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Abstract
Machine Learning (ML) in low-data settings re-
mains an underappreciated yet crucial problem.
Hence, data augmentation methods to increase
the sample size of datasets needed for ML are
key to unlocking the transformative potential of
ML in data-deprived regions and domains. Un-
fortunately, the limited training set constrains tra-
ditional tabular synthetic data generators in their
ability to generate a large and diverse augmented
dataset needed for ML tasks. To address this
challenge, we introduce CLLM, which leverages
the prior knowledge of Large Language Models
(LLMs) for data augmentation in the low-data
regime. However, not all the data generated by
LLMs will improve downstream utility, as for any
generative model. Consequently, we introduce a
principled curation mechanism, leveraging learn-
ing dynamics, coupled with confidence and un-
certainty metrics, to obtain a high-quality dataset.
Empirically, on multiple real-world datasets, we
demonstrate the superior performance of CLLM in
the low-data regime compared to conventional
generators. Additionally, we provide insights
into the LLM generation and curation mechanism,
shedding light on the features that enable them to
output high-quality augmented datasets.

1. Introduction
No data, No Machine Learning. Machine learning (ML)
has transformed numerous industries, but its wider adop-
tion is hindered by a pervasive roadblock: insufficient data.
Specifically, the use of ML algorithms presumes the avail-
ability and access to large datasets for training, be it labeled
or unlabeled. Unfortunately, real-world domains are often
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data scarce: (i) in healthcare and finance, collecting annota-
tions can be expensive or practically impossible; (ii) in devel-
oping and low-to-middle income countries (LMICs), digital
infrastructure (such as electronic healthcare records (EHRs))
can be limited or nonexistent (Ade-Ibijola & Okonkwo,
2023; Asiedu et al., 2023; Owoyemi et al., 2020; Mollura
et al., 2020; Alami et al., 2020; Ciecierski-Holmes et al.,
2022) and (iii) within large datasets, there can be (ethnic)
minorities that are underrepresented. This lack of data has
serious consequences: to sideline these settings to the pe-
ripheries of ML advancements and prevent the development
of accurate models. How can we build a reliable ML model
in this low-data regime, with so few samples? Solving
this problem is a major opportunity that would unlock the
potential of ML across society, domains, and regions.

Aim. To address this important yet undervalued low-data
problem, we aim to augment the small labeled dataset (n <
100) with synthetic samples. We focus on tabular data, as
defining augmentations is non-trivial and can easily result in
nonsensical or invalid samples. Moreover, tabular domains
like healthcare are often where data scarcity is acute.

Related work. Data augmentation is a widely used and
different approach to address data scarcity in tabular data
contexts. Methods are either based on generative models
(Ghosheh et al., 2023; Biswas et al., 2023; Wang & Pai,
2023; Machado et al., 2022; Tanaka & Aranha, 2019) such
as GANs (Xu et al., 2019), VAEs (Xu et al., 2019), Nor-
malizing Flows (Papamakarios et al., 2021), Score-based
models (Kotelnikov et al., 2022; Kim et al., 2022), or al-
ternatively traditional methods such as SMOTE (Chawla
et al., 2002; Wang & Pai, 2023; Machado et al., 2022). How-
ever, in low-data regimes (n < 100), the training data may
not describe the full data distribution well, despite it being
i.i.d. draws. Consequently, this harms conventional methods
since the augmented data may not be sufficiently diverse and
accurate, restricting the generalizability of predictive models
trained on such data. Recent work has shown the potential
of fine-tuning Large Language Models (LLMs) for tabular
data generation (Borisov et al., 2023). While LLMs offer
some degree of prior knowledge, there are two challenges
in our setting. First, it is computationally expensive to fine-
tune LLMs, while needing specialized hardware —luxuries
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Generate diverse data that follows
[Instruction w/ feature info + formatting guideline]

The dataset consists of [data description]. 
Use your prior knowledge about [data background]

These are representative examples: 
(example 1), (example 2), (example 3) ...
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Figure 1: CLLM uses a small dataset Dtrain and a frozen black-box LLM to generate a larger synthetic set Dsyn. The curator
computes the learning dynamics of samples in Dsyn, assessing samples based on their aleatoric uncertainty and predictive
confidence, then curates Dsyn with the goal that a downstream model trained on the curated Dcurated will have improved
performance.

often not available in LMICs, thereby limiting applicability
in such settings. Second, fine-tuning often assumes a large
number of samples. In our low-data setting, it could lead
to overfitting and low-quality generated samples, and hence
poor downstream models—as we show for (Borisov et al.,
2023) in Sec. 3. Tangential to data augmentation, prior
work has tackled data scarcity in the tabular setting via the
lens of transfer learning or few-short learning, by using a
knowledge graph (Margeloiu et al., 2022; Ruiz et al., 2023)
(which might not be available) or a pretrained model (Levin
et al., 2022; Jin & Ucar, 2023; Hegselmann et al., 2023).
However, unlike data augmentation, these approaches are
not flexible, as they tie the data customer to use a certain
downstream predictor. We provide an extended discussion
on this point in Appendix A.

Curated LLMs. To address the shortcomings of the
aforementioned augmentation approaches, we propose
Curated LLM (CLLM). First, CLLM leverages the in-
context capabilities of LLMs for generation, thereby reduc-
ing the computational burden compared to fine-tuning. We
also posit for the low-data regime; the diverse pretraining
corpus of LLMs carries valuable prior knowledge, which
may offer more diversity in their generation compared to
other conventional tabular generators. Of course, LLMs are
not perfect. Consequently, balancing the utility of LLMs
against the risk of noisy, irrelevant data is important to
ensure reliable downstream performance. Hence, this neces-
sitates systematic assessment of the generated data. In fact,
this issue is vital for any generative model.

This motivates the second key aspect of CLLM, i.e. a post-
generation data curation mechanism. This addresses the
overlooked aspect that not all of the synthetic samples are
useful to downstream model performance, with some sam-
ples even harmful. We anchor our approach with ideas
from learning theory that show the behavior of individual

data samples during training, called learning dynamics, pro-
vides a salient signal about the value of samples to a learner
(Arpit et al., 2017; Arora et al., 2019; Li et al., 2020). To
provide intuition, samples with variable predictions might
be considered ambiguous or other samples might never be
learned correctly and could harm a model. In CLLM, we
study the learning dynamics of the synthetic data samples,
with respect to a model trained on the small real dataset. We
then analyze these dynamics by computing two key metrics:
confidence and aleatoric (data) uncertainty. These metrics
form the basis for curating the synthetic samples. We then
aim to enable a highly performant downstream model when
trained on the curated dataset.

Contributions: CLLM is a novel data augmentation
approach allying the strengths of LLMs with a robust
data curation mechanism to improve data augmenta-
tion in the low-data regime (n < 100), bringing sev-
eral contributions: 1⃝ Improved performance: we
empirically demonstrate on 7 real-world datasets that
CLLM enables superior downstream performance com-
pared to 6 widely used tabular data generative models
and data augmentation techniques. 2⃝ Value of cura-
tion: we show the overlooked aspect of synthetic data
curation improves downstream performance across the
generative models. This highlights the flexibility and
broad utility of our curation mechanism for data aug-
mentation. 3⃝ Insights: we dissect the two aspects
of CLLM (LLM and data curation) along a variety of
dimensions, providing insights and understanding into
why the approach is beneficial. We show the largest
gains are for underrepresented subgroups and in low-
data settings. These contributions, which address the
data logjam, pave the way towards wider usage of ML
across society, domains and regions.
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2. CLLM: Synergy of LLM Generation and
Data Curation

Set-up. Given feature space X , and label space Y =
{1, ..., k}, we assume that we only have a small labeled
dataset Dtrain = {(xi, yi)}ni=1, with xi ∈ X , yi ∈ Y and
n < 100 (low data setting). Assume Dtrain is drawn i.i.d.
from the real distribution pR(X,Y ). We also assume access
to a pretrained LLM to generate samples. We denote the out-
put distribution of the LLM as pΦ(X,Y ), with Φ containing
parameters that we control (e.g., input prompts). Our goal
is to generate a dataset to augment the small Dtrain, and
subsequently use it to train a classifier f : X → Y . Suc-
cessful augmentation will provide a better classifier f , than
if we had trained f on the small Dtrain itself. We measure
downstream performance on a separate held-out dataset of
real data, Dtest.

Our Approach. To address this challenge, we introduce
CLLM, an approach for data augmentation in low-data
regimes. As shown in Figure 1, CLLM leverages LLMs
to generate a synthetic dataset Dsyn using a small dataset
Dtrain (Sec. 2.1). It exploits the LLMs’ prior knowledge
via in-context learning (ICL) and contextual information.
CLLM then curates Dsyn by analyzing the learning dynam-
ics of samples in Dsyn based on predictive confidence and
aleatoric (data) uncertainty. These metrics are obtained by
training a supervised model on Dtrain. We leverage them
to define a curated dataset Dcurated, which is used to train a
downstream classifier (Sec. 2.2).

In each sub-section we describe and motivate the design of
the different aspects of CLLM (LLM and curation mecha-
nism). Furthermore, we provide insights and understanding
into their role in improving data utility, which we later quan-
tify on multiple real-world datasets in Sec. 3.

2.1. Data generation with LLMs based on a small Dtrain

As outlined in Sec. 1, in the low-data regime, conventional
tabular generative models (e.g. CTGAN, TVAE) are con-
strained by the limited Dtrain and may not generate suffi-
ciently diverse and/or accurate synthetic data. To address
this, we propose to leverage LLMs, building on their large-
scale pretraining. We first outline the appealing properties
of LLMs for tabular data generation when we have very few
samples, then describe design choices to exploit these.

• Prior knowledge. LLMs are pretrained with a vast cor-
pus of information (Chowdhery et al., 2022; Singhal et al.,
2023). When prompted to generate samples with limited
real data, LLMs can leverage this encoded prior informa-
tion about similar problems and feature-label relationships
to enhance both accuracy and diversity of generation.

• Contextual understanding. LLMs can process back-

ground and contextual information about the problem via
natural language (Yang et al., 2023). For example, a high-
level description of the task, features and their meanings
can be conveniently described through natural language.
Such information is unavailable to conventional genera-
tors that only utilize numerical examples.

• Few-shot capabilities. LLMs have demonstrated profi-
ciency in generalizing to tasks with just a few examples
(Brown et al., 2020; Wei et al., 2023; Mirchandani et al.,
2023). In the context of generation, we envision the idea
of in-context generation using limited real examples.

To benefit from these capabilities, we craft the LLM prompt
with three different parts (see Fig. 1): (1) Background:
text description of the dataset and task (e.g. predict Covid
mortality). Additionally, we include a description of what
each feature means, explicitly prompting the LLM to use
prior knowledge about these features. (2) Examples: we
serialize the samples in Dtrain as example demonstrations
and provide both the features and the label in text format.
(3) Instructions: To generate a synthetic dataset Dsyn, we
instruct the LLM to leverage the contextual information and
provided examples as an i.i.d. draw from the distribution.
We instruct the LLM to identify structural and feature-label
relationships in the data and generate diverse data following
the structure and format of the provided examples. We
provide more details on the prompts in Appendix B.

Motivation for a frozen LLM. Using a frozen black-box
LLM (e.g. GPT-4 or GPT-3.5) is computationally cheaper
and requires less specialized hardware (i.e. GPUs) com-
pared to fine-tuning. This relates to settings described in
Sec. 1, such as LMICs, where we may not have the com-
putational resources to fine-tune an LLM. Even in settings
where fine-tuning is possible, we show empirically in Sec.
3 that LLM fine-tuning (e.g. GReaT baseline) is subopti-
mal in low-data settings (n < 100) compared to providing
in-context examples coupled with curation.

Dissecting the LLM’s generative features. We
now investigate various dimensions to understand
and illustrate empirically the appealing features of
LLMs as data generators in the low-data regime,
and how our design choices unlock them. We use
the Brazil Covid-19 dataset (Baqui et al., 2020) as a
running example and focus on GPT-4 as the LLM.

▶ Extrapolation to unseen regions of the manifold. We
compare the samples generated by GPT-4 to TVAE, a widely
used tabular data generator. We consider Doracle, a held-
out dataset from the same distribution as Dtrain, such that
|Doracle| ≫ |Dtrain|, thereby providing an approximation
for the true manifold. The t-SNE plots in Fig. 2 shows, when
Dtrain is very small (n = 20 samples), that its samples do
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Figure 2: GPT-4 is able to extrapolate to regions of the ora-
cle (true manifold) even where there is no training data cov-
ering them, as can be seen by the overlap with the turquoise
dots, with the effect more pronounced when Dtrain is small

not cover all regions of Doracle. For example, Dtrain does
not contain samples from specific demographic subgroups
(e.g. people with age 40 or below). As expected, TVAE
only generates samples constrained by the limited Dtrain. In
contrast, GPT-4 is able to extrapolate and generate samples
even in unseen regions of Dtrain, thereby better covering
Doracle. This stems from its contextual understanding of the
features, unlocking the use of its prior knowledge. It leads
to better coverage in the low-data regime, consequently
aiding in superior downstream performance, as shown in
Table 3. As n increases (≥ 100), Dtrain provides better
coverage, which naturally benefits both GPT-4 and TVAE.
Overall, this result shows how prior knowledge encoded in
LLMs addresses shortcomings of conventional generative
approaches (e.g. TVAE) in the low-data regime.

▶ GPT-4 benefits underrepresented groups the most.
Having illustrated the extrapolation capabilities of GPT-
4, we now ask: where does augmentation benefit down-
stream performance the most? We evaluate perfor-
mance gains for different demographic subgroups, such
as age groups and ethnic groups (Amarela, Prada).
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Figure 3: Subgroups with
fewest samples in Dtrain bene-
fit the most from data augmen-
tation, on average.

Fig. 3 shows the perfor-
mance gain obtained by
training a classifier on
data generated by GPT-
4 compared to train-
ing on the small Dtrain.
The greatest gains, on
average, are for sub-
groups for which we
have no data in Dtrain,
yet GPT-4 can extrapo-
late and generate sam-
ples for these subgroups.
This further validates
the rationale of extrap-
olation via prior knowledge as a key source of gain for
GPT-4.

Table 1 shows fine-grained results (across 10 different seeds)
for the 5 subgroups that benefit the most from data augmen-

tation, which are small-sized demographic subgroups. This
finding has real-world implications for equity, showing we
can improve performance for underrepresented subgroups
even when we lack data or collecting data is difficult/costly.

Table 1: Deep dive into the top 5 demographic subgroups
in the Covid dataset with the largest gains, across 10 seeds,
for |Dtrain| = 20. GPT-4 improves performance on the
smallest groups.

Subgroup nsamples in Dtrain Avg. Acc. Gain v. Dtrain

(min - max) GPT-4 TVAE
Age 40 0-6 6.38 +- 2.09 -3.37 +- 2.86
Liver 0-1 3.85 +- 3.37 -13.1 +- 3.38
Renal 0-3 4.52 +- 2.01 -18.0 +- 3.22

Amarela 0-1 8.71 +- 1.40 -2.03 +- 2.88
Parda 3-11 5.07 +- 1.50 -6.57 +- 1.61

▶ Importance of contextual information in the prompt.
A natural question is: how important is the prompt to elicit
the prior knowledge of the LLM? We explore two variants:
(1) Prompt w/ context: provides contextual information
including background about the dataset, feature names and
descriptions (our approach) and (2) Prompt w/ no context:
only provides the numerical in-context examples (ablation).

Figure 4: Contextual information
in the prompt is important for ex-
trapolation.

Fig. 4 qualitatively
shows that not
including contex-
tual knowledge in
the prompt gives
lower coverage of
Doracle with less
extrapolation beyond
Dtrain. We quantify
this in Table 2 using
Precision (Quality)
and Recall (Diver-
sity) metrics (Sajjadi
et al., 2018), as well
as Utility (Down-
stream performance).
GPT-4 with contextual information has superior precision
and recall in the low data setting. Furthermore, we show
that the lack of contextual information in the prompt
significantly harms the precision (quality) of the data
even compared to TVAE. This highlights that LLMs need
guidance, as we are only able to get the extrapolation and
performance benefits by including contextual information,
further motivating our design choices in the prompt. We
conduct the same experiment with the Compas dataset in
Appendix C.3.

2.2. Data curation with learning dynamics

When prompted with Φ (which contains the in-context sam-
ples of Dtrain), the LLM generates samples from a distri-
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Table 2: Including contextual information in the prompt
improves precision (P), recall (R), and utility (U) in low-
sample settings (results shown for the Covid dataset).

nsamples

in
Dtrain

GPT-4
w/ context

GPT-4
no context TVAE

P R U P R U P R U
20 0.41(0.04) 0.87(0.03) 0.74(0.01) 0.13(0.0) 0.82(0.01) 0.66(0.01) 0.33(0.07) 0.50(0.03) 0.59(0.02)
40 0.40(0.01) 0.91(0.01) 0.76(0.0) 0.11(0.0) 0.89(0.0) 0.69(0.0) 0.27(0.01) 0.68(0.01) 0.62(0.03)
100 0.42(0.01) 0.86(0.02) 0.75(0.01) 0.11(0.01) 0.90(0.01) 0.74(0.01) 0.39(0.02) 0.67(0.03) 0.64(0.06)
200 0.44(0.02) 0.85(0.02) 0.75(0.0) 0.08(0.01) 0.90(0.0) 0.60(0.01) 0.47(0.0) 0.73(0.01) 0.65(0.02)

bution pΦ(X,Y ) that approximates pR(X,Y ), implicitly
exploiting its large-scale pretraining and few-shot capabil-
ities. LLMs are of course not perfect and could generate
noisy samples, hence this distribution may be inaccurate 1.
To make this distribution more relevant to the downstream
task, we include a data curation mechanism. Specifically,
we focus on the noisy feature-label relationship pΦ(Y |X),
for which we expect pΦ(Y |X) ̸= pR(Y |X) given the small
size of Dtrain. This motivates us to curate Dsyn and discard
likely mislabeled samples.

We anchor our approach with ideas from learning theory that
show that the behavior of individual samples during model
training (called learning dynamics) contains signal about
the nature of the samples themselves (Arpit et al., 2017;
Arora et al., 2019; Li et al., 2020). Some samples are easily
and confidently predicted over different model checkpoints,
whereas other samples might be challenging (e.g. due to
mislabeling) and hence might be incorrectly predicted for
the given label. Consequently, we operationalize learning
dynamics as the basis of our proposed curation mechanism.
Specifically, we analyze samples in Dsyn by studying their
learning dynamics computed with a classifier trained on
Dtrain. We then categorize and filter samples in Dsyn, and
produce a curated dataset Dcurated ⊂ Dsyn.

Learning dynamics. We now formalize how we compute
learning dynamics for individual samples. Assume that a
classifier f is trained in an iterative scheme (e.g. neural
networks or XGBoost trained over iterations) on Dtrain,
which makes it possible to analyze the learning dynamics
of samples in Dsyn over these iterations. The classifier f
should be at least as flexible as the model that the practi-
tioner intends to use for the downstream task. f is trained
from scratch on Dtrain and goes through e ∈ [E] differ-
ent checkpoints leading to the set F = {f1, f2, . . . , fE},
such that fe is the classifier at the e-th checkpoint. Let
[fe(x)]y denote the predicted probability for class y and
sample x. Our goal is to assess the learning dynamics of
samples in Dsyn over these E training checkpoints, while
we train f on Dtrain. For this, we define H , a random

1We could finetune the model on the scarce Dtrain we have, but
is likely to still lead to overfitting due to the extreme data scarcity
and LLM parameter size.

variable following a uniform distribution UF over the set
of checkpoints F . Specifically, given H = h and a sam-
ple (x, y), we define the correctness in the prediction of
H as a binary random variable ŶF (x, y) with the follow-
ing conditional: P (ŶF (x, y) = 1|H = h) = [h(x)]y and
P (ŶF (x, y) = 0|H = h) = 1− P (ŶF (x, y) = 1|H = h).

Curation metrics. Equipped with a probabilistic interpre-
tation of the predictions of a model, we now define two
characterization metrics that we use for curation: (i) average
confidence and (ii) aleatoric (data) uncertainty, inspired by
(Kwon et al., 2020; Seedat et al., 2022a).
Definition 2.1 (Average confidence). For any set of check-
points F = {f1, ..., fE}, the average confidence for a sam-
ple (x, y) is defined as the following marginal:

P̄F (x, y) := P (ŶF (x, y) = 1)

= EH∼UF [P (ŶF (x, y) = 1|H)]

=
1

E

E∑
e=1

[fe(x)]y

Definition 2.2 (Aleatoric uncertainty). For any set of check-
points F = {f1, ..., fE}, the aleatoric uncertainty for a
sample (x, y) is defined as:

val,F (x, y) := EH∼UF [V ar(ŶF (x, y)|H)]

=
1

E

E∑
e=1

[fe(x)]y(1− [fe(x)]y)

Intuitively, for binary classification (k = 2), the aleatoric un-
certainty for a sample x is maximized when [fe(x)]y = 1

2
for all checkpoints fe, akin to random guessing. Recall
aleatoric uncertainty captures the inherent data uncertainty,
hence is a principled way to capture issues such as mis-
labeling. This contrasts epistemic uncertainty, which is
model-dependent and can be reduced simply by increasing
model parameterization (Hüllermeier & Waegeman, 2021).

Having defined sample-wise confidence and aleatoric un-
certainty, we categorize samples in Dsyn as Selected or
Discarded: for a sample (x, y), a set of training check-
points F , and two thresholds τconf and τal, we define the
category c(x, y,F) as Discarded if P̄F (x, y) < τconf and
val,F (x, y) < τal, and Selected otherwise.

Hence, a Discarded sample is one for which we have
a very low confidence in predicting its associated label
whereas we also have low inherent data uncertainty. Finally,
given a function f associated with the set of checkpoints
F , we define the curated set Dcurated = {(x, y)|(x, y) ∈
Dsyn, c(x, y,F) = Selected}. We also define Ddiscarded =
Dsyn \Dcurated.

To summarize, the objective of the curation step is that
training on the curated synthetic data leads to a better clas-

5



Curated LLM: Synergy of LLMs and Data Curation for tabular augmentation in low-data regimes

sifier fDcurated
for the downstream task, compared to train-

ing on the uncurated synthetic data, i.e. M(fDcurated
) >

M(fDsyn), where M is a performance measure (for example
accuracy). In Sec. 3, we empirically show how performance
on this curated dataset is superior both for LLM generated
data, as well as other classes of generative models.

Dissecting the role of curation. We now empiri-
cally demonstrate the role of curation in correcting
the noisy feature-label relationship present in Dsyn,
highlighting two insights:
(i) curation discards samples which are atypical in
their label with respect to their neighbors in Dsyn

(ii) discarded samples can be considered “misla-
beled”, and we quantify their atypicality using a
large held-out dataset Doracle.

▶ Discarded samples conflict on the label with their
neighbors in Dsyn. We audit every synthetic sample (x, y)
generated by GPT-4 (across 7 datasets) and compute the
proportion of its k nearest neighbors in Dsyn which share
the same label y. The agreement with the neighbors assesses
the typicality of a sample’s y given x, where naturally lower
agreement is linked to mislabeling, which we aim to de-
tect via curation. Taking k = 10, we obtain an average
agreement of acurated = 0.74 for Dcurated, compared to
adiscarded = 0.58 for Ddiscarded. This shows that the sam-
ples removed by our curation mechanism are those which,
despite having similar features x, do not agree with the la-
bels of their surrounding neighbors. This corroborates ideas
in (Ashmore et al., 2021) of how proximity violations are
useful to guide remedial action to improve models. Not
removing these mislabeled samples injects noise into the
downstream classifier, thus reducing performance.

▶ Assessing discarded samples with Doracle. Ideally,
the samples we select should better align with the true
feature-label distribution. Since we don’t have access
to this distribution explicitly, we compute a proxy for
η(x) = argmaxy p(Y = y|X = x), which we call η̂.
It is obtained by training a classifier on a held-out dataset
Doracle—the same size as Dtest and an order of magnitude
larger than Dtrain. For each synthetic method, we then
report the accuracy of η̂ on both the curated Dcurated and
discarded Ddiscarded datasets —see Fig. 5.

We highlight two key observations. First, the curated
datasets, for all the generative models, exhibit a higher
agreement with the proxy η̂ than the discarded datasets. This
aligns with the desideratum of only keeping samples that
exhibit the correct feature-label relationships. This provides
a rationale for why curation helps improve discriminative
performance, as samples in Dcurated are much more likely
to have the correct feature-label relationship.
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Figure 5: η̂ aligns more with Dcurated than Ddiscarded for
each generative model: the curation step keeps high quality
samples tailored to the downstream task.

Second, GPT-4 has a higher agreement with η̂ on Ddiscarded,
compared to other generators. This illustrates that GPT-4’s
prior knowledge enables it to better capture the distribution
p(Y |X = x). Note that generative baselines (e.g. TVAE)
model the joint p(X,Y ), without any context of which is
the set of features and which is the label. In contrast, we
can define in the LLM prompt which column is the target
Y , allowing the LLM to better capture the feature-label
relationships. This complements the findings from Fig. 2,
which showed that GPT-4 extrapolates to unseen regions of
the feature manifold, captured by the support of p(X).

3. Curated LLMs for Better Data
Augmentation

We now perform an end-to-end quantitative evaluation of
CLLM 2 across multiple real-world datasets, for down-
stream utility, demonstrating the value of allying the gen-
erative capabilities of LLMs with our curation mechanism.

Sec. 3.1 compares the downstream performance of models
when trained on uncurated vs curated data for a variety of
augmentation approaches. Having evaluated CLLM on a
range of datasets, we also demonstrate how we can lever-
age information extracted during curation to characterize
datasets via a hardness proxy. Sec. 3.2 illustrates how our
characterization of samples during the curation step can help
to flag synthesized datasets (e.g via the LLM) which, if used
for training, will result in poor downstream performance.

Experimental setup. We compare CLLM (with GPT-4
(OpenAI, 2023) and GPT-3.5 (Brown et al., 2020)) against a
variety of baselines for tabular data generation and augmen-
tation: CTGAN (Xu et al., 2019), TVAE (Xu et al., 2019),
Normalizing Flows (Papamakarios et al., 2021), TabDDPM
(Kotelnikov et al., 2022), SMOTE (Chawla et al., 2002) and
GReaT (Borisov et al., 2023), which fine-tunes an LLM. We
evaluate performance on 7 real-world datasets with different
feature counts and representative of the diverse domains

2Code: https://github.com/seedatnabeel/CLLM or
https://github.com/vanderschaarlab/CLLM
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Table 3: AUC averaged over 4 downstream models on Dtest. Curation improves performance for all methods
across all sample sizes n, as indicated by ↑. CLLM w/ GPT-4 (Cur.) provides the strongest performance for both
private/proprietary datasets and public datasets

Real data CLLM (OURS) Baselines

GPT-4 GPT-3.5 CTGAN TabDDPM GReaT NFLOW SMOTE TVAE

Dataset Doracle Dtrain Uncur. Cur. Uncur. Cur. Uncur. Cur. Uncur. Cur. Uncur. Cur. Uncur. Cur. Uncur. Cur. Uncur. Cur.

covid (n=20) 74.41 68.50 73.78 73.87 ↑ 69.85 71.41 ↑ 59.00 63.67 ↑ 66.84 66.85 ↑ 57.38 66.46 ↑ 62.87 68.56 ↑ 66.95 66.82 61.69 66.11 ↑
cutract (n=20) 72.23 70.12 71.15 72.50 ↑ 69.97 71.54 ↑ 64.01 67.98 ↑ 66.05 66.59 ↑ 52.38 67.02 ↑ 64.44 70.42 ↑ 68.41 69.24 ↑ 68.94 70.22 ↑
maggic (n=20) 67.41 57.13 60.70 61.48 ↑ 57.54 58.69 ↑ 52.75 54.51 ↑ 54.59 55.39 ↑ 50.29 55.64 ↑ 54.72 57.38 ↑ 55.84 56.15 ↑ 54.08 56.19 ↑
seer (n=20) 87.92 80.67 84.53 84.82 ↑ 83.34 83.71 ↑ 74.34 78.73 ↑ 80.59 80.60 ↑ 47.57 74.43 ↑ 76.06 79.98 ↑ 79.23 80.02 ↑ 74.53 78.73 ↑
compas (n=20) 67.51 63.11 68.01 67.91 62.07 64.43 ↑ 55.67 62.56 ↑ 57.67 60.87 ↑ 53.33 63.59 ↑ 59.49 64.62 ↑ 61.06 61.59 ↑ 58.30 62.58 ↑
adult (n=20) 84.17 77.45 50.39 71.48 ↑ 49.23 72.37 ↑ 72.23 76.86 ↑ 74.35 75.04 ↑ 67.00 77.25 ↑ 67.46 76.48 ↑ 73.75 73.67 73.20 76.90 ↑
drug (n=20) 77.81 70.84 75.08 75.29 ↑ 71.68 72.14 ↑ 68.31 72.65 ↑ 68.12 69.68 ↑ 58.78 68.89 ↑ 62.13 67.75 ↑ 70.16 70.16 66.60 69.18 ↑
covid (n=40) 74.41 70.77 73.40 73.95 ↑ 70.42 71.93 ↑ 63.63 68.46 ↑ 70.50 70.44 56.50 68.68 ↑ 66.41 70.48 ↑ 68.66 68.44 61.03 67.35 ↑
cutract (n=40) 72.23 69.18 69.87 71.72 ↑ 68.47 69.56 ↑ 63.01 67.87 ↑ 65.63 67.27 ↑ 54.39 68.44 ↑ 61.40 67.98 ↑ 67.86 67.95 ↑ 59.79 66.62 ↑
maggic (n=40) 67.41 58.26 59.29 60.77 ↑ 57.50 59.15 ↑ 55.00 56.78 ↑ 55.24 56.94 ↑ 48.81 56.64 ↑ 54.68 58.58 ↑ 57.40 57.44 ↑ 55.04 57.33 ↑
seer (n=40) 87.92 82.93 84.29 84.93 ↑ 83.46 84.44 ↑ 80.05 83.67 ↑ 82.59 81.37 54.93 81.11 ↑ 79.88 84.36 ↑ 80.79 82.21 ↑ 78.69 83.62 ↑
compas (n=40) 67.51 62.34 67.57 67.85 ↑ 61.34 62.84 ↑ 56.29 61.02 ↑ 58.85 60.11 ↑ 58.88 64.37 ↑ 58.61 63.54 ↑ 60.83 60.95 ↑ 55.94 61.04 ↑
adult (n=40) 84.17 79.44 48.31 73.82 ↑ 49.21 74.27 ↑ 71.82 79.11 ↑ 71.51 77.99 ↑ 66.77 78.81 ↑ 71.13 79.71 ↑ 77.90 78.84 ↑ 72.58 80.02 ↑
drug (n=40) 77.81 71.86 74.30 75.79 ↑ 71.33 72.76 ↑ 69.46 72.74 ↑ 71.08 73.07 ↑ 64.89 73.64 ↑ 62.51 70.97 ↑ 69.23 69.78 ↑ 65.22 70.30 ↑
covid (n=100) 74.41 71.57 73.77 74.71 ↑ 70.71 72.76 ↑ 69.05 72.13 ↑ 71.60 73.22 ↑ 63.52 72.04 ↑ 64.25 72.64 ↑ 70.08 70.78 ↑ 69.05 71.96 ↑
cutract (n=100) 72.23 70.96 70.20 72.51 ↑ 69.97 71.94 ↑ 67.94 72.42 ↑ 70.53 71.98 ↑ 55.72 69.14 ↑ 67.59 72.42 ↑ 68.79 69.68 ↑ 66.89 71.52 ↑
maggic (n=100) 67.41 59.65 58.98 61.32 ↑ 55.71 58.90 ↑ 57.20 59.34 ↑ 57.26 58.28 ↑ 49.54 57.91 ↑ 56.36 60.11 ↑ 58.89 58.99 ↑ 56.17 58.86 ↑
seer (n=100) 87.92 83.95 84.45 85.37 ↑ 83.92 85.08 ↑ 81.60 85.14 ↑ 83.04 84.83 ↑ 70.32 83.83 ↑ 81.16 85.03 ↑ 81.82 82.49 ↑ 78.88 84.50 ↑
compas (n=100) 67.51 62.56 68.02 68.19 ↑ 60.10 62.47 ↑ 60.01 63.73 ↑ 58.32 61.34 ↑ 59.97 64.19 ↑ 60.02 64.04 ↑ 61.44 61.73 ↑ 59.97 62.82 ↑
adult (n=100) 84.17 81.24 46.09 74.57 ↑ 47.56 73.97 ↑ 74.29 80.45 ↑ 75.93 78.22 ↑ 77.09 81.66 ↑ 70.70 81.04 ↑ 80.56 81.10 ↑ 74.04 80.23 ↑
drug (n=100) 77.81 73.58 76.24 76.74 ↑ 69.46 71.05 ↑ 68.19 73.28 ↑ 72.43 73.79 ↑ 67.26 75.28 ↑ 62.67 73.12 ↑ 70.90 71.53 ↑ 68.22 73.59 ↑
covid (n=200) 74.41 72.33 73.40 74.62 ↑ 70.70 73.12 ↑ 71.07 73.89 ↑ 72.47 74.44 ↑ 65.55 73.07 ↑ 65.04 72.90 ↑ 71.68 71.87 ↑ 67.89 72.38 ↑
cutract (n=200) 72.23 71.75 71.39 73.01 ↑ 70.28 72.39 ↑ 69.28 72.41 ↑ 71.83 74.03 ↑ 66.66 72.49 ↑ 68.77 73.16 ↑ 70.23 70.80 ↑ 66.61 71.87 ↑
maggic (n=200) 67.41 61.39 58.92 61.41 ↑ 57.33 60.16 ↑ 58.48 61.33 ↑ 56.26 57.20 ↑ 50.74 59.60 ↑ 55.95 60.75 ↑ 60.73 60.78 ↑ 57.18 60.23 ↑
seer (n=200) 87.92 84.63 84.39 85.56 ↑ 83.48 84.80 ↑ 82.04 85.34 ↑ 84.39 86.57 ↑ 82.15 86.03 ↑ 77.73 85.19 ↑ 83.38 84.15 ↑ 79.71 85.26 ↑
compas (n=200) 67.51 63.27 67.02 68.15 ↑ 60.48 63.39 ↑ 60.58 64.32 ↑ 60.60 63.52 ↑ 61.11 65.08 ↑ 56.58 63.60 ↑ 61.99 62.80 ↑ 60.15 63.99 ↑
adult (n=200) 84.17 82.12 40.96 75.84 ↑ 49.89 76.11 ↑ 78.18 82.32 ↑ 81.66 83.17 ↑ 80.06 83.32 ↑ 74.31 82.64 ↑ 82.26 82.39 ↑ 75.21 82.02 ↑
drug (n=200) 77.81 76.10 75.58 76.06 ↑ 70.66 72.81 ↑ 71.31 75.98 ↑ 69.61 71.79 ↑ 72.35 77.41 ↑ 65.25 75.26 ↑ 74.38 74.78 ↑ 68.39 74.33 ↑

where CLLM can have impact. For each dataset, we vary
the number of samples available in Dtrain, repeating each
experiment for 10 seeds.

While we do not know the exact makeup of the pretrain-
ing data for LLMs like GPT-4, there is the possibility that
open-source data might be included. This poses the risk
of memorization as the primary source of performance
gain. To disentangle the role of memorization, we se-
lect 4 real-world medical datasets (Maggic (Pocock et al.,
2013), Covid (Baqui et al., 2020), SEER (Duggan et al.,
2016), CUTRACT (PCUK, 2019)) that require an authoriza-
tion process to access, hence are unlikely to form part of
the LLMs training corpus. We use common open-source
datasets (Adult and Drug from the UCI repository (Asun-
cion & Newman, 2007) and Compas (Angwin et al., 2016))
that are highly reflective of data scarce domains. Further
experimental details can be found in Appendix B.

3.1. Overall performance: downstream utility

We assess overall performance based on Utility of the aug-
mented data, which we evaluate in terms of AUC on the
real Dtest, when using four different types of downstream
models (see Appendix B). This setup mirrors the widely
adopted Train-on-synthetic-Test-on-real (TSTR) (Esteban
et al., 2017). Additionally, we compare the performance
to training on the small Dtrain, as well as training on the
large held-out Doracle, the latter serving as an upper bound.
GPT-4 + Curation has best overall performance. Table 3
shows the performance of the proposed CLLM (GPT- 4 and
GPT-3.5) vs baselines — both with and without our curation
mechanism. We find that the GPT-4 + Curation variant of
CLLM outperforms baselines in almost all settings (20/28).
Interestingly, its performance is close to or even exceeds the
performance of Doracle. Table 4 further shows that GPT-4 +
Curation ranks first on average vs all generative methods.
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Sample size sensitivity. We now investigate the perfor-
mance gains of CLLM as we vary the number of samples
n in Dtrain, in Table 3 and Table 4. Performance improve-
ments and high ranking across datasets for CLLM (GPT-
4+Curation) are especially noticeable in the low-data regime
(i.e. n < 100). In this regime, the limited size of Dtrain

severely constrains the other baseline methods. In contrast,
as illustrated in Sec. 2.1, CLLM can leverage GPT-4’s prior
knowledge to extrapolate beyond the small Dtrain, thereby
improving downstream performance. As expected, the per-
formance gap between CLLM and other methods decreases
as the size of Dtrain grows (e.g. n = 200), where sufficient
training data helps other generators achieve good perfor-
mance. We further decouple the prior knowledge of the
LLM and the number of in-context samples in Appendix
C.1, showing the importance of the in-context samples to
guide the LLM’s generation.

Table 4: Average rank of approaches across the different datasets
and seeds. CLLM w/ GPT-4 ranks first across all n and curation
improves all the generative models.

Method n=20 n=40 n=100 n=200
CLLM w/ GPT-4 2.71 ± 1.44 2.14 ± 1.06 2.29 ± 1.19 3.29 ± 1.38

GPT-4 3.86 ± 1.73 4.29 ± 1.83 6.00 ± 1.77 7.57 ± 1.65
CLLM w/ GPT-3.5 4.14 ± 0.94 4.14 ± 0.71 6.86 ± 1.24 7.57 ± 0.70
NFLOW (curated) 6.00 ± 1.21 4.71 ± 0.80 4.00 ± 0.57 4.71 ± 0.63

GPT-3.5 6.71 ± 1.52 7.29 ± 1.26 11.57 ± 0.94 12.57 ± 0.57
TVAE (curated) 7.14 ± 1.17 7.86 ± 1.30 6.43 ± 0.40 6.71 ± 0.52

SMOTE (curated) 7.71 ± 0.33 8.14 ± 0.91 7.71 ± 1.19 7.43 ± 1.07
SMOTE 7.86 ± 0.55 9.57 ± 0.80 9.57 ± 1.09 9.00 ± 1.03

TabDDPM (curated) 8.29 ± 0.98 8.00 ± 0.93 6.00 ± 0.95 5.14 ± 1.68
CTGAN (curated) 8.29 ± 1.42 7.14 ± 0.91 4.14 ± 0.62 3.71 ± 0.39
GReaT (curated) 8.57 ± 1.50 6.57 ± 1.21 6.29 ± 1.38 3.57 ± 0.92

TabDDPM 10.14 ± 1.19 9.86 ± 1.15 10.00 ± 1.03 10.29 ± 1.02
TVAE 12.14 ± 0.89 14.00 ± 0.70 13.71 ± 0.39 14.43 ± 0.40

NFLOW 12.86 ± 0.47 14.14 ± 0.37 14.00 ± 0.45 15.29 ± 0.33
CTGAN 13.86 ± 0.68 13.14 ± 0.47 12.86 ± 0.37 12.00 ± 0.53
GReaT 15.71 ± 0.26 15.00 ± 0.53 14.57 ± 1.03 12.71 ± 0.96

Curation generally helps all generative models. Our cura-
tion mechanism consistently benefits all generative models
for the different n. It ensures that only high-quality samples
are retained, which is crucial for good data augmentation
and downstream performance and has been overlooked in
previous works. This explains why the combination of the
best generative model and curation (CLLM) gives the best
results and highest rankings in the low-data regime (e.g.
n = 20). In addition to GPT-4 and GPT-3.5, we show the
versatility of our proposed curation mechanism to provide
benefit with other open-source LLM backbones, including
Mistral-7b (Jiang et al., 2023), LLAMA-2 (Touvron et al.,
2023) and Mixtral (Jiang et al., 2024) (cf. Appendix C.2).

Performance benefits maintained for private and pub-
lic datasets. One may hypothesize that the strong LLM
(e.g. GPT-4) performance is explained by datasets being
part of the LLMs’ training corpus, hence possibly being
memorized. We show in Table 3 that it is unlikely, as we

retain strong performance for both open-source datasets ,

as well as private medical datasets which require autho-
rization processes for access and are unlikely to be part of
the LLM pretraining dataset.

Remark on ICL versus fine-tuning. Our results in Table
3 and Table 4 indicate that ICL is better than fine-tuning
(GReaT baseline) in the low-data regime. This highlights
the difficulty of fine-tuning in this regime, where it is easy
to overfit to Dtrain. As we increase the number of samples,
this baseline, coupled with curation, improves to the level
of CLLM (GPT-4).

3.2. Hardness: a proxy signal to flag poor quality
synthetic datasets

Having a systematic way to assess datasets generated by
LLMs like GPT-4 is important because their black-box na-
ture provides little control on their generation quality. This
contrasts conventional generators for which training loss
is an exploitable signal. Hence, we ask: could we have a
signal to identify a potential problematic dataset generated
by an LLM without an exhaustive manual review? For ex-
ample, GPT-4 produced low-quality synthetic data for the
Adult dataset (across the different sample sizes) resulting in
poor downstream performance. While curation improves it,
downstream performance is still suboptimal.
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Figure 6: The proportion of discarded samples Dsyn is a
proxy for test performance. This negative linear relationship
where each point is a synthetic dataset generated by GPT-4
(e.g. Adult, Covid, Compas) allows us to flag datasets that
will lead to unreliable downstream performance.

Addressing this question is important, since datasets are
rarely created by the ML model builder in real-world ML
workflows, but rather by specialist data teams or data owners
(Gebru et al., 2021; Sambasivan et al., 2021; Goncalves
et al., 2020). Thus, having a signal to preemptively flag a
potentially suboptimal generated dataset spares investment
in both storing the subpar data and/or training a model likely
to underperform on real data.

To address this, we posit that Dsyn should intuitively be con-
sidered imperfect if curation discards many of its samples,
since the number of discarded samples measures the qual-
ity of samples with respect to the small but gold-standard
Dtrain.
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Hence, we investigate the relationship between test perfor-
mance (AUC) and the proportion of samples discarded by
curation. Fig. 6, where each point is a synthetic dataset
generated by GPT-4 (e.g. Adult, Compas), shows a strong
negative linear relationship between these two quantities.
This holds across the different n with slopes fairly stable
around −1.4. This relationship corroborates the poor qual-
ity of the dataset generated by GPT-4 on the Adult dataset,
providing a useful proxy that Dsyn is unlikely to lead to
good downstream performance.

4. Discussion

We introduce CLLM, an approach for data augmentation in
the low-data setting. CLLM exploits the prior knowledge
of LLMs along with our curation mechanism for improved
downstream performance.

As empirically shown, CLLM outperforms traditional gen-
erative models—most noticeably on underrepresented sub-
groups, for which data augmentation is of utmost impor-
tance. CLLM is grounded in the ICL capability of LLMs.
Further improvements may be achieved through different
tuning and prompting of the LLM, as shown in different
domains (Meng et al., 2023; Liu et al., 2023). Improving
LLM tuning and prompting is beyond the scope of our work,
but we regard this as a promising avenue for future work.

While the key contribution of this work is the curation of
LLM outputs, overall downstream performance gains are
still fundamentally tied to the LLM backbone. Specifically,
a practical consideration is that using less parameterized
LLMs leads to poorer uncurated data. That said, our curation
mechanism naturally addresses this aspect and improves
downstream performance (see Appendix C.2).

Finally, while CLLM addresses the data logjam issue, in-
creasing access to ML across regions, domains and societies
is also about more than just technology. We believe broader
engagement and discussion with various stakeholders is cru-
cial to responsibly expand ML access, thereby realizing the
benefits of ML in an equitable way.

Impact statement
Data scarcity and computational limitations are deterrents
for developing ML. These challenges should inspire cutting-
edge ML research (De-Arteaga et al., 2018). We believe
CLLM takes a step in this direction toward improving the
use of ML in low-data settings, across society (e.g. under-
represented subgroups (Suresh & Guttag, 2021)), domains
(e.g. healthcare (Alami et al., 2020; Owoyemi et al., 2020))
and regions (e.g. LMICs).

However, with that in mind, LLMs may make errors and
may reflect or exacerbate societal biases that are present in
their data (Li et al., 2023). Though the curation in CLLM
improves synthetic data quality, it does not directly aim to
remove biases. The quality and fairness of generated data
should always be evaluated. We believe broader engagement
and discussion with various stakeholders is required before
methods like CLLM should be applied to real-world sensi-
tive settings like healthcare and finance, as well as more
research into LLM bias and potential mitigation strategies.
We provide a more detailed discussion in Appendix C.12.

Additionally, in this work, we evaluate CLLM using multiple
real-world datasets. The private datasets are de-identified
and used in accordance with the guidance of the respec-
tive data providers. We follow recommendations to use the
Azure OpenAI service when using GPT-4 and GPT-3.5 mod-
els, where via the agreement we ensure the medical data is
not sent for human review or stored, hence respecting the
guidelines given by the dataset providers.
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A. Extended Related Work
This paper primarily engages with the work on data augmentation when we have limited data, where our primary goal
is synthetic data generation to augment the dataset. Generating synthetic datasets not only helps improve downstream
performance, but it is also a flexible solution as it doesn’t tie the data consumer to any particular downstream model. That
said, beyond the major difference of synthetic data generation, for completeness we contrast our setting of learning from
limited data with other seemingly similar settings and highlight their differences.

Contrasting learning w/ limited data vs other settings. The challenge of learning from limited data, while seemingly
related to several other learning paradigms, presents distinct differences and unique intricacies that warrant dedicated study.

Transfer learning (Pan & Yang, 2009), domain adaptation (Farahani et al., 2021), and few-shot learning (Wang et al., 2020)
employ additional data resources or rely on specific task-related assumptions to improve learning performance. These
methods exploit large labeled data from a source domain, unlabeled data in a target domain, or leverage knowledge from
related tasks respectively. For example, (Levin et al., 2022) and (Jin & Ucar, 2023) use models trained on labeled data from
a source domain, while (Ruiz et al., 2023) and (Margeloiu et al., 2022) leverage knowledge-graphs. This is in contrast to our
setting, considered of learning with limited data, which must function with whatever scarce labeled data it has, without
making any assumptions about the availability of additional data or tasks.

Detailed contrast between CLLM and transfer learning / meta-learning / few-shot learning.

In addition to the above, we emphasize below three dimensions along which CLLM differs from the transfer learning
and meta-learning literature (which permit to do few-shot learning). Specifically, we highlight three specific dimensions
which explain why transfer learning and meta-learning generally cannot apply to the setting considered in CLLM . We
provide empirical evidence on why the following dimensions are important (notably the point on the choice of downstream
backbone). Specifically, we compare CLLM with TabPFN (Hollmann et al., 2022), a few-shot learning method designed for
small tabular problems (see Appendix C.9).

1. Access to external datasets: our problem setting in CLLM assumes access to a single small training set Dtrain, without
access to any external/additional datasets. This mirrors the unique characteristics of low-to-middle income countries
(LMICs), where data scarcity may be pervasive, hence making it unrealistic to assume that external datasets are
available to the practitioner. In contrast, transfer learning and meta-learning make more stringent assumptions on the
data requirements. (i) Transfer learning (Definition 3 in (Zhuang et al., 2020)): one typically assumes access to at least
one additional source dataset Dsource, usually bigger than Dtrain. This external Dsource can then be used to pretrain a
model, which is adapted using Dtrain. (ii) Meta-learning (Hospedales et al., 2021): one assumes access to a set of m
tasks, which define a set of source datasets {D(i)

source | i ∈ [m]}. It is also worth noting that a common assumption
in meta-learning is that the source datasets and Dtrain share the same feature space, restricting its applicability. To
summarize, both these learning paradigms often rely on external data, an assumption not required in CLLM . We
acknowledge that CLLM can be seen as a form of transfer, in its broad definition, since it uses prior knowledge, with
the LLM. However, a key point is that it does not require external/additional datasets.

2. Flexibility of the backbone model: since CLLM is a data augmentation method for tabular data, it enables the practitioner
to use any downstream model backbone, such as neural networks or tree-based methods (XGBoost, Random forest,
CatBoost). This flexibility is important, as it allows the practitioner to choose the best-suited model for the task at
hand. For example, one can use any tree-based method with CLLM , which is appealing given that tree-based methods
are often preferred over neural networks for tabular data (Grinsztajn et al., 2022), (Shwartz-Ziv & Armon, 2022). In
contrast, most approaches to transfer learning and meta-learning are not flexible as they traditionally require neural
networks as backbone models. This stems from their methodology, where fine-tuning a pretrained model on Dtrain is a
prevailing approach (Finn et al., 2017).

3. Ease of use: CLLM is distinct in that it is easy to use, without the need for costly or complex operations, such as
fine-tuning large pretrained models or using them at inference time, which may be impossible in LMICs, due to the
cost associated to these operations.

Active learning (Settles, 2009) and semi-supervised learning (van Engelen & Hoos, 2019; Chapelle et al., 2006) also operate
under the premise of having access to plentiful unlabeled data and the capacity to interactively query labels. However, in
our setting, considered learning with limited data does not inherently assume such capabilities, focusing instead on limited
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labeled data only. Furthermore, active learning primarily focuses on the iterative process of selecting data samples that, when
labeled, are expected to most significantly improve the model’s performance. This selection is typically based on criteria
such as uncertainty sampling which focuses on epistemic uncertainty (Mussmann & Liang, 2018; Houlsby et al., 2011;
Kirsch et al., 2019; Nguyen et al., 2022). The primary objective is to minimize labeling effort while maximizing the model’s
learning efficiency. Additionally, active learning would aims to label instances based on epistemic uncertainty where the
model struggles to make accurate predictions, yet the samples themselves are correct. In contrast, CLLM leverage training
dynamics based on aleatoric uncertainty and confidence and is designed to discard samples that might jeopardize the
downstream accuracy. These samples can be considered to have inherent issues or are erroneous, such as being ”mislabeled”.
To summarize, in active learning, epistemic uncertainty is used to identify data points that, if labeled, would yield the most
significant insights for model training. In our approach, they serve to identify and exclude/filter data points that could
potentially deteriorate the model’s performance.

Self-supervised learning (Liu et al., 2021) leverages large amounts of unlabeled data to learn useful representations for
downstream tasks. However, in our setting, considered learning with limited data does not inherently assume such access to
vast amounts of unlabeled data.

Data-centric AI. Ensuring high data quality is a critical but often overlooked problem in ML, where the focus is optimizing
models (Sambasivan et al., 2021). Even when it is considered, the process of assessing datasets is adhoc or artisanal (Seedat
et al., 2022b). However, the recent push of data-centric AI (Liang et al., 2022; Polyzotis & Zaharia, 2021; Zha et al., 2023;
Seedat et al., 2023b) aims to develop systematic tools to curate existing datasets. Our work contributes to this nascent body
of work (Seedat et al., 2023a) – presenting CLLM, which, to the best of our knowledge, is the first systematic data-centric
framework looking at how we can tailor synthetic datasets (rather than real datasets) to downstream task use with data
curation.

Why Data Augmentation? Data augmentation is a flexible approach to address the low-data regime. An alternative might
be to resort to a pretrained black-box model for classification, which could be for example via in-context learning for
classification (Dong et al., 2022). However, such a solution is inadequate for several reasons, many of which would prevent
real-world utility (e.g. in LMICs):

▶ Not economical over the long term: While using an LLM like GPT for classification may seem attractive due to its
few-shot capabilities, it is likely not economically viable in real-world settings, especially in LMICs. The reason is
classifying each sample will incur a cost to call the LLM, hence scales linearly with the number of test samples. Over
time, the cumulative cost of these calls will surpass the once-off fixed cost associated with generating data. With data
augmentation, once the dataset is augmented, there are no additional deployment time costs associated with the LLM.
Indeed, the downstream models e.g. a random forest or XGBoost have negligible inference costs.

▶ Control, interpretability and auditability: Relying on a large, pre-trained LLM as a black-box classifier raises several
concerns. (1) we have no control over our downstream classifier and its architecture, (2) lack of interpretability and
auditability of the LLM when issuing predictions. In contrast, training a downstream model on augmented data maintains
the ability to understand and explain how the model is making decisions (e.g. feature importance). This is especially crucial
in contexts where accountability, transparency, and validation of machine learning processes are paramount.

▶ Independence and self-sufficiency: Relying on third-party services for continuous classification means being dependent on
their availability, pricing models, and potential changes in the LLM version. By augmenting data and training a downstream
classifier on the augmented dataset, we ensure that there is no external dependencies such as increasing costs or reduced
performance with LLM version updates.

▶ Hardware and financial constraints: Even if we opt for an open-source LLM (e.g. Falcon (Penedo et al., 2023) or
LLaMA-2 (Touvron et al., 2023)), deploying and running it locally demands significant computational resources. Typically,
these models require GPUs with high amounts of VRAM for optimal performance (e.g. needing around 40 GB hencing
requiring an A100 GPU for Falcon-40b and LLaMA-2 65B). Such high-end GPUs are expensive, and are likely to be
inaccessible in a LMIC setting. Furthermore, renting hardware by the hour can quickly become prohibitively expensive.
Data augmentation, on the other hand, can often be performed on modest hardware, and once the augmented dataset is
created, many classifiers can be trained without the need for high-end GPUs, making the entire process more financially
accessible.

In conclusion, while large language models offer vast knowledge, for low-data settings in low-income countries, data
augmentation provides a more cost-effective, controllable, and interpretable solution for building robust classifiers.
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B. Experimental Details
We provide details on our datasets used, as well as, other experimental specifics including: generation, curation, downstream
model, prompt template.

B.1. Datasets

We summarize the different datasets we use in this paper in Table 5. The datasets vary in number of samples, number of
features and domain.

Table 5: Summary of the datasets used. * Denotes private/proprietary datasets.

Name n samples n features Domain

Adult Income (Asuncion & Newman, 2007) 30k 12 Finance
Compas (Angwin et al., 2016) 5k 13 Criminal justice
*Covid-19 (Baqui et al., 2020) 7k 29 Healthcare/Medicine
*CUTRACT Prostate (PCUK, 2019) 2k 12 Healthcare/Medicine
Drug (Fehrman et al., 2017) 2k 27 Healthcare/Medicine
*MAGGIC (Pocock et al., 2013) 41k 29 Healthcare/Medicine
*SEER Prostate (Duggan et al., 2016) 20k 12 Healthcare/Medicine

The private datasets are de-identified and used in accordance with the guidance of the respective data providers. We follow
recommendations to use the Azure OpenAI service when using GPT-4 and GPT-3.5 models, where via the agreement
we ensure the medical data is not sent for human review or stored, hence respecting the guidelines given by the dataset
providers.

We detail the dataset splits used in Sec. 3.1. For each dataset and number of samples n ∈ {20, 40, 100, 200}, we sample a
training set Dtrain such that |Dtrain| = n, and each target class has the same number of samples. We then split the remaining
samples into two non-overlapping datasets, Doracle and Dtest, which have the same cardinality. This procedure is repeated
nseed = 10 times, thus leading to different training and test sets. Note that the different generative models use the same
Dtrain and Dtest for a given seed.

Motivation for the choice of datasets.

1. Open-source: Adult, Drug and Compas are widely used open-source datasets used in the tabular data literature. Adult
and Drug are both UCI datasets that have been used in many papers, while Compas is part of OpenML (Vanschoren
et al., 2013). Our reason for selecting them is that, despite them being open-source, they are highly reflective of
domains in which we might be unable to collect many samples — hence in reality would often be in a low-data regime.

2. Private datasets: We wanted to disentangle the possible role of memorization in the strong performance of the
LLM. To ensure the datasets are not in the LLMs training corpus, we selected 4 private medical datasets that need
an authorization process to access. Hence, these datasets would not be part of the LLMs training corpus given their
proprietary nature and hence would be unseen to the LLM. While the private and unseen aspect was the main motivation,
we also wish to highlight that these are real-world medical datasets. Consequently, this allows us to test a highly
realistic problem setting.

B.2. Data generation.

GPT-4 and GPT-3.5 We access GPT-4 (OpenAI, 2023) and GPT-3.5-Turbo (Brown et al., 2020) through the API. We use a
temperature of 0.9.

GReaT. GReaT (Borisov et al., 2023) is a generative model which fine-tunes an LLM based on a training set. We use the
implementation provided by authors.

Generative model based approaches. For the other baselines used in 3.1, we use the library SynthCity (Qian et al., 2023),
using the defaults. We detail each next.
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• TVAE: this is a conditional Variational Auto Encoder (VAE) for tabular data and is based on Xu et al. (2019)

• CTGAN: A conditional generative adversarial network which can handle tabular data and is based on Xu et al. (2019)

• NFLOW: Normalizing Flows are generative models which produce tractable distributions where both sampling and
density evaluation can be efficient and exact.

• TabDDPM: A diffusion model that can be universally applied to any tabular dataset, handles any type of feature and is
based on Kotelnikov et al. (2022)

Traditional Data Augmentation. We use SMOTE (Chawla et al., 2002) which augments data by considering nearest
neighbors and performing linear interpolations. We use the implementation provided by (Lemaı̂tre et al., 2017), and set the
number of neighbors k to 5.

B.3. Data curation

Learning dynamics computation We train an XGBoost with 100 estimators on Dtrain. We then compute predictive
confidence and aleatoric uncertainty for the samples in Dsyn. The motivation for the choice of an XGBoost backbone is that
we cannot expect good performance by choosing “any” curation model, but rather we require a curation model with enough
capacity and generalization properties — where boosting methods like XGBoost used in our work have shown to achieve
best performance on tabular data. This leads to our guideline for the curation step: the model used for curation should be at
least as flexible as the model that the practitioner intends to use for the downstream task.

Learning dynamics thresholds Recall that CLLM has two thresholds τconf and τal on the predictive confidence and
aleatoric uncertainty respectively, as defined in 2.2. We set τconf = 0.2, in order to select high confidence samples. We
adopt an adaptive threshold for τal based on the dataset, such that τal = 0.75 · (max(val(Dsyn))−min(val(Dsyn))). Note
that by definition val(Dsyn) is bounded between 0 and 0.25.

Example of learning dynamics We include examples of learning dynamics computed for 20 samples in Fig. 7.

Figure 7: Learning dynamics computed for 20 samples

B.4. Downstream task

We compute downstream performance in Sec. 3.1 using four different downstream models: XGBoost, Random Forest,
Decision tree, and Logistic Regression.
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B.5. Prompt example

We include the template of the prompts used throughout the paper. We show how we include (1) in-context examples
(demonstrations), (2) contextual information including dataset background and feature information and (3) the instruction.

1 System role: ’You are a tabular synthetic data generation model.’
2

3 You are a synthetic data generator.
4 Your goal is to produce data which mirrors \
5 the given examples in causal structure and feature and label distributions \
6 but also produce as diverse samples as possible.
7

8 I will give you real examples first.
9

10 Context: Leverage your medical knowledge about covid and Brazil to generate 1000
realistic but diverse samples.

11

12 example data: {data}
13

14 The output should be a markdown code snippet formatted in the following schema:
15

16 "Sex_male": string // feature column
17 "Age": string // feature column
18 "Age_40": string // feature column
19 "Age_40_50": string // feature column
20 "Age_50_60": string // feature column
21 "Age_60_70": string // feature column
22 "Age_70": string // feature column
23 "Fever": string // feature column
24 "Cough": string // feature column
25 "Sore_throat": string // feature column
26 "Shortness_of_breath": string // feature column
27 "Respiratory_discomfort": string // feature column
28 "SPO2": string // feature column
29 "Dihareea": string // feature column
30 "Vomitting": string // feature column
31 "Cardiovascular": string // feature column
32 "Asthma": string // feature column
33 "Diabetis": string // feature column
34 "Pulmonary": string // feature column
35 "Immunosuppresion": string // feature column
36 "Obesity": string // feature column
37 "Liver": string // feature column
38 "Neurologic": string // feature column
39 "Renal": string // feature column
40 "Branca": string // feature column
41 "Preta": string // feature column
42 "Amarela": string // feature column
43 "Parda": string // feature column
44 "Indigena": string // feature column
45 "is_dead": string // label if patient dead or not, is_dead
46

47 DO NOT COPY THE EXAMPLES but generate realistic but new and diverse samples which have
the correct label conditioned on the features.

Listing 1: Template of the prompt
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C. Additional Results
C.1. Decoupling prior knowledge and data model

Two components can be attributed to the good performances of CLLM: the background knowl-
edge of the LLM, and its capacity to build a strong data model. In this subsection, we
provide insights to understand the effect of the LLM’s background knowledge (e.g. prior).

Table 6: Downstream accuracy when varying the number of
in-context samples in the prompt to generate the augmented
datasets.

In-context samples Downstream accuracy
n = 1 (Prior) 70.20± 1.60

n = 20 73.87± 0.50
n = 40 73.95± 0.67
n = 100 74.71± 0.34
Doracle 74.6± 0.15

We considered the Covid dataset (private medical dataset,
to avoid memorization issues) and generated data with
GPT-4 (same as Section 2.1). We ablate the prompt used
in our work (detailed in Appendix B.5), and solely provide
one in-context example in the prompt, in order to give
the LLM the minimal amount of information about the
desired structure of the dataset. This forces the LLM
to rely on its own prior (background knowledge), and
removes the effect of in-context examples which could be
used to build a data model. We report the results for the
prior and CLLM in Table 6.

From these results, we conclude that the LLM prior per-
mits to obtain good downstream performance, but is out-
performed by Doracle by a margin of 4.4%. Hence, we cannot solely rely on the prior. Furthermore, downstream performance
increases as the number of in-context samples increases. This shows it is important to include in-context samples if we wish
to obtain downstream performance close to Doracle, as the LLM can build a good data model. This implies that while the
LLM uses background knowledge of similar datasets, it still needs in-context samples to refine its prior by creating a good
data model.

We then quantify and visualize the strength of the prior, by studying how much the LLMs output distribution adapts to the
in-context samples provided. We evaluate data generated by the prior of the LLM (n = 1), and for n = 20, 40, 100 on the
Covid dataset. In particular, we observe in Figure 8 that there is a region in the oracle data which is not captured by the
LLM’s prior output (the left part of the leftmost blob, circled in blue in Figure 8). However, as the number of in-context
real examples increases in the prompt of the LLM, we observe that this steers the LLM to generate data which covers this
region. This region is associated to the subgroup of people older than 87 years old, and having many severe comorbidities
(e.g. Diabetes, Cardiovascular diseases) and many respiratory symptoms. This subgroup, in the Oracle dataset, represents
less than 3.5% of the data, and is completely ignored by the GPT-4 prior. In particular, the prior defaults to more typical
patients in the range 70-80 years old. On the contrary, as n increases, the LLM is guided by the in-context samples and
generates samples from this subgroup, which are ”rarer” or different from the general population.

This shows that the LLM captures the distinct features of this particular region, and is not overwhelmed by the prior. Instead,
the data in the form of in-context samples adapts it, and aligns the augmented dataset with the ground-truth distribution.
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The prior knowledge of the LLM 
does not capture this region of the 
oracle distribution

Adding more data in-context steers the LLM to 
generate data in this sparse “atypical” region 
without being overwhelmed  by the prior

Figure 8: The data generated by the LLM captures the distinct features in ”atypical” regions of the Oracle manifold, as
in-context samples are added to the prompt. This shows that it is flexible enough to adapt its prior knowledge to the nuances
of the data. The group encircled in blue represents patients who are > 88 years old, representing around 3.5% of the Oracle.
This illustrates the added in-context samples can successfully guide the LLM to generate these rare samples.

C.2. Curation mechanism also improves open-source LLM generated data

In this subsection, we demonstrate the wide applicability of the CLLM framework. Different factors may affect the choice
of the LLM backbone, such as operational costs, and the desired parameterization of the LLM (for quality of generation).
In addition to GPT-4 and GPT-3.5, we use the open source models Mistral-7b (Jiang et al., 2023) and LLaMa-13b (4-bit
quantized) (Touvron et al., 2023), LLaMa-70b (Touvron et al., 2023) and Mixtral-8x7b (Jiang et al., 2024) to generate
augmented datasets 3. We then compute the downstream performance when training a model on both the uncurated and
curated data. As can be seen in Table 7, downstream performance with uncurated is lower for these open-source models
compared to GPT-4 — which is expected given their significantly smaller size (i.e. parameter count). However, the
curation mechanism, which is the key contribution of CLLM, almost always improves downstream performance for all
LLM backbones investigated. Overall, this demonstrates the versatility and wide applicability of CLLM for tabular data
augmentation in low-data regimes.

Practical tip: The size of the LLM plays a role: the larger models (with more parameters) outperform those with fewer
parameters (e.g. GPT-4 vs Mixtral-8x7b vs Mistral-7b). Hence, while curation helps improve all LLM-generated data,
ideally the best LLM possible should be used.

3For LLaMa-70b and Mixtral-8x7b, we only run open-source datasets due to data sharing restrictions with the endpoints for those two
models.
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Table 7: AUC averaged over 4 downstream models on Dtest for GPT-4, GPT-3.5, Mistral-7b, LLAMA-13b, LLAMA-70b
and Mixtral-8x7b (Curated and Uncurated)

Open AI Open source

Dataset GPT-4 GPT-3.5 Mistral-7b LLAMA-13b LLAMA-70b Mixtral

Uncur. Cur. Uncur. Cur. Uncur. Cur. Uncur. Cur. Uncur. Cur. Uncur. Cur.
covid (n=20) 73.78 73.87 ↑ 69.85 71.41 ↑ 71.47 72.80 ↑ 63.25 67.24 ↑ N.A. N.A. N.A. N.A.
cutract (n=20) 71.15 72.50 ↑ 69.97 71.54 ↑ 69.60 71.34 ↑ 67.84 66.71 N.A. N.A. N.A. N.A.
maggic (n=20) 60.70 61.48 ↑ 57.54 58.69 ↑ 53.64 52.06 53.30 53.96 ↑ N.A. N.A. N.A. N.A.
seer (n=20) 84.53 84.82 ↑ 83.34 83.71 ↑ 83.60 85.18 ↑ 80.94 82.84 ↑ N.A. N.A. N.A. N.A.
compas (n=20) 68.01 67.91 62.07 64.43 ↑ 56.26 59.95 ↑ 60.08 60.34 ↑ 56.10 60.68 ↑ 54.34 61.66 ↑
adult (n=20) 50.39 71.48 ↑ 49.23 72.37 ↑ 47.68 65.84 ↑ 48.82 66.00 ↑ 51.96 68.40 ↑ 57.78 76.84 ↑
drug (n=20) 75.08 75.29 ↑ 71.68 72.14 ↑ 74.14 75.21 ↑ 67.96 67.87 66.77 69.12 ↑ 72.45 71.63

covid (n=40) 73.40 73.95 ↑ 70.42 71.93 ↑ 69.61 71.47 ↑ 61.32 65.57 ↑ N.A. N.A. N.A. N.A.
cutract (n=40) 69.87 71.72 ↑ 68.47 69.56 ↑ 68.74 72.36 ↑ 64.34 67.46 ↑ N.A. N.A. N.A. N.A.
maggic (n=40) 59.29 60.77 ↑ 57.50 59.15 ↑ 52.43 53.79 ↑ 52.61 53.45 ↑ N.A. N.A. N.A. N.A.
seer (n=40) 84.29 84.93 ↑ 83.46 84.44 ↑ 83.88 85.21 ↑ 78.82 82.65 ↑ N.A. N.A. N.A. N.A.
compas (n=40) 67.57 67.85 ↑ 61.34 62.84 ↑ 57.07 60.87 ↑ 59.52 61.46 ↑ 57.48 61.20↑ 58.90 63.32↑
adult (n=40) 48.31 73.82 ↑ 49.21 74.27 ↑ 48.80 74.13 ↑ 54.34 69.31 ↑ 64.44 74.83↑ 56.59 78.30 ↑
drug (n=40) 74.30 75.79 ↑ 71.33 72.76 ↑ 73.12 74.12 ↑ 69.84 72.50 ↑ 64.14 68.14 ↑ 74.34 76.07 ↑

covid (n=100) 73.77 74.71 ↑ 70.71 72.76 ↑ 71.02 73.37 ↑ 63.76 70.68 ↑ N.A. N.A. N.A. N.A.
cutract (n=100) 70.20 72.51 ↑ 69.97 71.94 ↑ 68.92 71.17 ↑ 64.81 69.85 ↑ N.A. N.A. N.A. N.A.
maggic (n=100) 58.98 61.32 ↑ 55.71 58.90 ↑ 52.53 53.36 ↑ 54.27 53.65 N.A. N.A. N.A. N.A.
seer (n=100) 84.45 85.37 ↑ 83.92 85.08 ↑ 82.23 84.36 ↑ 81.00 81.99 ↑ N.A. N.A. N.A. N.A.
compas (n=100) 68.02 68.19 ↑ 60.10 62.47 ↑ 53.74 61.28 ↑ 57.90 61.79 ↑ 60.96 63.36 ↑ 59.07 63.13 ↑
adult (n=100) 46.09 74.57 ↑ 47.56 73.97 ↑ 40.51 71.08 ↑ 48.85 72.91 ↑ 54.45 76.67 ↑ 54.27 77.61 ↑
drug (n=100) 76.24 76.74 ↑ 69.46 71.05 ↑ 74.02 76.55 ↑ 66.86 75.31 ↑ 71.47 75.00 ↑ 73.22 75.83 ↑

covid (n=200) 73.40 74.62 ↑ 70.70 73.12 ↑ 70.81 73.26 ↑ 62.53 70.67 ↑ N.A. N.A. N.A. N.A.
cutract (n=200) 71.39 73.01 ↑ 70.28 72.39 ↑ 67.69 70.29 ↑ 65.77 69.11 ↑ N.A. N.A. N.A. N.A.
maggic (n=200) 58.92 61.41 ↑ 57.33 60.16 ↑ 52.78 52.40 52.56 52.90 ↑ N.A. N.A. N.A. N.A.
seer (n=200) 84.39 85.56 ↑ 83.48 84.80 ↑ 83.15 84.18 ↑ 80.88 82.74 ↑ N.A. N.A. N.A. N.A.
compas (n=200) 67.02 68.15 ↑ 60.48 63.39 ↑ 53.96 59.22 ↑ 57.56 59.97 ↑ 61.82 63.53 ↑ 60.99 64.72 ↑
adult (n=200) 40.96 75.84 ↑ 49.89 76.11 ↑ 44.13 74.23 ↑ 48.25 78.35 ↑ 54.42 76.23 ↑ 42.42 76.06 ↑
drug (n=200) 75.58 76.06 ↑ 70.66 72.81 ↑ 71.89 76.54 ↑ 70.88 75.46 ↑ 69.12 74.22 ↑ 73.43 76.31 ↑
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C.3. Ablation for contextual information on Compas

We conduct a similar experiment as in Table 2, and use the dataset Compas. We report the results in Table 8.

Table 8: Including contextual information in the prompt improves precision (P), recall (R), and utility (U) in low-sample
settings (results shown for Compas).

nsamples

in Dtrain

GPT-4
w/ context

GPT-4
no context TVAE

P R U P R U P R U
20 0.69(0.02) 0.88(0.02) 0.69(0.02) 0.27(0.03) 0.89(0.03) 0.60(0.03) 0.43(0.02) 0.43(0.05) 0.55(0.04)
40 0.70(0.0) 0.92(0.01) 0.65(0.03) 0.31(0.06) 0.84(0.03) 0.57(0.01) 0.54(0.02) 0.80(0.02) 0.50(0.04)

100 0.69(0.02) 0.89(0.02) 0.69(0.01) 0.34(0.1) 0.85(0.05) 0.62(0.01) 0.60(0.03) 0.86(0.02) 0.59(0.03)
200 0.70(0.01) 0.89(0.02) 0.69(0.01) 0.31(0.05) 0.87(0.03) 0.58(0.05) 0.65(0.02) 0.88(0.01) 0.63(0.01)

These results highlight the importance of incorporating contextual information in the prompt, as it enables to exploit the
prior knowledge of the LLM.

C.4. Comparison to random noise baseline

We compare CLLM to a random noise baseline, where we augment the dataset with random additive Gaussian noise. In
order to capture the correlations between the different features, we fit a Kernel Density Estimator with a Gaussian kernel
and bandwidth given by Scott’s rule. We then sample 1000 points to create an augmented dataset Dsyn. We report the
performance gap between CLLM and this baseline (with and without curation) for the Covid and Compas datasets in Figure 9.
We observe that the random noise baseline does not match the performance of CLLM (i.e. has a performance gap), although
the baseline naturally improves as the dataset Dtrain grows in size.
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Figure 9: The random noise baseline does not match the performance of CLLM
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C.5. Detailed results for Section 3.1

We report additional results for Sec. 3.1, showing the AUC for each downstream model (XGBoost, Random forest, Logistic
regression, Decision tree). As we can see, the conclusion that curation helps improve downstream performance holds for
each of these various downstream models, as is indicated by the green arrows in Tables 9, 10, 11, 12.

Table 9: AUC for the RF model on Dtest where curation improves performance for all methods across all sample sizes n, as
indicated by ↑.

Real data CLLM (OURS) Baselines

GPT-4 GPT-3.5 CTGAN TabDDPM GReaT NFLOW SMOTE TVAE

Dataset Doracle Dtrain Uncur. Cur. Uncur. Cur. Uncur. Cur. Uncur. Cur. Uncur. Cur. Uncur. Cur. Uncur. Cur. Uncur. Cur.
covid (n=20) 76.11 72.52 75.67 75.59 72.37 73.32 ↑ 61.66 65.24 ↑ 70.22 70.13 57.78 68.24 ↑ 65.54 70.72 ↑ 71.40 71.42 ↑ 63.90 67.69 ↑
cutract (n=20) 74.16 73.34 73.45 74.24 ↑ 72.22 73.51 ↑ 66.24 70.45 ↑ 69.73 70.49 ↑ 52.61 68.11 ↑ 66.63 72.39 ↑ 71.42 72.34 ↑ 71.18 71.89 ↑
maggic (n=20) 71.28 59.18 62.92 63.97 ↑ 60.10 61.25 ↑ 53.21 55.14 ↑ 55.61 56.50 ↑ 50.92 57.23 ↑ 55.91 59.07 ↑ 58.20 58.55 ↑ 55.43 57.71 ↑
seer (n=20) 90.09 85.22 86.30 86.82 ↑ 85.86 85.73 78.11 80.52 ↑ 82.61 82.74 ↑ 47.57 75.70 ↑ 77.35 81.45 ↑ 82.09 83.00 ↑ 77.63 81.16 ↑
compas (n=20) 66.79 64.47 68.40 67.85 61.93 64.29 ↑ 56.87 63.21 ↑ 58.56 61.26 ↑ 52.23 63.30 ↑ 59.60 64.79 ↑ 61.05 62.18 ↑ 59.31 63.37 ↑
adult (n=20) 85.83 83.31 51.35 73.45 ↑ 49.17 74.27 ↑ 75.63 78.99 ↑ 77.27 77.64 ↑ 69.35 78.79 ↑ 68.32 78.27 ↑ 77.75 78.34 ↑ 76.13 79.02 ↑
drug (n=20) 83.12 77.07 79.23 78.90 77.11 76.95 72.81 77.24 ↑ 72.00 74.03 ↑ 63.34 73.29 ↑ 65.47 70.19 ↑ 75.48 75.36 72.22 74.32 ↑
covid (n=40) 76.11 75.21 75.63 75.70 ↑ 72.27 73.59 ↑ 66.64 70.75 ↑ 75.56 75.39 56.91 70.88 ↑ 70.47 73.15 ↑ 73.59 73.63 ↑ 64.27 69.71 ↑
cutract (n=40) 74.16 72.31 71.67 73.20 ↑ 69.92 71.01 ↑ 64.67 69.21 ↑ 69.16 69.67 ↑ 53.41 68.93 ↑ 61.23 69.21 ↑ 70.82 71.21 ↑ 59.99 67.56 ↑
maggic (n=40) 71.28 60.91 61.80 63.11 ↑ 59.38 61.50 ↑ 56.49 58.17 ↑ 56.50 58.21 ↑ 48.43 57.84 ↑ 55.47 59.94 ↑ 59.82 60.11 ↑ 56.76 58.92 ↑
seer (n=40) 90.09 86.96 86.01 86.29 ↑ 86.73 87.09 ↑ 83.46 86.62 ↑ 85.86 85.19 54.71 83.22 ↑ 83.23 86.81 ↑ 83.76 84.82 ↑ 80.34 85.82 ↑
compas (n=40) 66.79 62.73 68.06 68.13 ↑ 61.17 62.27 ↑ 56.05 60.92 ↑ 59.76 61.03 ↑ 57.82 64.25 ↑ 58.89 63.79 ↑ 61.20 61.25 ↑ 55.89 60.54 ↑
adult (n=40) 85.83 83.61 50.26 75.55 ↑ 46.68 76.63 ↑ 75.13 81.56 ↑ 76.10 80.40 ↑ 68.04 81.08 ↑ 73.29 81.46 ↑ 80.35 81.10 ↑ 75.81 82.11 ↑
drug (n=40) 83.12 78.81 78.35 79.54 ↑ 77.33 77.94 ↑ 74.68 76.64 ↑ 74.50 77.18 ↑ 70.25 77.77 ↑ 65.86 74.55 ↑ 74.84 75.26 ↑ 71.29 75.98 ↑
covid (n=100) 76.11 75.78 75.86 76.33 ↑ 73.02 74.40 ↑ 72.00 74.74 ↑ 74.64 75.74 ↑ 65.76 74.69 ↑ 67.05 75.47 ↑ 74.00 74.09 ↑ 72.11 74.44 ↑
cutract (n=100) 74.16 73.93 72.92 74.73 ↑ 72.51 73.93 ↑ 70.18 74.26 ↑ 71.71 73.69 ↑ 55.48 70.79 ↑ 69.79 74.75 ↑ 71.18 72.47 ↑ 68.47 73.78 ↑
maggic (n=100) 71.28 63.06 60.99 63.36 ↑ 57.97 60.86 ↑ 58.98 60.76 ↑ 58.88 60.13 ↑ 49.66 59.57 ↑ 57.82 62.24 ↑ 61.55 61.90 ↑ 57.46 60.55 ↑
seer (n=100) 90.00 87.53 86.33 87.31 ↑ 86.40 87.06 ↑ 84.59 87.27 ↑ 85.89 87.00 ↑ 70.32 85.97 ↑ 84.30 87.52 ↑ 85.12 85.82 ↑ 81.92 86.41 ↑
compas (n=100) 66.79 63.18 68.44 68.67 ↑ 59.41 62.00 ↑ 60.28 64.34 ↑ 60.17 62.63 ↑ 59.32 63.98 ↑ 60.10 65.19 ↑ 61.34 61.37 ↑ 59.58 63.37 ↑
adult (n=100) 85.83 84.38 46.37 76.29 ↑ 47.30 75.74 ↑ 77.45 82.63 ↑ 80.88 81.69 ↑ 79.23 83.33 ↑ 73.52 83.38 ↑ 82.54 83.05 ↑ 76.60 82.28 ↑
drug (n=100) 83.12 80.31 79.29 79.75 ↑ 74.55 76.46 ↑ 74.54 78.01 ↑ 78.34 79.88 ↑ 73.19 79.72 ↑ 67.01 76.46 ↑ 76.92 77.57 ↑ 74.53 78.82 ↑
covid (n=200) 76.11 76.08 75.23 75.84 ↑ 72.62 74.99 ↑ 74.04 76.25 ↑ 75.28 76.82 ↑ 67.08 75.62 ↑ 67.73 75.67 ↑ 74.82 75.27 ↑ 70.64 75.03 ↑
cutract (n=200) 74.16 74.25 73.48 75.28 ↑ 72.01 74.37 ↑ 71.99 74.93 ↑ 74.33 76.19 ↑ 68.05 74.68 ↑ 71.47 75.67 ↑ 72.44 72.85 ↑ 68.55 74.43 ↑
maggic (n=200) 71.28 64.77 61.56 63.78 ↑ 59.76 62.53 ↑ 60.85 63.57 ↑ 58.23 58.85 ↑ 50.84 61.49 ↑ 57.52 63.00 ↑ 63.72 64.01 ↑ 58.92 62.08 ↑
seer (n=200) 90.09 88.13 86.96 87.72 ↑ 85.28 86.70 ↑ 85.05 87.83 ↑ 87.14 88.80 ↑ 84.86 88.14 ↑ 80.80 87.46 ↑ 86.57 87.11 ↑ 82.30 87.59 ↑
compas (n=200) 66.79 63.61 67.68 68.80 ↑ 60.67 63.43 ↑ 61.20 65.11 ↑ 60.88 63.87 ↑ 60.10 64.91 ↑ 56.94 64.76 ↑ 61.57 62.76 ↑ 59.95 64.14 ↑
adult (n=200) 85.83 85.16 40.18 77.61 ↑ 46.74 78.71 ↑ 80.92 84.26 ↑ 84.50 85.44 ↑ 82.73 85.05 ↑ 77.48 84.72 ↑ 84.26 84.33 ↑ 78.12 83.94 ↑
drug (n=200) 83.12 81.47 78.70 78.98 ↑ 75.87 77.59 ↑ 77.19 80.03 ↑ 73.25 75.75 ↑ 78.50 81.13 ↑ 67.83 78.81 ↑ 79.50 80.16 ↑ 74.81 79.45 ↑
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Table 10: AUC for the XGB model on Dtest where curation improves performance for all methods across all sample sizes n,
as indicated by ↑.

Real data CLLM (OURS) Baselines

GPT-4 GPT-3.5 CTGAN TabDDPM GReaT NFLOW SMOTE TVAE

Dataset Doracle Dtrain Uncur. Cur. Uncur. Cur. Uncur. Cur. Uncur. Cur. Uncur. Cur. Uncur. Cur. Uncur. Cur. Uncur. Cur.
covid (n=20) 77.59 69.70 75.59 75.49 71.27 72.25 ↑ 61.40 65.96 ↑ 69.39 68.21 55.99 67.06 ↑ 62.28 69.67 ↑ 68.49 68.43 62.49 67.16 ↑
cutract (n=20) 73.14 71.04 73.26 74.30 ↑ 71.62 73.04 ↑ 65.13 69.67 ↑ 68.46 68.87 ↑ 51.99 68.31 ↑ 62.93 70.87 ↑ 68.28 70.72 ↑ 69.96 71.98 ↑
maggic (n=20) 71.38 57.98 61.54 62.81 ↑ 58.76 60.01 ↑ 53.62 55.44 ↑ 55.97 57.06 ↑ 50.14 56.96 ↑ 54.91 58.22 ↑ 56.79 57.15 ↑ 55.41 57.72 ↑
seer (n=20) 91.80 80.41 87.00 86.56 85.67 85.42 76.84 80.00 ↑ 81.79 80.21 45.06 75.39 ↑ 76.25 81.45 ↑ 78.57 79.78 ↑ 75.69 81.01 ↑
compas (n=20) 69.17 65.49 69.71 68.79 62.55 64.68 ↑ 56.34 63.92 ↑ 58.19 61.42 ↑ 51.73 63.51 ↑ 59.01 64.84 ↑ 62.35 63.46 ↑ 59.18 63.62 ↑
adult (n=20) 88.64 79.21 52.12 74.28 ↑ 47.70 72.91 ↑ 71.70 78.26 ↑ 76.50 77.22 ↑ 67.79 78.67 ↑ 66.79 77.77 ↑ 77.11 77.97 ↑ 75.46 79.35 ↑
drug (n=20) 81.06 69.26 78.17 77.28 75.23 75.71 ↑ 70.60 74.31 ↑ 70.29 71.25 ↑ 57.18 69.67 ↑ 62.96 69.12 ↑ 70.84 72.30 ↑ 69.78 72.45 ↑
covid (n=40) 77.59 71.57 75.23 75.36 ↑ 71.55 73.37 ↑ 66.17 70.85 ↑ 72.21 72.68 ↑ 56.03 70.80 ↑ 67.39 71.82 ↑ 70.02 69.96 61.19 69.77 ↑
cutract (n=40) 73.14 69.50 71.26 73.57 ↑ 69.66 71.34 ↑ 62.52 68.69 ↑ 64.50 68.05 ↑ 51.23 68.23 ↑ 60.74 68.91 ↑ 69.42 69.19 59.34 67.80 ↑
maggic (n=40) 71.38 58.76 60.27 61.88 ↑ 57.87 60.29 ↑ 55.87 58.47 ↑ 55.38 58.03 ↑ 48.50 57.02 ↑ 54.53 59.01 ↑ 58.12 58.29 ↑ 56.19 58.33 ↑
seer (n=40) 91.80 84.51 86.63 87.40 ↑ 86.27 86.80 ↑ 82.48 86.55 ↑ 81.62 81.58 52.80 83.03 ↑ 80.04 85.84 ↑ 82.53 83.62 ↑ 79.35 85.81 ↑
compas (n=40) 69.17 62.90 69.24 68.90 61.74 63.21 ↑ 56.63 62.55 ↑ 59.07 59.38 ↑ 58.01 64.95 ↑ 58.44 64.44 ↑ 61.81 61.89 ↑ 56.60 62.26 ↑
adult (n=40) 88.64 82.16 48.51 76.59 ↑ 45.92 76.92 ↑ 73.38 82.53 ↑ 74.03 79.84 ↑ 66.60 80.98 ↑ 69.47 81.56 ↑ 80.01 80.51 ↑ 74.20 82.53 ↑
drug (n=40) 81.06 72.72 77.03 78.85 ↑ 76.37 76.48 ↑ 70.99 74.48 ↑ 74.65 76.53 ↑ 64.52 75.09 ↑ 62.58 73.14 ↑ 71.80 72.15 ↑ 67.61 74.04 ↑
covid (n=100) 77.59 73.16 75.55 76.56 ↑ 72.69 74.36 ↑ 70.54 73.99 ↑ 72.99 74.50 ↑ 63.40 73.98 ↑ 63.50 73.79 ↑ 72.64 73.35 ↑ 70.45 73.76 ↑
cutract (n=100) 73.14 70.49 72.29 74.01 ↑ 71.51 73.48 ↑ 68.64 73.63 ↑ 71.32 74.02 ↑ 54.74 69.69 ↑ 66.97 72.98 ↑ 67.71 69.42 ↑ 66.44 72.32 ↑
maggic (n=100) 71.38 60.55 60.04 62.57 ↑ 56.98 60.49 ↑ 58.21 60.42 ↑ 58.11 59.42 ↑ 49.71 58.77 ↑ 55.36 60.58 ↑ 60.02 60.15 ↑ 56.47 60.28 ↑
seer (n=100) 91.80 85.52 86.81 87.64 ↑ 86.39 87.21 ↑ 83.74 87.29 ↑ 84.66 86.85 ↑ 68.20 85.49 ↑ 82.37 86.80 ↑ 83.18 83.87 ↑ 80.45 86.49 ↑
compas (n=100) 69.17 62.71 69.37 69.37 59.83 62.80 ↑ 60.56 64.90 ↑ 58.20 62.00 ↑ 58.51 64.60 ↑ 59.76 64.68 ↑ 61.33 62.03 ↑ 60.37 63.42 ↑
adult (n=100) 88.64 82.78 44.60 76.75 ↑ 46.34 76.83 ↑ 74.97 82.89 ↑ 77.38 81.42 ↑ 78.84 83.96 ↑ 68.31 82.87 ↑ 82.58 83.24 ↑ 76.15 82.47 ↑
drug (n=100) 81.06 75.49 79.12 79.81 ↑ 72.52 74.78 ↑ 68.89 75.91 ↑ 76.88 78.33 ↑ 66.38 77.02 ↑ 62.27 75.13 ↑ 74.40 74.49 ↑ 71.02 76.85 ↑
covid (n=200) 77.59 73.06 75.12 76.64 ↑ 71.74 74.66 ↑ 72.57 75.50 ↑ 73.56 75.88 ↑ 66.02 74.51 ↑ 63.29 74.62 ↑ 73.34 73.89 ↑ 68.14 74.21 ↑
cutract (n=200) 73.14 71.68 73.43 75.14 ↑ 71.76 74.31 ↑ 69.35 73.80 ↑ 72.76 75.33 ↑ 65.83 73.43 ↑ 68.05 74.27 ↑ 70.06 71.35 ↑ 66.65 73.34 ↑
maggic (n=200) 71.38 62.40 59.46 63.15 ↑ 58.05 61.68 ↑ 59.04 62.58 ↑ 57.63 59.23 ↑ 50.63 60.09 ↑ 55.55 61.36 ↑ 61.73 61.88 ↑ 57.09 61.15 ↑
seer (n=200) 91.80 85.87 86.75 88.08 ↑ 85.74 86.97 ↑ 83.97 87.64 ↑ 86.21 88.46 ↑ 83.21 87.65 ↑ 76.91 87.16 ↑ 84.70 85.59 ↑ 81.45 87.46 ↑
compas (n=200) 69.17 63.14 68.80 69.54 ↑ 61.62 64.59 ↑ 60.65 65.67 ↑ 60.97 65.12 ↑ 60.66 65.67 ↑ 56.49 64.34 ↑ 61.68 62.93 ↑ 60.32 64.18 ↑
adult (n=200) 88.64 84.12 40.38 77.39 ↑ 47.40 79.40 ↑ 80.00 84.61 ↑ 83.73 85.73 ↑ 81.92 85.76 ↑ 74.90 85.13 ↑ 84.78 84.45 75.54 84.39 ↑
drug (n=200) 81.06 78.41 78.25 79.09 ↑ 73.31 76.76 ↑ 72.82 79.00 ↑ 72.62 74.89 ↑ 74.30 79.75 ↑ 63.91 77.60 ↑ 77.64 77.92 ↑ 70.16 77.89 ↑

Table 11: AUC for the DT model on Dtest where curation improve performance for all methods across all sample sizes n, as
indicated by ↑.

Real data CLLM (OURS) Baselines

GPT-4 GPT-3.5 CTGAN TabDDPM GReaT NFLOW SMOTE TVAE

Dataset Doracle Dtrain Uncur. Cur. Uncur. Cur. Uncur. Cur. Uncur. Cur. Uncur. Cur. Uncur. Cur. Uncur. Cur. Uncur. Cur.
covid (n=20) 63.46 61.92 67.52 67.67 ↑ 61.07 64.89 ↑ 52.94 56.62 ↑ 58.95 59.19 ↑ 51.83 58.73 ↑ 54.37 61.53 ↑ 59.56 59.01 56.46 59.49 ↑
cutract (n=20) 62.49 64.62 62.40 66.03 ↑ 62.10 65.15 ↑ 55.67 61.73 ↑ 57.91 58.97 ↑ 51.89 62.76 ↑ 57.12 64.85 ↑ 62.85 62.38 60.25 62.34 ↑
maggic (n=20) 56.53 54.80 54.67 55.03 ↑ 52.54 53.54 ↑ 50.90 52.08 ↑ 52.39 52.70 ↑ 49.70 53.08 ↑ 51.52 53.23 ↑ 52.55 52.44 50.91 51.52 ↑
seer (n=20) 78.86 71.09 76.17 77.17 ↑ 73.92 75.58 ↑ 64.18 70.69 ↑ 74.78 74.72 46.60 68.79 ↑ 65.77 72.25 ↑ 70.54 71.19 ↑ 64.47 70.11 ↑
compas (n=20) 61.05 58.73 62.07 63.91 ↑ 57.17 60.85 ↑ 53.83 58.83 ↑ 51.77 56.11 ↑ 52.39 60.96 ↑ 54.64 60.27 ↑ 58.16 57.57 53.52 58.97 ↑
adult (n=20) 73.84 68.03 52.80 67.10 ↑ 49.15 66.52 ↑ 61.57 68.93 ↑ 70.46 71.19 ↑ 62.04 71.87 ↑ 59.07 69.16 ↑ 65.52 63.33 64.40 70.41 ↑
drug (n=20) 65.66 63.49 64.40 66.87 ↑ 62.69 64.21 ↑ 56.76 64.18 ↑ 61.04 62.48 ↑ 52.22 62.62 ↑ 53.50 61.30 ↑ 62.34 60.69 55.00 58.89 ↑
covid (n=40) 63.46 65.10 66.55 67.85 ↑ 62.54 64.64 ↑ 57.16 63.41 ↑ 63.15 60.93 51.66 61.81 ↑ 57.04 63.13 ↑ 62.19 60.49 54.51 60.32 ↑
cutract (n=40) 62.49 63.01 62.49 65.29 ↑ 61.61 63.01 ↑ 56.40 62.63 ↑ 58.18 58.97 ↑ 51.41 62.50 ↑ 55.64 62.24 ↑ 60.93 61.29 ↑ 51.94 60.24 ↑
maggic (n=40) 56.53 53.74 53.20 54.71 ↑ 52.33 52.97 ↑ 51.85 53.85 ↑ 52.48 53.45 ↑ 49.61 52.87 ↑ 51.24 54.45 ↑ 53.69 53.37 50.60 52.66 ↑
seer (n=40) 78.86 72.40 76.02 77.13 ↑ 75.18 78.26 ↑ 68.31 73.89 ↑ 77.94 73.24 51.45 72.32 ↑ 67.78 75.95 ↑ 70.32 72.81 ↑ 68.79 74.48 ↑
compas (n=40) 61.05 58.23 62.00 63.43 ↑ 56.73 59.19 ↑ 52.23 56.84 ↑ 56.67 57.55 ↑ 54.52 60.09 ↑ 54.47 58.92 ↑ 56.59 56.47 52.62 57.20 ↑
adult (n=40) 74.84 69.75 49.47 68.90 ↑ 47.85 66.79 ↑ 60.55 70.14 ↑ 64.06 70.56 ↑ 58.77 71.63 ↑ 60.26 71.50 ↑ 69.43 70.58 ↑ 59.76 72.41 ↑
drug (n=40) 65.66 64.18 62.86 65.90 ↑ 60.09 63.43 ↑ 60.84 65.40 ↑ 63.05 64.90 ↑ 54.80 65.25 ↑ 54.68 62.40 ↑ 61.21 61.98 ↑ 53.77 60.23 ↑
covid (n=100) 63.46 63.17 67.14 68.60 ↑ 62.40 66.02 ↑ 61.34 64.63 ↑ 63.33 66.42 ↑ 55.86 64.53 ↑ 55.44 64.91 ↑ 61.96 63.40 ↑ 59.75 64.47 ↑
cutract (n=100) 62.49 62.69 60.96 65.60 ↑ 62.12 65.95 ↑ 59.06 66.20 ↑ 63.38 65.72 ↑ 52.62 61.73 ↑ 58.11 65.08 ↑ 60.15 61.34 ↑ 58.82 63.76 ↑
maggic (n=100) 56.53 54.83 53.58 55.70 ↑ 50.72 53.98 ↑ 52.29 55.06 ↑ 53.93 54.61 ↑ 49.71 53.34 ↑ 51.82 54.53 ↑ 54.11 54.34 ↑ 51.31 53.33 ↑
seer (n=100) 78.86 73.83 76.50 77.84 ↑ 74.81 77.80 ↑ 69.61 76.91 ↑ 74.07 77.21 ↑ 59.62 75.40 ↑ 69.51 76.54 ↑ 71.04 72.63 ↑ 66.35 76.44 ↑
compas (n=100) 61.05 56.61 63.04 63.39 ↑ 55.57 57.40 ↑ 55.07 58.95 ↑ 53.38 55.69 ↑ 54.61 59.31 ↑ 54.38 57.92 ↑ 56.69 57.01 ↑ 54.34 56.72 ↑
adult (n=100) 73.84 72.19 46.68 66.58 ↑ 47.94 67.37 ↑ 62.42 71.78 ↑ 68.06 70.77 ↑ 66.29 74.36 ↑ 58.28 72.14 ↑ 71.51 72.68 ↑ 62.11 72.18 ↑
drug (n=100) 65.66 64.20 66.18 67.41 ↑ 60.77 61.21 ↑ 57.67 63.41 ↑ 63.26 64.55 ↑ 54.89 65.72 ↑ 52.06 63.38 ↑ 61.21 62.30 ↑ 55.40 63.32 ↑
covid (n=200) 63.46 63.45 67.19 68.74 ↑ 63.25 65.73 ↑ 61.58 66.27 ↑ 63.55 66.98 ↑ 57.20 65.54 ↑ 55.08 63.77 ↑ 63.60 63.40 60.01 64.27 ↑
cutract (n=200) 62.49 63.53 63.36 65.33 ↑ 63.01 65.47 ↑ 60.51 65.01 ↑ 62.55 66.94 ↑ 57.40 65.14 ↑ 59.13 65.20 ↑ 61.66 62.40 ↑ 58.29 64.85 ↑
maggic (n=200) 56.53 55.06 52.76 54.41 ↑ 52.41 54.34 ↑ 52.47 55.21 ↑ 52.40 53.39 ↑ 50.43 53.66 ↑ 51.58 54.82 ↑ 54.64 54.36 51.78 54.22 ↑
seer (n=200) 78.86 74.51 75.20 77.26 ↑ 75.33 77.41 ↑ 70.96 77.08 ↑ 74.51 79.20 ↑ 71.44 78.66 ↑ 65.84 76.60 ↑ 73.11 74.77 ↑ 66.37 76.36 ↑
compas (n=200) 61.05 57.20 61.09 62.89 ↑ 56.15 59.02 ↑ 54.20 57.78 ↑ 55.72 58.68 ↑ 55.83 59.81 ↑ 52.13 57.25 ↑ 56.55 57.34 ↑ 54.07 58.66 ↑
adult (n=200) 73.84 72.26 44.41 67.99 ↑ 48.46 67.24 ↑ 66.56 74.12 ↑ 71.61 74.89 ↑ 69.91 76.52 ↑ 60.70 74.05 ↑ 73.11 74.08 ↑ 63.10 73.82 ↑
drug (n=200) 65.66 67.04 66.29 66.57 ↑ 61.88 64.34 ↑ 59.10 66.06 ↑ 63.59 63.40 59.11 69.04 ↑ 53.78 64.55 ↑ 64.56 65.35 ↑ 56.82 63.02 ↑
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Table 12: AUC for the LR model on Dtest where curation improves performance for all methods across all sample sizes n,
as indicated by ↑.

Real data CLLM (OURS) Baselines

GPT-4 GPT-3.5 CTGAN TabDDPM GReaT NFLOW SMOTE TVAE

Dataset Doracle Dtrain Uncur. Cur. Uncur. Cur. Uncur. Cur. Uncur. Cur. Uncur. Cur. Uncur. Cur. Uncur. Cur. Uncur. Cur.
covid (n=20) 80.47 69.85 76.35 76.73 ↑ 74.69 75.18 ↑ 59.99 66.87 ↑ 68.78 69.84 ↑ 63.94 71.81 ↑ 69.28 72.32 ↑ 68.36 68.44 ↑ 63.92 70.12 ↑
cutract (n=20) 79.12 71.47 75.50 75.41 73.93 74.47 ↑ 69.01 70.06 ↑ 68.11 68.02 53.04 68.90 ↑ 71.09 73.55 ↑ 71.09 71.53 ↑ 74.37 74.69 ↑
maggic (n=20) 70.46 56.55 63.67 64.12 ↑ 58.74 59.98 ↑ 53.27 55.37 ↑ 54.40 55.28 ↑ 50.39 55.27 ↑ 56.52 59.00 ↑ 55.83 56.45 ↑ 54.59 57.82 ↑
seer (n=20) 90.91 85.96 88.63 88.74 ↑ 87.90 88.11 ↑ 78.22 83.69 ↑ 83.17 84.74 ↑ 51.07 77.84 ↑ 84.86 84.75 85.72 86.11 ↑ 80.33 82.63 ↑
compas (n=20) 73.02 63.74 71.88 71.10 66.62 67.89 ↑ 55.62 64.29 ↑ 62.15 64.70 ↑ 56.97 66.59 ↑ 64.71 68.59 ↑ 62.68 63.16 ↑ 61.19 64.36 ↑
adult (n=20) 88.37 79.24 45.28 71.07 ↑ 50.89 75.77 ↑ 80.03 81.27 ↑ 73.19 74.10 ↑ 68.84 79.66 ↑ 75.65 80.74 ↑ 74.61 75.04 ↑ 76.82 78.84 ↑
drug (n=20) 81.41 73.56 78.54 78.10 71.69 71.68 73.07 74.88 ↑ 69.14 70.97 ↑ 62.38 69.99 ↑ 66.57 70.37 ↑ 71.99 72.28 ↑ 69.39 71.08 ↑
covid (n=40) 80.47 71.20 76.17 76.91 ↑ 75.32 76.13 ↑ 64.56 68.82 ↑ 71.08 72.77 ↑ 61.40 71.21 ↑ 70.74 73.84 ↑ 68.85 69.65 ↑ 64.13 69.58 ↑
cutract (n=40) 79.12 71.90 74.05 74.82 ↑ 72.69 72.89 ↑ 68.43 70.97 ↑ 70.67 72.39 ↑ 61.50 74.10 ↑ 67.98 71.55 ↑ 70.26 70.12 67.87 70.88 ↑
maggic (n=40) 70.46 59.65 61.89 63.39 ↑ 60.41 61.84 ↑ 55.81 56.64 ↑ 56.58 58.08 ↑ 48.68 58.82 ↑ 57.50 60.90 ↑ 57.98 58.00 ↑ 56.61 59.42 ↑
seer (n=40) 90.91 87.86 88.50 88.89 ↑ 85.66 85.62 85.95 87.62 ↑ 84.92 85.45 ↑ 60.75 85.84 ↑ 88.46 88.85 ↑ 86.56 87.58 ↑ 86.30 88.36 ↑
compas (n=40) 73.02 65.50 70.96 70.93 65.70 66.72 ↑ 60.24 63.78 ↑ 59.91 62.49 ↑ 65.17 68.19 ↑ 62.63 67.00 ↑ 63.70 64.18 ↑ 58.63 64.17 ↑
adult (n=40) 88.37 82.23 44.99 74.25 ↑ 56.38 76.76 ↑ 78.24 82.22 ↑ 71.83 81.15 ↑ 73.65 81.54 ↑ 81.49 84.34 ↑ 81.80 83.16 ↑ 80.54 83.02 ↑
drug (n=40) 81.41 71.74 78.98 78.88 71.54 73.21 ↑ 71.34 74.44 ↑ 72.12 73.68 ↑ 70.00 76.45 ↑ 66.91 73.78 ↑ 69.09 69.75 ↑ 68.21 70.94 ↑
covid (n=100) 80.47 74.19 76.53 77.34 ↑ 74.74 76.27 ↑ 72.30 75.15 ↑ 75.45 76.20 ↑ 69.05 74.94 ↑ 71.01 76.38 ↑ 71.71 72.28 ↑ 73.90 75.17 ↑
cutract (n=100) 79.12 76.73 74.62 75.70 ↑ 73.75 74.40 ↑ 73.89 75.61 ↑ 75.70 74.49 60.03 74.35 ↑ 75.49 76.86 ↑ 76.13 75.47 73.85 76.21 ↑
maggic (n=100) 70.46 60.14 61.31 63.64 ↑ 57.17 60.28 ↑ 59.32 61.13 ↑ 58.12 58.97 ↑ 49.10 59.95 ↑ 60.43 63.06 ↑ 59.87 59.59 59.43 61.28 ↑
seer (n=100) 90.91 88.92 88.16 88.69 ↑ 88.09 88.25 ↑ 88.45 89.11 ↑ 87.53 88.25 ↑ 83.13 88.44 ↑ 88.46 89.27 ↑ 87.95 87.65 86.81 88.67 ↑
compas (n=100) 73.02 67.75 71.21 71.34 ↑ 65.61 67.67 ↑ 64.14 66.72 ↑ 61.55 65.03 ↑ 67.43 68.88 ↑ 65.84 68.39 ↑ 66.39 66.53 ↑ 65.61 67.77 ↑
adult (n=100) 88.37 85.59 46.71 78.68 ↑ 48.64 75.94 ↑ 82.30 84.48 ↑ 77.41 78.98 ↑ 83.99 84.99 ↑ 82.67 85.77 ↑ 85.63 85.43 81.32 83.97 ↑
drug (n=100) 81.41 74.34 80.35 80.01 70.00 71.76 ↑ 71.66 75.80 ↑ 71.26 72.40 ↑ 74.57 78.65 ↑ 69.34 77.50 ↑ 71.04 71.75 ↑ 71.91 75.38 ↑
covid (n=200) 80.47 76.73 76.06 77.25 ↑ 75.18 77.09 ↑ 76.11 77.54 ↑ 77.51 78.09 ↑ 71.92 76.62 ↑ 74.06 77.53 ↑ 74.94 74.94 72.75 76.00 ↑
cutract (n=200) 79.12 77.53 75.28 76.30 ↑ 74.36 75.38 ↑ 75.25 75.88 ↑ 77.66 77.66 75.37 76.69 ↑ 76.45 77.50 ↑ 76.77 76.59 72.94 74.86 ↑
maggic (n=200) 70.46 63.32 61.89 64.30 ↑ 59.10 62.10 ↑ 61.57 63.98 ↑ 56.77 57.35 ↑ 51.05 63.17 ↑ 59.17 63.84 ↑ 62.86 62.86 60.94 63.47 ↑
seer (n=200) 90.91 90.01 88.65 89.20 ↑ 87.57 88.14 ↑ 88.20 88.80 ↑ 89.69 89.81 ↑ 89.10 89.68 ↑ 87.35 89.54 ↑ 89.13 89.14 ↑ 88.74 89.65 ↑
compas (n=200) 73.02 69.14 70.53 71.36 ↑ 63.49 66.50 ↑ 66.26 68.73 ↑ 64.83 66.40 ↑ 67.85 69.93 ↑ 60.78 68.07 ↑ 68.18 68.18 66.26 68.99 ↑
adult (n=200) 88.37 86.94 38.89 80.35 ↑ 56.97 79.07 ↑ 85.25 86.29 ↑ 86.81 86.63 85.70 85.94 ↑ 84.18 86.65 ↑ 86.88 86.70 84.09 85.91 ↑
drug (n=200) 81.41 77.47 79.06 79.61 ↑ 71.56 72.54 ↑ 76.15 78.84 ↑ 69.00 73.14 ↑ 77.51 79.72 ↑ 75.47 80.07 ↑ 75.82 75.69 71.76 76.95 ↑
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C.6. Full results for performance evaluation

We report full results with standard deviation for the results from the main paper. The performance is AUC averaged over
XGBoost, Random forest, Logistic regression, Decision tree.

Table 13: AUC averaged over 4 downstream models on Dtest where curation improves performance for all methods across
all sample sizes n, as indicated by ↑. CLLM w/ GPT-4 (Curated) dataset provides the strongest performance for both
private/proprietary datasets and public datasets

Real data CLLM (OURS) Baselines

GPT-4 GPT-3.5 CTGAN TabDDPM GReaT NFLOW SMOTE TVAE

Dataset Doracle Dtrain Uncur. Cur. Uncur. Cur. Uncur. Cur. Uncur. Cur. Uncur. Cur. Uncur. Cur. Uncur. Cur. Uncur. Cur.
covid (n=20) 74.41(0.11) 68.50(1.57) 73.78(0.31) 73.87(0.50) 69.85(0.75) 71.41(0.92) 59.00(2.25) 63.67(2.51) 66.84(1.66) 66.85(1.56) 57.38(1.47) 66.46(0.80) 62.87(0.98) 68.56(1.07) 66.95(1.66) 66.82(1.89) 61.69(2.72) 66.11(2.79)
cutract (n=20) 72.23(0.65) 70.12(1.16) 71.15(0.46) 72.50(0.76) 69.97(1.13) 71.54(1.38) 64.01(2.26) 67.98(1.63) 66.05(1.14) 66.59(1.49) 52.38(1.78) 67.02(0.97) 64.44(1.05) 70.42(1.25) 68.41(1.34) 69.24(1.25) 68.94(1.38) 70.22(1.12)
maggic (n=20) 67.41(0.06) 57.13(0.85) 60.70(0.38) 61.48(0.49) 57.54(0.83) 58.69(0.76) 52.75(1.34) 54.51(1.40) 54.59(1.02) 55.39(1.07) 50.29(0.52) 55.64(0.43) 54.72(1.38) 57.38(1.06) 55.84(1.21) 56.15(1.20) 54.08(1.05) 56.19(0.76)
seer (n=20) 87.92(0.08) 80.67(1.67) 84.53(0.33) 84.82(0.47) 83.34(0.95) 83.71(0.52) 74.34(4.11) 78.73(3.13) 80.59(1.32) 80.60(1.32) 47.57(2.51) 74.43(3.36) 76.06(1.68) 79.98(1.65) 79.23(2.17) 80.02(2.08) 74.53(1.37) 78.73(1.24)
compas (n=20) 67.51(0.03) 63.11(0.96) 68.01(0.44) 67.91(0.55) 62.07(1.51) 64.43(1.38) 55.67(1.60) 62.56(1.61) 57.67(1.90) 60.87(1.33) 53.33(1.85) 63.59(1.30) 59.49(1.72) 64.62(1.14) 61.06(1.92) 61.59(2.15) 58.30(1.77) 62.58(1.87)
adult (n=20) 84.17(0.10) 77.45(1.25) 50.39(3.99) 71.48(2.34) 49.23(2.57) 72.37(2.26) 72.23(1.26) 76.86(1.25) 74.35(1.48) 75.04(1.82) 67.00(4.72) 77.25(1.49) 67.46(3.76) 76.48(1.77) 73.75(1.64) 73.67(1.46) 73.20(1.51) 76.90(1.64)
drug (n=20) 77.81(0.55) 70.84(2.25) 75.08(1.17) 75.29(1.11) 71.68(2.25) 72.14(2.64) 68.31(2.81) 72.65(2.00) 68.12(2.38) 69.68(2.41) 58.78(4.26) 68.89(3.57) 62.13(4.94) 67.75(3.72) 70.16(1.87) 70.16(1.75) 66.60(2.95) 69.18(2.59)
covid (n=40) 74.41(0.11) 70.77(0.96) 73.40(0.61) 73.95(0.67) 70.42(0.92) 71.93(0.60) 63.63(1.15) 68.46(0.93) 70.50(1.49) 70.44(1.37) 56.50(0.83) 68.68(1.39) 66.41(2.51) 70.48(1.48) 68.66(1.48) 68.44(1.28) 61.03(0.96) 67.35(0.60)
cutract (n=40) 72.23(0.65) 69.18(0.65) 69.87(0.62) 71.72(0.46) 68.47(0.59) 69.56(0.50) 63.01(2.33) 67.87(1.36) 65.63(2.71) 67.27(2.38) 54.39(1.59) 68.44(0.41) 61.40(1.95) 67.98(1.06) 67.86(0.72) 67.95(0.59) 59.79(1.85) 66.62(1.06)
maggic (n=40) 67.50(0.04) 58.26(0.55) 59.29(0.50) 60.77(0.36) 57.50(0.69) 59.15(0.48) 55.00(1.27) 56.78(1.17) 55.24(0.63) 56.94(0.50) 48.81(0.73) 56.64(0.63) 54.68(0.53) 58.58(0.54) 57.40(0.57) 57.44(0.67) 55.04(1.14) 57.33(1.06)
seer (n=40) 87.92(0.08) 82.93(0.55) 84.29(0.39) 84.93(0.46) 83.46(1.20) 84.44(0.69) 80.05(0.93) 83.67(0.51) 82.59(1.48) 81.37(1.11) 54.93(2.06) 81.11(1.24) 79.88(0.53) 84.36(0.62) 80.79(0.67) 82.21(0.67) 78.69(2.32) 83.62(1.06)
compas (n=40) 67.51(0.03) 62.34(0.79) 67.57(0.40) 67.85(0.37) 61.34(1.67) 62.84(1.21) 56.29(1.96) 61.02(1.69) 58.85(1.28) 60.11(1.22) 58.88(1.04) 64.37(0.91) 58.61(1.35) 63.54(1.11) 60.83(1.19) 60.95(1.22) 55.94(1.50) 61.04(1.56)
adult (n=40) 84.17(0.10) 79.44(1.03) 48.31(3.58) 73.82(2.19) 49.21(1.78) 74.27(1.49) 71.82(1.22) 79.11(0.71) 71.51(1.85) 77.99(0.65) 66.77(3.32) 78.81(1.36) 71.13(2.27) 79.71(1.02) 77.90(1.07) 78.84(1.19) 72.58(1.34) 80.02(0.76)

drug (n=40) 77.81(0.55) 71.86(1.07) 74.30(0.59) 75.79(0.39) 71.33(0.88) 72.76(0.97) 69.46(2.23) 72.74(1.70) 71.08(1.72) 73.07(1.03) 64.89(1.39) 73.64(0.87) 62.51(3.03) 70.97(1.91) 69.23(1.68) 69.78(1.46) 65.22(1.37) 70.30(1.04)
covid (n=100) 74.41(0.11) 71.57(0.48) 73.77(0.27) 74.71(0.34) 70.71(0.46) 72.76(0.44) 69.05(0.96) 72.13(0.66) 71.60(0.59) 73.22(0.46) 63.52(1.29) 72.04(0.57) 64.25(1.51) 72.64(0.64) 70.08(0.67) 70.78(0.59) 69.05(0.48) 71.96(0.49)
cutract (n=100) 72.23(0.65) 70.96(0.68) 70.20(0.45) 72.51(0.55) 69.97(0.97) 71.94(0.89) 67.94(1.01) 72.42(0.66) 70.53(1.51) 71.98(1.39) 55.72(2.04) 69.14(0.93) 67.59(0.71) 72.42(0.54) 68.79(0.83) 69.68(0.76) 66.89(1.03) 71.52(0.70)
maggic (n=100) 67.50(0.04) 59.65(0.50) 58.98(0.23) 61.32(0.42) 55.71(0.83) 58.90(0.72) 57.20(0.91) 59.34(0.64) 57.26(0.50) 58.28(0.46) 49.54(0.71) 57.91(0.74) 56.36(0.54) 60.11(0.54) 58.89(0.51) 58.99(0.42) 56.17(0.68) 58.86(0.69)
seer (n=100) 87.92(0.08) 83.95(0.32) 84.45(0.38) 85.37(0.47) 83.92(0.81) 85.08(0.32) 81.60(0.73) 85.14(0.36) 83.04(0.78) 84.83(0.49) 70.32(2.52) 83.83(0.39) 81.16(1.03) 85.03(0.39) 81.82(0.45) 82.49(0.46) 78.88(0.71) 84.50(0.44)
compas (n=100) 67.51(0.03) 62.56(0.72) 68.02(0.29) 68.19(0.37) 60.10(1.60) 62.47(1.11) 60.01(1.16) 63.73(0.99) 58.32(0.91) 61.34(0.94) 59.97(0.82) 64.19(0.83) 60.02(0.63) 64.04(0.60) 61.44(0.84) 61.73(0.81) 59.97(1.00) 62.82(1.05)
adult (n=100) 84.17(0.10) 81.24(0.48) 46.09(1.86) 74.57(1.74) 47.56(3.43) 73.97(1.57) 74.29(1.23) 80.45(0.81) 75.93(1.45) 78.22(1.22) 77.09(0.74) 81.66(0.53) 70.70(1.02) 81.04(0.37) 80.56(0.53) 81.10(0.44) 74.04(1.44) 80.23(0.98)
drug (n=100) 77.81(0.55) 73.58(0.72) 76.24(0.64) 76.74(0.51) 69.46(2.43) 71.05(2.30) 68.19(2.06) 73.28(1.41) 72.43(0.96) 73.79(0.65) 67.26(1.22) 75.28(0.46) 62.67(2.23) 73.12(0.97) 70.90(1.08) 71.53(1.13) 68.22(1.60) 73.59(0.97)
covid (n=200) 74.41(0.11) 72.33(0.52) 73.40(0.25) 74.62(0.13) 70.70(0.73) 73.12(0.48) 71.07(0.35) 73.89(0.40) 72.47(0.50) 74.44(0.44) 65.55(0.67) 73.07(0.38) 65.04(0.69) 72.90(0.37) 71.68(0.49) 71.87(0.49) 67.89(0.56) 72.38(0.42)
cutract (n=200) 72.23(0.65) 71.75(0.71) 71.39(0.76) 73.01(0.85) 70.28(0.67) 72.39(0.84) 69.28(0.55) 72.41(0.65) 71.83(0.65) 74.03(0.69) 66.66(0.94) 72.49(0.71) 68.77(0.71) 73.16(0.68) 70.23(0.83) 70.80(0.79) 66.61(0.76) 71.87(0.71)
maggic (n=200) 67.50(0.04) 61.39(0.44) 58.92(0.47) 61.41(0.39) 57.33(0.51) 60.16(0.41) 58.48(0.59) 61.33(0.57) 56.26(0.82) 57.20(0.91) 50.74(0.74) 59.60(0.55) 55.95(0.72) 60.75(0.39) 60.73(0.44) 60.78(0.49) 57.18(0.56) 60.23(0.44)
seer (n=200) 87.92(0.08) 84.63(0.35) 84.39(0.19) 85.56(0.30) 83.48(0.41) 84.80(0.34) 82.04(0.70) 85.34(0.36) 84.39(0.44) 86.57(0.27) 82.15(0.43) 86.03(0.23) 77.73(1.65) 85.19(0.22) 83.38(0.32) 84.15(0.42) 79.71(0.58) 85.26(0.25)
compas (n=200) 67.51(0.03) 63.27(0.60) 67.02(0.53) 68.15(0.40) 60.48(1.86) 63.39(1.28) 60.58(0.83) 64.32(0.78) 60.60(0.90) 63.52(1.04) 61.11(0.63) 65.08(0.53) 56.58(1.03) 63.60(0.83) 61.99(0.64) 62.80(0.61) 60.15(1.14) 63.99(0.71)
adult (n=200) 84.17(0.10) 82.12(0.41) 40.96(2.47) 75.84(1.43) 49.89(3.22) 76.11(1.43) 78.18(0.26) 82.32(0.29) 81.66(0.19) 83.17(0.20) 80.06(0.53) 83.32(0.35) 74.31(0.81) 82.64(0.33) 82.26(0.38) 82.39(0.33) 75.21(0.69) 82.02(0.25)
drug (n=200) 77.81(0.55) 76.10(0.45) 75.58(0.55) 76.06(0.42) 70.66(1.56) 72.81(1.18) 71.31(1.17) 75.98(0.76) 69.61(2.76) 71.79(1.99) 72.35(0.61) 77.41(0.56) 65.25(2.47) 75.26(0.77) 74.38(0.50) 74.78(0.54) 68.39(1.26) 74.33(0.61)

C.7. CLLM with context in low-resource languages

We investigate how the language of tabular column names affect the performance of CLLM. To do so, for a given dataset, we
translate the feature names from English to 2 low-resource languages (Ranathunga et al., 2023), i.e. to (i) Swahili and (ii)
Hausa. Changing the language of the features alters the contextual information provided to the LLM to generate synthetic
data.

We report the results in Table 14. As expected, we observe for both Swahili and Hausa a performance drop compared to
using English feature names, thereby mirroring the results in Section 2.1 on the importance of contextual information in the
prompt. However, we note that CLLM for both Swahili and Hausa remains highly competitive compared to other baselines,
notably thanks to the curation mechanism.

Table 14: Test AUC in settings where the names of features have been translated to Swahili and Hausa, with and without
curation

Dataset
Uncurated

English
Curated
English

Uncurated
Swahili

Curated
Swahili

Uncurated
Hausa

Curated
Hausa

covid (n = 20) 73.78 73.87 71.32 73.06 68.75 70.01
seer (n = 20) 84.53 84.82 83.92 85.47 81.57 82.73
compas (n = 20) 68.01 67.91 64.42 61.61 62.85 63.06
covid n = 40 73.40 73.95 71.53 73.20 70.15 72.13
seer n = 40 84.29 84.93 79.71 84.25 81.47 84.66
compas n = 40 67.57 67.85 64.92 65.78 62.31 63.20

Takeaways:

1. CLLM can provide valuable augmentation and performance gains even with feature names in low-resource languages.

2. For optimal performance, we recommend using CLLM with English feature names or translating the feature names to
English before applying CLLM .
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C.8. Comparison of curation mechanism vs Data-IQ

We compare CLLM’s curation mechanism with the approach taken by Data-IQ (Seedat et al., 2022a).

They differ along four dimensions:

1. Problem setting (data augmentation vs data understanding): CLLM focuses on the problem of data augmentation in
low-data regimes by curating synthetic samples. In contrast, Data-IQ aims to understand and characterize subgroups
within a given real dataset.

2. Conceptually: CLLM curates a large synthetic dataset Dsyn with respect to a very small gold standard real dataset
Dtrain, whereas Data-IQ aims to characterize subgroups of learnable samples in a single large real dataset D (e.g. to
find the hard samples in D).

3. Technically: CLLM trains the curation model only on the small but gold standard Dtrain. The learning dynamics of
the synthetic samples in Dsyn are then assessed with respect to this curation model. In contrast, Data-IQ computes
learning dynamics for real samples in D using a curator model trained on the same D it assesses.

4. Empirical performance: In CLLM , the curation aims at discarding synthetic samples which contradict the learning
signal obtained from the real data. If we were to perform the curation like in Data-IQ, this implies that we would instead
have to merge Dtrain and Dsyn, and train a curator model on Dmerged = Dtrain ∪Dsyn to assess Dsyn. Intuitively,
with such an approach, the signal from the small Dtrain would be overshadowed by Dsyn, as the latter is a lot bigger in
size (1000 samples), thus making the curation irrelevant.

We now show empirical evidence regarding the last point, by comparing CLLM with a baseline where we train the curator
on Dmerged = Dtrain ∪Dsyn. The results are in Table 15. We observe that:

1. CLLM’s curation outperforms Data-IQ curation on downstream performance across all datasets and n.

2. Data-IQ curation does not always improve upon the uncurated baseline, which aligns with our intuition that Dsyn

overshadows Dtrain because of its size.
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Table 15: Comparing the CLLM curation mechanism to Data-IQ curation (Seedat et al., 2022a). We report the AUC averaged
over 4 downstream models on Dtest.

Dataset Uncurated Curated (CLLM ) - Ours Curated (Data-IQ)
covid (n=20) 73.78 73.87 73.45
cutract (n=20) 71.15 72.50 70.84
maggic (n=20) 60.70 61.48 60.68
seer (n=20) 84.53 84.82 83.97
compas (n=20) 68.01 67.91 67.45
adult (n=20) 50.39 71.48 43.59
drug (n=20) 75.08 75.29 74.23
covid (n=40) 73.40 73.95 73.36
cutract (n=40) 69.87 71.72 69.57
maggic (n=40) 59.29 60.77 59.65
seer (n=40) 84.29 84.93 84.47
compas (n=40) 67.57 67.85 67.07
adult (n=40) 48.31 73.82 48.92
drug (n=40) 74.30 75.79 74.45
covid (n=100) 73.77 74.71 73.77
cutract (n=100) 70.20 72.51 70.29
maggic (n=100) 58.98 61.32 58.66
seer (n=100) 84.45 85.37 84.33
compas (n=100) 68.02 68.19 67.82
adult (n=100) 46.09 74.57 45.13
drug (n=100) 76.24 76.74 76.11
covid (n=200) 73.40 74.62 73.27
cutract (n=200) 71.39 73.01 71.43
maggic (n=200) 58.92 61.41 58.71
seer (n=200) 84.39 85.56 84.49
compas (n=200) 67.02 68.15 67.26
adult (n=200) 40.96 75.84 41.01
drug (n=200) 75.58 76.06 75.39

C.9. Comparing CLLM vs TabPFN

We outlined in Appendix A various dimensions on which CLLM and transfer learning / meta-learning / few-shot learning
differ. To provide further empirical evidence on why the above dimensions are important (notably the point on the choice of
downstream backbone), we compare CLLM with TabPFN (Hollmann et al., 2022), a few-shot learning method designed for
small tabular problems. We chose TabPFN because it meets our criteria where it does not require access to external datasets,
since the model is pretrained on an extensive set of synthetic tabular datasets and can perform few-shot learning with its
transformer backbone.

We use the pretrained model released by the authors at https://github.com/automl/TabPFN and show the results
in Table 16.

Takeaways: We see CLLM outperforms TabPFN on 6/7 datasets, for the different n. The performance gains are especially
noticeable in the ultra low-sample regime (n = 20).

Finally, we acknowledge that CLLM is not a one-size-fits-all approach. When the assumptions underpinning transfer
learning or meta-learning hold (e.g. availability of external datasets), combining ideas from these learning paradigms with
the augmentation methodology of CLLM could constitute an interesting research direction, but this falls beyond the scope of
our current work.
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Table 16: Comparison of CLLM vs TabPFN. We report the AUC averaged over 4 downstream models on Dtest.

Dataset Uncurated
Curated
(CLLM ) TabPFN

covid (n=20) 73.78 73.87 66.31
cutract (n=20) 71.15 72.50 63.86
maggic (n=20) 60.70 61.48 55.49
seer (n=20) 84.53 84.82 75.30
compas (n=20) 68.01 67.91 57.04
adult (n=20) 50.39 71.48 71.70
drug (n=20) 75.08 75.29 69.18
covid (n=40) 73.40 73.95 67.26
cutract (n=40) 69.87 71.72 65.93
maggic (n=40) 59.29 60.77 57.75
seer (n=40) 84.29 84.93 79.48
compas (n=40) 67.57 67.85 57.72
adult (n=40) 48.31 73.82 75.36
drug (n=40) 74.30 75.79 71.32
covid (n=100) 73.77 74.71 69.50
cutract (n=100) 70.20 72.51 70.01
maggic (n=100) 58.98 61.32 59.07
seer (n=100) 84.45 85.37 80.96
compas (n=100) 68.02 68.19 63.42
adult (n=100) 46.09 74.57 77.36
drug (n=100) 76.24 76.74 72.68
covid (n=200) 73.40 74.62 70.82
cutract (n=200) 71.39 73.01 71.59
maggic (n=200) 58.92 61.41 60.67
seer (n=200) 84.39 85.56 82.05
compas (n=200) 67.02 68.15 65.51
adult (n=200) 40.96 75.84 79.18
drug (n=200) 75.58 76.06 74.29

C.10. CLLM in specialized domains.

We conduct an experiment with the additional dataset Higgs (Whiteson, 2014). We chose this dataset because it comes from
a specialized domain (physics), where the dataset consists in kinematic properties of particles measured by the particle
detectors of an accelerator, which is likely under-represented in the LLMs training corpus.

We note that the contextual information for this dataset is quite specific, as can be seen from the names of the features,
which include for example ”m bb”, ”m jj”, ”m jjj”. This particular contextual information, which is not as semantically
meaningful as other datasets, makes it interesting to compare the performance of CLLM with the traditional baselines. We
show the results in Table 17. As we can see, the performance of CLLM is good for the smaller n. As n increases, the
downstream task benefits more from the use of the other baselines. We highlight that in this case, our curation mechanism
still benefits both CLLM and the baselines.

Table 17: CLLM performance on the Higgs dataset

Dataset CLLM CTGAN TVAE NFLOW
Uncur Cur Uncur Cur Uncur Cur Uncur Cur

higgs (n=20) 65.82 70.25 62.73 67.31 59.14 69.89 56.45 69.63
higgs (n=40) 65.38 71.01 63.07 70.41 59.29 67.61 60.27 71.54
higgs (n=100) 68.62 73.42 68.46 75.59 68.90 76.05 59.73 75.86
higgs (n=200) 66.39 75.18 74.27 79.75 73.65 79.32 60.99 79.42
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C.11. Behavior beyond the low-data regime.

We examine the behavior of baselines beyond n = 200 and the low-data regime. We provide a plot in Figure 10 for three
datasets examining the behavior of CTGAN, TVAE and NFLOW for increasing n. We fix the CLLM method at n = 200 (as
we do not see too much of an additional performance increase, due to the LLM context window which limits the number of
in-context samples we can provide).

Figure 10: Behavior of baselines at high n, i.e. beyond the low data regime.

Takeaways:

1. Other baselines initially improve with more real samples, however their performance gains tend to plateau out at around
n ∈ {200, 400} samples. This suggests we only get minimal gains as increasing numbers of samples are added to the
baselines.

2. CLLM either outperforms the baselines even for very high n (Compas, Covid) or remains competitive (SEER), even
when the number of samples used by CTGAN, TVAE and NFLOW is twice or thrice bigger.

C.12. Addressing potential biases from the LLM

There are many challenges which arise from the use of LLMs. An example is potential biases from the LLM which might
stem from their training data and might affect our synthetic data generated by the LLM.

We first describe some considerations which show how a practicioner using CLLM can address this issue.

1. Choice of LLM: Different LLMs may exhibit different levels of bias, due to their respective pretraining and alignment
with human feedback. With CLLM , the practitioner has a lot of flexibility in the choice of the LLM. This is an important
aspect when it comes to bias. The practitioner may want to minimize the risk of having bias in the augmented data
by selecting one particular LLM for their task based on prior knowledge about different LLMs and their respective
potential bias (Gallegos et al., 2023).

2. Fairness analysis on the augmented data: Practitioners can directly assess potential bias in the data generated by
CLLM : (i) by doing a standard fairness analysis and computing different fairness metrics (Dwork et al., 2012; Hardt
et al., 2016; Mehrabi et al., 2021) on the generated data, as can be done more generally when building a model with
any given dataset. (ii) If some bias is detected, the practitioner can use any off-the-shelf debiasing method (Calmon
et al., 2017; Feldman et al., 2015), or use a training objective to make the downstream model fair (Berk et al., 2017;
Zhang et al., 2018). Note that this approach is possible because CLLM is a data augmentation method, which gives a
lot of flexibility for the practitioner to adjust the data according to their needs.

3. CLLM can reduce representation bias: While these aforementioned considerations involve choices external to
CLLM , we also want to emphasize that our CLLM approach has the potential to already address bias indirectly. As
shown in Figure 3, underrepresented groups in the population benefit the most from CLLM . This suggests that we
could use CLLM to remove representation bias, by leveraging CLLM to augment Dtrain with synthetic data from
underrepresented groups. Table 1 and Table 2 show that data generated with CLLM better aligns with the ground-truth
distribution, compared to using a widely used conventional generative approach (TVAE).

31



Curated LLM: Synergy of LLMs and Data Curation for tabular augmentation in low-data regimes

4. Curation aligns the feature/label relationships: The curation step of CLLM can already help indirectly address
issues of bias in feature-label relationships if training data Dtrain is unbiased, even if it is not its primary purpose. The
curation mechanism discards samples in Dsyn which do not obey the same feature / label relationship as in Dtrain. The
results shown in Figure 5 demonstrate that the curation step aligns the feature/label relationship between the curated set
and the ground-truth distribution. Thus, assuming that Dtrain is not biased and has the correct Y |X , discriminatory
correlations stemming from the LLM bias could be detected in the form of feature/label relationships which differ from
those in the gold standard Dtrain.

We now provide additional empirical evidence into how curation can help with bias, in a synthetic setup.

Synthetic setup: We consider a synthetic setup where X and Y are random variables such that X ∈ R2 denotes the features,
and Y ∈ {0, 1} is the label. Furthermore, we let X1 (the first coordinate of X) be a sensitive attribute. We then create a
biased distribution such that a downstream predictor Ŷ trained on this biased distribution will violate the fairness criterion
of equalized odds (Hardt et al., 2016).

Formally, we consider a mixture of Gaussians to define X , i.e. X = ZA + (1 − Z)B where Z ∼ Ber(1/2), A ∼
N ([−1.5, 0], I2) and B ∼ N ([1.5, 0], I2). Furthermore, we let Y = Z.

In order to introduce some bias in the data, we consider the variable Y ′ such that Y ′ = 1− Y if |X1| > 2.5, else Y ′ = Y .

Let Ŷ denote a downstream predictor, supposedly trained on samples drawn from the distribution of (X,Y ′) (instead
of the ground-truth distribution of (X,Y )). Intuitively, for y ∈ {0, 1}, because of the definition of Y ′, we can expect
P (Ŷ = y | |X1| > 2.5, Y = y) to be much smaller than P (Ŷ = y | |X1| ≤ 2.5, Y = y), hence strongly violating equality
of odds. To quantify that, we will compute the absolute equality of odds differences defined as

∆Y=1 = |P (Ŷ = 1 | | X1| ≤ 2.5, Y = 1)− P (Ŷ = 1 | |X1| > 2.5, Y = 1)|

and
∆Y=0 = |P (Ŷ = 0 | |X1| ≤ 2.5, Y = 0)− P (Ŷ = 0 | |X1| > 2.5, Y = 0)|

We investigate if curation can help address the bias. We generate a training dataset Dtrain of size n = 20, by sampling
independent samples from the distribution of (X,Y ). We generate an augmented dataset Dsyn of size 1000, by sampling from
the biased distribution of (X,Y ′). We then curate Dsyn using the curation mechanism of CLLM , and obtain Dcurated ⊂ Dsyn.
Finally, we train three XGBoost models on each of the three datasets Dtrain, Dsyn, and Dcurated.

Results. We evaluate the performance of these downstream models on a held-out Dtest.

We then report the average test accuracy, along with ∆Y=0 and ∆Y=1 for 10 different seeds in Table 18, which demonstrate
that the curation mechanism helps ensure that the bias present in the augmented dataset Dsyn does not propagate to the
downstream model, as can be seen with the low values of ∆Y=0 and ∆Y=1 for the models trained on Dcurated.

Table 18: Curation can help address bias.

Dataset used for downstream training Test accuracy (%) (↑) ∆Y=1 (↓) ∆Y=0 (↓)

Dsyn (Biased) 76.7 0.89 0.90
Dtrain (Unbiased) 90.0 0.17 0.07
Dcurated 91.3 0.13 0.08

C.13. Choice of thresholds

In CLLM we have thresholds which are used as part of the curation mechanism. The intuition is that our choice of thresholds
should discard hard samples, that is, samples for which the confidence is low while the aleatoric uncertainty is also low. Given
this intuition, we set an adaptive threshold on the aleatoric uncertainty, with τal = 0.75 · (max(val(Dsyn)−min(val(Dsyn)),
where val(Dsyn) denotes the set of aleatoric uncertainties for the samples in Dsyn. Hence, this threshold is adaptive and
depends on the dataset at hand, which reduces the number of degrees of freedom to 1, namely the choice of the confidence
threshold. For the latter, we set τconf = 0.2. While we do not claim that this value is optimal for all datasets, we find in
practice that it is robust for datasets across different domains.
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We explore other combinations of thresholds to confirm our intuition. In addition to the choice of thresholds used in our
main experiments, we consider two alternatives:

• Aggressive filtering: we set τconf = 0.95 and τal = 0.2.

• Permissive filtering: we set τconf = 0.5 and τal = 0.05

We then evaluate the test AUC for n = 20, with an XGBoost as the downstream model, and GPT-3.5 as the LLM backbone.
The results are shown in Figure 11.

Figure 11: Assessment of the effects of different thresholds in CLLM

As we can see, our configuration strikes a good balance between the aggressive filtering and permissive filtering baselines,
across the 7 datasets.

In an ideal scenario, access to an external validation set could help determine optimal thresholds. However, given our focus
on the low-sample regime (n ≤ 100), we prioritized a versatile configuration that performs consistently across datasets and
sample sizes.
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