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Abstract

Existing analyses of neural network training often operate under the unrealistic as-
sumption of an extremely small learning rate. This lies in stark contrast to practical
wisdom and empirical studies, such as the work of J. Cohen et al. (ICLR 2021),
which exhibit startling new phenomena (the “edge of stability” or “unstable conver-
gence”) and potential benefits for generalization in the large learning rate regime.
Despite a flurry of recent works on this topic, however, the latter effect is still
poorly understood. In this paper, we take a step towards understanding genuinely
non-convex training dynamics with large learning rates by performing a detailed
analysis of gradient descent for simplified models of two-layer neural networks.
For these models, we provably establish the edge of stability phenomenon and
discover a sharp phase transition for the step size below which the neural network
fails to learn “threshold-like” neurons (i.e., neurons with a non-zero first-layer bias).
This elucidates one possible mechanism by which the edge of stability can in fact
lead to better generalization, as threshold neurons are basic building blocks with
useful inductive bias for many tasks.
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Figure 1: Large step sizes are necessary to learn the “threshold neuron” of a ReLU network (2) for a simple
binary classification task (1). We choose d = 200, n = 300, λ = 3, and run gradient descent with the logistic
loss. The weights are initialized as a−, a+ ∼ N (0, 1/(2d)) and b = 0. For each learning rate η, we set the
iteration number such that the total time elapsed (iteration × η) is 10. The vertical dashed lines indicate our
theoretical prediction of the phase transition phenomenon (precise threshold at η = 8π/d2).

1 Introduction

How much do we understand about the training dynamics of neural networks? We begin with a
simple and canonical learning task which indicates that the answer is still “far too little”.
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Motivating example: Consider a binary classification task of labeled pairs (x(i), y(i)) ∈ Rd × {±1}
where each covariate x(i) consists of a 1-sparse vector (in an unknown basis) corrupted by additive
Gaussian noise, and the label y(i) is the sign of the non-zero coordinate of the 1-sparse vector. Due to
rotational symmetry, we can take the unknown basis to be the standard one and write

x(i) = λy(i)ej(i) + ξ(i) ∈ Rd , (1)

where y(i) ∈ {±1} is a random label, j(i) ∈ [d] is a random index, ξ(i) is Gaussian noise, and
λ > 1 is the unknown signal strength. In fact, (1) is a special case of the well-studied sparse coding
model (Olshausen and Field, 1997; Vinje and Gallant, 2000; Olshausen and Field, 2004; Yang et al.,
2009; Koehler and Risteski, 2018; Allen-Zhu and Li, 2022). We ask the following fundamental
question:

How do neural networks learn to solve the sparse coding problem (1)?

In spite of the simplicity of the setting, a full resolution to this question requires a thorough under-
standing of surprisingly rich dynamics which lies out of reach of existing theory. To illustrate this
point, consider an extreme simplification in which the basis e1, . . . , ed is known in advance, for
which it is natural to parametrize a two-layer ReLU network as

f(x; a−, a+, b) = a−
d∑

i=1

ReLU
(
−x[i] + b

)
+ a+

d∑

i=1

ReLU
(
+x[i] + b

)
. (2)

The parametrization (2) respects the latent data structure (1) well: a good network has a negative bias
b to threshold out the noise, and has a− < 0 and a+ > 0 to output correct labels. We are particularly
interested in understanding the mechanism by which the bias b becomes negative, thereby allowing
the non-linear ReLU activation to act as a threshold function; we refer to this as the problem of
learning “threshold neurons”. More broadly, such threshold neurons are of interest as they constitute
basic building blocks for producing neural networks with useful inductive bias.
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Figure 2: Large learning rates lead to unexpected phenomena: non-monotonic loss and wild oscillations of
weights. We choose the same setting as Figure 1. With a small learning rate (η = 2.5 · 10−5), the bias does not
decrease noticeably, and the same is true even when we increase the learning rate by ten times (η = 2.5 · 10−4).
When we increase the learning rate by another ten times (η = 2.5 · 10−3), we finally see a noticeable decrease
in the bias, but with this we observe unexpected behavior: the loss decreases non-monotonically and the sum of
second-layer weights d · (a− + a+) oscillates wildly.

We train the parameters a−, a+, b using gradient descent with step size η > 0 on the logistic loss∑n
i=1 ℓlogi(y

(i) f(x(i); a−, a+, b)), where ℓlogi(z) := log(1 + exp(−z)), and we report the results
in Figures 1 and 2. The experiments reveal a compelling picture of the optimization dynamics.

■ Large learning rates are necessary, both for generalization and for learning threshold neurons.
Figure 1 shows that the bias decreases and the test accuracy increases as we increase η; note that
we plot the results after a fixed time (iteration× η), so the observed results are not simply because
larger learning rates track the continuous-time gradient flow for a longer time.

■ Large learning rates lead to unexpected phenomena: non-monotonic loss and wild oscillations
of a− + a+. Figure 2 shows that large learning rates also induce stark phenomena, such as
non-monotonic loss and large weight fluctuations, which lie firmly outside the explanatory power
of existing analytic techniques based on principles from convex optimization.

■ There is a phase transition between small and large learning rates. In Figure 1, we zoom in on
learning rates around η ≈ 0.0006 and observe sharp phase transition phenomena.
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We have presented these observations in the context of the simple ReLU network (2), but we
emphasize that these findings are indicative of behaviors observed in practical neural network
training settings. In Figure 3, we display results for a two-layer ReLU network trained on the full
sparse coding model (1) with unknown basis, as well as a deep neural network trained on CIFAR-10.
In each case, we again observe non-monotonic loss coupled with steadily decreasing bias parameters.
For these richer models, the transition from small to large learning rates is oddly reminiscent of
well-known separations between the “lazy training” or “NTK” regime Jacot et al. (2018) and the
more expressive “feature learning” regime. For further experimental results, see Appendix B.

0 200 400 600 800 1000 1200 1400
step×

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

te
st

 a
cc

lr=0.03
lr=0.04
lr=0.05
lr=0.07
lr=0.1
lr=0.2

0 200 400 600 800 1000 1200 1400
step×

2.0

1.5

1.0

0.5

0.0

bi
as

lr=0.03
lr=0.04
lr=0.05
lr=0.07
lr=0.1
lr=0.2

0 10 20 30 40 50
step×

50

60

70

80

90

te
st

 a
cc

lr=0.2
lr=0.1
lr=0.05

0 10 20 30 40 50
step×

0.0200

0.0175

0.0150

0.0125

0.0100

0.0075

0.0050

0.0025

0.0000

m
ed

ia
n 

bi
as

lr=0.2
lr=0.1
lr=0.05

Figure 3: (Top) Results for training an over-parametrized two-layer neural network f(x;a,W , b) =∑m
i=1 ai ReLU

(
w⊤

i x + b
)

with m ≫ d for the full sparse coding model (1); in this setting, the basis
vectors are unknown, and the neural network learn them through additional parameters W = (wi)

m
i=1. Also,

we use m different weights a = (ai)
m
i=1 for the second layer. (Bottom) Full-batch gradient descent dynamics of

ResNet-18 on (binary) CIFAR-10 with various learning rates. Details are deferred to Appendix B.

We currently do not have right tools to understand these phenomena. First of all, a drastic change
in behavior between the small and the large learning rates cannot be captured through well-studied
regimes, such as the “neural tangent kernel” (NTK) regime (Jacot et al., 2018; Allen-Zhu et al., 2019;
Arora et al., 2019; Chizat et al., 2019; Du et al., 2019; Oymak and Soltanolkotabi, 2020) or the
mean-field regime Chizat and Bach (2018); Mei et al. (2019); Chizat (2022); Nitanda et al. (2022);
Rotskoff and Vanden-Eijnden (2022). In addition, understanding why a large learning rate is required
to learn the bias is beyond the scope of prior theoretical works on the sparse coding model (Arora
et al., 2015; Karp et al., 2021). Our inability to explain these findings points to a serious gap in our
grasp of neural network training dynamics and calls for a detailed theoretical study.

1.1 Main scope of this work

In this work, we do not aim to understand the sparse coding problem (1) in its full generality. Instead,
we pursue the more modest goal of shedding light on the following question.

Q. What is the role of a large step size in learning the bias for the ReLU network (2)?

As discussed above, the dynamics of the simple ReLU network (2) is a microcosm of emergent
phenomena beyond the convex optimization regime. In fact, there is a recent growing body of
work (Cohen et al., 2021; Arora et al., 2022; Ahn et al., 2022; Lyu et al., 2022; Ma et al., 2022; Wang
et al., 2022b; Chen and Bruna, 2023; Damian et al., 2023; Zhu et al., 2023) on training with large
learning rates, which largely aims at explaining a striking empirical observation called the “edge of
stability (EoS)” phenomenon.
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The edge of stability (EoS) phenomenon is a set of distinctive behaviors observed recently by Cohen
et al. (2021) when training neural networks with gradient descent (GD). Here we briefly summarize
the salient features of the EoS and defer a discussion of prior work to Subsection 1.3. Recall that
if we use GD to optimize an L-smooth loss function with step size η, then the well-known descent
lemma from convex optimization ensures monotonic decrease in the loss so long as L < 2/η. In
contrast, when L > 2/η, it is easy to see on simple convex quadratic examples that GD can be
unstable (or divergent). The main observation of Cohen et al. (2021) is that when training neural
networks1 with constant step size η > 0, the largest eigenvalue of the Hessian at the current iterate
(dubbed the “sharpness”) initially increases during training (“progressive sharpening”) and saturates
near or above 2/η (“EoS”).

A surprising message of the present work is that the answer to our main question is intimately
related to the EoS. Indeed, Figure 4 shows that the GD iterates of our motivating example exhibit the
EoS during the initial phase of training when the bias decreases rapidly.
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Figure 4: Understanding our main question is surprisingly related to the EoS. Under the same setting as
Figure 1, we report the largest eigenvalue of the Hessian (“sharpness”), and observe that GD iterates lie in the
EoS during the initial phase of training when there is a fast drop in the bias.

Consequently, we first set out to thoroughly understand the workings of the EoS phenomena through
a simple example. Specifically, we consider a single-neuron linear neural network in dimension 1,
corresponding to the loss

R2 ∋ (x, y) 7→ ℓ(xy) , where ℓ is convex, even, and Lipschitz . (3)

Although toy models have appeared in works on the EoS (see Subsection 1.3), our example is simpler
than all prior models, and we provably establish the EoS for (3) with transparent proofs.

We then use the newfound insights gleaned from the analysis of (3) to answer our main question.
To the best of our knowledge, we provide the first explanation of the mechanism by which a large
learning rate can be necessary for learning threshold neurons.

1.2 Our contributions

x

y

GF

EoS

Figure 5: Illustration of two different
regimes (the “gradient flow” regime and the
“EoS” regime) of the GD dynamics.

Explaining the EoS with a single-neuron example. Al-
though the EoS has been studied in various settings (see
Subsection 1.3 for a discussion), these works either do
not rigorously establish the EoS phenomenon, or they op-
erate under complex settings with opaque assumptions.
Here, we study a simple two-dimensional loss function,
(x, y) 7→ ℓ(xy), where ℓ is convex, even, and Lipschitz.
Some examples include2 ℓ(s) = 1

2 log(1 + exp(−s)) +
1
2 log(1 + exp(+s)) and ℓ(s) =

√
1 + s2. Surprisingly,

GD on this loss already exhibits rich behavior (Figure 5).

En route to this result, we rigorously establish the quasi-
static dynamics formulated in Ma et al. (2022).

1The phenomenon in Cohen et al. (2021) is most clearly observed for tanh activations, although the appendix
of Cohen et al. (2021) contains thorough experimental results for various neural network architectures.

2Suppose that we have a single-layer linear neural network f(x; a, b) = abx, and that the data is drawn
according to x = 1, y ∼ unif({±1}). Then, the population loss under the logistic loss is (a, b) 7→ ℓsym(ab)
with ℓsym(s) = 1

2
log(1 + exp(−s)) + 1

2
log(1 + exp(+s)).

4



The elementary nature of our example leads to transparent arguments, and consequently our analysis
isolates generalizable principles for “bouncing” dynamics. To demonstrate this, we use our insights
to study our main question of learning threshold neurons.

Learning threshold neurons with the mean model. The connection between the single-neuron
example and the ReLU network (2) can already be anticipated via a comparison of the dynamics: (i)
for the single neuron example, x oscillates wildly while y decreases (Figure 5); (ii) for the ReLU
network (2), the sum of weights (a− + a+) oscillates while b decreases (Figure 2).

We study this example in Section 2 and delineate a transition from the “gradient flow” regime to
the “EoS regime”, depending on the step size η and the initialization. Moreover, in the EoS regime,
we rigorously establish asymptotics for the limiting sharpness which depend on the higher-order
behavior of ℓ. In particular, for the two losses mentioned above, the limiting sharpness is 2/η+O(η),
whereas for losses ℓ which are exactly quadratic near the origin the limiting sharpness is 2/η +O(1).

d(a+ + a−)

b

Figure 6: Illustration of GD dynamics on
the ReLU network (2). The sum of weights
(a− + a+) oscillates while b decreases.

In fact, this connection can be made formal by considering
an approximation for the GD dynamics for the ReLU
network (2). It turns out (see Subsection 3.1 for details)
that during the initial phase of training, the dynamics of
At := d (a−t + a+t ) and bt due to the ReLU network
are well-approximated by the “rescaled” GD dynamics
on the loss (A, b) 7→ ℓsym(A × g(b)), where the step
size for the A-dynamics is multiplied by 2d2, g(b) :=
Ez∼N (0,1) ReLU(z + b) is the “smoothed” ReLU, and
ℓsym is the symmetrized logistic loss; see Subsection 3.1
and Figure 8. We refer to these dynamics as the mean
model. The mean model bears a great resemblance to the
single-neuron example (x, y) 7→ ℓ(xy), and hence we can
leverage the techniques developed for the latter in order to study the former.

Our main result for the mean model precisely explains the phase transition in Figure 1. For any δ > 0,

• if η ≤ (8 − δ)π/d2, then the mean model fails to learn threshold neurons: the limiting bias
satisfies |b∞| = Oδ(1/d

2).
• if η ≥ (8 + δ)π/d2, then the mean model enters the EoS and learns threshold neurons: the

limiting bias satisfies b∞ ≤ −Ωδ(1).
1.3 Related work

Edge of stability. Our work is motivated by the extensive empirical study of Cohen et al. (2021),
which identified the EoS phenomenon. Subsequently, there has been a flurry of works aiming at
developing a theoretical understanding of the EoS, which we briefly summarize here.

Properties of the loss landscape. The works (Ahn et al., 2022; Ma et al., 2022) study the properties
of the loss landscape that lead to the EoS. Namely, Ahn et al. (2022) argue that the existence of
forward-invariant subsets near the minimizers allows GD to convergence even in the unstable regime.
They also explore various characteristics of EoS in terms of loss and iterates. Also, Ma et al. (2022)
empirically show that the loss landscape of neural networks exhibits subquadratic growth locally
around the minimizers. They prove that for a one-dimensional loss, subquadratic growth implies that
GD finds a 2-periodic trajectory.

Limiting dynamics. Other works characterize the limiting dynamics of the EoS in various regimes.
(Arora et al., 2022; Lyu et al., 2022) show that (normalized) GD tracks a “sharpness reduction
flow” near the manifold of minimizers. The recent work of Damian et al. (2023) obtains a different
predicted dynamics based on self-stabilization of the GD trajectory. Also, Ma et al. (2022) describes a
quasi-static heuristic for the overall trajectory of GD when one component of the iterate is oscillating.

Simple models and beyond. Closely related to our own approach, there are prior works which
carefully study simple models. Chen and Bruna (2023) prove global convergence of GD for the
two-dimensional function (x, y) 7→ (xy − 1)

2 and a single-neuron student-teacher setting; note that
unlike our results, they do not study the limiting sharpness. Wang et al. (2022b) study progressive
sharpening for a neural network model. Also, the recent and concurrent work of Zhu et al. (2023)
studies the two-dimensional loss (x, y) 7→ (x2y2 − 1)2; to our knowledge, their work is the first
to asymptotically and rigorously show that the limiting sharpness of GD is 2/η in a simple setting,
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at least when initialized locally. In comparison, in Section 2, we perform a global analysis of the
limiting sharpness of GD for (x, y) 7→ ℓ(xy) for a class of convex, even, and Lipschitz losses ℓ, and
in doing so we clearly delineate the “gradient flow regime” from the “EoS regime”.

Effect of learning rate on learning. Recently, several works have sought to understand how the
choice of learning rate affects the learning process, in terms of the properties of the resulting
minima (Jastrzebski et al., 2018; Wu et al., 2018; Mulayoff et al., 2021; Nacson et al., 2022) and the
behavior of optimization dynamics (Xing et al., 2018; Jastrzebski et al., 2019, 2020; Lewkowycz
et al., 2020; Jastrzebski et al., 2021).

Li et al. (2019) demonstrate for a synthethic data distribution and a two-layer ReLU network model
that choosing a larger step size for SGD helps with generalization. Subsequent works have shown
similar phenomena for regression (Nakkiran, 2020; Wu et al., 2021; Ba et al., 2022), kernel ridge
regression Beugnot et al. (2022), and linear diagonal networks Nacson et al. (2022). However, the
large step sizes considered in these work still fall under the scope of descent lemma, and most prior
works do not theoretically investigate the effect of large step size in the EoS regime. A notable
exception is the work of Wang et al. (2022a), which studies the impact of learning rates greater than
2/smoothness for a matrix factorization problem. Also, the recent work of Andriushchenko et al.
(2023) seeks to explain the generalization benefit of SGD in the large step size regime by relying on
a heuristic SDE model for the case of linear diagonal networks. Despite this similarity, their main
scope is quite different from ours, as we (i) focus on GD instead of SGD and (ii) establish a direct
and detailed analysis of the GD dynamics for a model of the motivating sparse coding example.

2 Single-neuron linear network

In this section, we analyze the single-neuron linear network model (x, y) 7→ f(x, y) := ℓ(x× y).

2.1 Basic properties and assumptions

Basic properties. If ℓ is minimized at 0, then the global minimizers of f are the x- and y-axes. The
GD iterates xt, yt, for step size η > 0 and iteration t ≥ 0 can be written as

xt+1 = xt − η ℓ′(xtyt) yt , yt+1 = yt − η ℓ′(xtyt)xt .

Assumptions. From here onward, we assume η < 1 and the following conditions on ℓ : R → R.

(A1) ℓ is convex, even, 1-Lipschitz, and of class C2 near the origin with ℓ′′(0) = 1.
(A2) There exist constants β > 1 and c > 0 with the following property: for all s ̸= 0,

ℓ′(s)/s ≤ 1− c |s|β 1{|s| ≤ c} .

We allow β = +∞, in which case we simply require that ℓ′(s)
s ≤ 1 for all s ̸= 0.

Assumption (A2) imposes decay of s 7→ ℓ′(s)/s locally away from the origin in order to obtain more
fine-grained results on the limiting sharpness in Theorem 2. As we show in Lemma 5 below, when ℓ
is smooth and has a strictly negative fourth derivative at the origin, then Assumption (A2) holds with
β = 2. See Example 1 for some simple examples of losses satisfying our assumptions.

2.2 Two different regimes for GD depending on the step size

Before stating rigorous results, in this section we begin by giving an intuitive understanding of the
GD dynamics. It turns out that for a given initialization (x0, y0), there are two different regimes for
the GD dynamics depending on the step size η. Namely, there exists a threshold on the step size such
that (i) below the threshold, GD remains close to the gradient flow for all time, and (ii) above the
threshold, GD enters the edge of stability and diverges away from the gradient flow. See Figure 9.

First, recall that the GD dynamics are symmetric in x, y and that the lines y = ±x are invariant.
Hence, we may assume without loss of generality that

y0 > x0 > 0 , yt > |xt| for all t ≥ 1 , and GD converges to (0, y∞) for y∞ > 0 .

From the expression (8) for the Hessian of f and our normalization ℓ′′(0) = 1, it follows that the
sharpness (the largest eigenvalue of loss Hessian) reached by GD in this example is precisely y2∞.
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Initially, in both regimes, the GD dynamics tracks the continuous-time gradient flow. Our first
observation is that the gradient flow admits a conserved quantity, thereby allowing us to predict the
dynamics in this initial phase.
Lemma 1 (conserved quantity). Along the gradient flow for f , the quantity y2 − x2 is conserved.

Proof. Differentiating y2t−x2
t with respect to t gives 2yt (−ℓ′(xtyt)xt)−2xt (−ℓ(xtyt) yt) = 0.

Lemma 1 implies that the gradient flow converges to (0, yGF
∞ ) = (0,

√
y20 − x2

0). For GD with
step size η > 0, the quantity y2 − x2 is no longer conserved, but we show in Lemma 6 that it is
approximately conserved until the GD iterate lies close to the y-axis. Hence, GD initialized at (x0, y0)

also reaches the y-axis approximately at the point (xt0 , yt0) ≈ (0,
√

y20 − x2
0).

At this point, GD either approximately converges to the gradient flow solution (0,
√
y20 − x2

0) or
diverges away from it, depending on whether or not y2t0 > 2/η. To see this, for |xt0yt0 | ≪ 1, we can
Taylor expand ℓ′ near zero to obtain the approximate dynamics for x (recalling ℓ′′(0) = 1),

xt0+1 ≈ xt0 − ηxt0y
2
t0 = (1− ηy2t0)xt0 . (4)

From (4), we deduce the following conclusions.

(i) If y2t0 < 2/η, then |1 − ηy2t0 | < 1. Since yt is decreasing, it implies that |1 − ηy2t | < 1 for all
t ≥ t0, and so |xt| converges to zero exponentially fast.

(ii) On the other hand, if y2t0 > 2/η, then |1− ηy2t0 | > 1, i.e., the magnitude of xt0 increases in the
next iteration, and hence GD cannot stabilize. In fact, in the approximate dynamics, xt0+1 has
the opposite sign as xt0 , i.e., xt0 jumps across the y-axis. One can show that the “bouncing” of
the x variable continues until y2t has decreased past 2/η, at which point we are in the previous
case and GD approximately converges to (0, 2/η).

This reasoning, combined with the expression for the Hessian of f , shows that

sharpness(0, y∞) := λmax

(
∇2f(0, y∞)

)
≈ min

{
y20 − x2

0, 2/η
}

= min{gradient flow sharpness, EoS prediction} .
Accordingly, we refer to the case y20 −x2

0 < 2/η as the gradient flow regime, and the case y20 −x2
0 >

2/η as the EoS regime.

See Figure 5 and Figure 9 for illustrations of these two regimes; see also Figure 10 for detailed
illustrations of the EoS regime. In the subsequent sections, we aim to make the above reasoning
rigorous. For example, instead of the approximate dynamics (4), we consider the original GD
dynamics and justify the Taylor approximation. Also, in the EoS regime, rather than loosely asserting
that |xt| ↘ 0 exponentially fast and hence the dynamics stabilizes “quickly” once y2t < 2/η, we
track precisely how long this convergence takes so that we can bound the gap between the limiting
sharpness and the prediction 2/η.

2.3 Results

Gradient flow regime. Our first rigorous result is that when y20 − x2
0 = (2−δ)/η for some constant

δ ∈ (0, 2), then the limiting sharpness of GD with step size η is y20 − x2
0 +O(1) = (2−δ)/η +O(1),

which is precisely the sharpness attained by the gradient flow up to a controlled error term.

In fact, our theorem is slightly more general, as it covers initializations in which δ can scale mildly
with η. The precise statement is as follows.
Theorem 1 (gradient flow regime; see Subsection C.2). Suppose we run GD with step size η > 0 on
the objective f , where f(x, y) := ℓ(xy), and ℓ satisfies Assumptions (A1) and (A2). Let (x̃, ỹ) ∈ R2

satisfy ỹ > x̃ > 0 with ỹ2 − x̃2 = 1. Suppose we initialize GD at (x0, y0) := ( 2−δ
η )1/2 (x̃, ỹ), where

δ ∈ (0, 2) and η ≲ δ1/2 ∧ (2− δ). Then, GD converges to (0, y∞) satisfying

2− δ

η
−O(2− δ)−O

( η

min{δ, 2− δ}
)
≤ λmax

(
∇2f(0, y∞)

)
≤ 2− δ

η
+O

( η

2− δ

)
,

where the implied constants depend on x̃, ỹ, and ℓ, but not on δ, η.
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The proof of Theorem 1 is based on a two-stage analysis. In the first stage, we use Lemma 6 on
the approximate conservation of y2 − x2 along GD in order to show that GD lands near the y-axis
with y2t0 ≈ (2−δ)/η. In the second stage, we use the assumptions on ℓ in order to control the rate of
convergence of |xt| to 0, which is subsequently used to control the final deviation of y2∞ from (2−δ)/η.

EoS regime. Our next result states that when y20 − x2
0 > 2/η, then the limiting sharpness of GD is

close to the EoS prediction of 2/η, up to an error term which depends on the exponent β in (A2).
Theorem 2 (EoS; see Subsection C.4). Suppose we run GD on f with step size η > 0, where
f(x, y) := ℓ(xy), and ℓ satisfies (A1) and (A2). Let (x̃, ỹ) ∈ R2 satisfy ỹ > x̃ > 0 with ỹ2 − x̃2 = 1.
Suppose we initialize GD at (x0, y0) :=

√
(2+δ)/η (x̃, ỹ), where δ > 0 is a constant. Also, assume

that for all t ≥ 1 such that y2t > 2/η, we have xt ̸= 0. Then, GD converges to (0, y∞) satisfying

2/η −O(η1/(β−1)) ≤ λmax

(
∇2f(0, y∞)

)
≤ 2/η ,

where the implied constants depend on x̃, ỹ, δ ∧ 1, and ℓ, but not on η.

Remarks on the assumptions. The initialization in our results is such that both y0 and y0 − x0 are on
the same scale, i.e., y0, y0 − x0 = Θ(1/

√
η). This rules out extreme initializations such as y0 ≈ x0,

which are problematic because they lie too close to the invariant line y = x. Since our aim in this
work is not to explore every edge case, we focus on this setting for simplicity. Moreover, we imposed
the assumption that the iterates of GD do not exactly hit the y-axis before crossing y2 = 2/η. This
is necessary because if xt = 0 for some iteration t, then (xt′ , yt′) = (xt, yt) for all t′ > t, and
hence the limiting sharpness may not be close to 2/η. This assumption holds generically, e.g., if we
perturb each iterate of GD with a vanishing amount of noise from a continuous distribution, and we
conjecture that for any η > 0, the assumption holds for all but a measure zero set of initializations.

When β = +∞, which is the case for the Huber loss in Example 1, the limiting sharpness is
2/η +O(1). When β = 2, which is the case for the logistic and square root losses in Example 1, the
limiting sharpness is 2/η+O(η). Numerical experiments show that our error bound of O(η1/(β−1))
is sharp; see Figure 11 below.

We make a few remark about the proof. As we outline the proof in Subsection C.3, in turns out in
order to bound the gap 2/η − y2∞, the proof requires a control of the size |xtyt|, where t is the first
iteration such that y2t crosses 2/η. However, controlling the size of |xtyt| is surprisingly delicate as it
requires a fine-grained understanding of the bouncing phase. The insight that guides the proof is the
observation that during the bouncing phase, the GD iterates lie close to a certain envelope (Figure 9).

As a by-product of our analysis, we obtain a rigorous version of the quasi-static principle from which
can more accurately track the sharpness gap and convergence rate (see Subsection C.5). The results
of Theorem 1, Theorem 2, and Theorem 5 are displayed pictorially as Figure 9.

3 Understanding the bias evolution of the ReLU network

In this section, we use the insights from Section 2 to answer our main question, namely understanding
the role of a large step size in learning threshold neurons for the ReLU network (2). Based on the
observed dynamics (Figure 2), we can make our question more concrete as follows.

Q. What is the role of a large step size during the “initial phase” of training in which (i) the bias b
rapidly decreases and (ii) the sum of weights a− + a+ oscillates?

3.1 Approximating the initial phase of GD with the “mean model”

Deferring details to Appendix D, the GD dynamics for the ReLU network (2) in the initial phase are
well-approximated by

GD dynamics on (a−, a+, b) 7→ ℓsym(d (a
− + a+) g(b)) ,

where ℓsym(s) :=
1
2 (log(1 + exp(−s)) + log(1 + exp(+s))) and g(b) := Ez∼N (0,1) ReLU(z + b)

is the ‘smoothed’ ReLU. The GD dynamics can be compactly written in terms of the parameter
At := d (a−t + a+t ).

At+1 = At − 2d2η ℓ′sym(Atg(bt)) g(bt) , bt+1 = bt − η ℓ′sym(Atg(bt))Atg
′(bt) . (5)
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Figure 7: The ‘smoothed’ ReLU g(b)

We call these dynamics the mean model. Figure 8 shows that
the mean model closely captures the GD dynamics for the
ReLU network (2), and we henceforth focus on analyzing the
mean model.

The main advantage of the representation (5) is that it makes
apparent the connection to the single-neuron example that we
studied in Section 2. More specifically, (5) can be interpreted
as the “rescaled” GD dynamics on the objective (A, b) 7→ ℓsym(Ag(b)), where the step size for
the A-dynamics is multiplied by 2d2. Due to this resemblance, we can apply the techniques from
Section 2.
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Figure 8: Under the same setting as Figure 1, we compare the mean model with the GD dynamics of the ReLU
network. The mean model is plotted with black dashed line. Note that the mean model tracks the GD dynamics
quite well during the initial phase of training.

3.2 Two different regimes for the mean model

Throughout the section, we use the shorthand ℓ := ℓsym, and focus on initializing wiht a±0 = Θ(1/d),
a− + a+ ̸= 0, and b0 = 0. This implies A0 = Θ(1). We also note the following fact for later use.
Lemma 2 (formula for the smoothed ReLU; see Subsection E.1). The smoothed ReLU function g
can be expressed in terms of the PDF φ and the CDF Φ of the standard Gaussian distribution as
g(b) = φ(b) + b Φ(b). In particular, g′ = Φ.

Note also that bt is monotonically decreasing. This is because ℓ′(Atg(bt))Atg
′(bt) ≥ 0 since ℓ′ is

an odd function and g(b), g′(b) > 0 for any b ∈ R.

Following Subsection 2.2, we begin with the continuous-time dynamics of the mean model:

Ȧ = −2d2 ℓ′(Ag(b)) g(b) , ḃ = −ℓ′(Ag(b))Ag′(b) . (6)

Lemma 3 (conserved quantity; see Subsection E.1). Let κ : R → R be defined as κ(b) :=
∫ b

0
g/g′.

Along the gradient flow (6), the quantity 1
2A

2 − 2d2κ(b) is conserved.

Based on Lemma 3, if we initialize the continuous-time dynamics (6) at (A0, 0) and if At → 0, then
the limiting value of the bias bGF

∞ satisfies κ(bGF
∞ ) = − 1

4d2 A
2
0, which implies that bGF

∞ = −Θ( 1
d2 );

indeed, this holds since κ′(0) = g(0)/g′(0) > 0, so there exist constants c0, c1 > 0 such that
c0b ≤ κ(b) ≤ c1b for all −1 ≤ b ≤ 0. Since the mean model (5) tracks the continuous-time
dynamics (6) until it reaches the b-axis, the mean model initialized at (A0, 0) also approximately
reaches (At0 , bt0) ≈ (0,−Θ( 1

d2 )) ≈ (0, 0) in high dimension d ≫ 1. In other words, the continuous-
time dynamics (6) fails to learn threshold neurons.

Once the mean model reaches the b-axis, we again identify two different regimes depending on the
step size. A Taylor expansion of ℓ′ around the origin yields the following approximate dynamics
(here ℓ′′(0) = 1/4): At0+1 ≈ At0 − ηd2

2 At0 g(bt0)
2
= At0

(
1− ηd2

2 g(bt0)
2). We conclude that the

condition which now dictates whether we have bouncing or convergence is 1
2 d

2g(bt0)
2 > 2/η.

9



(i) Gradient flow regime: If 2/η > d2g(0)2/2 = d2/(4π) (since g(0)2 = 1/(2π)), i.e., the
step size η is below the threshold 8π/d2, then the final bias of the mean model bMM

∞ satisfies
bMM
∞ ≈ bGF

∞ ≈ 0. In other words, the mean model fails to learn threshold neurons.
(ii) EoS regime: If 2/η < d2/(4π), i.e., the step size η is above the threshold 8π/d2, then

1
2 d

2g2(bMM
∞ ) < 2/η, i.e., bMM

∞ < g−1(2/
√
ηd2). For instance, if η = 10π

d2 , then bMM
∞ < −0.087.

In other words, the mean model successfully learns threshold neurons.

3.3 Results for the mean model

Theorem 3 (mean model, gradient flow regime; see Appendix E). Consider the mean model (5)
initialized at (A0, 0), with step size η = (8−δ)π

d2 for some δ > 0. Let γ := 1
200 min{δ, 8− δ, 8−δ

|A0|}.
Then, as long as η ≤ γ/|A0|, the limiting bias bMM

∞ satisfies

0 ≥ bMM
∞ ≥ −(η/γ) |A0| = −OA0,δ(1/d

2) .

In other words, the mean model fails to learn threshold neurons.
Theorem 4 (mean model, EoS regime; see Appendix E). Consider the mean model initialized at
(A0, 0), with step size η = (8+δ)π

d2 for some δ > 0. Furthermore, assume that for all t ≥ 1 such that
1
2 d

2g(bt)
2 > 2/η, we have At ̸= 0. Then, the limiting bias bMM

∞ satisfies

bMM
∞ ≤ g−1

(
2/
√

(8 + δ)π
)
≤ −Ωδ(1) .

For instance, if η = 10π
d2 , then bMM

∞ < −0.087. In other words, the mean model successfully learns
threshold neurons.

4 Conclusion

In this paper, we present the first explanation for the emergence of threshold neuron (i.e., ReLU
neurons with negative bias) in models such as the sparse coding model (1) through a novel connection
with the “edge of stability” (EoS) phenomenon. Along the way, we obtain a detailed and rigorous
understanding of the dynamics of GD in the EoS regime for a simple class of loss functions, thereby
shedding light on the impact of large learning rates in non-convex optimization.

Our approach is largely inspired by the recent paradigm of “physics-style” approaches to under-
standing deep learning based on simplified models and controlled experiments (c.f. (Zhang et al.,
2022; von Oswald et al., 2023; Abernethy et al., 2023; Allen-Zhu and Li, 2023; Li et al., 2023; Ahn
et al., 2023a,b)). We found such physics-style approach quite effective to understand deep learning,
especially given the complexity of modern deep neural networks. We hope that our work inspires
further research on understanding the working mechanisms of deep learning.

Many interesting questions remain, and we conclude with some directions for future research.

• Extending the analysis of EoS to richer models. Although the analysis we present in this work is
restricted to simple models, the underlying principles can potentially be applied to more general
settings. In this direction, it would be interesting to study models which capture the impact of the
depth of the neural network on the EoS phenomenon. Notably, a follow-up work by Song and
Yun (2023) uses bifurcation theory to extend our results to more complex models.

• The interplay between the EoS and the choice of optimization algorithm. As discussed in
Subsection 2.3, the bouncing phase of the EoS substantially slows down the convergence of
GD (see Figure 11). Investigating how different optimization algorithm (e.g., SGD, or GD with
momentum) interact with the EoS phenomenon could potentially lead to practical speed-ups or
improved generalization. Notably, a follow up work by Dai et al. (2023) studies the working mech-
anisms of a popular modern optimization technique called sharpness-aware minimization (Foret
et al., 2021) based on our sparse coding problem.

• An end-to-end analysis of the sparse coding model. Finally, we have left open the motivating
question of analyzing how two-layer ReLU networks learn to solve the sparse coding model (1).
Despite the apparent simplicity of the problem, its analysis has thus far remained out of reach, and
we believe that a resolution to this question would constitute compelling and substantial progress
towards understanding neural network learning. We are hopeful that the insights in this paper
provide the first step towards this goal.
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A Additional illustrations for Section 2

In this section, we provide some illustrations of the results presented in Section 2. We first illustrate
the two different regimes of GD presented in Subsection 2.2.

(x0, y0)

√
2/η —

√
y2

0 − x2
0 —

x

y

(x0, y0)

√
2/η —

√
y2

0 − x2
0

—

y

Figure 9: Two regimes for GD. We run GD on the square root loss with step size 1
4

. The gradient flow regime
is illustrated on the left for (x0, y0) = (3, 4). GD (blue) tracks the gradient flow (green) when η < 2/(y2

0 −x2
0).

Otherwise, as illustrated on the right for (x0, y0) = (3, 6), GD is in the EoS regime and goes through a gradient
flow phase (blue), an intermediate bouncing phase (orange) that tracks the quasi-static envelope (purple), and a
converging phase (red).
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Next, we next present detailed illustrations of the edge-of-stability regime depending on the choice of
step size. Compare this plot with our theoretical results characterized in Theorem 2.
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Figure 10: We plot the GD trajectory for ℓ(s) =
√
1 + s2 and sharpness for step sizes 2/η1 = 9, 2/η2 = 7,

2/η3 = 5, and 2/η4 = 3. In the EoS regime, the final sharpness is close to 2/(step size).

Lastly, we present another detailed illustrations of Theorem 2 in terms of its dependence on β.
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Figure 11: (Left) Log-log plot of the sharpness gap as a function of η, for ℓβ in Example 1 and β = 3
2
, 2, 3, 10.

(Right) Log-log plot of the iteration count for the bouncing region with y2
t ∈ [ 2

η
, 3
η
] as a function of η, for ℓβ in

Example 1 and β = 4
3
, 3

2
, 2, 4. The dashed lines show the predicted sharpness gap and iteration count with

an offset computed via linear regression of the data for η < e−2.

B Further experimental results

In this section, we report further experimental results which demonstrate that our theory, while limited
to the specific models we study (namely, the single-neuron example and the mean model), is in fact
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indicative of behaviors commonly observed in more realistic instances of neural network training. In
particular, we show that threshold neurons often emerge in the presence of oscillations in the other
weight parameters of the network.

B.1 Experiments for the full sparse coding model

We provide the details for the top plot of Figure 3. consider the sparse coding model in the form (1).
Compared to (2), we assume that the basis vectors are unknown, and the neural network learn them
through additional parameters W = (wi)

m
i=1 together with m different weights a = (ai)

m
i=1 for the

second layer as follows:

f(x;a,W , b) =

m∑

i=1

ai ReLU
(
⟨wi,x⟩+ b

)
. (7)

We show results for d = 100, m = 2000. We generate n = 20000 data points according to the
aforementioned sparse coding model with λ = 5. We use the He initialization, i.e., a ∼ N (0, Im/m),
w ∼ N (0, Id/d), and b = 0. As shown in the top plot of Figure 3, the bias decreases more with
the large learning rate. Further, we report the behavior of the average of second layer weights in
Figure 12 (left), and confirm that the sum oscillates.
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Figure 12: (Left) The average of the second layer weights of the ReLU network (7). Note that the average
value oscillates similarly to our findings for the mean model. (Right) Oscillation of logit of ResNet18 model
averaged over the (binary) CIFAR-10 training set. Since the dataset is binary, the logit is simply a scalar.

B.2 Experiments on the CIFAR-10 dataset

Next, we provide the details for the bottom plot of Figure 3. We train ResNet-18 on a binarized
version of the CIFAR-10 dataset formed by taking only the first two classes; this is done for the
purpose of monitoring the average logit of the network. The average logit is measured over the entire
training set. The median bias is measured at the last convolutional layer right before the pooling. For
the optimizer, we use full-batch GD with no momentum or weight decay, plus a cosine learning rate
scheduler where learning rates shown in the plots are the initial values.

Oscillation of expected output (logit) of the network. Bearing a striking resemblance to our two-layer
models, as one can see from Figure 12 (right) that the expected mean of the output (logit) of the deep
net also oscillates due to GD dynamics. As we have argued in the previous sections, this occurs as
the bias parameters are driven towards negative values.

Results for SGD. In Figure 13, we report qualitatively similar phenomena when we instead train
ResNet-18 with stochastic gradient descent (SGD), where we use all ten classes of CIFAR-10. Again,
the median bias is measured at the last convolutional layer. We further report the average activation
which is the output of the ReLU activation at the last convolutional layer, averaged over the neurons
and the entire training set. The average activation statistics represent the hidden representations
before the linear classifier part, and lower values represent sparser representations. Interestingly, the
threshold neuron also emerges with larger step sizes similarly to the case of gradient descent.
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Figure 13: SGD dynamics of ResNet-18 on (multiclass) CIFAR-10 with various learning rates and batch sizes.
(Top) batch size 100; (Bottom) batch size 1000. The results are consistent across different batch sizes.

C Proofs for the single-neuron linear network

We start by describing basic and relevant properties of the model and the assumptions on ℓ.

Basic properties. If ℓ is minimized at 0, then the global minimizers of f are the x- and y-axes. The
gradient and Hessian of f are given by:

∇f(x, y) = ℓ′(xy)

[
y
x

]
,

∇2f(x, y) = ℓ′′(xy)

[
y
x

]⊗2

+ ℓ′(xy)

[
0 1
1 0

]
. (8)

This results in GD iterates xt, yt, for step size η > 0 and iteration t ≥ 0:

xt+1 = xt − η ℓ′(xtyt) yt ,

yt+1 = yt − η ℓ′(xtyt)xt .

Lemma 4 (invariant lines). Assume that ℓ is even, so that ℓ′ is odd. Then, the lines y = ±x are
invariant for gradient descent on f .

Proof. If yt = ±xt, then

yt+1 = yt − η ℓ′(xtyt)xt = ±xt ∓ η ℓ′(x2
t )xt ,

xt+1 = xt − η ℓ′(xtyt) yt = xt − η ℓ′(x2
t )xt ,

and hence yt+1 = ±xt+1. Note that the iterates (xt)t≥0 are the iterates of GD with step size η on the
one-dimensional loss function x 7→ 1

2 ℓ(x
2).

We focus instead on initializing away from these two lines. We now state our assumptions on ℓ.

We gather together some elementary properties of ℓ.
Lemma 5 (properties of ℓ). Suppose that Assumption (A1) holds.

1. ℓ is minimized at the origin and ℓ′(0) = 0.
2. Suppose that ℓ is four times continuously differentiable near the origin. If Assumption (A2) holds,

then ℓ(4)(0) ≤ 0. Conversely, if ℓ(4)(0) < 0, then Assumption (A2) holds for β = 2.

Proof. The first statement is straightforward. The second statement follows from Taylor expansion:
for s ̸= 0 near the origin,

ℓ′(s)
s

=
ℓ′(0) + ℓ′′(0) s+

∫ s

0
(s− r) ℓ′′′(r) dr

s
= 1 +

∫ s

0

(
1− r

s

)
ℓ′′′(r) dr . (9)
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Since ℓ′′′ is odd, then Assumption (A2) and (9) imply that ℓ′′′ is non-positive on (0, ε) for some
ε > 0, which in turn implies ℓ(4)(0) ≤ 0. Conversely, if ℓ(4)(0) < 0, then there exists ε > 0 such
that ℓ′′′(s) ≤ −εs for s ∈ (0, ε). From (9), we see that ℓ′(s)/s ≤ 1− ε

∫ s

0
(s− r) dr ≤ 1− εs2/2.

By symmetry, we conclude that Assumption (A2) holds with β = 2 and some c > 0.

We give some simple examples of losses satisfying our assumptions.

Example 1. The examples below showcase several functions ℓ that satisfy Assumptions (A1) and (A2)
with different values of β.

• Rescaled and symmetrized logistic loss. ℓrsym(s) := 1
2 ℓlogi(−2s) + 1

2 ℓlogi(+2s).
Note ℓ′rsym(s) = tanh(s), thus ℓ′rsym(s)/s ≤ 1 and ℓ′rsym(s)/s ≤ 1− 1

4 |s|2, for |s| < 1
4 .

• Square root loss. ℓsqrt(s) :=
√
1 + s2.

Note ℓ′sqrt(s) =
s√

1+s2
, thus ℓ′sqrt(s)/s ≤ 1 and ℓ′sqrt(s)/s ≤ 1− 2

5 |s|2, for |s| < 2
5 .

• Huber loss. ℓHub(s) :=
s2

2 1{s ∈ [−1, 1]}+
(
|s| − 1

2

)
1{s /∈ [−1, 1]}.

Note ℓ′Hub(s) = s1{s ∈ [−1, 1]} + sgn(s)1{s /∈ [−1, 1]}, thus ℓ′Hub(s)/s ≤ 1, i.e., we have
Assumption (A2) with β = +∞.

• Higher-order. For β > 1 let cβ := 1
β+1

(
β

β+1

)β
and rβ := β+1

β . We define ℓβ implicitly via its
derivative

ℓ′β(s) := s
(
1− cβ |s|β

)
1{s2 < r2β}+ sgn(s)1{s2 ≥ r2β} .

By definition, ℓ′β(s)/s ≤ 1 and ℓ′β(s)/s ≤ 1− cℓ |s|β , where cℓ = cβ ∧ rβ .

We now prove our main results from Subsection 2.3 in order.

C.1 Approximate conservation along GD

We begin by stating and proving the approximate conservation of y2 − x2 for the GD dynamics.

Lemma 6 (approximately conserved quantity). Let (x̃, ỹ) ∈ R2 be such that ỹ > x̃ > 0 with
ỹ2 − x̃2 = 1. Suppose that we run GD on f with step size η with initial point (x0, y0) :=

√
γ
η (x̃, ỹ),

for some γ > 0. Then, there exists t0 = O( 1η ) such that supt≥t0 |xt| ≤ O(
√

(γ−1 ∨ γ) η) and

y2t0 − x2
t0 =

(
1−O(η)

)
(y20 − x2

0) ,

where the implied constant depends on x̃, ỹ, and ℓ.

Proof. Let Dt := y2t − x2
t and note that

Dt+1 =
(
yt − η ℓ′(xtyt)xt

)2 −
(
xt − η ℓ′(xtyt) yt

)2

=
(
1− η2 ℓ′(xtyt)

2
)
Dt .

Since ℓ is 1-Lipschitz, then Dt+1 = (1−O(η2))Dt.

This shows that for t ≲ 1/η2, we have y2t − x2
t = Dt ≳ D0 = y20 − x2

0 ≍ γ/η. Since ℓ′′(0) = 1,
there exist constants c0, c1 > 0 such that ℓ′(|xy|) ≥ ℓ′(c0) ≥ c1 whenever |xy| ≥ c0. Hence, for all
t ≥ 1 such that t ≲ 1/η2, xt > 0, and |xtyt| ≥ c0, we have y2t ≳ γ/η and

xt+1 = xt − η ℓ′(xtyt) yt = xt −Θ(ηyt) = xt −Θ
(√

γη
)
. (10)

Since x0 ≍
√
γ/η, this shows that after at most O(1/η) iterations, we must have either xt < 0 or

|xtyt| ≤ c0 for the first time. In the first case, (10) shows that |xt| ≲ √
γη. In the second case, since

y2t ≳ γ/η, we have |xt| ≲
√

η/γ. Let t0 denote the iteration at which this occurs.

Next, for iterations t ≥ t0, we use the dynamics (10) for x and the fact that ℓ′(xtyt) has the same sign
as xt to conclude that there are two possibilities: either xt+1 has the same sign as xt, in which case
|xt+1| ≤ |xt|, or xt+1 has the opposite sign as xt, in which case |xt+1| ≤ η |ℓ′(xtyt)| yt ≤ ηyt ≤
O(

√
γη). This implies supt≥t0 |xt| ≤ O(

√
(γ−1 ∨ γ) η) as asserted.
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C.2 Gradient flow regime

In this section, we prove Theorem 1. From Lemma 6, there exists an iteration t0 such that |xt0 | ≲√
η/(2− δ) and

2− δ

η
−O(2− δ) ≤ y2t0 ≤ 2− δ

η
+ x2

t0 ≤ 2− δ

η
+O

( η

2− δ

)
.

In particular, C := |xt0yt0 | ≲ 1.

We prove by induction the following facts: for t ≥ t0,

1. |xtyt| ≤ C.
2. |xt| ≤ |xt0 | exp(−Ω(α (t− t0))), where α := min{δ, 2− δ}.

Suppose that these conditions hold up to iteration t ≥ t0. By Assumption (A2), we have |ℓ′(s)| ≤ |s|
for all s ̸= 0. Therefore,

yt+1 = yt − η ℓ′(xtyt)xt ≥ (1− ηx2
t ) yt

≥ exp
(
−O

( η2

2− δ

)
exp

(
−Ω(α (t− t0))

))
yt

≥ exp
(
−O

( η2

2− δ

) t∑

s=t0

exp
(
−Ω(α (s− t0))

))
yt0 ≥ exp

(
−O

( η2

α (2− δ)

))
yt0 ,

y2t+1 ≥ 2− δ

η
−O(2− δ)−O

( η
α

)
. (11)

In particular, 1
2

2−δ
η ≤ y2t ≤ 2−δ/2

η throughout. In order for these assertions to hold, we require

η2 ≲ α (2− δ), i.e., η ≲ min{
√
δ, 2− δ}.

Next, we would like to show that t 7→ |xt| is decaying exponentially fast. Since

|xt+1| = |xt − η ℓ′(xtyt) yt| =
∣∣ |xt| − η ℓ′(|xt| yt) yt

∣∣ ,
it suffices to consider the case when xt > 0. Assumption (A2) implies that

xt+1 ≥ (1− ηy2t )xt ≥ −
(
1− δ

2

)
xt .

For the upper bound, we split into two cases. We begin by observing that since ℓ is twice continuously
differentiable near the origin with ℓ′′(0) = 1, there is a constant ε0 such that |s| < ε0 implies
|ℓ′(s)| ≥ 1

2 |s|. If st := xtyt ≤ ε0, then

xt+1 ≤
(
1− η

2
y2t
)
xt ≤

(
1− 2− δ

4

)
xt .

Otherwise, if st ≥ ε0, then

xt+1 ≤ xt − η ℓ′(ε0) yt ≤ xt − η ℓ′(ε0)
y2t
st

≤ xt − η ℓ′(ε0)
2− δ

2Cη
xt ≤

(
1− Ω(2− δ)

)
xt .

Combining these inequalities, we obtain

|xt+1| ≤ |xt| exp
(
−Ω(α)

)
.

This verifies the second statement in the induction. The first statement follows because both t 7→ |xt|
and t 7→ yt are decreasing.

This shows in particular that |xt| ↘ 0, i.e., we have global convergence. To conclude the proof,
observe that (11) gives a bound on the final sharpness.
Remark 1. The proof also gives us estimates on the convergence rate. Namely, from Lemma 6, the
initial phase in which we approach the y-axis takes O( 1η ) iterations. For the convergence phase, in

order to achieve ε error, we need |xt| ≲
√
εη√
2−δ

; hence, the convergence phase needs only O( 1
α log 1

ε )

iterations. Note that the rate of convergence in the latter phase does not depend on the step size η.
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C.3 EoS regime: proof outline

We give a brief outline of the proof of Theorem 2: As before, Lemma 6 shows that GD reaches the
y-axis approximately at (0,

√
y20 − x2

0). At this point, x starts bouncing while y steadily decreases,
and we argue that unless xt = 0 or y2t ≤ 2/η, the GD dynamics cannot stabilize (see Lemma 7).

To bound the gap 2/η − y2∞, we look at the first iteration t such that y2t crosses 2/η. By making use
of Assumption (A2), we simultaneously control both the convergence rate of |xt| to zero and the
decrease in y2t in order to prove that

y2∞ ≥ 2

η
−O(|xtyt|) , (12)

see Proposition 1. Therefore, to establish Theorem 2, we must bound |xtyt| at iteration t.

Controlling the size of |xtyt|, however, is surprisingly delicate as it requires a fine-grained under-
standing of the bouncing phase. The insight that guides the proof is the observation that during the
bouncing phase, the GD iterates lie close to a certain envelope (Figure 9). This envelope is predicted
by the quasi-static heuristic as described in Ma et al. (2022). Namely, suppose that after one iteration
of GD, we have perfect bouncing: xt+1 = −xt. Substituting this into the GD dynamics, we obtain
the equation

η ℓ′(xtyt) yt = 2xt . (13)

According to Assumption (A2), we have ℓ′(xtyt) = xtyt (1 − Ω(|xtyt|β)), Together with (13), if
y2t = (2 + δt)/η ≥ 2/η, where δt is sufficiently small, it suggests that

|xtyt| ≲ δ
1/β
t . (14)

The quasi-static prediction (14) fails when δt is too small. Nevertheless, we show that it remains
accurate as long as δt ≳ ηβ/(β−1), and consequently we obtain |xtyt| ≲ η1/(β−1). Combined
with (12), it yields Theorem 2.

C.4 EoS regime: crossing the threshold and the convergence phase

In this section, we prove Theorem 2. We first show that y2t must cross 2/η in order for GD to converge,
and we bound the size of the jump across 2/η once this happens.

Throughout this section and the next, we use the following notation:

• st := xtyt;
• rt := ℓ′(st)/st.

In this notation, we can write the GD equations as

xt+1 = (1− ηrty
2
t )xt ,

yt+1 = (1− ηrtx
2
t ) yt .

We also make a remark regarding Assumption (A2). If β < +∞, then Assumption (A2) is equivalent
to the following seemingly strongly assumption: for all r > 0, there exists a constant c(r) > 0 such
that

ℓ′(s)
s

≤ 1− c(r) |s|β , for all 0 < |s| ≤ r . (A2+)

Indeed, Assumption (A2) states that (A2+) holds for some r > 0. To verify that (A2+) holds for
some larger r′ > r, we can split into two cases. If |s| ≤ r, then ℓ′(s)/s ≤ 1− c |s|β . Otherwise, if
|s| > r, then ℓ′(r)/r < 1 and the 1-Lipschitzness of ℓ′ imply that ℓ′(s)/s < 1 for r ≤ |s| ≤ r′, and
hence ℓ′(s)/s ≤ 1− c′ |s|β , for a sufficiently small constant c′ > 0; thus we can take c(r′) = c ∧ c′.
Later, we will invoke (A2+) with r chosen to be a universal constant, so that c(r) can also be thought
of as universal.

We begin with the following result about the limiting value of yt.
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Lemma 7 (threshold crossing). Let (x̃, ỹ) ∈ R2 satisfy ỹ > x̃ > 0 with ỹ2 − x̃2 = 1. Suppose we

initialize GD with step size η with initial point (x0, y0) :=
√

2+δ
η (x̃, ỹ), where δ > 0 is a constant.

Then either xt = 0 for some t or

lim
t→∞

y2t ≤ 2

η
.

Proof. Assume throughout that xt ̸= 0 for all t. Recall the dynamics for y:

yt+1 = yt − η ℓ′(xtyt)xt .

By assumption ℓ′(s)/s → 1 as s → 0, and ℓ′ is increasing, so this equation implies that if
lim inft→∞ |xt| > 0 then y2t must eventually cross 2/η.

Suppose for the sake of contradiction that there exists ε > 0 with y2t > (2 + ε)/η, for all t. Let
ε′ > 0 be such that 1− (2 + ε) (1− ε′) < −1, i.e., ε′ < ε

2+ε . Then, there exists δ > 0 such |xt| ≤ δ

implies rt > 1− ε′, hence

|xt+1|
|xt|

= |1− ηrty
2
t | > |(2 + ε) (1− ε′)− 1| > 1 .

The above means that |xt| increases until it exceeds δ, i.e., lim inft→∞ |xt| ≥ δ. This is our desired
contradiction and it implies that limt→∞ y2t ≤ 2/η.

Lemma 8 (initial gap). Suppose that at some iteration t, we have

y2t+1 <
2

η
≤ y2t .

Then, it holds that

y2t+1 ≥ 2

η
− 2ηs2t .

Proof. We can bound

y2t+1 = y2t − 2η ℓ′(xtyt)xtyt + η2 ℓ′(xtyt)
2
x2
t ≥ y2t − 2η |xtyt|2 ,

where we used the fact that |ℓ′(s)| ≤ |s| for all s ∈ R,

The above lemma shows that the size of the jump across 2/η is controlled by the size of |st| at the
time of the crossing. From Lemma 6, we know that |st| ≲ 1, where the implied constant depends on
δ. Hence, the size of the jump is always O(η).

We now provide an analysis of the convergence phase, i.e., after y2t crosses 2/η.
Proposition 1 (convergence phase). Suppose that y2t < 2/η ≤ y2t−1

. Then, GD converges to (0, y∞)
satisfying

2

η
−O(|st|) ≤ y2∞ ≤ 2

η
.

Proof. Write y2t = (2− ρt)/η, so that ρt = 2− ηy2t . We write down the update equations for x and
for ρ. First, by the same argument as in the proof of Theorem 1, we have

|xt+1| ≤ |xt| exp
(
−Ω(ρt)

)
. (15)

Next, using rt ≤ 1,

yt+1 = (1− ηrtx
2
t ) yt ≥ (1− ηx2

t ) yt ,

y2t+1 ≥ (1− 2ηx2
t ) y

2
t ,

which translates into

ρt+1 ≤ ρt + 2η2x2
ty

2
t ≤ ρt + 4ηx2

t . (16)
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Using these two inequalities, we can conclude as follows. Let q > 0 be a parameter chosen later, and
let t be the first iteration for which ρt ≥ q (if no such iteration exists, then ρt ≤ q for all t). Note that
ρt ≤ q +O(η |xt|) due to (15) and (16). By (15), we conclude that for all t′ ≥ t,

|xt′ | ≤ |xt| exp
(
−Ω(q (t′ − t))

)
≤ |xt| exp

(
−Ω(q (t′ − t))

)
.

Substituting this into (16),

ρt′ ≤ ρt + 4η

t′−1∑

s=t

x2
s ≤ q +O(η |xt|) +O(η |xt|2)

t′−1∑

s=1

exp
(
−Ω(q (s− t))

)

≤ q +O(η |xt|) +O
(η |xt|2

q

)
.

By optimizing this bound over q, we find that for all t,

ρt ≲
√
η |xt| ≲ η |st| .

Translating this result back into y2t yields the result.

Let us take stock of what we have established thus far.

• According to Lemma 6, |st| is bounded for all t by a constant.
• Then, from Lemma 7 and Lemma 8, we must have either y2t → 2/η, or 2/η −O(η) ≤ y2t ≤ 2/η

for some iteration t.
• In the latter case, Proposition 1 shows that the limiting sharpness is 2/η −O(1).

Note also that the analyses thus far have not made use of Assumption (A2), i.e., we have established
the β = +∞ case of Theorem 2. Moreover, for all β > 1, the asymptotic 2/η − O(1) still shows
that the limiting sharpness is close to 2/η, albeit with suboptimal rate. The reader who is satisfied
with this result can then skip ahead to subsequent sections. The remainder of this section and the next
section are devoted to substantial refinements of the analysis.

To see where improvements are possible, note that both Lemma 8 and Proposition 1 rely on the
size of |st| at the crossing. Our crude bound of |st| ≲ 1 does not capture the behavior observed
in experiments, in which |st| ≲ η1/(β−1). By substituting this improved bound into Lemma 7, we
would deduce that the gap at the crossing is O(η1+2/(β−1)), and then Proposition 1 would imply that
the limiting sharpness is 2/η−O(η1/(β−1)). Another weakness of our proof is that it provides nearly
no information about the dynamics during the bouncing phase, which constitutes an incomplete
understanding of the EoS phenomenon. In particular, we experimentally observe that during the
bouncing phase, the iterates lie very close to the quasi-static envelope (Figure 9). In the next section,
we will rigorously prove all of these observations.

Before doing so, however, we show that Proposition 1 can be refined by using Assumption (A2),
which could be of interest in its own right. It shows that even if the convergence phase begins
with a large value of |st|, the limiting sharpness can be much closer to 2/η than what Proposition 1
suggests. The following proposition combined with Lemma 6 implies Theorem 2 for all β > 2, but it
is insufficient for the case 1 < β ≤ 2. From now on, we assume β < +∞.
Proposition 2 (convergence phase; refined). Suppose that y2t < 2/η ≤ y2t−1

. Then, GD converges to
(0, y∞) satisfying

2

η
≥ y2∞ ≥ 2

η
−O(η |st|2)−





O(η1/(β−1)) , β > 2 ,

O(η log(|st|/η)) , β = 2 ,

O(η |st|2−β) , β < 2 .

Proof. Let y2t = (2− ρt)/η as before. We quantify the decrease of |xt| in terms of ρt and conversely
the increase of ρt in terms of |xt| by tracking the half-life of |xt|, i.e., the number of iterations it takes
|xt| to halve. We call these epochs: at the i-th epoch, we have

2−(i+1)√η < |xt| ≤ 2−i√η .

Let i0 be the index of the first epoch, i.e., i0 = ⌊log2(
√
η/|xt|)⌋. Due to Lemma 6, we know that

i0 ≥ −O(1). From (15), |xt| is monotonically decreasing and consequently |st| is decreasing as
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well. Also, our bound on the limiting sharpness implies that y2t > 1/η for all t, provided that η is
sufficiently small.

Let us now compute the dynamics of ρt and |xt|. At epoch i, |xt| > 2−(i+1)√η hence |st| > 2−(i+1).
Assumption (A2+) with r = |st| ≲ 1 implies that

ℓ′(st)
st

≤ 1− c 2−β (i+1) , (17)

where c = c(|st|). This allows to refine (15) on the decrease of |xt| to

|xt+1|
|xt|

= ηrty
2
t − 1 ≤ (2− ρt) (1− c 2−β (i+1))− 1 ≤ 1− ρt − c 2−β (i+1) ,

where the first inequality follows from (17) and the second from ρt = 2 − ηy2t < 1. In turn, this
inequality shows that the i-th phase only requires O(2βi) iterations.

Hence, if t(i) denotes the start of the i-th epoch, then (16) shows that

ρt(i+1) ≤ ρt(i) + 4η2 · 2−2i ·O(2βi) ≤ ρt(i) +O(η2 2(β−2) i) .

Summing this up, we have

ρt(i) ≤ ρt + η2 ×





O(2(β−2) i) , β > 2 ,

O(i− i0) , β = 2 ,

O(2(β−2) i0) = O(|st|2−β) , β < 2 .

In the case of β < 2, the final sharpness satisfies 2/η −O(ρt/η)−O(η |st|2−β) ≤ y2∞ ≤ 2/η.

In the other two cases, suppose that we use this argument until epoch i⋆ such that 2−i⋆ ≍ ηγ . Then,
we have |xt(i⋆)| ≍ ηγ+1/2, |st(i⋆)| ≍ ηγ , and by using the argument from Proposition 1 from iteration
t(i⋆) onward we obtain

ρ∞ = ρt(i⋆) + ρ∞ − ρt(i⋆) ≤ ρt +O(ηγ+1) + η2 ×
{
O(2(β−2) i⋆) = O(η−γ (β−2)) , β > 2 ,

O(i⋆ − i0) , β = 2 .

We optimize over the choice of γ, obtaining γ = 1/(β − 1) and thus

ρ∞ ≤ ρt +

{
O(η1+1/(β−1)) , β > 2 ,

O(η2 log(|st|/η)) , β = 2 .

By collecting together the three cases and using Lemma 8 to bound ρt, we finish the proof.

Using the crude bound |st0 | ≲ 1 from Lemma 6, it yields

2

η
≥ y2∞ ≥ 2

η
−O(η)−





O(η1/(β−1)) , β > 2 ,

O(η log(1/η)) , β = 2 ,

O(η) , β < 2 ,

which is optimal for β > 2.

C.5 EoS regime: quasi-static analysis

We supplement Assumption (A2) with a corresponding lower bound on ℓ′(s)/s:

There exists C > 0 such that
ℓ′(s)
s

≥ 1− C |s|β for all s ̸= 0 . (A3)

Under these assumptions, we prove the following result which is also of interest as it provides detailed
information for the bouncing phase of the EoS.
Theorem 5 (quasi-static principle). Suppose we run GD on f with step size η > 0, where f(x, y) :=
ℓ(xy) and ℓ satisfies Assumptions (A1), (A2), and (A3). Write y2t := (2 + δt)/η and suppose that at
some iteration t0, we have |xt0yt0 | ≍ δ

1/β
t0 and δt0 ≲ 1. Then, for all t ≥ t0 with δt ≳ ηβ/(β−1), we

have

|xtyt| ≍ δ
1/β
t ,

where all implied constants depend on ℓ but not on η.
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In this section, we show that the GD iterates lie close to the quasi-static trajectory and give the full
proof of Theorem 2. Recall from (13) that the quasi-static analysis predicts

ηrty
2
t ≈ 2 , (18)

and that during the bouncing phase, this closely agrees with experimental observations (Figure 9).
We consider the phase where y2t has not yet crossed the threshold 2/η and we write y2t := (2+ δt)/η,
thinking of δt as small. Then, (18) can be written (2 + δt) rt ≈ 2. If we have the behavior
ℓ′(s)/s = 1−Θ(|st|β) near the origin, then rt ≈ 1−Θ(δt) implies that

|st|β ≈ δt . (19)

Our goal is to rigorously establish (19). However, we first make two observations. First, in order to
establish Theorem 2, we only need to prove an upper bound on |st|, which only requires Assump-
tion (A2) (to prove a lower bound on |st|, we need a corresponding lower bound on ℓ′(s)/s). Second,
even if we relax (19) to read |st|β ≲ δt, this fails to hold when δt is too small, because the error
terms (the deviation of the dynamics from the quasi-static trajectory) begin to dominate. With this in
mind, we shall instead prove |st|β ≲ δt + C ′ ηγ , where the added ηγ handles the error terms and the
exponent γ > 0 emerges from the proof.
Proposition 3 (quasi-static analysis; upper bound). For all t such that 0 ≤ δt−1 ≲ 1/(β ∨ 1) (for a
sufficiently small implied constant), it holds that

|st|β ≤ C (δt + C ′ ηβ/(β−1)) ,

where C,C ′ > 0 are constants which may depend on the problem parameters but not on η.

We first show that Theorem 2 now follows.

Proof of Theorem 2. As previously noted, the β = +∞ case is handled by the arguments of the
previous section, so we focus on β < +∞. From Lemma 7, we either have y2t → 2/η and |xt| → 0,
in which case we are done, or there is an iteration t such that y2t < 2/η ≤ y2t−1

. From Proposition 3,
since δt−1 ≥ 0 and δt ≤ 0, it follows that |st|β ≲ η1/(β−1). The theorem now follows, either
from Proposition 1 or from the refined Proposition 2.

We now prove Proposition 3. In the proof, we use asymptotic notation O(·), ≲, etc. in order to hide
constants that depend on ℓ (including β), but not on δt and η. However, the proof also involves
choosing parameters C,C ′ > 0, and we keep the dependence on these parameters explicit for clarity.

Proof of Proposition 3. The proof goes by induction; namely, if |st|β ≤ C (δt + C ′ηγ) and δt ≥ 0
at some iteration t, we prove that the same holds one iteration later, where the constants C,C ′ > 0 as
well as the exponent γ > 0 are chosen later in the proof.

For the base case, observe that the approximate conservation lemma (Lemma 6) gives |st| ≲ 1, and
δt ≳ 1/(β ∨ 1) at the beginning of the induction, so the bound is satisfied initially if we choose C
sufficiently large enough.

Throughout, we also write δ̂t := δt + C ′ηγ as a convenient shorthand. The strategy is to prove the
following two statements:

1. If |st|β = Ctδ̂t for some Ct >
C
2 , then |st+1|β ≤ Ct+1δ̂t+1 for some Ct+1 ≤ Ct.

2. If |st|β = Ctδ̂t for some Ct ≤ C
2 , then |st+1|β ≤ Cδ̂t+1.

Proof of 1. The dynamics for x give

|xt+1| = |1− ηy2t rt| |xt| .
By Assumption (A2+) and |st| ≲ 1,

rt ≤ 1− Ω(|st|β) = 1− Ω(Cδ̂t)

and hence

ηy2t rt = (2 + δt)
(
1− Ω(Cδ̂t)

)
= 2− Ω(Cδ̂t)
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for large C. Also, ℓ′′(0) = 1 and a similar argument as in the proof of Theorem 1 yields the reverse
inequality ηy2t rt ≳ 1. We conclude that

|xt+1| =
(
1− Ω(Cδ̂t)

)
|xt|

and hence

|st+1|β ≤
(
1− Ω(Cδ̂t)

)
|st|β = Ct

(
1− Ω(Cδ̂t)

)
δ̂t .

Since we need a bound in terms of δ̂t+1, we use the dynamics of y,

yt+1 = (1− ηx2
t rt) yt ≥ (1− ηx2

t ) yt ,

y2t+1 ≥ (1− 2ηx2
t ) y

2
t ,

δt+1 = ηy2t+1 − 2 ≥ δt − 2η2s2t ≥ δt − 2η2 (Cδ̂t)
2/β

. (20)

Substituting this in,

|st+1|β ≤ Ct

(
1− Ω(Cδ̂t)

) (
δ̂t+1 + 2η2 (Cδ̂t)

2/β)

= Ctδ̂t+1 − Ω(C2δ̂tδ̂t+1) + 2Cη2 (Cδ̂t)
2/β

. (21)

Let us show that

δ̂t+1 ≥ 3

4
δ̂t . (22)

From (20), we have δ̂t+1 ≥ δ̂t − 2η2 (Cδ̂t)
2/β

, so we want to prove that η2 (Cδ̂t)
2/β ≤ δ̂t/8. If

β ≤ 2 this is obvious by taking η small, and if β > 2 then this is equivalent to C2/βη2 ≲ δ̂
1−2/β
t .

It suffices to have C2/βη2 ≲ (C ′)1−2/β
ηγ (1−2/β), which is achieved by taking C ′ large relative to

C and by taking γ ≤ 2/(1− 2/β); this constraint on γ will be satisfied by our eventual choice of
γ = β/(β − 1).

Returning to (21), in order to finish the proof and in light of (22), we want to show that C2δ̂2t ≳

C1+2/βη2δ̂
2/β
t . Rearranging, it suffices to have δ̂

2−2/β
t ≳ C2/β−1η2, or δ̂1−1/β

t ≳ C1/β−1/2η.
Since by definition δ̂t ≥ C ′ηγ , by choosing C ′ large it suffices to have γ ≤ 1/(1−1/β) = β/(β−1),
which leads to our choice of γ.

Proof of 2. Using the simple bound ηy2t rt ≤ 2 + δt, we have

|st+1| ≤ (1 + δt) |st| ,

|st+1|β ≤ exp(βδt) |st|β = Ct exp(βδt) δ̂t ≤
4

3
Ct exp(βδt) δ̂t+1

where we used (22). If exp(βδt) ≤ 4/3, which holds if δt ≲ 1/β, then from Ct ≤ C/2 we obtain
|st+1|β ≤ Cδ̂t+1 as desired.

By following the same proof outline but reversing the inequalities, we can also show a corresponding
lower bound on |st|β , as long as δt ≳ ηβ/(β−1). Although this is not needed to establish Theorem 2,
it is of interest in its own right, as it shows (together with Proposition 3) that the iterates of GD do in
fact track the quasi-static trajectory.
Proposition 4 (quasi-static analysis; lower bound). Suppose additionally that (A3) holds and that
β < +∞. Also, suppose that at some iteration t0, we have δt0 ≲ 1 and that

|st| ≥ c δ
1/β
t (23)

holds at iteration t = t0, where c is a sufficiently small constant (depending on the problem parameters
but not on η). Then, (23) also holds for all iterations t ≥ t0 such that δt ≳ ηβ/(β−1).

Proof. The proof mirrors that of Proposition 3. Let δt ≳ ηβ/(β−1) for a sufficiently large implied
constant. We prove the following two statements:
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1. If |st| = ct δ
1/β
t for some ct < 2c, then |st+1| ≥ ct+1 δ

1/β
t+1 for some ct+1 ≥ ct.

2. If |st| = ct δ
1/β
t for some ct ≥ 2c, then |st+1| ≥ c δ

1/β
t+1.

Throughout the proof, due to Proposition 3, we also have |st| ≲ δ
1/β
t .

Proof of 1. The dynamics for x give

|xt+1| = |1− ηy2t rt| |xt| .

By Assumption (A3),

rt ≥ 1−O(|st|β) ≥ 1−O(c δt) .

If c is sufficiently small, then

ηy2t rt ≥ (2 + δt)
(
1−O(c δt)

)
≥ 2 + Ω(δt) .

Therefore, we obtain

|xt+1| ≥
(
1 + Ω(δt)

)
|xt| .

On the other hand,

yt+1 ≥ (1− ηx2
t ) yt ≥

(
1−O(η2s2t )

)
yt ≥

(
1−O(η2δ

2/β
t )

)
yt (24)

and hence

|st+1| ≥
(
1 + Ω(δt)

) (
1−O(η2δ

2/β
t )

)
|st| ≥ ct

(
1 + Ω(δt)−O(η2δ

2/β
t )

)
δ
1/β
t

≥ ct
(
1 + Ω(δt)−O(η2δ

2/β
t )

)
δ
1/β
t+1 .

To conclude, we must prove that η2δ2/βt ≲ δt, but since δt ≳ ηβ/(β−1) (with sufficiently large
implied constant), then this holds, as was checked in the proof of Proposition 3.

Proof of 2. Using Assumption (A3),

1−O(δt) ≤ 1−O(|st|β) ≤ rt ≤ 1 .

Therefore,

2−O(δt) ≤ (2 + δt)
(
1−O(δt)

)
≤ ηy2t rt ≤ 2 + δt

and

−1 +O(δt) ≥ 1− ηy2t rt ≥ −1− δt .

Together with the dynamics for x and (24),

|st+1| ≥
(
1−O(δt)

) (
1−O(η2δ

2/β
t )

)
|st| ≥ ct

(
1−O(δt)

) (
1−O(η2δ

2/β
t )

)
δ
1/β
t+1 .

Since ct ≥ 2c, if δt and η are sufficiently small it implies |st+1| ≥ c δ
1/β
t+1.

Convergence rate estimates. Our analysis also provides estimates for the convergence rate of GD in
both regimes. Namely, in the gradient flow regime, we show that GD converges in O(1/η) iterations,
whereas in the EoS regime, GD typically spends Ω(1/η(β/(β−1))∨2) iterations (Ω(log(1/η)/η2)
iterations when β = 2) in the bouncing phase (Figure 11). Hence, the existence of the bouncing
phase dramatically slows down the convergence of GD.
Remark 2. Suppose that at iteration t0, we have δt0 ≍ 1. Then, the assumption of Proposition 4 is
that |st0 | ≳ 1. If this is not satisfied, i.e., |st0 | ≪ 1, then the first claim in the proof of Proposition 4
shows that |st0+1| ≥ (1 + Ω(δt)) |st0 | = (1 + Ω(1)) |st0 |. Therefore, after t′ = O(log(1/|st0 |))
iterations, we obtain |st0+t′ | ≳ 1 and then Proposition 4 applies thereafter.
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Remark 3. From the quasi-static analysis, we can also derive bounds on the length of the bouncing
phase. Namely, suppose that t0 is such that δt0 ≍ 1 and for all t ≥ t0, we have |st| = δ

1/β
t . If δt0 is

sufficiently small so that rt ≳ 1 for all t ≥ t0, then the equation for y yields

δt+1 ≤ δt −Θ(η2s2t ) = δt −Θ(η2δ
2/β
t ) .

We declare the k-th phase to consist of iterations t such that 2−k ≤ δt ≤ 2−(k−1). During this phase,
δt+1 ≤ δt −Θ(η2 2−2k/β), so the number of iterations in phase k is ≍ 2k (2/β−1)/η2. We sum over
the phases until δt ≍ ηβ/(β−1), since after this point the quasi-static analysis fails and y2t crosses
over 2/η shortly afterwards. This yields

1

η2

∑

k∈Z
ηβ/(β−1)≲2−k≲1

2k (2/β−1) ≍





1/η2 , β > 2 ,

log(1/η)/η2 , β = 2 ,

1/ηβ/(β−1) , β < 2 .

The time spent in the bouncing phase increases dramatically as β ↘ 1.

D Deferred derivations of mean model

In this section, we provide the details for the derivations of the mean model in Subsection 3.1. Recall

f(x; a−, a+, b) = a−
d∑

i=1

ReLU
(
−x[i] + b

)
+ a+

d∑

i=1

ReLU
(
+x[i] + b

)
,

where x = λyej + ξ. We first approximate
d∑

i=1

ReLU
(
±x[i] + b

)
≈

d∑

i=1

ReLU
(
±ξ[i] + b

)
.

In other words, we can ignore the contribution of the signal λyej . This approximation holds because
(i) initially, the bias b is not yet negative enough to threshold out the noise, and hence the summation∑d

i=1 ReLU(±ξ[i] + b) is of size O(d), and (ii) the difference between the left- and right-hand
sides above is simply ReLU(±λy ± ξ[j] + b)−ReLU(±ξ[j] + b), which is of size O(1) and hence
negligible compared to the full summation.

Next, letting g(b) := Ez∼N (0,1) ReLU(z + b) be the ‘smoothed’ ReLU (see Figure 7), concentration
of measure implies the following two facts:

•
∑d

i=1 ReLU
(
±ξ[i] + b

)
≈ dEξ∼N (0,1) ReLU(ξ + b) =: d g(b) and

•
∑d

i=1 1{±x[i] + b ≥ 0} ≈ dEξ∼N (0,1) 1{ξ + b ≥ 0} = d g′(b).

Indeed, the summations above are sums of d i.i.d. non-negative random variables, and hence its
mean is Ω(d) (as long as b ≥ −O(1)) and its standard deviation is O(

√
d). Now, using these

approximations, one can rewrite the GD dynamics on the population loss E[ℓlogi(yf(x; a−, a+, b))].
Using these approximations, the output of the ReLU network (2) can be written as

f(x; a−, a+, b) ≈ d (a− + a+) g(b) ,

which in turn leads to an approximation of the GD dynamics on the population loss (a−, a+, b) 7→
E[ℓlogi(yf(x; a−, a+, b))]:

a±t+1 = a±t − η E
[
ℓ′logi

(
y f(x; a−t , a

+
t , bt)︸ ︷︷ ︸

≈ d (a−
t +a+

t ) g(bt)

)
×

d∑

i=1

ReLU
(
±x[i] + bt

)

︸ ︷︷ ︸
≈ d g(bt)

]

≈ a±t − η ℓ′sym
(
d (a−t + a+t ) g(bt)

)
d g(bt) ,

bt+1 = bt − η E
[
ℓ′logi(y f(x; a

−
t , a

+
t , bt)︸ ︷︷ ︸

≈ d (a−
t +a+

t ) g(bt)

)
×

(
a−t

d∑

i=1

1{−x[i] + bt ≥ 0}
︸ ︷︷ ︸

≈ d g′(bt)

+ a+t

d∑

i=1

1{+x[i] + bt ≥ 0}
︸ ︷︷ ︸

≈ d g′(bt)

)]

≈ bt − η ℓ′sym
(
d (a−t + a+t ) g(bt)

)
d (a−t + a+t ) g

′(bt) ,
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where ℓsym(s) := 1
2 (log(1+ exp(−s))+ log(1+ exp(+s))) is the symmetrized logistic loss. Hence

we arrive at the following dynamics on a± and b that we call the mean model:
a±t+1 = a±t − η ℓ′sym

(
d (a−t + a+t ) g(bt)

)
d g(bt) ,

bt+1 = bt − η ℓ′sym
(
d (a−t + a+t ) g(bt)

)
d (a+t + a−t ) g

′(bt) .

Now, we can write the above dynamics more compactly in terms of the parameter At := d (a−t + a+t ).

At+1 = At − 2d2η ℓ′sym(Atg(bt)) g(bt) ,

bt+1 = bt − η ℓ′sym(Atg(bt))Atg
′(bt) .

E Proofs for the mean model

In this section, we prove the main theorems for the mean model. We first recall the mean model for
the reader’s convenience.

At+1 = At − 2d2η ℓ′(Atg(bt)) g(bt) ,

bt+1 = bt − η ℓ′(Atg(bt))Atg
′(bt) .

E.1 Deferred proofs

In this section, we collect together deferred proofs from Subsection 3.2.

Proof of Lemma 2. By definition, g(b) =
∫∞
−b

(ξ + b)φ(ξ) dξ =
∫∞
−b

ξ φ(ξ) dξ + b Φ(b). Recalling
φ′(ξ) = −ξ φ(ξ), the first term equals φ(b). Moreover, g′(b) = −b φ(b)+Φ(b)+b φ(b) = Φ(b).

Proof of Lemma 3. Note that ∂t( 12 A
2) = AȦ = −2d2 ℓ′(Ag(b))Ag(b) and also that ∂tκ(b) =

−ℓ′(Ag(b))κ′(b)Ag′(b) = −ℓ′(Ag(b))Ag(b) since κ′ = g/g′. Hence, ∂t
(
1
2A

2 − 2d2κ(b)
)
= 0

and the proof is completed.

E.2 Gradient flow regime

Proof of Theorem 3. The following proof is analogous to the proof of Theorem 1. We first list several
facts we use in the proof:

(i) |g′(b)| = |Φ(b)| ≤ 1 for all b ∈ R.

(ii) ℓ′(s) = 1
2

exp(s)−1
exp(s)+1 . Hence, |ℓ′(s)| ≤ 1

2 for all s ∈ R, and we have

ℓ′(s)
s

≥ 1

8
×

{
1 , if |s| ≤ 2 ,

2/|s| , if |s| > 2 .

(iii) ℓ′′(0) = 1/4.

(iv) ℓ′′′(s) = − exp(s) (exp(s)−1)

(exp(s)+1)3
. Hence, ℓ′′′(s) < 0 for s > 0 and ℓ′′′(s) > 0 for s < 0. In

particular, |ℓ′(s)| ≤ 1
4 |s| for all s ∈ R.

Throughout the proof, we assume that A0 > 0 without loss of generality. We prove by induction the
following claim: for t ≥ 0 and

γ :=
1

200
min

{
δ, 8− δ,

8− δ

A0

}
,

it holds that |At| ≤ A0 exp(−γt). This clearly holds at initialization.

Suppose that the claim holds up to iteration t. Using the bounds on |g′| and |ℓ′|, it follows that

bt+1 ≥ bt − |ℓ′(Atg(bt))| |At| g′(bt) ≥ bt −
1

2
η |At|

≥ bt −
1

2
ηA0 exp(−γt) ≥ · · · ≥ b0 −

1

2
ηA0

t∑

s=0

exp(−γs) ≥ −ηA0

γ
.
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In particular, bt ≥ −1 and g(bt) > 0.08, since η ≤ γ
A0

. Also, the bound shows that if the claim holds
for all t, then we obtain the desired conclusion.

It remains to establish the inductive claim; assume that it holds up to iteration t. For the dynamics of A,
by symmetry we may suppose that At > 0. From ℓ′(Atg(bt)) ≤ Atg(bt)/4 and g(bt) ≤ g(0) = 1√

2π
,

it follows that

At+1 = At − 2ηd2 ℓ′(Atg(bt)) g(bt) ≥
(
1− ηd2

2
g(bt)

2
)
At

≥
(
1− ηd2

2
g(0)

2
)
At = −

(
1− δ

4

)
At .

This shows that At+1 ≥ −(1− γ)At. Next, we show that At+1 ≤ (1− γ)At. First, if Atg(bt) ≤ 2,

At+1 = At − 2ηd2 ℓ′(Atg(bt)) g(bt) ≤ At −
1

4
ηd2 At g(bt)

2

=
(
1− (8− δ)π

4
g(bt)

2
)
At ≤

(
1− (8− δ)

4
π · 0.082

)
At ≤ (1− γ)At ,

since we have g(bt) > 0.08. Next, if Atg(bt) ≥ 2, then

At+1 = At − 2ηd2 ℓ′(Atg(bt)) g(bt) ≤ At −
1

2
ηd2 g(bt) =

(
1− (8− δ)π

2

g(bt)

At

)
At

≤
(
1− (8− δ)π

2
· 0.08
A0

)
At ≤ (1− γ)At .

This shows that |At+1| ≤ (1− γ) |At| for the case At > 0. A similar conclusion is obtained for the
case At < 0. The induction is complete.

E.3 EoS regime

Proof of Theorem 4. The following proof is analogous to the proof of Lemma 7. Assume throughout
that At ̸= 0 for all t. Recall the dynamics for b:

bt+1 = bt − η ℓ′(Atg(bt))Atg
′(bt) .

Since ℓ′(s)/s → 1/4 as s → 0, and ℓ′ is increasing, this equation implies that if lim inft→∞ |At| > 0

then bt must keep decreasing until 1
2 d

2g(bt)
2
< 2/η.

Suppose for the sake of contradiction that there exists ε > 0 with 1
2 d

2g(bt)
2 > (2 + ε)/η, for all

t. Let ε′ > 0 be such that 1− (2 + ε) (1− ε′) < −1, i.e., ε′ < ε
2+ε . Then, there exists δ > 0 such

|At| ≤ δ implies ℓ′(Atg(bt))/(Atg(bt)) >
1
4 (1− ε′), hence

|At+1|
|At|

=
∣∣∣1− 4 · 1

4
(1− ε′) · 1

2
ηd2 g(bt)

2
∣∣∣ > |(2 + ε) (1− ε′)− 1| > 1 .

The above means that |At| increases until it exceeds δ, i.e., lim inft→∞ |At| ≥ δ. This is our desired
contradiction and it implies that limt→∞ 1

2 d
2g(bt)

2 ≤ 2/η.

Remark 4. A straightforward calculation yields that when (a−⋆ , a
+
⋆ , b⋆) is a global minimizer (i.e.,

a−⋆ + a+⋆ = 0), then λmax

(
∇2f(a−⋆ , a

+
⋆ , b⋆)

)
= 1

2 d
2 g(b⋆)

2. The mean model initialized at (A0, 0)

approximately reaches (0, 0) whose sharpness is d2 g(0)
2
/2 = d2/4π. Hence, the bias learning

regime 2/η < d2/(4π) precisely corresponds to the EoS regime, 2/η < λmax

(
∇2f(a−⋆ , a

+
⋆ , b⋆)

)
.
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