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Abstract
Deep learning methods have made significant
progress in regular rainfall forecasting, yet the
more hazardous tropical cyclone (TC) rainfall has
not received the same attention. While regular
rainfall models can offer valuable insights for
designing TC rainfall forecasting models, most
existing methods suffer from cumulative errors
and lack physical consistency. Additionally, these
methods overlook the importance of meteorologi-
cal factors in TC rainfall and their integration with
the numerical weather prediction (NWP) model.
To address these issues, we propose Tropical Cy-
clone Precipitation Diffusion (TCP-Diffusion), a
multi-modal model for forecasting TC precipita-
tion given an existing TC in any location globally.
It forecasts rainfall around the TC center for the
next 12 hours at 3 hourly resolutions based on
past rainfall observations and multi-modal envi-
ronmental variables. Adjacent residual prediction
(ARP) changes the training target from the abso-
lute rainfall value to the rainfall trend and gives
our model the capability of rainfall change aware-
ness, reducing cumulative errors and ensuring
physical consistency. Considering the influence
of TC-related meteorological factors and the use-
ful information from NWP model forecasts, we
propose a multi-model framework with special-
ized encoders to extract richer information from
environmental variables and results provided by
NWP models. The results of extensive experi-
ments show that our method outperforms other
DL methods and the NWP method from the Eu-
ropean Centre for Medium-Range Weather Fore-
casts (ECMWF).
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Figure 1. The difference between the regular precipitation forecast-
ing (a) and TC (b) precipitation forecasting. Regular precipitation
forecasting (a) usually focuses on a specific fixed region, where
the predicted area (blue box) does not move with the rainfall area
(black dashed boxes). In TC precipitation forecasting (b), the pri-
mary region of interest (blue boxes) moves with the TC. Sub-figure
(c) represents the main prediction process of our model. The light
blue box represents historical data, which is considered to be the
input of the forecasting model. The light orange box represents
the TC rainfall that should be predicted. This paper just focuses
on the prediction of TC rainfall.

1. Introduction
Tropical cyclone (TC) precipitation refers to substantial rain-
fall events that accompany the formation, development, and
movement of TCs. These precipitation events can lead to
severe disasters in the affected regions, like flooding, mud-
slides, and landslides. These TC rainfall-related disasters
cause more economic losses and deaths than strong winds
(Wendler-Bosco & Nicholson, 2022), yet most TC forecast-
ing research focuses only on TC track and intensity while
neglecting the TC precipitation. If the TC precipitation can
be accurately predicted, preemptive measures may be taken
to mitigate the disasters brought by TC rainfall, protecting
people’s lives and property. Therefore, it is important to
accurately predict the precipitation around the TC center.

Numerical weather prediction (NWP) is widely used for
various weather forecasting tasks, including TC rainfall
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forecasting. It simulates atmospheric dynamics, thermo-
dynamics, and physical processes by solving the physical
and mathematical equations that describe changes in wind,
temperature, humidity, and pressure (Bai et al., 2020). It
has achieved impressive results, but the development in
NWP research has been gradual (Benjamin et al., 2018).
Additionally, not all physical mechanisms of TCs are fully
understood, which prevents the formulation of perfect phys-
ical and mathematical equations for NWP (Xu et al., 2024).
Furthermore, NWP typically runs on supercomputer plat-
forms, consuming extensive computational resources and
time for predictions, when predicting a high-resolution re-
sult. Nonlinear simulation also poses a significant challenge
for NWP. Fortunately, the development of deep learning
(DL) offers solutions to these NWP challenges. DL-based
methods excel at modeling nonlinear processes, and the cost
of model training and inference is relatively low, requiring
only a few Graphics Processing Units for regular AI tasks.

DL methods have been applied to many meteorological
tasks, like TC track and intensity prediction (Huang et al.,
2022; 2023; Zhang et al., 2025), TC rainfall downscaling
(Vosper et al., 2023), global meteorological variable predic-
tion (Bi et al., 2023; Lam et al., 2023), and precipitation
nowcasting (Bai et al., 2022; Yang et al., 2024). For regu-
lar precipitation nowcasting, several works have used DL.
Some previous works used a U-Net architecture network to
predict rainfall (Gao et al., 2022; Xu et al., 2021). This could
perform well on metrics like mean squared error, but gave
predictions that were spatially smoother than real TC rain-
fall. Some research used the generative adversarial network
(GAN) model to obtain more realistic rainfall predictions
(Tian et al., 2019). Recently, due to issues with mode col-
lapse and training instabilities in GAN models (Gao et al.,
2024), researchers have applied diffusion models (DMs) for
better rainfall prediction (Asperti et al., 2023; Addison et al.,
2022; 2024).

These previous precipitation forecast models provide a good
reference for constructing TC precipitation models. How-
ever, there are notable differences between the TC precipita-
tion forecasting task that we consider here and regular pre-
cipitation forecasting, as shown in Figure 1.(a) and (b). For
example, regular precipitation forecasting usually focuses
on a specific fixed region, where the area being predicted
does not move with the rainfall. In contrast, in this work,
we focus on forecasting the TC precipitation, where the pri-
mary region of interest and the corresponding environmental
factors, such as terrain, will change dynamically with the
movement of the TC. Therefore, it is valuable to investigate
whether better methods can be developed for this task. We
consider the three following approaches to improving TC
rainfall prediction skills:

Changing the training goal: most precipitation forecast-

ing methods predict the absolute value of rainfall. How-
ever, future rainfall can be understood as the sum of the
current rainfall and change in rainfall (∆RainfallFuture)
over time, which is shown in Figure 2.(c). Specifically:

RainfallFuture = RainfallCurrent+∆RainfallFuture
(1)

We can train a DL model to predict ∆ Rainfall and use
Equation 1 to obtain the absolute value of future rainfall,
rather than predicting the absolute value of future rainfall di-
rectly. This mechanism is advantageous because predicting
the change in TC rainfall not only helps reduce cumulative
errors but also ensures physical consistency–meaning that
changes in rainfall intensity and spatial patterns should align
to some extent with historically observed trends. We de-
fine this capability of a model as change awareness. Similar
mechanisms are used in some NWP methods (Kalnay, 2003)
and global weather forecasting models (Price et al., 2025;
Nguyen et al., 2024; Oskarsson et al., 2024; Hu et al., 2023)
to improve the accuracy and stability of meteorological fore-
casts. Therefore, it is worth considering this mechanism in
the TC rainfall prediction task.

Extracting richer meteorological information: most pre-
vious DL precipitation forecasting methods attempt to ex-
tract sufficient information solely from the rainfall value
data. However, the information in rainfall data alone is not
adequate for DL models to learn the patterns of TC rainfall.
Various TC-related data can help people and DL models
understand and predict the tendency of TC rainfall, shown
in the light blue box in Figure 1.(c). For instance, since rain-
fall is wind-driven, TC wind distribution is critical. Thus,
beyond direct rainfall data extraction, modeling synergistic
effects of meteorological factors (e.g., wind-rainfall dynam-
ics) is also essential to capture TC rainfall mechanisms.

Integrating with NWP models: DL models can make use
of global NWP predictions to enhance forecasts of specific
phenomena (Harris et al., 2022; Zhu et al., 2022; Antonio
et al., 2024). If the NWP forecasts are produced using phys-
ical equations, such postprocessing approaches allow useful
information to be extracted from the embedded understand-
ing. Therefore, we evaluate using specific information from
NWP results to guide better predictions.

Based on these above potentially useful ideas, we propose
TCP-Diffusion, a multi-modal diffusion model for global
tropical cyclone precipitation forecasting with change aware-
ness. This model can simultaneously forecast TC rainfall
for multiple future time steps, at 3-hourly intervals, within
the next 12 hours. The contributions are summarized as
follows:

• TCP-Diffusion can extract information from a rich
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set of meteorological variables, learn the rules of TC
rainfall development, and make skilful predictions for
global tropical cyclones. To our knowledge, it is the
first global TC precipitation forecasting work based on
DL.

• Adjacent Residual Prediction (ARP) is proposed to
make our model focus on the rainfall change between
adjacent time steps, learn a coherent temporal evolution
of the TC rainfall, and have the capability of rainfall
change awareness. This mechanism can reduce cumu-
lative errors and ensure physical consistency, making
the results more realistic and accurate.

• A multi-modal framework is built with several encoder
modules to extract extensive information from vari-
ous meteorological historical data and future predic-
tions provided by NWP. This framework can represent
the TC rainfall more comprehensively and provide a
“bridge” between DL models and NWP models.

• We show that our model achieves the best perfor-
mance compared to state-of-the-art (SOTA) DL pre-
cipitation forecasting methods and outperforms NWP
methods from authoritative meteorological agencies
like ECMWF.

2. Task Definition
Different from regular precipitation forecasting, where the
predicted regions are fixed, our TC precipitation forecasting
task focuses on the 10◦ by 10◦ rainfall field around the TC
center, which moves with the TC. We denote the final output
of our work as Ŷ = {ŷn+1, ŷn+2, . . . , ŷn+t, . . . , ŷn+m},
where ŷn+t represents the rainfall prediction around the
TC center t time steps into the future. Here, n rep-
resents the input time steps and m represents the out-
put time steps. The input data we used can be divided
into two parts, as shown in the left part of Figure 2.(b):
the first part is historical observation data (Xhistorical =
{Xh

1 , X
h
2 , . . . , X

h
t , . . . , X

h
n}), where Xh

t is the input data
at the t time step and it includes the rainfall value data,
∆ Rainfall, the 2-Dimension environment data, and scalar
TC variables, like TC intensity and track. The second
part is the future prediction data from an NWP system
(Xfuture = {Xf

1 , X
f
2 , . . . , X

f
t , . . . , X

f
m}), where Xf

t de-
notes the prediction data at future t time step. Overall, imag-
ine a TC developing, just like shown in Figure 1.(c). We
obtain all the input data X = {Xhistorical, Xfuture} and
then we input them to our model TCP-Diffusion. TCP-
Diffusion will extract the TC information from the in-
put data and make a rainfall prediction Ŷ . The aim is
for Ŷ to be as close as possible to the real TC rainfall
(Y = {yn+1, yn+2, . . . , yn+t, . . . , yn+m}, where yn+t rep-
resents the real rainfall around the TC center at the future

t time step), both in terms of the overall intensity and the
spatial and temporal structure.

3. Model Design
TCP-Diffusion is a temporal DM-based method. The denois-
ing process is performed by a neural network, which we call
Environmentally-Aware 3DUNet (EA-3DUNet) (described
in detail below). As shown in Figure 2.(b), it can use Histor-
ical Data2d Encoder, Historical Data1d Encoders and Fu-
tureData2d Encoder to extract TC rainfall information from
rainfall related data, 2D environmental factor data, scalar
TC variable and future prediction data. 3DUNet is designed
to further extract spatiotemporal future features from the
information provided by different encoders. The inherent
abilities of DMs enables making predictions that have struc-
ture that resembles real rainfall data. The information from
all the inputs helps the predicted rainfall values more closely
match the real rainfall data. In the following section, we will
introduce the details of TCP-Diffusion. We have released
the code at https://github.com/Zjut-MultimediaPlus/TCP-
Diffusion.

3.1. Adjacent Residual Prediction (ARP)

In the TC rainfall forecasting task, predicting the rainfall
value directly is difficult because weather systems exhibit
chaotic characteristics. Some NWP methods improve the
accuracy and stability of forecasts by keeping the weather
change as their prediction goal (Kalnay, 2003). Inspired
by this idea, we find the capability of change awareness is
helpful to our model, so we replace the direct prediction
of rainfall value with predicting the adjacent residual ∆t

x

between rainfall at adjacent time steps (∆ Rainfall). We call
this mechanism Adjacent Residual Prediction. ∆t

x can be
calculated as:

∆t
x = Xt

rain −Xt−1
rain (2)

where Xt
rain and Xt−1

rain are the absolute rainfall data at t
time step and t−1 time step respectively. In our work, in ad-
dition to the absolute rainfall data, we add adjacent residual
sequence Dx = {∆1

x,∆
2
x, . . . ,∆

t
x, . . . ,∆

n
x}, where ∆t

x

is calculated by the Equation 2, which shown as the ∆
Rainfall in Figure 2.(b). The direct output sequence of our
DL model is D̂y = {∆̂n+1

y , ∆̂n+2
y , . . . , ∆̂n+t

y , . . . , ∆̂n+m
y },

where ∆̂n+t
y is the adjacent residual we predict between rain-

fall of time step n+ t− 1 and n+ t. The final prediction
Ŷ = {ŷn+1, ŷn+2, . . . , ŷn+t, . . . , ŷn+m} can be computed
as:

ŷn+t = Xn
rain +

t∑
z=1

∆̂n+z
y (3)

Ŷ is obtained by the accumulation of the latest historical
TC rainfall data Xn

rain and the ARP ∆̂y .
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Figure 2. The framework of TCP-Diffusion. Sub-figure (a) shows the inference stage of TCP-Diffusion (black+red arrows). Our model
will use N loop denoising processes to obtain the future rainfall change ∆RainfallFuture from a noise input. The sub-figure (b) shows
the model structure of the denoising process and also shows the training stage of TCP-Diffusion (black+green arrows). In the training
stage, the Output will be used to calculate the loss and update the parameters of TCP-Diffusion (green arrow). In the inference stage, the
Output will be used to get the future rainfall change ∆RainfallFuture with noise at Step s− 1 (red arrow). The sub-figure (c) shows the
process (Equation 1) of getting the final predicted TC rainfall RainfallFuture with the latest rainfall RainfallCurrent and the future
rainfall change ∆RainfallFuture.

3.2. Diffusion Model

The prediction process of DMs involves removing noise
from a completely random noise r step by step, shown in
Figure 2.(a). Based on the DMs’ generation process, our
training goal is to teach our model to perform accurate
denoising based on the specific step s and the given infor-
mation. Specifically, the training goal is to make the noise
r̂s predicted by our model as close as possible to the noise
rs added to the target at the s-th step, s ∈ {1, 2, . . . , N}. N
is a hyper-parameter.

DMs typically include two processes: a forward noising
process and a reverse denoising process. The forward
process has no trainable parameters, so it does not re-
quire training a DL model. According to the training
goal mentioned above, we need to obtain the sequence
Ds
y, where Ds

y is s-th-step noised real adjacent residual
Dy = {∆n+1

y ,∆n+2
y , . . . ,∆n+t

y , . . . ,∆n+m
y }. Following

(Ho et al., 2022), Ds
y could be calculated using a random

noise rs ∼ N (0, 1), step s, and the D0
y (the original data

without noise). The forward process is defined as follows:

Ds
y =
√
ᾱsD

0
y +
√

1− ᾱsrs (4)

where ᾱs =
∏N
s=1, αs = 1− βs, βs ∈ (0, 1) is predefined

by an incremental variance schedule.

For the denoising process, we build the EA-3DUNet, which
is defined as follows:

r̂s = EA3DUNet(Xhistory, Xfuture, D
s
y, s, r) (5)

where r is the added random noise, EA3DUNet is the
trainable model, and r̂s is the predicted noise. Thus, our
training goal can be defined as:

L(θ) = ‖rs − r̂s‖2 (6)

where θ represents all the trainable parameters in our model.
rs is calculated by Equation 4.

For the inference phase, we consider a random noise r as
the DN

y (Ho et al., 2020) and use the following Equation
7 to denoise DN

y step by step to obtain the D̂0
y, which is

equivalent to D̂y:

Ds−1
y =

1
√
αs

(Ds
y −

βs√
1− ᾱs

r̂s) + σsε (7)

where r̂s is the predicted noise added at s-th step, σs is a
variance hyperparameter. ε ∼ N (0, 1) is a random noise,
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which plays a critical role in generating high-quality predic-
tion in the inference phase (Ho et al., 2020).

Overall, the training phase (Figure 2.(b)) and inference
phase (Figure 2.(a) and (c)) can be represented by the fol-
lowing pseudocode. Here, q(·) denotes the data distribu-
tion from which samples are drawn. Specifically, q(Dy)
represents the distribution of the target variable, while
q(Xhistory) and q(Xfuture) represent the distributions of
historical and future input features, respectively.

Algorithm 1 Training
1: repeat
2: D0

y ∼ q(Dy)
3: s ∼ Uniform({1, . . . , N})
4: Ds

y =
√
ᾱsD

0
y +
√

1− ᾱsr
5: Xhistory ∼ q(Xhistory)
6: Xfuture ∼ q(Xfuture)
7: r ∼ N (0, 1)
8: r̂ = EA3DUnet(Xhistory, Xfuture, D

s
y, s, r)

9: Take gradient descent step on∇θ‖r − r̂‖2
10: until converged

Algorithm 2 Inference
1: DN

y ∼ N (0, 1)
2: Xhistory ∼ q(Xhistory)
3: Xfuture ∼ q(Xfuture)
4: for s = N, . . . , 1 do
5: ε ∼ N (0, 1) if s > 1, else ε = 0
6: r̂ = EA3DUnet(Xhistory, Xfuture, D̂

s
y, s, r)

7: D̂s−1
y = 1√

αs
(D̂s

y −
βs√
1−ᾱs

r̂) + σsε

8: end for
9: Use Equation.3 to get Ŷ

10: return Ŷ

3.3. Environmentally-Aware 3DUNet (EA-3DUNet)

EA-3DUNet is the neural network component of TCP-
Diffusion. It can extract various features from multi-modal
data sources. Due to the differing characteristics and di-
mensions of these heterogeneous meteorological data, we
need to build multiple encoders to embed these data. There-
fore, we build the Historical Data Encoder for Rainfall
Data and Environment Data, and the Future Prediction
Data Encoder for future prediction data. To better extract
temporal and spatial information from these data, we build
3DUNet with a temporal and spatial attention mechanism.
We will introduce all these modules in the following sec-
tions.

Historical Data Encoder Rainfall Data Xrain, adjacent
residual data Dx, ERA5 surface data XSfEnv, and ERA5
pressure level data XPlEnv are two-dimensional (2D) data.

Considering that our data has a time dimension, we build a
Historical Data2d Encoder with 3D Convolutional Neural
Networks (CNNs) to encode all 2D data with time infor-
mation first. To reduce computational resources, we use
one module to encode these data, so we concatenate them
to get Xhis2D = [Xrain, Dx, XSfEnv, XPLEnv, rs]. This
process is defined as follows:

ehis2D = Conv3d(Xhis2D,Whis2D) (8)

where Whis2D is the encoder parameters. ehis2D represents
the features encoded from Xhis2D and serves as the initial
feature input to 3DUNet for further feature extraction.

The scalar TC variable XSc does not have a 2D structure,
so we build a Historical Data1d Encoder with Multilayer
Perceptron (MLP) and Transformer (Vaswani et al., 2017)
layers to encode XSc and obtain the temporal information.
The main process is as follows:

emlp = φ(XSc,Wmlp) (9)

ehis1D = Transformer(emlp,Watten) (10)

where φ is denoted as an MLP module, which is used for
getting the features emlp of different variables. Wmlp is
the parameters of φ. The Transformer module is used
for obtaining the temporal information of XSc. Watten is
the parameter of Transformer and ehis1D is the encoded
features of XSc.

Future Prediction Data Encoder Future prediction data
Xfuture contain future information and some physical in-
formation provided by NWP, which differs from Historical
data. It is challenging for a single module to encode these
data containing different types of information at the same
time (Alzubaidi et al., 2021). Therefore, we build a Future
Data2d Encoder to encode these data and try to obtain more
specific features. We use a modified Resnet-18 (He et al.,
2016) to obtain the vector. The main process of Future
Data2d Encoder is as follows:

efuture = Resnet(Xfuture,Wres18) (11)

where Resnet is the Resnet-18 model, Wres18 is the param-
eters, and efuture is the condition extracted from Xfuture

and used for guiding our model to make a better prediction.

3DUNet 3DUNet (Çiçek et al., 2016) is the core com-
ponent of EA-3DUNet and is a classical DL structure for
tasks involving 2D data with time information. It usually
includes three parts shown in Figure 2.(b): U-Net encoder
(U -Neten), U-Net decoder (U -Netde), and the bottleneck
between encoder and decoder. There are several modules
in U -Neten and U -Netde, calledmoduleen andmodulede
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respectively. In each module, we build different blocks (blue
cuboids) to capture features from various aspects. Over all,
the 3DUNet receives the feature map from the Historical
Data1d Encoder and the condition information from Future
Data2d Encoder. Additionally, step s is also included in the
condition information to inform the model how much noise
to remove at the current stage. Then, the 3DUNet predicts
the noise (r̂s) added at the step s. Finally, there are two
pathes shown in Figure 2.(b). In the training stage (green
arrow), we could calculate the loss between actual noise
rs and r̂s to optimize the parameters of our model. In the
inference stage (red arrow), r̂s could be used for obtaining
Ds−1
y using Equation 7. The main process of 3DUNet is

shown in Appendix.B.

4. Dataset and Evaluation Methods
4.1. Dataset

We collected various TC rainfall-related data for our TCP-
Diffusion model to comprehensively represent TC rainfall.
A total of 1877 TCs spanning from 1980 to 2020 are col-
lected, covering the six major ocean areas. These TC data
are divided into three sets: training set (1751 TCs), valida-
tion set (87 TCs), and test set (126 TCs from 2018 to 2020).
We divided the data into two parts: Xhistorical andXfuture.
Details of the data we used are in Appendix.A.

4.2. Evaluation Metrics

Equitable Threat Score (ETS) The Equitable Threat
Score (ETS) (Gandin & Murphy, 1992) is a metric used
to evaluate the accuracy of precipitation forecasts. Com-
pared to the Critical Success Index (CSI) (Schaefer, 1990),
a more popular metric, it considers the effects of random
chance, providing a more equitable assessment of a fore-
cast model’s performance (Manzato & Jolliffe, 2017). The
definition of ETS is given in Appendix.C. We use this met-
ric to show the performance for predicting light, medium,
and heavy rainfall, setting thresholds 6 mm/3hr (ETS-6), 24
mm/3hr (ETS-24), and 60 mm/3hr (ETS-60) respectively.

Total Precipitation Mean Absolute Error (TPMAE) :
This is the absolute difference between real TC rainfall Y
and the predicted rainfall Ŷ averaged over the 10◦ spatial
domain, to show the prediction skill of different methods at
predicting total TC rainfall.

5. Results
5.1. Comparison with State-of-the-art DL Methods

TCP-Diffusion is compared with a deterministic DL method:
U-Net (Çiçek et al., 2016). We also compare our model with
two generative DL methods developed for nowcasting pre-

Model Name ETS-6 ↑ ETS-24 ↑ ETS-60 ↑ TPMAE ↓
Persistence 0.41640 0.14530 0.00564 0.44558
U-Net 0.44169 0.10587 0 0.47452
PreDiff 0.38453 0.11931 0.00430 0.53617
NowcastNet 0.42180 0.08990 0.00016 0.56954
TCP-Diffusion 0.43788 0.14703 0.00644 0.42344
↑ ↓ ↑ Higher is better. ↓ Lower is better.
* Bold values are the best. Underlined values are the second best.

Table 1. Comparison with other SOTA DL methods. Equitable
Threat Score (ETS) is used to evaluate the prediction skill of
each model. ETS-6, ETS-24, and ETS-60 are used to show the
prediction skill for light (>6 mm/3hr), medium (>24 mm/3hr),
and high (>60 mm/3hr) rainfall respectively. TPMAE shows the
total precipitation forecasting skill of different methods and, with
unit mm/3hr. The results here represent the overall performance of
each model for lead times of 3, 6, 9, and 12 hours.

cipitation: PreDiff, which is DM-based (Gao et al., 2024),
and NowcastNet (Zhang et al., 2023). We also compare
TCP-Diffusion with a basic baseline, persistence forecast-
ing, using the last observed rainfall field for each future
prediction (Panofsky, 1963). Since TCP-Diffusion is a prob-
abilistic prediction model, to ensure the stability of the re-
sults presented, we conducted eight tests on the test set. For
each test, the evaluation metrics were calculated, and the
final results were obtained by averaging the metrics across
these eight tests. Additionally, the individual results from
each test are provided in Table 5 in Appendix.D.2.

Qualitative Analysis. Figure 3 shows an example of pre-
dictions from TCP-Diffusion and other DL methods for a
forecast of TC Dumazile. Comparing with the determinis-
tic U-Net rainfall prediction model, the DM-based models
(Predif and TCP-Diffusion) can give more realistic rainfall
predictions with fine spatial detail, such as the shape of
the rain band. U-Net and NowcastNet produce predictions
that are too spatially smooth. This is one of the reasons
we chose DMs as the basis for our TC rainfall prediction
model. When comparing our TCP-Diffusion with PreDiff
in this example, our model provides more accurate results
and does better at predicting the increasing trend of precip-
itation intensity with time, because the ARP mechanism
gives our model the capability to track the rainfall change.
We show two samples from TCP-Diffusion, generated using
different noise inputs. We also show all 8 samples from
TCP-Diffusion in Figure 9 in Appendix.D. Overall, they
have similar large-scale rainfall trends and structures. This
means that the information extracted from other input data,
such as historical TC rainfall and 2D environmental vari-
ables, can guide our model to make reasonable and realistic
forecasts. Overall, these results indicate that TCP-Diffusion
can produce rainfall predictions that have realistic spatial
and temporal structure, performing better in this example
than the other DL methods.
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Figure 3. The prediction results of different DL methods on TC Dumazile in the North Indian Ocean at 03/03/2018 06:00. The first
column is the previous 4 timesteps of rainfall data used as input. The second column is the future TC rainfall we want to predict. Each
subsequent column from the left shows the predictions from a different DL method. “TCP-Diff #1” and “TCP-Diff #2” are two samples
from our TCP-Diffusion model with different initial random noise r.

Quantitative Analysis. To further demonstrate the effec-
tiveness of our method, we calculate and compare various
metrics on the entire test set, as shown in Table 1. We also
show the performance of TCP-Diffusion compared with
other methods at lead times of 3, 6, 9, and 12 hours sepa-
rately in Figure 8 in Appendix.D. The lead time indicates the
amount of time between the issuance of a forecast and the
actual occurrence of the weather event. For light rainfall pre-
diction (ETS-6), U-Net achieves the best performance, with
TCP-Diffusion ranking second. However, U-Net performs
poorly for moderate and heavy rainfall predictions. For
higher rainfall thresholds and TPMAE , our TCP-Diffusion
method achieves the best performance. Especially in heavy
rainfall prediction, TCP-Diffusion shows a substantial im-
provement compared to other DL models. It is also the only
model that performs better than Persistence forecasting, in-
dicating the value of designing a specialised system for the
task of TC rainfall prediction. We also show some analysis
about why Persistence forecasting performs better than the
other three DL models in Appendix.D.

Analysis of TC Rainfall Frequency Distribution. Fig-
ure 4 shows histograms of rainfall rates for observations and
forecasts by each DL method. We find that the performance
of DM-based models, PreDiff and TCP-Diffusion, is much
better than that of non-DM-based models, especially in pro-
ducing a realistic frequency of the heaviest rainfall rates.
Our method predicts a slightly higher frequency of the heav-
iest precipitation intensities than is observed, while PreDiff

predicts a slightly lower precipitation intensity. However,
for more moderate rainfall intensities, TCP-Diffusion has
a more realistic frequency than PreDiff, as shown in the
circled region in Figure 4. We also present the distribution
of rainfall prediction from TCP-Diffusion and compared
methods at each lead-time in Figure 10 in Appendix.D.

Analysis of TC Rainfall’s Radially Averaged Power
Spectral Density We use the Radially Averaged Power
Spectral Density (RAPSD) to help demonstrate that our
model better captures the spatial structure of large-scale TC
rainfall systems, as shown in Figure 5. If the power spectral
density curve predicted by the model is closer to the ground
truth MSWEP at a given spatial frequency, it indicates that
the model captures the rainfall variability at that spatial scale
more effectively. The low wavenumber region corresponds
to large-scale weather systems, such as fronts and tropical
cyclones. As observed in Figure 5, the power spectral den-
sity of TCP-Diffusion is closer to MSWEP compared to
PreDiff in the low wavenumber region, indicating that our
method achieves better capture of rainfall characteristics at
the TC scale. We also show the RAPSD of rainfall predic-
tion from TCP-Diffusion and compared methods at each
lead-time in Figure 11 in Appendix.D.

5.2. Comparison with NWP Methods

We also compare our model with two state-of-the-art NWP
methods. We select the precipitation forecast data in THOR-
PEX Interactive Grand Global Ensemble (TIGGE) provided
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Figure 4. TC rainfall frequency distributions of different DL fore-
casting methods. The grey histogram is the distribution of MSWEP
observations. The coloured lines show histograms of rainfall rates
from different DL forecasting methods. The circular magnified re-
gion more clearly shows differences between these methods in the
indicated span of rainfall intensity. Note the logarithmic vertical
axis.

Model Name ETS-6 ↑ ETS-24 ↑ ETS-60 ↑ TPMAE↓
ERA5-IFS 0.20172 0.01646 0 0.51134
ECMWF-IFS 0.30193 0.08348 0.00255 0.50661
TCP-Diffusion 0.41238 0.12790 0.00444 0.47446

Table 2. Comparison with the ERA5-IFS and ECMWF-IFS NWP
methods. The forecast diagnostics are the same as in table 1.

by ECMWF (ECMWF, 2006), denoted as ECMWF-IFS.
This has higher skill than the ERA5-IFS (ECMWF, 2017).
However, the spatial resolution of ERA5-IFS results is lower
than that of ECMWF-IFS results, which means the costs
of getting ERA5-IFS results is lower than that of ECMWF-
IFS results and makes ERA5-IFS results more practical to
use as the future prediction data Xfuture in training. As
ECMWF-IFS forecasts in the TIGGE archive are for 6-
hourly rather than 3-hourly precipitation, we sum 3-hourly
TCP-Diffusion forecasts within each 6-hour interval. Addi-
tionally, ECMWF-IFS forecasts start at 12 am and 12 pm
UTC each day, so we use TCP-Diffusion to forecast TC
rainfall from the same start times. Thus, the test samples in
this table are different from those in Table 1.

As shown in Table 2, our method achieves better ETS for
all rainfall thresholds and better TPMAE than the ECMWF-
IFS. This means that low-cost, low-quality NWP methods
(ERA5-IFS), when augmented by DL techniques, have the
potential to surpass the performance of high-cost, high-
quality NWP approaches (ECMWF-IFS).

Figure 5. Radially Averaged Power Spectral Density (RAPSD)
analysis across datasets. The plots compare the power spectral
density of predicted rainfall using different models over a range of
wavenumber. In the low wavenumber region, higher power spectral
density represents that the displayed data belongs to large-scale
weather systems, such as fronts and tropical cyclones. The power
spectral density of TCP-Diffusion in the low wavenumber region
is closer to the ground truth rainfall (MSWEP), indicating that our
method achieves better capture of rainfall characteristics at the TC
scale. Note the logarithmic vertical axis.

5.3. Ablation Studies

To demonstrate the effectiveness of individual components
of our model, an ablation study is conducted. As shown
in Table 3, comparing the results from the model with and
without ARP in the first two rows, we find that changing
the regular rainfall value prediction to the adjacent resid-
ual prediction results in an improvement in ETS of about
0.1–15.0%. This indicates that predicting the adjacent resid-
ual reduces cumulative errors. Then, due to the rich and
important TC environment information from multi-modal
meteorological data, the model with M and ARP (third row)
performs better than the model with only ARP, showing an
improvement of about 5.6–13.0% in ETS and a reduction in

ARP M F ETS-6 ↑ ETS-24 ↑ ETS-60 ↑ TPMAE↓
0.39109 0.12474 0.00453 0.50109

X 0.40634 0.13014 0.00521 0.50043
X X 0.42926 0.14253 0.00589 0.44632
X X X 0.43788 0.14703 0.00644 0.42344

Table 3. Ablation studies. ARP means the contribution that we
change the regular rainfall value prediction to the adjacent residual
prediction. M means we not only consider the information from
TC rainfall but also consider the TC-related environment informa-
tion extracted from multi-modal meteorological data. F means
we combine our DL model with the NWP method by using the
predictions provided by NWP to guide the prediction process of
our method.
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TPMAE . This demonstrates the significance of building dif-
ferent encoder modules to extract TC rainfall-related infor-
mation, addressing the deficiency of information provided
only by the TC rainfall field. Finally, our complete model
TCP-Diffusion including NWP forecast inputs (fourth row)
achieves a 2.0–9.3% improvement in ETS over the model
with only M and ARP. This demonstrates that using fore-
casts provided by NWP to guide DL prediction can enhance
skill. (Though note that the scores for our model without
using future forecast data still improve upon those of other
benchmarks for ETS at high thresholds and TPMAE shown
in table 1, showing that the method can improve skill even
when future forecast data is unavailable.) Overall, due to
the contributions of ARP, M, and F, our final model TCP-
Diffusion achieves an improvement in ETS scores of about
11.9–42.1% over the baseline original spatio-temporal diffu-
sion model across the different metrics.

6. Conclusion
In this paper, we propose the TCP-Diffusion model for fore-
casting TC precipitation in the region around a given track
location, applicable anywhere in the world. TCP-Diffusion
uses the ARP mechanism to predict changes in rainfall and
a framework with multiple encoders to extract information
from numerous relevant variables, including historical TC
rainfall data, TC-related environmental data, and forecast
data from NWP models. These guide and control our model
to make better predictions. TCP-Diffusion produces pre-
cipitation predictions with realistic spatial variability. It
achieves higher skill scores than existing rainfall forecasting
methods and a leading NWP system, the ECMWF IFS. In
the future, our model can be applied as a component of a
forecasting system that includes track and intensity forecasts
to produce overall predictions of TC properties.
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Figure 6. The visualization presents part of the historical data on TC Dumazile in North Indian Ocean at 03/03/2018 06:00. MSWEP is
the rainfall values. q-600, t-600, u-600, v-600, z-600 represent the Specific Humidity, Temperature, U Wind, V Wind, and Geopotential
Height at the 600 hPa pressure level respectively. t2m, sst, msl and topography represent the 2m Temperature, Sea Surface Temperature,
Mean Sea Level Pressure, and Topography respectively around the TC center.

A. The Details of Data
We divided the data into two parts: Xhistorical and Xfuture. We collected a total of 1877 TCs spanning from 1980 to 2020
contained in the International Best Track Archive for Climate Stewardship (IBTrACS) dataset (Knapp et al., 2010), covering
the six major ocean areas. These TC data are divided into three sets: training set, validation set, and test set. The test set
contains 126 TCs from 2018 to 2020. For the other two datasets, we randomly selected 95% of the TCs from 1980 to
2018 as the training set (1751 TCs) and 5% as the validation set (87 TCs). Due to the time cost of DMs inference, we use
approximately 5% of the data to validate and determine our best checkpoint in the training run. Some of the Xhistorical are
visualized in Figure 6 for one TC at one time and some of the Xfuture are visualized in Figure 7.

A.1. Historical Data

Rainfall Data The rainfall dataset that we use (Xrain) is the Multi-Source Weighted-Ensemble Precipitation
(MSWEP)(Beck et al., 2019) global precipitation product. This has a 3-hourly 0.1◦ resolution available from 1979
to about 3 hours from real-time. We focus only on the rainfall field around the TC center, so we crop and obtain rectangular
data covering a 10◦ by 10◦ region around the TC center.

Environment Data We also collect critical meteorological variables including surface data and pressure level data (200
hPa, 600 hPa, 850 hPa, and 925 hPa) from ERA5 (ECMWF, 2017), and TC attributes data. The surface data, denoted as
XSfEnv, include 2m temperature, sea surface temperature, mean sea level pressure, and topography. ERA5 pressure level
data, denoted as XPlEnv, consists of 5 variables: temperature, specific humidity, U-component of wind, V-component of
wind, and geopotential height. We perform the same operations as with Xrain, focusing on the 10◦ by 10◦ region around
the TC center.

We also use several scalar TC variables, which we call XSc and includes TC intensity, movement velocity, the month and
the track location. XSc is collected and calculated from the IBTrACS dataset.

A.2. Future Prediction Data.

It is necessary for DL models to better understand the physical processes of TC rainfall. However, incorporating the physical
mechanisms of TC rainfall development into DL model design is challenging. Physically-based NWP methods can predict
TC rainfall using various equations, such as Dynamical Equations, Thermodynamic Equations, Moisture Equations, and
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Figure 7. The visualization of the Future Prediction Data for the TC Dumazile in the North Indian Ocean at 03/03/2018 06:00. These data
are all collected from ERA5. The q-850, t-850, u-850, and v-850 represent the forecast data for Specific Humidity, Temperature, U Wind,
and V Wind at 850 hPa pressure level respectively. The tp, msl, and t2m represent Total Precipitation, Mean Sea Level Pressure, and 2m
Temperature, respectively.

Radiative Transfer Equations, based on physical mechanisms. The prediction data are thus based on explicit physical
laws. DL models are good at extracting information from data. Therefore, we also consider Xfuture as input data for
our model, providing future information based on physical laws to some extent. All Xfuture we used is provided by the
ensemble mean of the ERA5 (ERA5-IFS) (ECMWF, 2017). Here, we opted for the low-resolution ERA5-IFS dataset over
the high-resolution ECMWF-IFS (ECMWF, 2006) for our training data due to ERA5-IFS’s broader temporal coverage and
higher temporal resolution. Additionally, the cost of generating ERA5-IFS is lower owing to its coarser spatial resolution.
Moreover, our results reported in the main text showed that incorporating ERA5-IFS enhances the predictive performance of
our model, surpassing that achieved with the high-quality ECMWF-IFS. There are many variables at the 200 or 850 hPa
pressure levels, such as temperature, specific humidity, U-component of wind, and V-component of wind. Total precipitation,
2m temperature, and mean sea level pressure are also collected.

B. Development of the model
B.1. The Setting of Hyper-parameters

In designing our method, we established consistent hyperparameters to enable greater flexibility for other users. This allows
users to apply TCP-Diffusion to similar tasks and tailor the model by adjusting specific hyperparameters according to their
needs. The time steps for input data n and future prediction m are both set to 4, meaning our model extracts information
from 12 hours of historical and ERA5 prediction data to predict accurate future 12-hour TC rainfall data. The denoising step
N is set to 200, but users can modify it to control the model inference time. For βs, we use the Cosine Schedule to set it:
βs = 1− cos(πs/(N − 1)), which controls the level of noise addition at the specific step s. The σs in Equation 7 in the
main paper is related to βs and is set as

√
βs. The count of modules K in U -Neten and U -Netde is set as 4. People can use

it to adjust the size of our model.

B.2. Hardware Details

The experiments in this work were conducted using an NVIDIA A100 GPU with 256GB of RAM. The deep learning
models were developed and trained using PyTorch (version 1.10) as the primary framework. The training process took
approximately 72 hours to achieve the optimal checkpoint. During inference, each sample takes around 1.253 seconds to
process. We also compare different methods’ training and inference time-cost in Table 4. In addition, the environment
included essential Python libraries such as NumPy (version 1.21), SciPy (version 1.7), and CUDA Toolkit (version 11.4) for
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U-Net PreDiff NowcastNet TCP-Diffusion ECMWF-IFS
Training (h) 5 67 52 72 /

Inference (s/sample) 0.0062 9.401 0.0052 1.253 30min-2h

Table 4. Training and inference time-cost of TCP-Diffusion and compared methods.

GPU acceleration.

B.3. The Detail of 3DUNet

3DUNet (Çiçek et al., 2016) is the core component of EA-3DUNet and is a classical DL structure for tasks involving 2D
data with time information. It usually includes three parts shown in Figure 2.(b): U-Net encoder (U -Neten), U-Net decoder
(U -Netde), and the bottleneck between encoder and decoder. There are several modules in U -Neten and U -Netde, called
moduleen and modulede respectively. In each module, we build different blocks (blue cuboids) to capture features from
various aspects.

Specifically, in the encoder module (moduleen), shown as the blue cuboids in U -Neten in Figure 2, we stack two CNN
blocks, one spatial attention (SA) block, one temporal attention (TA) block, and a down-sampling block. The network
progressively performs downsampling by stacking several moduleen. Each moduleen receives the feature map from the
previous module and also the conditions ehis1D and efuture from the Historical Data1d Encoder and Future Data2d

Encoder, respectively. Additionally, step s is also received to inform the model how much noise to remove at the current
stage. We concatenate these conditions to form the final condition Cond = [ehis1D, efuture, s]. The main process of
U -Neten is as follows:

eien =

{
moduleien(ehis2D, Cond,Weni

) if i = 1,

moduleien(ei−1
en , Cond,Weni) if i > 1.

(12)

where moduleien is the depth-i module in U -Neten, i ∈ {1, 2, . . . ,K}. K is a hyper-parameter. Weni
is the parameters

of the moduleien. module1
en (the first moduleen) receives ehis2D from the historical data encoder. Subsequent moduleien

(i > 1) receive ei−1
en from modulei−1

en .

The module between U -Neten and U -Netde is the Bottleneck. The Bottleneck also contains two CNN blocks, one SA
block, and one TA block. The main process is as follows:

emid = Bottleneck(eKen, Cond,Wneck) (13)

where emid is the output of the Bottleneck and Wneck is the parameter of Bottleneck.

For U -Netde, its structure is similar to that of U -Neten. They both include K modules with similar architecture. In
modulede, there are two CNN blocks, one SA block, one TA block and the final up-sampling block. There are also skip
connections between U -Neten and U -Netde. Thus, the definition of U -Netde is as follows:

eide =

{
moduleide(emid, Cond, e

i
en,Wdei) if i = K,

moduleide(e
i+1
de , Cond, , e

i
en,Wdei) if i < K.

(14)

where moduleide is the depth-i module in U -Netde, i ∈ {K, . . . , 2, 1}. Wdei is the parameters of the moduleide. If
moduleide is the deepest one (i = K), moduleKde receives the emid from the Bottleneck. if moduleide is not the deepest
one (i < K), moduleide receives the ei+1

de from modulei+1
de . if i = 1, eide is the final output of EA-3DUNet, which means

r̂s = e1
de. Then, we could calculate the loss between rs and r̂s to optimize the parameters of our model.

C. The Definition of Metrics
C.1. Equitable Threat Score (ETS)

The Equitable Threat Score (ETS) (Gandin & Murphy, 1992) is a statistical measure used to evaluate the accuracy of
precipitation forecasts. Compared to the more popular metric, the Critical Success Index (CSI)(Schaefer, 1990), it provides a
more robust assessment of a forecast model’s performance (Manzato & Jolliffe, 2017). The definition of ETS is as follows:

R(a) =
(NA +NB)(NA +NC)

NA +NB +NC +ND
(15)
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ETS =
NA −R(a)

NA +NB +NC −R(a)
(16)

where NA, NB , NC , and ND represent the number of correctly predicted precipitation events, the number of false alarms,
the number of missed precipitation events, and the number of correctly predicted no-precipitation events respectively. R(a)
denotes the expected number of correct forecasts due to random chance.

In addition, we also use this metric to show the performance of different methods for light, moderate, and heavy rainfall
prediction. Thus, we set thresholds 6 mm/3hr (ETS-6), 24 mm/3hr (ETS-24), and 60 mm/3hr (ETS-60) to show the
prediction skill for each rainfall category respectively. We need to do some processing before we calculate the ETS, which is
shown as follows:

ŶT =

{
1 if Ŷ ≥ T,
0 if Ŷ < T.

(17)

YT =

{
1 if Y ≥ T,
0 if Y < T.

(18)

where T ∈ {6, 24, 60} is the rainfall intensity threshold. Then we use ŶT and YT to calculate ETS-T via Equations 15 and
16.

C.2. Total Precipitation Mean Absolute Error (TPMAE)

In addition to comparing the prediction skills of different methods in light, moderate, and heavy rainfall, we also want
to evaluate the performance of total precipitation forecasting in the region covered by TC. This is a critical index for
representing the intensity of TC rainfall. Therefore, we use Total Precipitation Mean Absolute Error (TPMAE) to show the
prediction skill of different methods in total rainfall prediction. The definition of TPMAE is as follows:

TPMAE =

∑h
i=1

∑w
j=1

∑m
t=1

∣∣∣Yijt − Ŷijt∣∣∣
hwm

(19)

where h and w represent the height and the width of the TC rainfall data respectively and m represents the total number of
time steps that we want to predict. Yijt and Ŷijt are the observed and predicted rainfall at the given grid point and time
respectively.

D. Extended Experiments
D.1. Results at Different Lead-times

In the main text, we have shown the overall performance of our model compared to other models. Now, we will demonstrate
and compare their predictive performance at each lead time point—3-hour, 6-hour, 9-hour, and 12-hour. As illustrated
in Figure 8, we evaluate the performance of each method using the metrics ETS-6, ETS-24, ETS-60, and TPMSE . For
ETS-6, the Unet model achieves the best performance, with TCP-Diffusion ranked second. However, for the remaining
metrics, our method consistently outperforms the others. Notably, the ETS-60 results indicate that non-diffusion-based
models do not perform well. Overall, TCP-Diffusion not only excels in overall performance but also demonstrates strong
predictive accuracy at each lead time point. Besides, as the prediction lead time increases, the performance of all deep
learning methods declines to varying degrees. In the future, extending the duration of rainfall prediction and improving its
accuracy will be the focus of subsequent research efforts.

D.2. Results of Multiple Tests

TCP-Diffusion is a probabilistic prediction model, which generates different results for different noise inputs. To ensure the
reproducibility of the metric results for our model presented in the main text, we produced 8 separate samples for each TC
case in the test set, with each test using independent random noise drawn from a normal distribution in the diffusion process.
As a result, we obtained 8 independent prediction outcomes. After calculating the metrics for these outcomes, the results are
shown in Table 5. From the experimental results, it can be observed that the performance of our model across multiple tests
remains relatively stable on these metrics, with low standard deviations.
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Figure 8. Comparison with SOTA deep learning methods for lead times of 3 h, 6 h, 9 h, and 12 h on ETS-6 (a), ETS-24 (b), ETS-60 (c),
and TPMSE (d).

Sample/Statistic ETS-6 ↑ ETS-24 ↑ ETS-60 ↑ TPMAE↓
TCP-Diffusion#1 0.43862 0.14848 0.00726 0.42403
TCP-Diffusion#2 0.43867 0.14698 0.00619 0.41968
TCP-Diffusion#3 0.43782 0.14735 0.00674 0.42340
TCP-Diffusion#4 0.43735 0.14651 0.00646 0.42527
TCP-Diffusion#5 0.43860 0.14802 0.00632 0.42131
TCP-Diffusion#6 0.43715 0.14621 0.00633 0.42406
TCP-Diffusion#7 0.43716 0.14591 0.00601 0.42265
TCP-Diffusion#8 0.43767 0.14678 0.00623 0.42713
TCP-Diffusion-mean 0.43788 0.14703 0.00644 0.42344
TCP-Diffusion-std 0.00066 0.00088 0.00039 0.00229

Table 5. Performance metrics of TCP-Diffusion based on 8 independent tests, where TCR-Diffusion#1 to TCR-Diffusion#8 represent the
results of the 1st to 8th predictions. The rows TCR-Diffusion-mean and TCR-Diffusion-std summarize the mean and standard deviation of
these tests, respectively.

We also visualized the results of each prediction, as shown in Figure 9. The eight samples exhibit an overall trend consistent
with the ground truth, with an enhancement in rainfall intensity. This demonstrates the effectiveness of our APR mechanism,
showing that our model can accurately perceive future changes in rainfall trends and provide predictions aligned with
these changes. Besides, the eight samples display differences in rainfall patterns and intensity, effectively simulating the
chaotic nature of tropical cyclone rainfall. These multiple possible predictions are valuable for forecasters to determine the
uncertainty range of the future TC rainfall. This approach aligns with the ensemble forecasting method in meteorology,
which is widely used to address chaotic weather systems.

D.3. Analysis of Persistence’s Good Performance

There is an interesting phenomenon: Persistence forecasting performs better than the other DL methods except TCP-
Diffusion for most evaluation metrics, as shown in Figure 1. There may be two reasons for this situation. On the one
hand, these DL methods are designed for traditional rainfall prediction tasks, focusing only on a fixed region, meaning
the observation window does not change with the movement of the rain band. Our TC rainfall prediction task focuses
on the precipitation in the region around the TC center, and the observation window changes with the movement of the
TC. There are some differences between these two tasks. Therefore, some novel ideas proposed for traditional rainfall
prediction tasks may not be suitable for TC rainfall prediction. This means that simply applying previous rainfall forecasting
methods to TC rainfall forecasting is insufficient, highlighting the value of proposing the TCP-Diffusion model, which is
designed with consideration of the special features of TC. On the other hand, because we keep the observation window
always centered around the TC, there is always rainfall in the center of the observation window, and the rainfall intensity
usually does not change much over several hours. The rainfall is also primarily concentrated in the central region. Therefore,
when calculating the metrics, this makes Persistence forecasting a strong baseline.
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Figure 9. The prediction results of different TCP-Diffusion samples on the TC Dumazile in the North Indian Ocean at 03/03/2018 06:00.
The first column is the previous 4 timesteps of rainfall data used as input. The second column is the future TC rainfall we want to predict.
TCR-Diff#1 to TCR-Diff#8 represent the results of the 1st to 8th tests on this sample.

Figure 10. TC rainfall forecasting distributions of different DL methods for lead times of 3h (a), 6h (b), 9h (c), and 12h (d). The grey
histogram is the distribution of MSWEP observations. The coloured lines show histograms of rainfall rates from different DL forecasting
methods. Note the logarithmic vertical axis.

D.4. Analysis of TC Rainfall Frequency Distribution at Different Lead-times

We also present the TC Rainfall Frequency Distribution predictions for lead times of 3-12 hours, as shown in Figure 10.
The results are consistent with those displayed in Figure 4 of the main text, showing that the distribution of predictions
by TCP-Diffusion is overall closer to the ground truth rainfall, particularly in the distribution of medium-to-low rainfall
intensities, which account for a larger proportion.

D.5. Analysis of TC Rainfall’s Radially Averaged Power Spectral Density at Different Lead-times

We use the Radially Averaged Power Spectral Density to help demonstrate that our model better captures the spatial structure
of large-scale TC rainfall systems, as shown in Figure 11. If the power spectral density curve predicted by the model is
closer to the ground truth MSWEP at a given spatial frequency, it indicates that the model captures the rainfall variability at
that spatial scale more effectively. The low wavenumber region corresponds to large-scale weather systems, such as fronts
and tropical cyclones. The RAPSD results of different lead times are similar to that shown in Figure 5.
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Figure 11. Radially Averaged Power Spectral Density (RAPSD) analysis across datasets for lead times of 3h (a), 6h (b), 9h (c), and 12h
(d). The plots compare the power spectral density of predicted rainfall using different models over a range of wavenumber. In the low
wavenumber region, higher power spectral density represents that the displayed data belongs to large-scale weather systems, such as fronts
and tropical cyclones. The power spectral density of TCP-Diffusion in the low wavenumber region is closer to the ground truth rainfall
(MSWEP), indicating that our method achieves better capture of rainfall characteristics at the TC scale. Note the logarithmic vertical axis.

Figure 12. The prediction results of TCP-Diffusion and FuXi.

D.6. Comparison with Large Weather Model

We also compare our model with a state-of-the-art large weather model FuXi(Chen et al., 2023). We obtain the results
(6-12h) of FuXi and TCP-Diffusion of 349 samples of the year 2020. Due to differences in the comparison samples as well
as the predicted lead times, the TCP-Diffusion data presented in this table vary slightly from those in Table 1 of the main
text. As shown in Table 6 and Figure 12, we observe that FuXi performs poorly and tends to significantly overestimate
rainfall intensity. We suspect is because FuXi is designed for global variable prediction and thus lacks the ability to capture
localized rainfall details associated with tropical cyclones. This highlights the importance of designing models that are
specifically centered on tropical cyclone. Such targeted modeling enables a more accurate and localized understanding of
rainfall associated with typhoons, which is critical for disaster prevention and early warning.

Model Name ETS-6 ↑ ETS-24 ↑ ETS-60 ↑ TPMAE↓
FuXi 0.02770 0.03113 0 5.10396
TCP-Diffusion 0.39493 0.10348 0.00489 0.46302

Table 6. The performance of TCP-Diffusion and FuXi on TC precipitation prediction. The forecast diagnostics are the same as in table 1.
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Stages ETS-6 ↑ ETS-24 ↑ ETS-60 ↑ TPMAE↓
Formation 0.34965 0.07112 0.00077 0.41756
Others 0.45679 0.16220 0.00745 0.42621
Dissipation 0.28706 0.04400 0.00110 0.38850
All 0.43788 0.14703 0.00644 0.42344

Table 7. The performance of TCP-Diffusion on formation, dissipation, and other phases. The forecast diagnostics are the same as in
table 1.

Intensity ETS-6 ↑ ETS-24 ↑ ETS-60 ↑ TPMAE↓
Tropical Storm 0.33051 0.06312 0.00086 0.40756
Severe Tropical Storm 0.39824 0.09811 0.00286 0.40902
Typhoon 0.43464 0.12800 0.00695 0.42457
Strong Typhoon 0.49420 0.20603 0.01046 0.46508
Super Typhoon 0.52014 0.23882 0.01120 0.42191
All 0.43788 0.14703 0.00644 0.42344

Table 8. The performance of TCP-Diffusion on different cyclone intensities. The forecast diagnostics are the same as in table 1.

D.7. Performance of TCP-Diffusion on Different TC Lifecycle-phases

From the results shown in Table 7, we observe that the model performs relatively worse in terms of ETS during the Formation
and Dissipation phases. Interestingly, the metric is better in these phases compared to others. This may be attributed to
the unstable and irregular rainfall cloud structures during the formation and dissipation stages, which make spatial pattern
prediction more difficult. However, rainfall intensity tends to fluctuate less drastically in these stages compared to the active
and more intense phases of the TC lifecycle, where extreme values dominate and may introduce higher prediction error.
These findings offer useful insights for future work, such as phase-aware modeling or adaptive loss functions.

D.8. Performance of TCP-Diffusion on Different TC Intensities

From the results shown in Table 8, we observe that the ETS scores consistently improve with increasing cyclone intensity.
In contrast, the metric tends to degrade as intensity increases. This pattern is consistent with our earlier observations in the
lifecycle-phase analysis 7. A likely explanation is that lower-intensity cyclones (e.g., Tropical Storm and Severe Tropical
Storm) tend to exhibit unstable and irregular cloud structures, making spatial rainfall prediction more difficult. However,
their overall rainfall intensity is more stable, which may lead to fewer false alarms. On the other hand, higher-intensity
cyclones (e.g., Strong Typhoon and Super Typhoon) are structurally more organized, resulting in more predictable rainfall
spatial patterns. Yet, the rainfall intensity becomes more variable and extreme, which increases the difficulty of accurate
intensity estimation and may negatively affect the metric. These results reinforce the need for adaptive modeling approaches
that account for both cyclone intensity and lifecycle phase, which we plan to explore in future work.

D.9. The Visualizations of Predictions from an NWP Method and TCP-Diffusion

We have shown the comparison of skill scores of ECMWF-IFS and TCP-Diffusion. Here, we also visualize the results from
ECMWF-IFS and TCP-Diffusion. As shown in Figure 13, the forecasting results of our method also contain many details.
Sample 1 and Sample 2 are different, but their trends of rainfall intensity changes are also similar.
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Figure 13. The prediction results of NWP (ECMWF-IFS and ERA5-IFS) and TCP-Diffusion on TC Olivia in Eastern Pacific at 03/09/2018
12:00. The first two columns are the past 4 timesteps of rainfall data we input to TCP-Diffusion. The third column is the target observed
future TC rainfall. The right columns are the predictions from ERA5-IFS, ECMWF-IFS, and TCP-Diffusion (TCP-Diff #1 and TCP-Diff
#2) respectively.
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