualization for different cluster sizes, T ∈ {2, 3, 4, 5, 8, 12},
which also define the bag size, hence the notation T . The nodes in the product graph, T (G)□G, are
(S, v), where S is the coarsened graph node (again a tuple), and v is the node index (of a node from
the original graph). For better clarity, we color the nodes (S, v) with v ∈ S using different colors,
while reserving the gray color exclusively for nodes (S, v) where v /∈ S. The product graphs are
visualized in Figures 5 to 10 below.
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Table 9: Test results on the ZINC-12K molecular dataset under 500k parameter budget. The top two
results are reported as First and Second.

Method Bag size ZINC (MAE ↓)

GCN [19] T = 1 0.321 ± 0.009
GIN [35] T = 1 0.163 ± 0.004

OSAN [29] T = 2 0.177 ± 0.016
Random [20] T = 2 0.131 ± 0.005
PL [5] T = 2 0.120 ± 0.003
Mag-GNN [20] T = 2 0.106 ± 0.014
Ours T = 2 0.109 ± 0.005

Random [20] T = 3 0.124 ± N/A
Mag-GNN [20] T = 3 0.104 ± N/A
Ours T = 3 0.096 ± 0.005

Random [20] T = 4 0.125 ± N/A
Mag-GNN [20] T = 4 0.101 ± N/A
Ours T = 4 0.090 ± 0.003

Random [5] T = 5 0.113 ± 0.006
PL [5] T = 5 0.109 ± 0.005
Ours T = 5 0.095 ± 0.003

Random [5] T = 8 0.102 ± 0.003
PL [5] T = 8 0.097 ± 0.005
Ours T = 8 0.094 ± 0.006

Ours T = 18 0.082 ± 0.003

NGNN [39] Full 0.111±0.003
DS-GNN [4] Full 0.116±0.009
DSS-GNN [4] Full 0.102±0.003
GNN-AK [40] Full 0.105±0.010
GNN-AK+ [40] Full 0.091±0.002
SUN [12] Full 0.083±0.003
OSAN [29] Full 0.154±0.008
GNN-SSWL+ [38] Full 0.070 ± 0.005
Subgraphormer [3] Full 0.067 ± 0.007
Subgraphormer+PE [3] Full 0.063 ± 0.001
Ours Full 0.062 ± 0.0007

Table 10: Run time comparison over the ZINC-12K dataset. Time taken at train for one epoch and at
inference on the test set. All values are in milliseconds.

Method Train time (for a single epoch; ms) Test time (ms) MAE ↓

GIN [35] 1370.10 ± 10.97 84.81 ± 0.26 0.163 ± 0.004

OSAN [29] (T = 2) 2964.46 ± 30.36 227.93 ± 0.21 0.177 ± 0.016
PL [5] (T = 2) 2489.25 ± 9.42 150.38 ± 0.33 0.120 ± 0.003
Ours (T = 2) 2764.60 ± 234 383.14 ± 15.74 0.109 ± 0.005
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Figure 5: T = 2.
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Figure 6: T = 3.
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Figure 7: T = 4.
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Figure 8: T = 5.
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Figure 9: T = 8.
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Figure 10: T = 12.
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G Proofs

G.1 Proofs of Appendix B

We first state the memorization theorem, proven in [36] , which will be heavily used in a lot of the
proofs in this section.
Theorem G.1 (Memorization Theorem). Consider a dataset {xj , yj}Nj=1 ∈ Rd×Rdy , with each xj

being distinct and every yj ∈ {0, 1}dy . There exists a 4-layer fully connected ReLU neural network
fθ : Rd → Rdy that perfectly maps each xj to its corresponding yj , i.e., fθ(xj) = yj for all j.

We now restate and prove the propositions and lemmas of Appendix B.
Lemma B.1 (Parameter Sharing as MPNN). Let B1, . . . Bk : Rn×n be orthogonal matrices with
entries restricted to 0 or 1, and let W1, . . .Wk ∈ Rd×d′

denote a sequence of weight matrices. Define
B+ =

∑k
i=1 Bi and choose z1, . . . zk ∈ Rd∗

to be a set of unique vectors representing an encoding
of the index set. The function that represents an update via parameter sharing:

f(X) =

k∑
i=1

BiXWi, (18)

can be implemented on any finite family of graphs G, by a stack of MPNN layers of the following
form [13],

ml
v =

∑
u∈NB+

(v)

M l(X l
u, eu,v), (19)

X l+1
v = U l(X l

v,m
l
v), (20)

where U l,M l are multilayer perceptrons (MLPs). The inputs to this MPNN are the adjacency matrix
B+, node feature vector X , and edge features – the feature of edge (u, v) is given by:

eu,v =

k∑
i=1

zi ·Bi(u, v). (21)

Here, Bi(u, v) denotes the (u, v) entry to matrix Bi.

Proof. Since we are concerned only with input graphs G from a finite family of graphs (where "finite"
means that the maximal graph size is bounded and all possible node and edge feature values come
from a finite set), we assume that for any v ∈ [n], i ∈ [k], both the input feature vectors Xv ∈ Rd and
the encoding vectors zi ∈ Rd∗

are one-hot encoded. We aim to show that under these assumptions,
any function f(·) of the form 95 can be realized through a single-layer update detailed in Equations
97 , 96, where M is a 4 layer MLP , and U is a single linear layer. The proof involves the following
steps:

1. Compute [B1X, . . . , BkX] using the message function M .

2. Compute f(X) using the update function U .

Step 1: We notice that for every i ∈ [k], v ∈ [n] we have:

(BiX)v =
∑

Bi(v,u)=1

Xu =
∑

u∈NB+
(v)

Xu · 1zi(eu,v). (100)

Here 1zi is the indicator function of the set {zi}. We notice that since Xu and zi are one-hot encoded,
there is a finite set of possible values for the pair (Xu, eu,v). In addition, the function:

enc(Xu, eu,v) = [Xu · 1z1(eu,v), . . . , Xu · 1zk(eu,v)] (101)

outputs vectors in the set {0, 1}d×k. Thus, employing the memorization theorem G.1, we define
a dataset {xj , yj}Nj=1 by taking the xjs to be all possible (distinct) values of (Xu, eu,v) with each

33



corresponding yi being the output enc(xi). We note that there are finitely many such values as
both Xu and eu,v are one-hot encoded. The theorem now tells us that there exists a a 4-layer fully
connected ReLU neural network M such that:

M(Xu, eu,v) = enc(Xu, eu,v). (102)

and so, equation 100 implies:

mv =
∑

u∈NB+
(v)

M(Xu, eu,v) = [(B1X)v, . . . , (BkX)v]. (103)

Step 2: Define Pi : Rk×d → Rd as the projection operator, extracting coordinates d · i+ 1 through
d · (i+ 1) from its input vector:

Pi(V ) = V |d·i+1:d·(i+1). (104)
We define the update function to be the following linear map:

U(Xv,mv) =

k∑
i=1

Pi(mv)Wi. (105)

Combining equations 103 and 105 we get:

X̃v = U(Xv,mv) =

k∑
i=1

(BiX)v ·Wi = f(X)v. (106)

Proposition B.1 (Equivalence of General Layer and Implemented Layer). Let T (·) be a coarsening
function, π be a generalized node marking policy, and G be a finite family of graphs. Applying a stack
of t general layer updates as defined in Equation 15 to the node feature map X (S, v) induced by
π(G, T ), can be effectively implemented by applying a stack of t layer updates specified in Equations
29 and 30 to X (S, v). Additionally, the depths of all MLPs that appear in 29 and 30 can be bounded
by 4.

Proof. For convenience, let us first restate the general layer update:

X t+1(S, v) = f t

(
X t(S, v),

aggt
1{{(X t(S, v′), ev,v′) | v′ ∼G v}},

aggt
2{{(X t(S′, v), ẽS,S′) | S′ ∼GT S}},

aggt
3{{(X t(S′, v), z(S, v, S′, v)) | S′ ∈ V T s.t. v ∈ S′}},

aggt
4{{(X t(S, v′), z(S, v, S, v′)) | v′ ∈ V s.t. v′ ∈ S}}

)
,

(15)

as well as the two step implemented layer update:

X t
i (S, v) = U t

i

(1 + ϵti) · X t(S, v) +
∑

(S′,v′)∼Ai
(S,v)

M t(X t(S′, v′) + ei(S, v, S
′, v′))

 . (29)

X t+1(S, v) = Ut
fin

(
4∑

i=1

X t
i (S, v)

)
. (30)

We aim to demonstrate that any general layer, which updates the node feature map X t(S, v) at layer
t to node feature map X t+1(S, v) at layer t + 1 as described in equation 15, can be effectively
implemented using the layer update processes outlined in equations 29 and 30.
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As we are concerned only with input graphs belonging to the finite graph family G (where "finite"
indicates that the maximal graph size is bounded and all node and edge features have a finite set
of possible values), we assume that the values of the node feature map X t(S, v) and the edge
feature vectors ei(S, v, S

′, v′) are represented as one-hot vectors in Rk. We also assume that the
parameterized functions f t and aggt

1, . . . aggt
4, which are applied in Equation 15 outputs one-hot

vectors. Finally, we assume that there exists integers d, d∗, such that the node feature map values are
supported on coordinates 1, . . . d, the edge feature vectors are supported on coordinates d+ 1, . . . d+
d∗, and coordinates d+ d∗ + 1, . . . k are used as extra memory space, with:

k > d× d∗ + d+ d∗. (107)

We note that the last assumption can be easily achieved using padding. The proof involves the
following steps:

1. For i = 1, . . . , 4, Use the term:

mt
i =

∑
(S′,v′)∼Ai

(S,v)

M t(X t(S′, v′) + ei(S, v, S
′, v′)) (108)

to uniquely encode:

{{(X t(S′, v′), ei(S, v, S
′, v′)) | (S′, v′) ∼Ai (S, v)}}. (109)

2. Use the term:

X t
∗ =

4∑
i=1

X t
i (S, v) (110)

to uniquely encode the input of f t as a whole.

3. Implement the parameterized function f t.

Step 1: Since we assume that node feature map values and edge feature vectors are supported on
orthogonal sub-spaces of Rk, the term:

X t(S, v) + ei(S, v, S
′, v′) (111)

uniquely encodes the value of the tuple:

(X t(S, v), ei(S, v, S
′, v′)). (112)

Since X t(S, v) is a one-hot encoded vector with d possible values, while ei(S, v, S
′, v′) is a one-hot

encoded vector with d∗ possible values, their sum has d · d∗ possible values. Thus there exists a
function:

enc : Rk → Rk

which encodes each such possible value as a one-hot vector in Rk supported on the last k − d− d∗

coordinates (this is possible because of equation 107). Now, employing theorem G.1, we define the
xjs as all possible (distinct) values of 111, with each corresponding yj being the output enc(xj).
The theorem now tells us that there exists a 4-layer fully connected ReLU neural network capable
of implementing the function enc(·). We choose M t to be this network. Now since mt

i, defined in
equation 108 is a sum of one-hot encoded vectors, it effectively counts the number of each possible
value in the set 109. This proves step 1.

Step 2: First, we note that:

{{(X t(S, v′), ev,v′) | v′ ∼G v}}
= {{(X t(S′, v′), eG(S, v, S

′, v′)) | (S, v) ∼AG
(S′, v′)}}

(113)

{{(X t(S′, v), es′,s) | S′ ∼T (G) S}}
= {{(X t(S′, v′), eT (G)(S, v, S

′, v′)) | (S, v) ∼AT (G)
(S′, v′)}}

(114)

{{(X t(S′, v), z(S, v, S′, v′)) | v ∈ S′}}
= {{(X t(S′, v′), eP1(S, v, S

′, v′)) | (S, v) ∼AP1
(S′, v′)}}

(115)
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{{(X t(S, v′), z(S, v, S′, v′)) | v′ ∈ S}}
= {{(X t(S′, v′), eP2

(S, v, S′, v′)) | (S, v) ∼AP2
(S′, v′)}}

(116)

Now, since mt
i and X t(S, v) are supported on orthogonal sub-spaces of Rk, the sum X t(S, v) +mt

i
uniquely encodes the value of:(

X t(S, v), {{(X t(s, v), ei(S, v, S
′, v′)) | (S, v) ∼Ai

(S,′ v′)}}
)
. (117)

Thus, we choose ϵt1, . . . , epsilon
t
4 to be all zeroes. To compute the aggregation functions

aggt
1, . . . , aggt

4 using these unique encodings, and to avoid repetition of the value X t(S, v), we
define auxiliary functions ˜aggt

i : Rk → Rki for i = 1, . . . , 4 as follows:

˜aggt
1(X t(S, v) +mt

1) =
(
X t(S, v), aggt

1{{(X t(S, v′), e1(S, v, S
′, v′)) | (S, v) ∼A1 (S,′ v′)}}

)
(118)

and for i > 1:

˜aggt
i(X t(S, v) +mt

i) = aggl
i{{(X t(s, v), ei(S, v, S

′, v′)) | (S, v) ∼Ai (S,
′ v′)}}. (119)

Here, since we avoided repeating the value of X t(S, v) by only adding it to the output of ˜aggt
1(·), the

expression: (
˜aggt

1(X t(S, v) +mt
1), . . . , ˜aggt

4(X t(S, v) +mt
4)
)

(120)

is exactly equal to the input of f t. In addition, since the function aggt
i outputs one-hot encoded

vectors, and the vector X t(S, v) is one-hot encoded, the output of ˜aggt
i is always within the set

{0, 1}ki . Now for any input vector X ∈ Rk define:

V t
1 (X) = ( ˜aggt

1(X), 0k2
, 0k3

, 0k4
). (121)

V t
2 (X) = (0k1

, ˜aggt
2(X), 0k3

, 0k4
). (122)

V t
3 (X) = (0k1

, 0k2
, ˜aggt

3(X), 0k4
). (123)

V t
4 (X) = (0k1

, 0k2
, 0k3

, ˜aggt
4(X)). (124)

We note that since the output of aggt
i is always within the set {0, 1}ki , the outputs of V t

i is always
within {0, 1}k1+···+k4 . Now for i = 1, . . . 4, employing theorem G.1 we define a dataset {xj , yj}Nj=1

by taking the xjs as all possible (distinct) values of X t(S, v) + mt
i, with each corresponding yj

being the output V t
i (xj). We note that there are finitely many such values as both X t(S, v) and mt

i
are one-hot encoded vectors. The theorem now tells us that there exists a a 4-layer fully connected
ReLU neural network capable of implementing the function V t

i (·). We choose U t
i to be this network.

Equations 121 - 124 now give us:

4∑
i=1

X t
i (S, v) =

(
˜aggt

1(X t(S, v) +mt
1), . . . , ˜aggt

4(X t(S, v) +mt
4)
)
. (125)

which as stated before, is exactly the input to f t. This proves step 2.

Step 3: We employ theorem G.1 for one final time, defining a dataset {xj , yj}Nj=1 by taking the xjs
as all possible(distinct) values of:

4∑
i=1

X t
i (S, v)

(which we showed is a unique encoding to the input of f t(·)), with each corresponding yj being the
output f t(xj). We note that Given the finite nature of our graph set, there are finitely many such
values. Recalling that f t(·) outputs one-hot encoded vectors, The theorem now tells us that there
exists a a 4-layer fully connected ReLU neural network capable of implementing the function f t(·).
We choose U t

fin to be this network. This completes the proof.
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G.2 Proofs of Appendix C

Proposition C.1 (Equal Expressivity of Node Marking Policies). For any coarsening function T (·)
the following holds:

CS-GNN(T , πS) = CS-GNN(T , πSS) = CS-GNN(T , πMD). (36)

Proof. Let Π = {πS, πSS, πMD} be the set of all relevant node initialization policies, and assume for
simplicity that our input graphs have no node features (the proof can be easily adjusted to account
for the general case). For each π ∈ Π, let X π(S, v) denote the node feature map induced by general
node marking policy π, as per Definition C.1. We notice it is enough to prove for each π1, π2 ∈ Π
that X π1(S, v) can be implemented by updating X π2(S, v) using a stack of T layers of type 54. Thus,
we prove the following four cases:

• Node + Size Marking⇒ Simple Node Marking.

• Minimum Distance⇒ Simple Node Marking.

• Simple Node Marking⇒ Node + Size Marking.

• Simple Node Marking⇒Minimum Distance.

Node + Size Marking⇒ Simple Node Marking:

In this case, we aim to update the node feature map:

X 0(S, v) = X πSS (S, v) =

{
(1, |S|) v ∈ S

(0, |S|) v /∈ S.
(126)

We notice that:
X 0(S, v) = ⟨(1, 0), X πS(S, v)⟩, (127)

where ⟨·, ·⟩ denotes the standard inner product in R2. Using a CS-GNN update as per equation 15,
with the update function:

f1(X 0(S, v), ·, ·, ·, ·) = ⟨(1, 0),X 0(S, v)⟩, (128)

where f(a, ·, ·, ·, ·) indicates that the function f depends solely on the parameter a, we obtain:

X 1(S, v) = f1(X 0(S, v), ·, ·, ·, ·) = X πS (S, v). (129)

This implies that for any coarsening function T (·), the following holds:

CS-GNN(T , πS) ⊆ CS-GNN(T , πSS). (130)

Minimum Distance⇒ Simple Node Marking:

In this case, we aim to update the node feature map:

X 0(S, v) = X πMD(S, v) = min
v∈s

dG(u, v) (131)

We notice that:
X S(S, v) = g(X 0(S, v)) (132)

where g : R→ R is any continuous function such that:

1. g(x) = 1 ∀x > 1
2 ,

2. g(x) = 0 ∀x < 1
4 .

Using a CS-GNN update as per equation 15, with the update function:

f1(X 0(S, v), ·, ·, ·, ·) = g(X 0(S, v)), (133)

we obtain:
X 1(S, v) = f1(X 0(S, v), ·, ·, ·, ·) = X πS (S, v). (134)
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This implies that for any coarsening function T (·) the following holds:

CS-GNN(T , πS) ⊆ CS-GNN(T , πMD). (135)

Simple Node Marking⇒ Node + Size Marking: In this case, we aim to update the node feature
map:

X 0(S, v) = X πS (S, v) =

{
1 v ∈ S

0 v /∈ S.
(136)

We notice that: ∑
v′∈S

X 0(S, v′) = |S|. (137)

Using a CS-GNN update as per Equation (15), with aggregation function:

aggl
4{{(X 0(S, v′), z(S, v, S, v′)) | v′ ∈ S}} =

∑
v′∈S

X 0(S, v′), (138)

and update function:

f1

(
X 0(S, v), ·, ·, ·,

∑
v′∈S

X 0(S, v′)

)
=

(
X 0(S, v),

∑
v′∈S

X 0(S, v′)

)
, (139)

we obtain:

X 1(S, v) = f1

(
X 0(S, v), ·, ·, ·,

∑
v′∈S

X 0(S, v′)

)
= X πSS (S, v). (140)

This implies that for any coarsening function T (·) the following holds:

CS-GNN(T , πSS) ⊆ CS-GNN(T , πS). (141)

Simple Node Marking⇒Minimum Distance:

In this case, we aim to update the node feature map:

X 0(S, v) = X πS (S, v) =

{
1 v ∈ S

0 v /∈ S.
(142)

We shall prove that X πMD can be expressed by updating X 0(S, v) with a stack of CS-GNN layers. We
do this by inductively showing that this procedure can express the following auxiliary node feature
maps:

X t
∗(S, v) =

{
minv′∈S dG(v, v

′) + 1 minv′∈S dG(v, v
′) ≤ t

0 otherwise.
(143)

We notice first that:
X 0(S, v) = X 0

∗ (S, v). (144)
Now for the induction step, assume that there exists a stack of t CS-GNN layers such that:

X t(S, v) = X t
∗(S, v). (145)

We observe that equation:
min
v′∈S

dG(v, v
′) = t+ 1 (146)

holds if and only if the following two conditions are met:

min
v′∈S

dG(v, v
′) > t (147)

∃u ∈ NG(v) s.t. min
u′∈S

dG(u, u
′) = t. (148)

Equations 143 imply:
min
v′∈S

dG(v, v
′) > t⇔ X t(S, v) = 0. (149)
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In addition, since the node feature map X t = X t
∗ is bounded by t+ 1, Equation (143) implies:

∃u ∈ NG(v) s.t. min
u′∈S

dG(u, u
′) = t⇔ max{X t(s, u) | v ∼G u} = t+ 1. (150)

Now, let gt : R2 → R be any continuous function such that for every pair of natural numbers
a, b ∈ N:

1. gt(a, b) = t+ 2 if a = 0, b = t+ 1,

2. gt(a, b) = a otherwise.

Equations 146 - 150 imply:

X t+1
∗ (S, v) = gt(X t(S, v),max{X t(s, u) | v ∼G u}). (151)

Using a CS-GNN update as per Equation (15), with aggregation function:

aggt
1{{(X t(S, v′), ev,v′) | v′ ∼G v}} = max

v′∼Gv
X t(S, v′). (152)

and update function:

f t(X t(S, v), max
v′∼Gv

X t(S, v′), ·, ·, ·) = gt(X t(S, v), max
v′∼Gv

X t(S, v′)) (153)

we obtain:
X t+1(S, v) = f t(X t(S, v), max

v′∼Gv
X t(S, v′), ·, ·, ·) = X t+1

∗ (S, v). (154)

This completes the induction step. Now, let G be a finite family of graphs, whose maximal vertex size
is n. We notice that:

X πMD(S, v) = Xn
∗ (S, v)− 1, (155)

Which implies that there exists a stack of n CS-GNN layers such that:

X 0(S, v) = X πS(S, v) and Xn(S, v) = X πMD(S, v). (156)

This implies:
CS-GNN(T , πMD) ⊆ CS-GNN(T , πS). (157)

This concludes the proof.

Figure 11: Graphs G and H defined in the proof of Proposition C.2. In each graph, the circle marks
the single super-node induced by T , while the number next to each node u is the maximal SPD
between u and the nodes that compose the super-node.
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Proposition C.2 (Expressivity of Learned Distance Policy). For any coarsening function T (·) the
following holds:

CS-GNN(T , πS) ⊆ CS-GNN(T , πLD). (37)

In addition, for some choices of T (·) the containment is strict.

Proof. First, since we are concerned with input graphs belonging to a finite graph family G, the
learned function ϕ(·) implemented by an MLP can express any continuous function on G. This
follows from Theorem G.1 (see the proof of Proposition B.1 for details). By choosing ϕ = min(·) in
equation 35, it is clear that for any coarsening function T (·) we have:

CS-GNN(T , πS) = CS-GNN(T , πMD) ⊆ CS-GNN(T , πLD). (158)

We now construct a coarsening function T (·) along with two graphs, G and H , and demonstrate that
there exists a function in CS-GNN(T , πLD) that can separate G and H . However, every function in
CS-GNN(T , πS) cannot separate the two.

For an input graph G = (V,E) define:

T (G) = {{u ∈ V | degG(u) = 3}}. (159)

i.e., T (·) returns a single super-node composed of all nodes with degree 3. Now, define G = (VG, EG)
as the graph obtained by connecting two cycles of size four by adding an edge between a single node
from each cycle. Additionally, define H = (VH , EH) as the graph formed by joining two cycles of
size five along one of their edges. See Figure 11 for an illustration of the two graphs. By choosing
ϕ = max(·) in equation 35 a quick calculation shows that:∑

S∈VT (G)

∑
v∈VG

X πLD(S, v) = 16, (160)

while: ∑
S∈VT (H)

∑
v∈VH

X πLD(S, v) = 14. (161)

Refer to Figure 11 for more details. Observe that:

f(G) =
∑

s∈VT (H)

∑
u∈VH

X πLD(S, v) ∈ CS-GNN(T , πLD) (162)

Thus it is enough to show that:

f(G) = f(H), ∀f ∈ CS-GNN(T , πS). (163)

To achieve this, we use the layer update as per Definition B.2, which was demonstrated in Proposi-
tion B.1 to be equivalent to the general equivariant message passing update in Definition A.5. First,
we observe that the graphs G and H are WL-indistinguishable. We then observe that since |V T | = 1,
the graphs induced by the adjacency matrices AG and AH in Definition B.1 are isomorphic to the
original graphs G and H , respectively, and therefore they are also WL-indistinguishable. Additionally,
we notice that the graphs induced by the adjacency matrices AT (G) and AT (H) in Definition B.1 are
both isomorphic to the fully disconnected graph with 8 nodes, making them WL-indistinguishable as
well. We also observe that there exists a bijection σ : VG → VH that maps all nodes of degree 3 in G
to all nodes of degree 3 in H . The definition of T (·) implies that σ is an isomorphism between the
adjacency matrices APi corresponding to G and H , where i = 1, 2. Finally, we notice that for both
G, and H , the node feature map induced by πS satisfies:

X πS(S, v) = deg(v)− 2. (164)

This node feature map can be easily implemented by the layer update in definition B.2 and so
it can be ignored. Since all four graphs corresponding to G that are induced by the adjacency
matrices in Definition B.1, are WL-indistinguishable from their counterpart corresponding to H , and
equation 29 in definition B.2 is an MPNN update, which is incapable of distinguishing graphs that
are WL-indistinguishable, we see that equation 163 holds, concluding the proof.
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Proposition C.3 (Node + Size Marking as Invariant Marking). Given a graph G = (V,E) with node
feature vector X ∈ Rn×d, and a coarsening function T (·), let X πSS ,X πinv be the node feature maps
induced by πSS and πinv respectively. Recall that:

X πSS(S, v) = [Xv, bπSS(S, v)], (43)
X πinv(S, v) = [Xv, bπinv(S, v)]. (44)

The following now holds:

bπinv(S, v) = OHE(bπSS(S, v)) ∀S ∈ V T , ∀v ∈ V. (45)

Here, OHE denotes a one-hot encoder, independent of the choice of both G and T .

Proof. Let G = (V,E) be a graph with V = [n], and let T (·) be a coarsening function. Recall that
the maps bπSS(·, ·) and bπinv(·, ·) are both independent of the connectivity of G and are defined as
follows:

bπSS(S, v) =

{
(1, |S|) v ∈ S,

(0, |S|) v /∈ S.
(165)

bπinv(S, v) = [1γ1
(S, v), . . . ,1γk

(S, v)]. (166)
Here, v ∈ [n], S ∈ T ([n]) ⊆ P([n]), γ1, . . . , γk is any enumeration of the set of all orbits
(P([n]) × [n])/Sn, and 1γi

denotes the indicator function of orbit γi. Since any tuple (S, v) ∈
P([n])× [n] belongs to exactly one orbit γi, we note that the right hand side of Equation (166) is a
one-hot encoded vector. Thus, it suffices to show that for every v, v′ ∈ [n] and S, S′ ∈ P([n]), we
have:

bπSS(S, v) = bπSS(S,
′ v′)⇔ bπinv(S, v) = bπinv(S,

′ v′). (167)
This is equivalent to:

(P([n])× [n])/Sn = {{(S, v) | |S| = i,1S(v) = j} | i ∈ [n], j ∈ {0, 1}} . (168)

Essentially, this means that each orbit corresponds to a choice of the size of s and whether v ∈ S or
not. To conclude the proof, it remains to show that for any two pairs (S, v), (S,′ v′) ∈ P([n])× [n],
there exists a permutation σ ∈ Sn such that:

σ · (S, v) = (S,′ v′) (169)

if and only if
|S| = |S′| and 1S(v) = 1S′(v′). (170)

Assume first that σ · (S, v) = (S′, v′), then σ−1(S) = S′ and since σ is a bijection, |S| = |S′|. In
addition σ−1(v) = v′ thus:

v ∈ S ⇔ v′ = σ−1(v) ∈ σ−1(S) = S′. (171)

Assume now that:

|S| = |S′| (172)

1S(v) = 1S′(v′) (173)

It follows that for some r,m ∈ [n]:

|S \ {v}| = |S′ \ {v′}| = r and |[n] \ (S ∪ {v})| = |[n] \ (S′ ∪ {v′})| = m (174)

Write:

S \ {v} = {i1, . . . , ir}, S′ \ {v′} = {i′1, . . . , i′r},
[n] \ (S ∪ {v}) = {j1, . . . jm}, [n] \ (S′ ∪ {v′}) = {j′1, . . . j′m}

and define:

σ(x) =


v′ x = v

i′l x = il, l ∈ [r]

j′l x = jl, l ∈ [m]

(175)

We now have:
σ · (S, v) = (S′, v′). (176)

This concludes the proof.
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G.3 Proofs of Appendix D.1

Proposition D.1 (CS-GNN Can Implement MSGNN). Let T (·) be the identity coarsening function
defined by:

T (G) = {{v} | v ∈ V } ∀G = (V,E). (49)

The following holds:
CS-GNN(T , πS) = MSGNN(πNM). (50)

Proof. Abusing notation, for a given graph G = (V,E) we write T (G) = G, V T = V . First, we
observe that:

v ∈ {u} ⇔ u = v, (177)

This implies that the initial node feature map X 0(u, v) induced by πS is equivalent to the standard
node marking described in equation 46. Additionally, we note that the pooling procedures for both
models, as described in equations 16 and 55, are identical. Therefore, it is sufficient to show that the
CS-GNN and MSGNN layer updates described in equations 15 and 47 respectively are also identical.
For this purpose, let X t(v, u) be a node feature map supported on the set V × V . The inputs to the
MSGNN layer are the following:

1. X t(u, v).

2. X t(u, u).

3. X t(v, v).

4. aggt1{{(X t(u, v′), ev,v′) | v′ ∼ v}}.

5. aggt2{{(X t(u′, v), eu,u′) | u′ ∼ u}}.

The inputs to the CS-GNN layer are the following:

1. X t(S, v)⇒ X t(u, v).

2. aggt1{{(X t(S, v′), ev,v′) | v′ ∼G v}} ⇒ aggt
1{{(X t(u, v′), ev,v′) | v′ ∼ v}}.

3. aggt2{{(X t(S′, v), ẽS,S′) | S′ ∼GT S}} ⇒ aggt
2{{(X t(u, u′), eu,v′) | v′ ∼ v}}.

4. aggt3{{(X t(S′, v), z(S, v, S′, v)) | ∀s′ ∈ V T s.t. v ∈ S′}} ⇒ {{(Xt(v, v), z(u, v, v, v))}}.

5. aggt4{{(X t(S, v′), z(S, v, S, v′)) | ∀u′ ∈ V s.t. v′ ∈ S}} ⇒ {{(Xt(u, u), z(u, v, u, u))}}.

The terms z(u, v, v, v) and z(u, v, u, u) appearing in the last two input terms of the CS-GNN layer
uniquely encode the orbit tuples (u, v, v, v) and (u, v, u, u) belong to respectively. Since these orbits
depend solely on whether u = v, these values are equivalent to the node marking feature map
X 0(u, v). Therefore, these terms can be ignored. Observing the two lists above, we see that the
inputs to both update layers are identical (ignoring the z(·) terms), Thus, as both updates act on these
inputs in the same way, the updates themselves are identical. and so

MSGNN(πNM) = CS-GNN(T , πS). (178)

G.4 Proofs of Appendix D.2

Proposition D.2 (CS-GNN Is at Least as Expressive as Coarse MPNN ). For any coarsening function
T (·) the following holds:

MPNN ⊆ MPNN+(T ) ⊆ CS-GNN(T , πS) (58)
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Proof. For convenience, let us first restate the CS-GNN layer update:

X t+1(S, v) = f t

(
X t(S, v),

aggt
1{{(X t(S, v′), ev,v′) | v′ ∼G v}},

aggt
2{{(X t(S′, v), ẽS,S′) | S′ ∼GT S}},

aggt
3{{(X t(S′, v), z(S, v, S′, v)) | s′ ∈ V T s.t. v ∈ S′}},

aggt
4{{(X t(S, v′), z(S, v, S, v′)) | u′ ∈ V s.t. v′ ∈ S}}

)
,

(15)

as well as the MPNN+ layer update:

For v ∈ V : X t+1(v) = f t
V

(
X t(v), aggt

1{{(X t(v′), ev,v′) | v ∼G v′}},
aggt

2{{X t(S) | S ∈ V T , v ∈ S}}
)
,

For S ∈ V T : X t+1(S) = f t
V T

(
X t(S), aggt

1{{(X t(S′), eS,S′) | S ∼GT S′}},
aggt

2{{X t(v) | v ∈ V, v ∈ S
}
}}).

(54)

We note that by setting f t
V T to be a constant zero and choosing f t

V to be any continuous function that
depends only on its first two arguments, the update in equation 54 becomes a standard MPNN layer.
This proves:

MPNN ⊆ MPNN+(T ). (179)
Next, we prove the following 2 Lemmas:

Lemma G.1. Given a graph G = (V,E) such that V = [n] with node feature vector X ∈ Rn×d,
and a coarsening function T (·), there exists a CS-GNN(T , πS) layer such that:

X 1(S, v) = [0d+1, Xv, 1] = [X̃ 0(S), X̃ 0(v)]. (180)

Here [·, ·] denotes concatenation and X̃ 0(·) denotes the initial node feature map of the coarsened
sum graph GT

+.

Lemma G.2. Let X̃ t(·) denote the node feature maps of GT
+ at layers t of a stack of MPNN+(T )

layers. There exists a stack of t+ 1 CS-GNN(T , πS) layers such that:

X t+1(S, v) = [X̃ t(S), X̃ t(v)]. (181)

proof of Lemma G.1. Recall that the initial node feature map of CS-GNN(T , πS) is given by:

X 0(S, v) =

{
[Xv, 1] v ∈ S

[Xv, 0] v /∈ S.
(182)

In addition, the initial node feature map of MPNN+(T ) is given by:

X̃0(v) =

{
[Xv, 1] v ∈ V

0d+1 v ∈ V T .
(183)

Thus, we choose a layer update as described in equation 15 with:

X 1(S, v) = f0(X 0(S, v), ·, ·, ·, ·) = [0d+1,X 0(S, v)1:d, 1] (184)

Here, f(a, ·, ·, ·) denotes that the function depends only on the parameter a, and Xa:b indicates that
only the coordinates a through b of the vector X are taken. This gives us:

X 1(S, v) = [X̃ 0(S), X̃ 0(v)]. (185)
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proof of Lemma G.2. We prove this Lemma by induction on t. We note that Lemma G.1 provides
the base case t = 0. Assume now that for a given stack of t + 1 MPNN+(T ) layer updates, with
corresponding node feature maps:

X̃ i : V T
+ → Rdi i = 1 . . . , t+ 1, (186)

there exists a stack of t+ 1 CS-GNN(T , πS) layers with node feature maps:

X i : V T × V → R2di i = 1, . . . , t+ 1, (187)

such that:
X t+1(S, v) = [X̃ t(S), X̃ t(v)]. (188)

We shall show that there exists a single additional CS-GNN(T , πS) layer update such that:

X t+2(S, v) = [X̃ t+1(S), X̃t+1(v)]. (189)

For that purpose we define the following CS-GNN(T , πS) update (abusing notation, the left hand
side refers to components of the CS-GNN(T , πS) update at layer t + 1, while the right hand side
refers to components of the MPNN+(T ) update at layer t):

aggt+1
1 = aggt

11:dt
,

aggt+1
2 = aggt

1dt+1:2dt ,

aggt+1
3 = aggt

21:dt ,

aggt+1
4 = aggt

2dt+1:2dt
,

(190)

f t+1(a, b, c, d, e) = [f t
V (a1:dt

, b, d), f t
V T (adt+1:2dt

, c, e)]. (191)

Here the operation agga:b initially projects all vectors in the input multi-set onto coordinates a through
b, and subsequently passes them to the function agg. equations 190 , 191 guarantee that:

X t+2(S, v)1:dt+1 = f t
V

(
X t(S, v)1:dt ,

aggt
1{{(S, v′)1:dt | v ∼G v′}},

aggt
2{{(S′, v)1:dt

| v ∈ S′}}
)

= X̃t+1(v),

X t+2(S, v)dt+1+1:2dt+1
= f t

V T

(
X t(S, v)dt+1:2dt

,

aggt
1{{(S′, v)dt+1:2dt

| S′ ∼T (G) S}},
aggt

2{{(S, v′)dt+1:2dt
| v′ ∈ S}}

)
= X̃t+1(S).

(192)

This proves the Lemma.

Now, for a given finite family of graphs G and a function f ∈ MPNN+(T ), there exists a stack of T
MPNN+(T ) layers such that:

f(G) = U

 ∑
v∈V T

+

X̃ T (v)

 ∀G ∈ G. (193)

Here, X̃ T : V T
+ → RdT denotes the final node feature map, and U is an MLP. Lemma G.2 now tells

us that there exists a stack of T + 1 CS-GNN(T , πS) layers such that:

X T+1(S, v) = [X̃ T (S), X̃ T (v)]. (194)

Similarly to Lemma G.1, we use one additional layer to pad X T+1(S, v) as follows:

X T+2(S, v) = [X̃ T (S), X̃ T (v), 1]. (195)
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We notice that: ∑
s∈V T

X T+2(S, v) =

[ ∑
S∈V T

X̃T (S),
∑

S∈V T

X̃T (v),
∑

S∈V T

1

]

=

[ ∑
S∈V T

X̃T (S), |V T | · X̃T (v), |V T |

]
.

(196)

Thus, in order to get rid of the |V T | term, We define:

MLP1(a, b, c) = [a,
1

c
· b, 1], a, b ∈ RdL , c > 0. (197)

We note that since we are restricted to a finite family of input graphs, the use of an MLP in equation
200 can be justified using Theorem G.1 (see the proof of Proposition B.1 for a detailed explanation).

Equations 196 and 200 imply:

MLP1

( ∑
s∈V T

X T+2(S, v)

)
=

[ ∑
S∈V T

X̃T (S), X̃T (v), 1

]
(198)

Thus, similarly to equation 196:∑
v∈V

MLP1

( ∑
S∈V T

X T+2(S, v)

)
=

[
|V | ·

∑
S∈V T

X̃T (S),
∑
v∈V

X̃T (v), |V |

]
(199)

And so, in order to get rid of the |V | term, We define:

MLP2(a, b, c) = U(a · 1
c
+ b, 1), a, b ∈ RdT , c > 0. (200)

Thus for all G ∈ G:

MLP2

(∑
v∈V

MLP1

( ∑
S∈V T

X T+2(S, v)

))

= MLP2

([
|V | ·

∑
S∈V T

X̃T (S),
∑
v∈V

X̃T (v), |V |

])

= U

 ∑
v∈V T

+

X̃T (v)


= f(G).

(201)

and so f ∈ CS-GNN(T , πS). This proves:
MPNN+(T ) ⊆ CS-GNN(T , πS). (202)

Proposition D.3 (CS-GNN Can Be More Expressive Than MPNN+). Let T (·) be the identity
coarsening function defined by:

T (G) = {{v} | v ∈ V } G = (V,E). (59)
The following holds:

MPNN = MPNN+(T ). (60)
Thus:

MPNN+(T ) ⊂ CS-GNN(T , πS), (61)
where this containment is strict.
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Proof. First, using the notation ṽ to mark the single element set {v} ∈ V T , We notice that the
MPNN+(T ) layer update described in equation 54, becomes:

For v ∈ V : X t+1(v) = f t
V

(
X t(v),X t(ṽ), aggt{{(X t(v′), ev,v′) | v′ ∼G v}},

)
,

For ṽ ∈ V T : X t+1(ṽ) = f t
V T

(
X t(ṽ),X t(v), aggt{{(X t(ṽ′), eṽ,ṽ′) | v ∼G v′}}

)
.

(203)

Now, for a given finite family of graphs G and a function f ∈ MPNN+(T ), there exists a stack of T
MPNN+(T ) layers such that:

f(G) = U

 ∑
v∈V T

+

X T (v)

 ∀G ∈ G. (204)

Here, X T : V T
+ → Rd denotes the final node feature map, and U is an MPL. We now prove by

induction on t that there exists a stack of t standard MPNN layers, with corresponding node feature
map Xt : V → R2dt such that :

Xt(v) = [X t(v),X t(ṽ)]. (205)
Here, [·, ·] stands for concatenation. We assume for simplicity that the input graph G does not have
node features, though the proof can be easily adapted for the more general case. We notice that for
the base case t = 0, equation 53 in definition D.2 implies:

X 0(v) =

{
1 v ∈ V,

0 v ∈ V T .
(206)

Thus, we define:
X0(v) = (1, 0). (207)

This satisfies Equation (205), establishing the base case of the induction. Assume now that Equa-
tion (205) holds for some t ∈ [T ]. Let aggt, f t

V , f
t
V T be the components of layer t, as in equation

203. We define:

˜aggt = [aggt|1:dt , aggt|dt+1:2dt ]. (208)
Here the operation agga:b initially projects all vectors in the input multi-set onto coordinates a through
b, and subsequently passes them to the function agg.

Additionally, let d∗ denote the dimension of the output of the function aggt. We define:

f̃ t(a, b) =
[
f t
V (a|1:dt , a|dt+1:2dt , b|1:d∗) , f t

V (a|dt+1:2dt , a|1:dt , b|d∗+1:2d∗)
]
. (209)

Finally, we update our node feature map Xt using a standard MPNN update according to:

Xt+1(v) = f̃ l
(
Xt(v), {{(Xt(v′), ev,v′) | v′ ∼G v}}

)
. (210)

equations 203, 205 and 210 now guarantee that:

Xt+1(v) = [X t(v),X t+1(ṽ)]. (211)

This concludes the inductive proof. We now define:

MLP(x) = U(x|1:dT
) + U(x|dT+1:2dT

). (212)

This gives us:

U

( ∑
v∈V T

+

X T (v)

)
= MLP

(∑
v∈V

XT (v)

)
= f(G). (213)

We have thus proven that f ∈ MPNN and so:

MPNN+(N ) ⊆ MPNN. (214)

Combining this result with Proposition D.2, we obtain:

MPNN = MPNN+(T ). (215)
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Finally, since Proposition D.1 tells us that CS-GNN(T , πS) has the same implementation power as
the maximally expressive node policy subgraph architecture MSGNN, which is proven to be strictly
more expressive than the standard MPNN, we have:

MPNN+(T ) ⊂ CS-GNN(T , πS). (216)

Proposition D.4 (CS-GNN can be strictly more expressive then node-based subgraph GNNs). Let T
be the coarsening function defined by:

T (G) = {{v} | v ∈ V } ∪ E G = (V,E). (63)

The following holds:

1. Let G1, G2 be a pair of graphs such that there exists a node-based subgraph GNN model
M where M(G1) ̸= M(G2). There exists a CS-GNNmodel M ′ which uses T such that
M ′(G1) ̸= M ′(G2).

2. There exists a pair of graphs G1, G2 such that for any subgraph GNN model M it holds
that M(G1) = M(G2), but there exists a CS-GNNmodel M ′ which uses T such that
M ′(G1) ̸= M ′(G2).

Proof. First, notice that the super-nodes produced by T are either of size 1, in which case they
correspond to nodes, or they are of size two, in which case they correspond to edges. Since an
CS-GNNmodel processes feature maps X t(S, v) where in the initial layer the sset size of S is
encoded in X t(S, v), we can easily use the CS-GNNupdate in Definition A.5 to ignore all values of
X t(S, v) were |S| = 2 (This can be done by using f t, aggt

1, . . . aggt
1 in Definition A.5 to zero out

these values at each update). This means CS-GNNusing T is able to simulate an CS-GNNupdate
with the identity coarsening function, which was shown in Proposition D.1 to be as expressive as
GNN-SSWL+ (Definition D.1) which is a maximally expressive node-based subgraph GNN, thus
proving part (1) of the proposition. To prove part (2), notice that using the same reasoning as before,
an CS-GNNmodel using T as a coarsening function cal implement an CS-GNNmodel using the edge
coarsening function:

T ′(G) = E G = (V,E). (217)

An CS-GNNmodel with the identity coarsening function can be interpreted as a GNN-SSWL+ model.
Similarly, an CS-GNNmodel using the edge coarsening function T ′ generalizes the GNN-SSWL+
framework by extending it from node-based subgraph GNNs to edge-based subgraph GNNs. In fact,
the same proof in [38, 12] showing that GNN-SSWL+ is at least as expressive as a DSS subgraph
GNN using the node deletion policy (see [4] for a definition of the DSS subgraph GNN), can be
used to show that CS-GNNusing the edge coarsening function T ′ is at least as expressive as a DSS
subgraph GNN with an edge deletion policy. The latter model was shown in [4] to be able to separate
a pair of 3-WL indistinguishable graphs. In contrast, node-based subgraph GNNs were shown in
[12] to not be able to separate any pair of 3-WL indistinguishable graphs. Thus, there exists a pair of
graphs which CS-GNNusing T can separate while node-based subgraph GNNs cant, proving part (2)
of the proposition.

G.5 Proofs of Appendix E

Lemma E.1 (γ (Γ) are orbits). The sets {γk∗
: k = 1, . . . , n; ∗ ∈ {+,−}} and {Γ↔;k1;k2;k

∩;δsame;δdiff}
are the orbits of Sn on the index space (P([n])× [n]) and (P([n])× [n]×(P([n])× [n]), respectively.

Proof. We will prove this lemma for γ. The proof for Γ follows similar reasoning; we also refer the
reader to [22] for a general proof.

We will prove this lemma through the following three steps.

(1). Given indices (S, i) ∈ P([n])× [n], there exists γ ∈ (P([n])× [n])∼ such that (S, i) ∈ γ.

(2). Given indices (S, i) ∈ γ, for any σ ∈ Sn, it holds that (σ−1(S), σ−1(i)) ∈ γ.
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(3). Given (S, i) ∈ γ and (S′, i′) ∈ γ (the same γ), it holds that there exists a σ ∈ Sn such that
σ · (S, i) = (S′, i′).

We prove in what follows.

(1). Given indices (S, i) ∈ P([n]) × [n], w.l.o.g. we assume that |S| = k, thus if i ∈ S (i /∈ S) it
holds that (S, i) ∈ γk− (

(S, i) ∈ γk+)
, recall Equation (71).

(2). Given indices (S, i) ∈ γ, note that any permutation σ ∈ Sn does not change the cardinality of S
nor the inclusion (or exclusion) of i in S. Recalling Equation (71), we complete this step.

(3). Given that (S, i) ∈ γ and (S′, i′) ∈ γ, and recalling Equation (71), we note that |S| = |S′| and
that either both i ∈ S and i′ ∈ S′, or both i /∈ S and i′ /∈ S′.

(3.1). In (3.1) we focus on the case where i /∈ S and i′ /∈ S′. Let S = {i1, . . . , ik} and S′ =
{i′1, . . . , i′k}. Then, we have ({i1, . . . , ik}, j) and ({i′1, . . . , i′k}, j′). Define σ ∈ Sn such that
σ(il) = i′l for l ∈ [k], and σ(j) = j′. Since ({i1, . . . , ik}, j) consists of k + 1 distinct indices and
({i′1, . . . , i′k}, j′) also consists of k + 1 distinct indices, this is a valid σ ∈ Sn.

(3.2). Here, we focus on the case where i ∈ S and i′ ∈ S′. This proof is similar to (3.1), but without
considering the indices j and j′, as they are included in S and S′, respectively.

Proposition E.1 (Basis of Invariant (Equivariant) Layer). The tensors Bγ (BΓ) in Equation (72)
(Equation (74)) form an orthogonal basis (in the standard inner product) to the solution of Equa-
tion (66) (Equation (67)).

Proof. We prove this proposition for the invariant case. The equivariant case is proved similarly – we
also refer the reader for [22] for a general proof. We will prove this in three steps,

(1). For any γ ∈ (P([n])× [n])∼ it holds that Bγ
S,i solves Equation (66).

(2). Given a solution L to Equation (66), it is a linear combination of the basis elements.

(3). We show that the basis vectors are orthogonal and thus linearly independent.

We prove in what follows.

(1). Given γ ∈ (P([n]) × [n])∼, we need to show that Bγ
S,i = Bγ

σ−1(S),σ−1(i). Since any γ ∈
(P([n])× [n])∼ is an orbit in the index space (recall Lemma E.1), and Bγ

S,i are indicator vectors of
the orbits this always holds.

(2). Given a solution L to Equation (66), it must hold that LS,i = Lσ−1(S),σ−1(i). Since the set
{γk∗

: k = 1, . . . , n; ∗ ∈ {+,−}} corresponds to the orbits in the index space with respect to Sn, L
should have the same values over the index space of these orbits. Let’s define these values as αγ for
each γ ∈ {γk∗

: k = 1, . . . , n; ∗ ∈ {+,−}}. Thus, we obtain that L′ =
∑

γ∈(P([n])×[n])∼
αγ ·Bγ ,

since Bγ are simply indicator vectors of the orbits. This completes this step.

(3). Once again, since the basis elements are indicator vectors of disjoint orbits we obtain their
orthogonality, and thus linearly independent.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract spells out all the main contributions in the present paper, both
theoretical and empirical ones. These are extensively discussed and recapitulated in the
Introduction Section 1 (see paragraphs “Our approach” and “Contributions”). The scope of
the paper is well defined in the first periods of the abstract and comprehensively articulated
in the first two paragraphs of the Introduction Section 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
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Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to paragraph “Limitations” in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Please refer to Appendices B to E and F.4, which include precise and contextu-
alized statements of all theoretical results and derivations, and to Appendix G for proofs
thereof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
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Justification: Please refer to Appendix F.1 for a description of the employed datasets
and splitting procedure, Appendices F.2 and F.3 for a list of experimental details and
hyperparameter settings, and Appendix F.5 for a series of complementary results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code to reproduce our results can be found in the following GitHub
repository: https://github.com/BarSGuy/Efficient-Subgraph-GNNs.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
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comparison, are described in Appendix F.2 (see “Implementation Details”).
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
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