
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TRANSFORMERS STRUGGLE TO LEARN TO SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Search is an ability fundamental in many important tasks, and recent studies have
shown that large language models (LLMs) struggle to perform search robustly. It
is unknown whether this inability is due to a lack of data, insufficient model pa-
rameters, or fundamental limitations of the transformer architecture. In this work,
we use the fundamental graph connectivity problem as a testbed to generate ef-
fectively limitless high-coverage data to train small transformers and test whether
they can learn to perform search. We find that, when given the right training dis-
tribution, the transformer is able to learn to search.
We analyze the algorithm that the transformer has learned through a novel mech-
anistic interpretability technique that enables us to extract the computation graph
from the trained model. We find that for each vertex in the input graph, trans-
formers compute the set of vertices reachable from that vertex. Each layer then
progressively expands these sets, allowing the model to search over a number of
vertices exponential in the number of layers.
However, we find that as the input graph size increases, the transformer has greater
difficulty in learning the task. This difficulty is not resolved even as the number
of parameters is increased, suggesting that increasing model scale will not lead to
robust search abilities. We also find that performing search in-context (i.e., chain-
of-thought) does not resolve this inability to learn to search on larger graphs.

1 INTRODUCTION

The ability to search is fundamental in many important tasks, such as reasoning (Yao et al., 2024;
Kazemi et al., 2023; Hao et al., 2023), planning (Stein & Koller, 2023; Valmeekam et al., 2022), and
navigation (Ding et al., 2024). Recent work has demonstrated that transformer-based large language
models (LLMs) struggle with proof search (Saparov & He, 2022; Valmeekam et al., 2022; Kamb-
hampati et al., 2024). It is unknown whether this shortcoming is due to a lack of data, insufficient
model parameters, or a fundamental limitation of the transformer architecture. In any case, as the
scale of LLMs continues to increase, it is yet unclear whether future LLMs, equipped with more
data, parameters, and compute, will be able to perform search and planning. Chain-of-thought and
similar prompting techniques (Wei et al., 2022b; Nye et al., 2021) have enabled LLMs to decompose
the search task into the repeated task of predicting the next step along the path to the goal. However,
even in this setting, in the worst case, in order to avoid making a “wrong turn,” the model must
perform the search within its forward pass to determine the correct next step. And LLMs have been
observed producing errors or hallucinations after taking such a wrong turn (Saparov & He, 2022).
We aim to shed light on this question by training small transformer models on a simple yet foun-
dational search task: Given a directed acyclic graph (DAG), a start vertex, and a goal vertex, find
the next vertex along a path from the start to the goal vertex. This task is the backbone of many
reasoning problems as it is equivalent to proof search in a simplified logic which is a subset of al-
most any logic: The model must solve this task if there is any chance to generalize to more complex
search and reasoning tasks. We demonstrate experimentally that transformers can indeed be taught
to search, when given the right training distribution. The training distribution must be carefully con-
structed so as to preclude the usefulness of shortcuts or heuristics that would otherwise prevent the
transformer from learning a robust and generalizable search algorithm. By automatically generating
such examples, we provide the transformer with effectively limitless and idealized training data,
with which we can estimate an “upper bound” on the transformer’s ability to learn to search.
When the model does learn the constructed training distribution (i.e., reaches 100% training accu-
racy), it is able to correctly perform search in almost any graph. We aim to determine the algorithm
that the model has learned to solve the search task, and to measure the extent to which the model

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

uses such an algorithm or relies on heuristics. We develop a mechanistic interpretability analysis to
study the learned algorithm. We find that transformers perform search simultaneously on all vertices
of the input graph, where for each vertex, the transformer stores the set of vertices reachable within
a certain number of steps. Each layer successively extends the sets of reachable vertices, thereby
allowing the model to search over a number of vertices exponential in the number of layers.
However, we find that as the input graph size increases, the transformer has increasing difficulty
in learning the training distribution. We find that increasing model scale does not alleviate this
difficulty, suggesting that simply increasing the size of the transformer will not lead to the robust
acquisition of searching and planning abilities.
We also consider modified versions of the search task where the model is permitted to output inter-
mediate tokens (akin to chain-of-thought prompting; Kojima et al., 2022; Wei et al., 2022b). More
specifically, we test depth-first search and (zero-shot) selection-inference prompting (Creswell et al.,
2023). We find that while it is easier to teach the model to solve this task, requiring a constant num-
ber of layers, the model still struggles on larger input graphs.
Thus, our results suggest that future transformer-based models will not solve the search task with
standard training, and alternative training approaches may be necessary. All code for generating
data, training and evaluation is open-source and freely available at [anonymized].

2 RELATED WORK

Search abilities of transformers. A number of studies have explored the search capabilities of
transformers and LLMs. Benchmarks have shown that LLMs can perform some graph reasoning
tasks (Fan et al., 2024; Fu et al., 2024; Sanford et al., 2024), but they are limited to small graphs,
relative to graphs we consider. Ruoss et al. (2024); Gandhi et al. (2024); Shah et al. (2024) find
that a transformer can learn to approximate or simulate a search algorithm, but with a performance
gap, and they do not test whether this gap is lessened by increasing model scale or training. Wang
et al. (2023); Bachmann & Nagarajan (2024) show that LLMs can do some graph reasoning but
are fooled by spurious correlations. Similarly Zhang et al. (2023) find that transformers are unable
to learn to perform proof search since they strongly prefer heuristics. In this work, we also show
that transformers are highly sensitive to the training distribution, but if extra care is taken to re-
move heuristics, they are able to learn to search. Zhang et al. (2024) show that LLMs struggle on
real-world graph reasoning tasks. Borazjanizadeh et al. (2024) find that LLMs have difficulty on
diverse search problems. However, this is in contrast with work on the theoretical expressiveness of
transformers. Merrill & Sabharwal (2024) show that with chain-of-thought, transformers can sim-
ulate any Turing machine. However, their results do not indicate whether it is possible to train a
transformer to perform any task. In fact, we find that even if the transformer is permitted to generate
intermediate tokens, it is challenging to learn to search on larger graphs. Sanford et al. (2024) show
that transformers need a logarithmic number of layers to perform the graph connectivity task, which
is supported by our identification of the algorithm that transformers acquire during training.
Mechanistic interpretability. There is a large amount of work that seek an algorithmic understand-
ing of transformers trained on various tasks. Hou et al. (2023); Kim et al. (2024) look for evidence of
specific circuits/algorithms in the transformer’s activations and attention patterns. In our approach,
we do not require the algorithm be known a priori. Rather, we reconstruct the computation graph
from the model activations and attention patterns. We make heavy use of activation patching (Vig
et al., 2020b; Geiger et al., 2021; Heimersheim & Nanda, 2024). Brinkmann et al. (2024); Kim
et al. (2024); Stolfo et al. (2023) apply mechanistic interpretability analysis to better understand
transformer behavior in reasoning, and Yang et al. (2024); Jenner et al. (2024) present evidence
that LLMs perform shallow searches during the forward pass. Ivanitskiy et al. (2023) train small
transformer models on a maze search task and find internal representations of the maze map.
Scaling laws. Scaling laws are empirically-supported hypotheses about the long-term behavior of
machine learning models on a task, as a function of the model size, the amount of data, and compute
(Kaplan et al., 2020; Henighan et al., 2020; Hoffmann et al., 2022). Caballero et al. (2023) explore
scaling laws on a wide multitude of tasks, but not including search, reasoning, or planning. Wei
et al. (2022a) posit that there may exist phase transitions as scale increases, where certain abilities
“emerge.” However, Schaeffer et al. (2023) find that this emergent behavior can be explained by
careful selection of metrics. Du et al. (2024) argue that training loss is a better measure of model
ability, independent of scale.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Graph search example:

8

4

3

1

622

sta
rt

goal

E 4 1 E 8 3 E 3 6 E 8 4 E 2 3 Q 8 6 P 8

Model input:

graph edges

st
ar

t v
er

te
x

go
al

ve
rte

x

Label: 3

Equivalent proof search example:

If Alice has fur, then Alice sheds. If Alice is a mammal, Alice is
warm-blooded. If Alice is warm-blooded then Alice can shiver. If Alice
is a mammal, then Alice has fur. If Alice is a bird, Alice is warm-blooded.
Given Alice is a mammal, prove Alice can shiver.

Label: Alice is warm-blooded.

FIGURE 1: (top left) Example of a search example on a directed acyclic graph and (top right) the corre-
sponding transformer input and output label. (bottom) An equivalent proof search problem in implicational
propositional logic, rendered in natural language.

3 SEARCH IN DIRECTED ACYCLIC GRAPHS

In order to test whether transformers can learn to perform search, we need a way to produce a large
number of search problems on which the model can be trained and evaluated. We do so by generating
search problems on directed acyclic graphs (DAGs). Each example consists of a DAG, a start vertex,
and a goal vertex (which is guaranteed to be reachable from the start vertex). The model’s task is to
output the next vertex on the path from the start to the goal vertex. We characterize the difficulty of
an example by its lookahead: the number of steps that the model must search from the start vertex
to find the goal. More precisely, for any example graph, let P be the path from the start to the
goal vertex, and Si be the paths from the start vertex that are otherwise disjoint with P , then the
lookahead L is min{|P |,maxi |Si|}. An example graph, along with the corresponding transformer
input, is shown in Figure 1. In this graph, the lookahead is 2.
We experiment with three distributions of DAG search problems: (1) two simple distributions where
we pay no special attention to heuristics, which we call the “naı̈ve” and “star” distributions, and (2)
a more carefully constructed distribution where we take care to prevent the model from exploiting
heuristics to solve the task, called the “balanced distribution.”
Naı̈ve distribution. We adapt the Erdős–Rényi random graph distribution (Erdös & Rényi, 1959) to
generate directed acyclic graphs: We arrange a set of vertices in linear order from left to right (i.e.,
topological order) and randomly sample edges between pairs of vertices. To ensure there are no
cycles, all edges are oriented to the right. To reduce the density of the graphs, we limit the in-degree
of any vertex to 4, since the lookahead is typically very small in dense graphs. See Section A.1.1 for
details on the generative process.
Balanced distribution. While easy to describe and implement, the naı̈ve distribution strongly tends
to generate graphs where the lookahead is very small (typically L = 1 or 2; see Figure 8). In fact,
it becomes exponentially less likely to generate examples with greater lookaheads. In order to both
train and evaluate the model’s ability to search multiple steps to find the goal vertex, we need an
efficient way to generate examples where the model is required to search for additional steps in
order to find the goal. In addition, to prevent the model from relying on heuristics to perform
search, we must take care to ensure that heuristics are not useful to solve the search problems in
the training distribution. Thus, we design the balanced distribution to specifically generate graphs
with a lookahead parameter L (see Section A.1.2 for details), which we use to produce training data
where the lookahead is uniformly distributed.
Star distribution. We experiment with an additional distribution over graphs where the vertices are
arranged in a star-shape (see Fig 1 in Bachmann & Nagarajan, 2024). The vertex at the center is the
start vertex, and there are k “spokes” that radiate outwards from the center, where each spoke is a
linear chain of L vertices. The goal vertex is at the end of one of the spokes.

3.1 EXPERIMENTS

We train transformer models, with the same architecture as GPT-2 (Radford et al., 2019) with ReLU
activation. In order to facilitate mechanistic interpretation of the trained model behavior, we use

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

N
äı
ve

di
st
r.

St
ar

di
st
r. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Näıve distr.

Star distr.

Balanced distr.

Balanced distr.
(lookahead ≤ 12)

T
ra

in
e
d

o
n
:

Tested on:

0.99 0.81 0.99 1.00 0.99 0.93 0.26 0.28 0.33 0.31 0.36 0.33 0.43 0.40 0.43 0.51 0.52 0.50 0.52 0.49 0.52 0.49

0.65 1.00 0.98 0.99 1.00 0.99 1.00 0.98 0.99 0.99 0.97 1.00 0.98 0.96 0.99 0.99 0.99 0.99 0.98 0.95 0.92 1.00

0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.97 0.98 0.97

0.99 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.96 0.84 0.67 0.53 0.53 0.50 0.49

Balanced distribution with lookahead

FIGURE 2: Accuracy of model with input size 128 trained on 883M examples from the naı̈ve distribution, vs
star distribution, vs the balanced distribution with lookaheads L ≤ 20 (which is the maximum for the input
size), vs the balanced distribution with L ≤ 12 for the last row. All evaluation is on held-out examples.

1-hot embeddings for both the token and the absolute position embedding. Furthermore, the token
embedding and position embeddings are concatenated rather than added to form the transformer
input. We use 1 attention head per layer. The feed-forward dimension is the same as the model
dimension. Since the edges in our inputs are randomly ordered, it would help for each token to be
able to attend to any other token, rather than only the preceding tokens. As such, the model does not
use a causal mask when computing attention. We train an 6-layer model with hidden dimension 16.
To simulate training on samples of a very large corpus of data, we utilize streaming training. We
continually sample batches from the generative process throughout training, instead of sampling
batches from a fixed training set. The first few batches are reserved for testing, and subsequent
batches are filtered via exact matching to remove any examples that appear in the test set, to ensure
that the examples in the test set are unseen. In all our experiments, we use the Sophia optimization
algorithm (Liu et al., 2024) with a learning rate of 10−5, weight decay of 0.1, and no dropout. We use
a batch size of 1024 examples, unless otherwise stated. We minimize the cross-entropy loss during
training. Some graphs contain multiple paths from the start to the goal vertex. During training, we
select one path uniformly at random as the ground truth when computing the loss. During evaluation,
we consider the model’s prediction to be correct if the output vertex lies on any path to the goal.

3.1.1 SENSITIVITY TO TRAINING DISTRIBUTION

We first investigate the effect of the training distribution on the transformer’s ability to learn the
search task. We do so by training one model on the naı̈ve distribution, another model on the star
distribution (where the number of spokes k and spoke lengths L are uniformly distributed), and a
third model on the balanced distribution (where the lookahead L is uniformly distributed), all with
input size 128 tokens. Then, we evaluate the accuracy of each model on held-out test sets from the
naı̈ve, star, and balanced distributions, for all possible lookaheads L. We observe in Figure 2 that the
model trained on the naı̈ve distribution is not able to robustly handle graphs with larger lookaheads,
showing low accuracy even for observed number of lookaheads (e.g., L = 5). This is due to the fact
that the probability of generating graphs with larger lookaheads with the naı̈ve distribution decreases
exponentially, and so the model is not shown sufficient examples with large lookaheads. The model
trained on the star distribution performs reasonably on examples from the balanced distribution
but not as well on examples from the naı̈ve distribution. In contrast, the model trained on the
full balanced distribution performs near perfectly in all test settings, and generalizes to unobserved
numbers of lookaheads. This result demonstrates that it is possible to teach a transformer to perform
search almost perfectly on the space of lookaheads observed during training, when provided with an
appropriate training distribution. Furthermore, the model trained on the balanced distribution with
lookahead ≤ 12 was able to generalize to lookaheads 13 and 14 but not on any larger lookaheads.

3.1.2 PROOF SEARCH IN NATURAL LANGUAGE

Our earlier experiments were conducted with a symbolic input representation for the graphs in each
example. To demonstrate that our findings generalize to inputs expressed in natural language, we
re-run our earlier experiment where we train small transformers from scratch, but with a modified
input: Each edge (e.g., “vertex 1 connects to vertex 2”) is expressed as a conditional sentence (e.g.,
“If Alex is a wumpus, then Alex is a vumpus”) where each word and punctuation symbol is a token.
The task is correspondingly modified: Given a start proposition (e.g., “Alex is a wumpus”), find the
next step in the proof of a goal proposition. Thus, this modification defines a one-to-one mapping
between graph search problems in the symbolic representation and reasoning problems in a natural
language representation (in implicational propositional logic). See Figure 1 for an example of this
correspondence. We see in Figure 9 that the training behavior in this setting is qualitatively very
similar to that in the graph search setting. The model has increasing difficulty learning the task as
the graph size increases, especially in terms of FLOPs, as evident from the last row of the Figure.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Step 1: Identify attention operations in the last layer with greatest contribution to the prediction.
E 4 1 E 8 3 E 3 6 E 8 4 E 2 3 Q 8 6 P 8

3

Layer 1

Layer 2

Layer 3

Layer 4

Output:
Step 2: Identify attention operations whose perturbations strongly
affect the operations from Step 1 or the output prediction.

E 4 1 E 8 3 E 3 6 E 8 4 E 2 3 Q 8 6 P 8

3

Layer 1

Layer 2

Layer 3

Layer 4

Output:
Step 3: Use activation patching to explain each operation from Step 2 and
select operations that lie on an explainable path from the inputs to the output.

E 4 1 E 8 3 E 3 6 E 8 4 E 2 3 Q 8 6 P 8

3

Layer 1

Layer 2

Layer 3

Layer 4

Output:

FIGURE 3: Overview of method to reconstruct the computation graph from a transformer for a specific input.

4 MECHANISTIC INTERPRETATION OF TRANSFORMERS ON GRAPH SEARCH

We observed in the previous section that transformers are sometimes able to learn to search during
training, and the resulting model is able to robustly and correctly answer almost any graph search
problem in the input space. We aim to better understand the algorithm that the model acquired
during training to solve the task, to determine whether and to what extent the model is utilizing a
correct algorithm to solve the task, as opposed to a heuristic.

4.1 RECONSTRUCTING ALGORITHMS FROM INPUTS

In order to understand how the transformer learns to solve the graph search task, we develop a
new method for mechanistically interpreting the model’s behavior. Our method involves closely
examining the model’s behavior for a given input example in order to reconstruct a computation
graph that explains the model’s activations, attention patterns, and output prediction. Our method
consists of the following steps, as depicted visually in Figure 3:
I. Compute activations, attention weights, and output logits. For a given input example, perform
an ordinary forward pass to compute the activations, attention weights, and output logits.

II. Identify important attention operations in the last layer. For each element of the attention
matrix in the last layer corresponding to the last token, perturb the weight by changing it to 0 and
recomputing the logit of the model’s original prediction. If the resulting decrease in the logit of
the prediction is greater than a threshold parameter α, then this attention operation is marked as
important. Similarly perturb each weight by changing it to a large value1 (the largest attention
weight in the row of the attention matrix and renormalize). If the resulting decrease in the logit is
greater than α, then this operation is also marked as important.2

III. Identify important attention operations in all other layers. For each element of the attention
matrix in all layers except the last layer, perturb the weight by changing it to 0 or to a large value

1We do this since we found that at some layers, a token will attend strongly to every other token except one
token, and information is actually transferred from the exceptional token due to the small attention weight.

2Sometimes, this step yields no important operations. In such cases, as a fallback, the set of attention
operations that cause the largest decrease in the logit of the model’s prediction are marked as important.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0

0

0

0

0

1

1

1

1

1

2

2

2

2

2

3

3

3

3

3

4

4

4

4

4

5

5

5

5

5

6

6

6

6

6

7

7

7

7

7

8

8

8

8

8

9

9

9

9

9

sta
rt goal

sta
rt goal

sta
rt goal

sta
rt goal

sta
rt goal

Layer 1 input:

Layer 2 input:

Layer 3 input:

Layer 4 input:

Layer 5 input:

Set
of

re
ac

ha
bl

e
ve

r-

tic
es

en
co

de
d

in
em

-

be
dd

in
g

fo
r ve

rte
x

1

Set
of

re
ac

ha
bl

e
ve

r-

tic
es

en
co

de
d

in
em

-

be
dd

in
g

fo
r ve

rte
x

2

Set of reachable vertices encoded
in embedding for vertex 3

Set of reachable vertices encoded
in embedding for vertex 5

FIGURE 4: Visualization of the exponential path-merging algorithm, showcasing the layer-by-layer compu-
tation of the reachability of vertex 9 from vertex 1. We hypothesize that transformers learn this algorithm to
search. In this algorithm, each token corresponding to a vertex stores information about which other vertices are
reachable from this vertex (or from which vertices is this vertex reachable). For example, in layer 3, the model
knows that vertex 3 is reachable from 1, and that 5 is reachable from 3, and computes that 5 is reachable from 1,
as shown in the input to layer 4. We posit the model performs this computation for all vertices simultaneously.

(i.e., setting the weight equal to the largest weight in that row and renormalizing). Perform a
forward pass and inspect the log attention weight of each important operation in the last layer. If
the resulting change in the log attention weight is greater than

√
d

κ1
, where d is the model dimension

and κ1 is a sensitivity parameter, then we mark this attention operation as important. Similarly, if
the resulting decrease in the logit of the output prediction is larger than α, we mark this attention
operation as important.

IV. Explain each important attention operation. For each important attention operation, let j be
the row and i be the column of the corresponding entry in the attention matrix, and l be the layer
of the operation. We say token i is the source token of this attention operation and token j is the
target. We use activation patching (Vig et al., 2020a; Zhang & Nanda, 2024) to determine which
features of the input are causally significant for this operation. We test perturbations on two types
of input features:
• Token perturbations: For each vertex ID v of the input, we produce a perturbed input where
v′ is substituted for v, where v′ is a vertex ID that does not appear in the original input.

• Position perturbations: For each position i of the input, we produce a perturbed input where
the position embedding for the ith token is set to zero.

Suppose we perturb an input feature f . We then compute the forward pass on the perturbed input
while freezing the attention matrices up to the layer of the current attention operation.3 At layer l,
we compute the dot products:

Q̃jK
⊤
i and QjK̃

⊤
i , (1)

where Q̃j is the perturbed query vector corresponding to token j, Qj is the unperturbed query
vector, K̃i is the perturbed key vector corresponding to token i, and Ki is the unperturbed key
vector. We compare Q̃jK

⊤
i to the original scaled dot product QjK

⊤
i . If the resulting change

in the dot product is greater than
√
d

κ2
where κ2 is a sensitivity parameter,4 then we say that the

3We also freeze the ReLU activations in that any value that was set to zero by ReLU in the original forward
pass will also be set to zero in the perturbed forward pass. The aim of freezing the previous layers is to measure
the effect of the perturbation on the current layer in isolation of changes in behavior in preceding layers.

4We also require the change in dot product to be in the correct direction: If this attention operation has large
attention weight, then we require the perturbed dot product to be smaller than the threshold, and vice versa for
attention operations with small attention weight.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

embedding of the token at index j contains information about the perturbed feature f , and that this
information is used by attention layer l to perform this attention operation. Repeat this for all input
features and we obtain the set of features fT

1 , . . . , fT
v of the target embedding that causally affect

this attention operation. Similarly, we compare QjK̃
⊤
i to determine whether information about the

perturbed feature f is encoded in the embedding of the token at index i and is significant for this
attention operation. Repeat this for all input features and we obtain the set of features fS

1 , . . . , f
S
u

of the source embedding that causally affect this attention operation. The result of this step is a
description of each important attention operation, showing why the operation happens. That is,
what are the input features (token and position embeddings) that are encoded in the source and
target embeddings that causally affect the attention weight corresponding to this operation.

V. Reconstruct the computation graph/circuit. Starting from the first layer, let tk be the token
at position k of the input. We say each input vector “explainably contains” information about the
token value tk and position k. Next, we consider the attention operations in the first layer. Suppose
an attention operation copies source token i into target token j, and depends on the source token
embedding containing features fS

1 , . . . , f
S
u and depends on the target token embedding containing

features fT
1 , . . . , fT

v to perform this operation (as computed in Step IV.). We say this attention op-
eration is explainable if the embedding of token i explainably contains all features fS

1 , . . . , f
S
u , and

the embedding of token j explainably contains all features fT
1 , . . . , fT

v . If the attention operation
is explainable, we say the output embedding of the target token j explainably contains the union
of the features: fS

1 , . . . , f
S
u , f

T
1 , . . . , fT

v . We repeat this for every layer, computing all explainable
attention operations throughout the model. Pseudocode for this procedure is shown in Algorithm 1.
Finally, we filter out attention operations for which there does not exist a path of explainable
attention operations to the output prediction (i.e., we can’t explain how this operation is useful for
the model’s output on this example). The result is a computation tree, where each node corresponds
to an embedding vector in some layer in the model, which explainably contains information about
a set of input features, and where each edge corresponds to an explainable attention operation.

We apply the above method on a trained model repeatedly for different input examples. The result is
a set of computation graphs/circuits, one for each input example, and we can perform further analysis
on these circuits to describe the model’s computation across many inputs. While this method is able
to produce a fine-grained description of the processing in the transformer, it requires many forward
passes5. Nonetheless, we are able to apply it to our smaller trained models.

4.2 EXPERIMENTS

We perform the above analysis on models trained on the balanced distribution that have achieved
near-perfect test accuracy. We hypothesize that the transformer performs search on all vertices
simultaneously, where the embedding for each vertex explainably contains information about the set
of vertices reachable from the current vertex within a certain number of steps. At each layer, for
each vertex, the attention mechanism copies from a source vertex that is at the edge of the current
vertex’s reachable set, computing the union of the reachable sets of both vertices and storing the
resulting set in the embedding of the current vertex. Thus, the reachable set can theoretically double
in size at every layer. In theory, the model may perform the search either in the forward or backwards
direction: Rather than storing the set of reachable vertices, it may store the set of vertices from which
the current vertex is reachable. A visual depiction of this algorithm is shown in Figure 4.
To test whether the transformer utilizes this algorithm, we perform the analysis described in Sec-
tion 4.1 for multiple held-out inputs from both the naı̈ve and balanced distributions (on a total of
2000 inputs; 100 for each lookahead). We set α = 0.4, κ1 = 20, and κ2 = 10. For each input, we
reconstruct and inspect the computation graph of attention operations. We categorize each attention
operation into one of the following: (1) path-merge operations,6 or (2) copy operations from ver-
tices that are specifically reachable from either the start or the goal vertex. If the attention operation
does not fall into either category, it is discarded. We say the input is explained by the path-merging
algorithm if for every vertex along the path from the start to the goal vertex, there exists an unbroken
sequence of path-merge operations that ultimately copy from the corresponding token in the first
layer into the last token at the last layer.

5Ln2mF where L is the number of layers, n is the model’s input size, m is the number of input examples,
and F is the number of perturbed features.

6We check for either “token-matching” or position-based path-merge operations. In token-matching, the
attention head selects another token by looking for vertex IDs of overlapping sets of reachable vertices. In a
position-based op, the attention head looks for vertices that are one step from a vertex in the reachable set.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Tes
te

d
on

nä
ıv
e
di

st
r.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Näıve distr.

Balanced distr.

Balanced distr.
(lookahead ≤ 12)

Random model

T
ra

in
e
d

o
n

: 0.99 1.00 1.00 0.99 0.97 0.88 0.87 0.78 0.79 0.59 0.52 0.58 0.59 0.63 0.44 0.43 0.45 0.55 0.50 0.67

0.97 0.99 0.94 0.94 0.99 0.98 0.98 0.99 0.96 0.95 0.99 0.98 0.97 0.98 0.96 0.93 0.98 0.94 0.93 0.92

1.00 0.76 0.99 0.97 0.99 0.98 0.98 0.95 0.97 0.97 0.98 0.97 0.99 1.00 0.97 0.95 0.92 0.87 0.86 0.84

0.05 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tested on balanced distribution with lookahead

Proportion of examples explained by path-merging algorithm

Tes
te

d
on

nä
ıv
e
di

st
r.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Näıve distr.

Balanced distr.

Balanced distr.
(lookahead ≤ 12)T

ra
in

e
d

o
n

: 0.52 0.18 0.63 0.49 0.47 0.23 0.25 0.19 0.26 0.15 0.23 0.28 0.32 0.22 0.19 0.26 0.22 0.26 0.34 0.32

0.72 0.75 0.69 0.69 0.69 0.73 0.75 0.77 0.77 0.79 0.79 0.80 0.81 0.81 0.82 0.82 0.84 0.84 0.85 0.86

0.70 0.69 0.69 0.65 0.70 0.79 0.77 0.79 0.76 0.76 0.80 0.77 0.74 0.77 0.78 0.79 0.79 0.80 0.80 0.78

Tested on balanced distribution with lookahead

Proportion of “maximal” path-merge operations

FIGURE 5: (top) The proportion of examples for which the path-merging algorithm was identified in the com-
putation graph, as reconstructed using our mechanistic interpretability analysis. Each cell contains a random
held-out sample of 100 examples. We perform our analysis on the same models as in Section 3.1.1 (and Fig-
ure 2). A randomly-initialized (untrained) model is shown in the last row as the control. (bottom) The propor-
tion of path-merge operations that are “maximal,” averaged over 100 random examples. We say a path-merge
operation is maximal if it is merging the largest available reachable sets. This is in contrast with a suboptimal
path-merge operation where one or both reachable sets are not the largest available at that layer.

108 9 20 30 40 50

Maximum input graph size

10−3

10−2

10−1

M
in

im
u

m
te

st
lo

ss

108 9 20 30 40 50

Maximum input graph size

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

co
n
ve

rg
ed

se
ed

s

FIGURE 6: (left) The minimum test loss after training on 236M examples versus maximum input graph size
(in vertices). For each maximum input graph size, we run 14 experiments with different random seeds. All
models were trained on the balanced distribution. Test loss was evaluated on held-out examples from the
naı̈ve distribution. We only show results for models that have converged (i.e., it’s training accuracy is greater
than 0.995). (right) The fraction of models (initialized with different random seeds) that converged versus
maximum input graph size after training on 236M examples.

The proportion of examples for which our method identifies the path-merging algorithm is shown
in the top part of Figure 5. We observe that our method is highly specific, identifying the algorithm
in the trained models but not in the random (untrained) model. Our analysis provides a more fine-
grained view of the transformer’s computation, and we are able to count individual path-merge
operations and inspect whether they are “maximal” in the sense that they are merging the largest
reachable sets that are available at that layer. For example, a path-merge operation that copies the
embedding of vertex 2 into that of vertex 1 would be maximal if the embedding for 1 contains the
reachable set {1, 2} and the embedding for 2 contains the set {2, 3}, whereas the operation would be
maximal if the embedding for 2 has the set {2} (see the example in Layer 2 of Figure 4). We observe
in the bottom portion of Figure 5 that the proportion of path-merge operations that are maximal is
notably less than 1, indicating that the model does not learn maximal path-merge operations. And
the model has no reason to do so since it is trained on lookaheads that do not align with a power of 2
and it has more layers than it needs to learn to search on the graphs with the largest lookaheads that
can fit in its input. This explains why, in Figure 2, the model trained on lookaheads L ≤ 12 is not
able to fully generalize to larger lookaheads.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

106 107 108

Training examples

10−1

100
T

ra
in

in
g

lo
ss

Non-embedding
parameters

0.9M

1.3M

6.0M

60.4M

106 107 108

Training examples

10−3

10−2

10−1

100

T
es

t
lo

ss

Non-embedding
parameters

0.9M

1.3M

6.0M

60.4M

FIGURE 7: Training and test loss vs number of training examples seen, for models with varying numbers of
non-embedding parameters. All models were trained on the balanced distribution. Test loss was evaluated on
held-out examples from the naı̈ve distribution. Test loss is smoothed by averaging over a window of 81 data
points, where each data point is recorded every 218 = 262K examples. 4 seeds are shown for each model size.

5 DOES SCALING HELP?
Even if it is possible to train a transformer to perform search, it is unclear how this ability scales with
respect to input graph size and model scale. We investigate scaling behavior by running two sets of
experiments on small transformer models: (1) training models on increasing input graph sizes, and
(2) training models with increasing model dimension d. We observe a large variance in performance
across different initial random seeds, which has been observed in other tasks (Kim & Linzen, 2020;
Zhou et al., 2024). Therefore, in each of these experiments, we train the models using multiple
initial random seeds on examples from the balanced distribution, and measure the minimum loss on
a held-out test set generated by the naı̈ve distribution. We set the batch size to 256 examples due to
GPU memory limitations.
In Figure 6, we observe that, when the number of layers is fixed to 8 and the hidden size 16, as the
maximum input graph size is increased, the likelihood that the model learns the training distribution
(i.e., reaches accuracy ≥ 0.995) becomes vanishingly small. In addition, as the maximum input
graph size increases, the minimum test loss over 14 seeds grows at an increasing rate. See Figure 10
in the Appendix for a more detailed visualization of the training dynamics versus input graph size.
To determine whether larger models can more easily learn to search on large input graphs, we fix the
input graph size to 31 and train models of widely varying sizes. In Figure 7, we see that while larger
models are able to more quickly find the local minimum (at loss near 100), there is no discernible
pattern between the size of the model and the amount of training needed to find the global minimum.
We also experiment with decoder-only models and rotary positional embeddings, which are more
predominant in contemporary LLMs. But we find that this does not change the model’s scaling
behavior on this task (see Section A.5).

6 DOES IN-CONTEXT EXPLORATION (I.E., CHAIN-OF-THOUGHT) HELP?
Though we have shown that transformers are not able to learn to perform search for larger input
graphs, they may be able to learn to search if permitted to take intermediate steps, akin to chain-of-
thought prompting. To test this, we repeat our earlier experiments with two “prompting” approaches:
(1) depth-first search, and (2) selection-inference.

6.1 DEPTH-FIRST SEARCH

We generate graphs and perform a depth-first search (DFS) from a randomly-selected vertex to a
random goal vertex. From the sequence of visited vertices (i.e., DFS trace), we randomly select a
“current” vertex. Each input to the model is: (1) the graph, as a list of edges, and (2) the sequence of
visited vertices up to and including the current vertex. The model’s task is to predict the next vertex
in the DFS trace.7

In our earlier search task, the edges of the graph always appeared in the same token position across
inputs, since the current and start vertices were identical. However, in this modified task, the se-

7Again note that there may be multiple correct predictions, since there are typically many correct DFS traces
for a given graph. Similar to the setup in Section 3.1, we randomly select one of them to be the ground truth
label when computing the cross-entropy loss during training. But during evaluation, we allow the model to
make any prediction that follows a valid DFS trace.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

quence of visited vertices can vary in length. In order to avoid complicating the task for the model,
we add padding to the input, between the graph and the sequence of visited vertices: The right-most
tokens are reserved for the sequence of visited vertices. All other tokens contain the graph’s edges,
just as in the original search task. See the example in Figure 13. The graphs in the training distribu-
tion are sampled such that the backtrack distance is uniformly distributed, analogous to the balanced
distribution in our earlier experiments (see Section A.7 for details on the graph distribution).
In the experiments, we first fix the model size, setting the number of layers to 3, and vary the
input graph size. As evident in the top row of Figure 14, the model is able to learn the training
distribution across all tested graph sizes, suggesting that only a constant number of layers is needed
to learn the DFS task. However, the model struggles as the graph size increases. Next, we fix the
maximum graph size to 35 vertices and instead vary the model size. In the middle and bottom rows
of Figure 14, we observe that increasing model scale does not help the transformer to learn this
task more easily. Interestingly, we also find that larger models are able to learn the task from fewer
training examples. However, the benefit from scale disappears when considering the cost of training
larger models: Larger models require many more FLOPs to learn the task than the smaller models.

6.2 SELECTION-INFERENCE

In this setting, each search step is decomposed into two subtasks: (1) given a graph and a list of
visited vertices, select a visited vertex that has an unvisited child vertex, and (2) given a selected
vertex, predict (i.e., infer) an unvisited child vertex. Starting from the start vertex, if these two
subtasks are repeated sufficiently many times, the goal vertex will be found. To construct a graph
distribution that is analogous to the balanced distribution, we define two variables: (1) the frontier
size F , which is the number of visited vertices that have unvisited children, and (2) the branch count
B, which is the number of child vertices of the current vertex (in an inference step). We generate
graphs such that the pair (F,B) is uniformly distributed. Each input consists of: (1) the graph, and
(2) the sequence of visited edges.8 See Section A.10 for further details.
In the experiments, we first fix the model size, setting the number of layers to 4, and vary the input
graph size. We again note from the top row of Figure 16 that the model struggles as the graph size
increases. Next, we fix the maximum graph size to 45 vertices and vary the model size. We note
in Figure 17 that increasing model scale does not help to learn the task. Therefore, transformers
struggle to learn to perform DFS search and selection-inference on larger graphs and additional
scaling does not seem to make it easier.

7 CONCLUSION

Through the use of graph connectivity as a testbed, we found that transformers can learn to search
when given the right training distribution. We developed and applied a new mechanistic inter-
pretability technique on the trained model to determine the algorithm that the model learned to
perform search. We found that the model uses an exponential path-merging algorithm, where the
embedding of each vertex stores information about the set of reachable vertices from that vertex.
As the input graph size increases, the transformer has ever-increasing difficulty in learning the task,
and increasing the scale of the model does not alleviate this difficulty. Lastly, even if the model is
permitted to use intermediate steps, they still struggle on larger graphs, regardless of scale.
It is possible that scaling to much larger model sizes may lead to emergent searching ability. Alter-
nate training procedures may help transformers to more easily learn to search, such as curriculum
learning. Alternate architectures may help as well, such as looped transformers. While the path-
merging algorithm is able to explain almost all examples for the trained models, there may be other
algorithms or heuristics that the model simultaneously utilizes on some examples. Our mechanistic
analysis has potential broader applications in reasoning: Some form of the path-merging algorithm
may be used by transformers in more general reasoning tasks. In such a case, the representation of
each fact would store information about the set of facts provable from the current fact. Our mecha-
nistic interpretability tools may be useful in other settings, as well, where they may help to uncover
the algorithms that transformers learn to solve other tasks. Though additional work is welcome to
improve the scalability of our analysis to larger models, our analysis can provide insights on smaller
models that can be tested separately in larger models.

8Similar to the DFS task, we add padding to ensure the graph edges appear in the same positions across
examples.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024. URL https://openreview.net/forum?id=76zq8Wkl6Z.

Béla Bollobás, Christian Borgs, Jennifer T. Chayes, and Oliver Riordan. Directed scale-free graphs.
In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January
12-14, 2003, Baltimore, Maryland, USA, pp. 132–139. ACM/SIAM, 2003. URL http://dl.
acm.org/citation.cfm?id=644108.644133.

Nasim Borazjanizadeh, Roei Herzig, Trevor Darrell, Rogério Feris, and Leonid Karlinsky. Nav-
igating the labyrinth: Evaluating and enhancing llms’ ability to reason about search prob-
lems. ArXiv, abs/2406.12172, 2024. URL https://api.semanticscholar.org/
CorpusID:270562930.

Jannik Brinkmann, Abhay Sheshadri, Victor Levoso, Paul Swoboda, and Christian Bartelt. A mech-
anistic analysis of a transformer trained on a symbolic multi-step reasoning task. In Lun-Wei Ku,
Andre Martins, and Vivek Srikumar (eds.), Findings of the Association for Computational Lin-
guistics, ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16, 2024, pp. 4082–4102.
Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.FINDINGS-ACL.242.
URL https://doi.org/10.18653/v1/2024.findings-acl.242.

Ethan Caballero, Kshitij Gupta, Irina Rish, and David Krueger. Broken neural scaling laws. In The
Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/forum?id=
sckjveqlCZ.

Antonia Creswell, Murray Shanahan, and Irina Higgins. Selection-inference: Exploiting large lan-
guage models for interpretable logical reasoning. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.
URL https://openreview.net/forum?id=3Pf3Wg6o-A4.

Peng Ding, Jiading Fang, Peng Li, Kangrui Wang, Xiaochen Zhou, Mo Yu, Jing Li, Hongyuan Mei,
and Matthew Walter. MANGO: A benchmark for evaluating mapping and navigation abilities
of large language models. In First Conference on Language Modeling, 2024. URL https:
//openreview.net/forum?id=6vEfyp0o68.

Zhengxiao Du, Aohan Zeng, Yuxiao Dong, and Jie Tang. Understanding emergent abilities of
language models from the loss perspective. CoRR, abs/2403.15796, 2024. doi: 10.48550/ARXIV.
2403.15796. URL https://doi.org/10.48550/arXiv.2403.15796.

P Erdös and A Rényi. On random graphs i. Publicationes Mathematicae Debrecen, 6:290–297,
1959.

Lizhou Fan, Wenyue Hua, Lingyao Li, Haoyang Ling, and Yongfeng Zhang. Nphardeval: Dy-
namic benchmark on reasoning ability of large language models via complexity classes. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024,
Bangkok, Thailand, August 11-16, 2024, pp. 4092–4114. Association for Computational Linguis-
tics, 2024. doi: 10.18653/V1/2024.ACL-LONG.225. URL https://doi.org/10.18653/
v1/2024.acl-long.225.

Deqing Fu, Ghazal Khalighinejad, Ollie Liu, Bhuwan Dhingra, Dani Yogatama, Robin Jia, and
Willie Neiswanger. Isobench: Benchmarking multimodal foundation models on isomorphic
representations. CoRR, abs/2404.01266, 2024. doi: 10.48550/ARXIV.2404.01266. URL
https://doi.org/10.48550/arXiv.2404.01266.

Kanishk Gandhi, Denise Lee, Gabriel Grand, Muxin Liu, Winson Cheng, Archit Sharma, and
Noah D. Goodman. Stream of search (sos): Learning to search in language. CoRR,
abs/2404.03683, 2024. doi: 10.48550/ARXIV.2404.03683. URL https://doi.org/10.
48550/arXiv.2404.03683.

11

https://openreview.net/forum?id=76zq8Wkl6Z
http://dl.acm.org/citation.cfm?id=644108.644133
http://dl.acm.org/citation.cfm?id=644108.644133
https://api.semanticscholar.org/CorpusID:270562930
https://api.semanticscholar.org/CorpusID:270562930
https://doi.org/10.18653/v1/2024.findings-acl.242
https://openreview.net/forum?id=sckjveqlCZ
https://openreview.net/forum?id=sckjveqlCZ
https://openreview.net/forum?id=3Pf3Wg6o-A4
https://openreview.net/forum?id=6vEfyp0o68
https://openreview.net/forum?id=6vEfyp0o68
https://doi.org/10.48550/arXiv.2403.15796
https://doi.org/10.18653/v1/2024.acl-long.225
https://doi.org/10.18653/v1/2024.acl-long.225
https://doi.org/10.48550/arXiv.2404.01266
https://doi.org/10.48550/arXiv.2404.03683
https://doi.org/10.48550/arXiv.2404.03683

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Atticus Geiger, Hanson Lu, Thomas F Icard, and Christopher Potts. Causal abstractions of neural
networks. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in
Neural Information Processing Systems, 2021. URL https://openreview.net/forum?
id=RmuXDtjDhG.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model. In Houda Bouamor, Juan Pino,
and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, pp. 8154–8173. Associ-
ation for Computational Linguistics, 2023. doi: 10.18653/V1/2023.EMNLP-MAIN.507. URL
https://doi.org/10.18653/v1/2023.emnlp-main.507.

Stefan Heimersheim and Neel Nanda. How to use and interpret activation patching. ArXiv,
abs/2404.15255, 2024. URL https://api.semanticscholar.org/CorpusID:
269302704.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
Jun, Tom B. Brown, Prafulla Dhariwal, Scott Gray, Chris Hallacy, Benjamin Mann, Alec Rad-
ford, Aditya Ramesh, Nick Ryder, Daniel M. Ziegler, John Schulman, Dario Amodei, and Sam
McCandlish. Scaling laws for autoregressive generative modeling. CoRR, abs/2010.14701, 2020.
URL https://arxiv.org/abs/2010.14701.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models. CoRR, abs/2203.15556, 2022. doi: 10.48550/
ARXIV.2203.15556. URL https://doi.org/10.48550/arXiv.2203.15556.

Yifan Hou, Jiaoda Li, Yu Fei, Alessandro Stolfo, Wangchunshu Zhou, Guangtao Zeng, Antoine
Bosselut, and Mrinmaya Sachan. Towards a mechanistic interpretation of multi-step reasoning ca-
pabilities of language models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023,
Singapore, December 6-10, 2023, pp. 4902–4919. Association for Computational Linguistics,
2023. doi: 10.18653/V1/2023.EMNLP-MAIN.299. URL https://doi.org/10.18653/
v1/2023.emnlp-main.299.

Michael I. Ivanitskiy, Alex F. Spies, Tilman Räuker, Guillaume Corlouer, Chris Mathwin, Lucia
Quirke, Can Rager, Rusheb Shah, Dan Valentine, Cecilia G. Diniz Behn, Katsumi Inoue, and
Samy Wu Fung. Linearly structured world representations in maze-solving transformers. In
Marco Fumero, Emanuele Rodolà, Clémentine Dominé, Francesco Locatello, Karolina Dziugaite,
and Mathilde Caron (eds.), Proceedings of UniReps: the First Workshop on Unifying Representa-
tions in Neural Models, 15 December 2023, Ernest N. Morial Convention Center, New Orleans,
USA, volume 243 of Proceedings of Machine Learning Research, pp. 133–143. PMLR, 2023.
URL https://proceedings.mlr.press/v243/ivanitskiy24a.html.

Erik Jenner, Shreyas Kapur, Vasil Georgiev, Cameron Allen, Scott Emmons, and Stuart Russell.
Evidence of learned look-ahead in a chess-playing neural network. CoRR, abs/2406.00877, 2024.
doi: 10.48550/ARXIV.2406.00877. URL https://doi.org/10.48550/arXiv.2406.
00877.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Kaya Stechly, Mudit Verma, Siddhant
Bhambri, Lucas Saldyt, and Anil Murthy. Llms can’t plan, but can help planning in llm-modulo
frameworks. CoRR, abs/2402.01817, 2024. doi: 10.48550/ARXIV.2402.01817. URL https:
//doi.org/10.48550/arXiv.2402.01817.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. CoRR, abs/2001.08361, 2020. URL https://arxiv.org/abs/2001.08361.

Mehran Kazemi, Najoung Kim, Deepti Bhatia, Xin Xu, and Deepak Ramachandran. LAMBADA:
Backward chaining for automated reasoning in natural language. In Anna Rogers, Jordan Boyd-
Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association

12

https://openreview.net/forum?id=RmuXDtjDhG
https://openreview.net/forum?id=RmuXDtjDhG
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://api.semanticscholar.org/CorpusID:269302704
https://api.semanticscholar.org/CorpusID:269302704
https://arxiv.org/abs/2010.14701
https://doi.org/10.48550/arXiv.2203.15556
https://doi.org/10.18653/v1/2023.emnlp-main.299
https://doi.org/10.18653/v1/2023.emnlp-main.299
https://proceedings.mlr.press/v243/ivanitskiy24a.html
https://doi.org/10.48550/arXiv.2406.00877
https://doi.org/10.48550/arXiv.2406.00877
https://doi.org/10.48550/arXiv.2402.01817
https://doi.org/10.48550/arXiv.2402.01817
https://arxiv.org/abs/2001.08361

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

for Computational Linguistics (Volume 1: Long Papers), pp. 6547–6568, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.361. URL
https://aclanthology.org/2023.acl-long.361.

Geonhee Kim, Marco Valentino, and André Freitas. A mechanistic interpretation of syllogistic
reasoning in auto-regressive language models. ArXiv, abs/2408.08590, 2024. URL https:
//api.semanticscholar.org/CorpusID:271892176.

Najoung Kim and Tal Linzen. COGS: A compositional generalization challenge based on semantic
interpretation. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pp. 9087–9105. Association for Computational Linguistics, 2020. doi:
10.18653/V1/2020.EMNLP-MAIN.731. URL https://doi.org/10.18653/v1/2020.
emnlp-main.731.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwa-
sawa. Large language models are zero-shot reasoners. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html.

Hong Liu, Zhiyuan Li, David Leo Wright Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable
stochastic second-order optimizer for language model pre-training. In The Twelfth International
Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenRe-
view.net, 2024. URL https://openreview.net/forum?id=3xHDeA8Noi.

William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought.
In The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Aus-
tria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?
id=NjNGlPh8Wh.

Maxwell I. Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and Au-
gustus Odena. Show your work: Scratchpads for intermediate computation with language models.
CoRR, abs/2112.00114, 2021. URL https://arxiv.org/abs/2112.00114.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Anian Ruoss, Grégoire Delétang, Sourabh Medapati, Jordi Grau-Moya, Li Kevin Wenliang, Elliot
Catt, John Reid, Cannada A. Lewis, Joel Veness, and Tim Genewein. Amortized planning with
large-scale transformers: A case study on chess. CoRR, abs/2402.04494, 2024. doi: 10.48550/
ARXIV.2402.04494. URL https://doi.org/10.48550/arXiv.2402.04494.

Clayton Sanford, Bahare Fatemi, Ethan Hall, Anton Tsitsulin, Seyed Mehran Kazemi, Jonathan
Halcrow, Bryan Perozzi, and Vahab Mirrokni. Understanding transformer reasoning capabilities
via graph algorithms. CoRR, abs/2405.18512, 2024. doi: 10.48550/ARXIV.2405.18512. URL
https://doi.org/10.48550/arXiv.2405.18512.

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
of chain-of-thought. CoRR, abs/2210.01240, 2022. doi: 10.48550/ARXIV.2210.01240. URL
https://doi.org/10.48550/arXiv.2210.01240.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of
large language models a mirage? In Alice Oh, Tristan Naumann, Amir Glober-
son, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural In-
formation Processing Systems 36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
adc98a266f45005c403b8311ca7e8bd7-Abstract-Conference.html.

13

https://aclanthology.org/2023.acl-long.361
https://api.semanticscholar.org/CorpusID:271892176
https://api.semanticscholar.org/CorpusID:271892176
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
https://openreview.net/forum?id=3xHDeA8Noi
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=NjNGlPh8Wh
https://arxiv.org/abs/2112.00114
https://doi.org/10.48550/arXiv.2402.04494
https://doi.org/10.48550/arXiv.2405.18512
https://doi.org/10.48550/arXiv.2210.01240
http://papers.nips.cc/paper_files/paper/2023/hash/adc98a266f45005c403b8311ca7e8bd7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/adc98a266f45005c403b8311ca7e8bd7-Abstract-Conference.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Kulin Shah, Nishanth Dikkala, Xin Wang, and Rina Panigrahy. Causal language modeling can elicit
search and reasoning capabilities on logic puzzles. CoRR, abs/2409.10502, 2024. doi: 10.48550/
ARXIV.2409.10502. URL https://doi.org/10.48550/arXiv.2409.10502.

Katharina Stein and Alexander Koller. Autoplanbench: Automatically generating benchmarks for
llm planners from pddl. arXiv preprint arXiv:2311.09830, 2023.

Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya Sachan. A mechanistic interpretation of arith-
metic reasoning in language models using causal mediation analysis. In Houda Bouamor, Juan
Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, pp. 7035–7052. Asso-
ciation for Computational Linguistics, 2023. doi: 10.18653/V1/2023.EMNLP-MAIN.435. URL
https://doi.org/10.18653/v1/2023.emnlp-main.435.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. Large lan-
guage models still can’t plan (a benchmark for LLMs on planning and reasoning about change).
In NeurIPS 2022 Foundation Models for Decision Making Workshop, 2022. URL https:
//openreview.net/forum?id=wUU-7XTL5XO.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer,
and Stuart M. Shieber. Investigating gender bias in language models using causal media-
tion analysis. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Bal-
can, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual, 2020a. URL https://proceedings.neurips.cc/paper/2020/
hash/92650b2e92217715fe312e6fa7b90d82-Abstract.html.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer, and
Stuart M. Shieber. Causal mediation analysis for interpreting neural nlp: The case of gen-
der bias. ArXiv, abs/2004.12265, 2020b. URL https://api.semanticscholar.org/
CorpusID:216553696.

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia Tsvetkov.
Can language models solve graph problems in natural language? In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=UDqHhbqYJV.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol
Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language mod-
els. Trans. Mach. Learn. Res., 2022, 2022a. URL https://openreview.net/forum?
id=yzkSU5zdwD.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Ad-
vances in Neural Information Processing Systems, 2022b. URL https://openreview.
net/forum?id=_VjQlMeSB_J.

Sohee Yang, Elena Gribovskaya, Nora Kassner, Mor Geva, and Sebastian Riedel. Do large language
models latently perform multi-hop reasoning? In Annual Meeting of the Association for Com-
putational Linguistics, 2024. URL https://api.semanticscholar.org/CorpusID:
268032051.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in Neural Information Processing Systems, 36, 2024.

Fred Zhang and Neel Nanda. Towards best practices of activation patching in language mod-
els: Metrics and methods. In The Twelfth International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=Hf17y6u9BC.

14

https://doi.org/10.48550/arXiv.2409.10502
https://doi.org/10.18653/v1/2023.emnlp-main.435
https://openreview.net/forum?id=wUU-7XTL5XO
https://openreview.net/forum?id=wUU-7XTL5XO
https://proceedings.neurips.cc/paper/2020/hash/92650b2e92217715fe312e6fa7b90d82-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/92650b2e92217715fe312e6fa7b90d82-Abstract.html
https://api.semanticscholar.org/CorpusID:216553696
https://api.semanticscholar.org/CorpusID:216553696
https://openreview.net/forum?id=UDqHhbqYJV
https://openreview.net/forum?id=UDqHhbqYJV
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://api.semanticscholar.org/CorpusID:268032051
https://api.semanticscholar.org/CorpusID:268032051
https://openreview.net/forum?id=Hf17y6u9BC
https://openreview.net/forum?id=Hf17y6u9BC

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang, and Guy Van den Broeck. On the
paradox of learning to reason from data. In Proceedings of the Thirty-Second International Joint
Conference on Artificial Intelligence, IJCAI 2023, 19th-25th August 2023, Macao, SAR, China,
pp. 3365–3373. ijcai.org, 2023. doi: 10.24963/IJCAI.2023/375. URL https://doi.org/
10.24963/ijcai.2023/375.

Yizhuo Zhang, Heng Wang, Shangbin Feng, Zhaoxuan Tan, Xiaochuang Han, Tianxing
He, and Yulia Tsvetkov. Can llm graph reasoning generalize beyond pattern memoriza-
tion? ArXiv, abs/2406.15992, 2024. URL https://api.semanticscholar.org/
CorpusID:270702523.

Yongchao Zhou, Uri Alon, Xinyun Chen, Xuezhi Wang, Rishabh Agarwal, and Denny Zhou. Trans-
formers can achieve length generalization but not robustly. CoRR, abs/2402.09371, 2024. doi: 10.
48550/ARXIV.2402.09371. URL https://doi.org/10.48550/arXiv.2402.09371.

A APPENDIX

A.1 GRAPH GENERATION DETAILS

A.1.1 NAÏVE DISTRIBUTION

To sample a graph from this distribution, we first sample the number of vertices
|V | ∼ Uniform({3, . . . , Vmax}), (2)

where Vmax is the maximum number of vertices that can fit the input. Then, for each i = 1, . . . , |V |,
we sample a number of parent vertices nparents

i from V1, . . . , Vi−1:

nparents
i =

{
1 with probability 5

8 ,

2, 3, or 4 with probability 1
8 .

(3)

Note that this differs from Erdős–Rényi where the number of parents is geometrically distributed.
We want to avoid generating overly-dense graphs where the lookahead is too small, and so we
choose to sample fewer parents per vertex.
Finally, we sample the parents of Vi uniformly without replacement from {V1, . . . , Vi−1} until we
have sampled nparents

i vertices, or we have sampled all available vertices. We draw an edge from each
sampled vertex to Vi.
After generating the graph, we randomly permute the vertex IDs so that the IDs contain no informa-
tion about the graph topology. Observe that this distribution can generate any directed graph with
maximum in-degree 4 in topologically-sorted order, and therefore, it can generate any DAG with
maximum in-degree 4.
We select the start and goal vertices uniformly at random from V . If there is no path from the start
to the goal vertex, or if the example does not fit within the model input, we reject the sample and try
again.

0 5 10 15 20

Lookahead

10−5

10−4

10−3

10−2

10−1

E
x
am

p
le

fr
eq

u
en

cy

FIGURE 8: Histogram of lookaheads of 10M graphs sampled from the naı̈ve distribution (note the log y-axis).
The number of vertices n is 41. Lookaheads > 6 are possible, but astronomically unlikely.

A.1.2 BALANCED DISTRIBUTION

Each graph is sampled according to the following procedure: Given a lookahead parameter L, we
start by creating a linear chain of vertices containing L edges. The first vertex in this chain is set

15

https://doi.org/10.24963/ijcai.2023/375
https://doi.org/10.24963/ijcai.2023/375
https://api.semanticscholar.org/CorpusID:270702523
https://api.semanticscholar.org/CorpusID:270702523
https://doi.org/10.48550/arXiv.2402.09371

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

as the start vertex, and the last vertex is the goal vertex. We then sample a number of additional
“branches”:

B ∼ Uniform({1, . . . ,
⌊
Vmax−1

L

⌋
}). (4)

Next, we sample the total number of vertices:
|V | = min {L(B + 1) + 1 + u, Vmax} , (5)

where u ∼ Uniform({0, . . . , 6}). We create B additional chains of vertices: For i = 1, . . . , B, we
create a chain of vertices where the length of the chain in edges li is given by

li ∼
{
L, if no additional vertices are available, i.e.,

∑i−1
j=1 lj − L(B − i− 1) + 1 = |V |,

Uniform({L,L+ 1}), otherwise.
(6)

Each additional branch is added to the start vertex.
While the graphs resulting from the above process will require the model to search at least L steps
to find the goal, the graphs still admit heuristics since the start vertex is always the singular source
vertex of the graph (i.e., has zero in-degree), and all other vertices have in-degree exactly equal to 1.
To prevent such heuristics, we sample additional vertices as follows: We create an “incoming” linear
chain with length lin ∼ Uniform{0, . . . , |V | − ∑B

j=1 lj + 1}. In contrast with the other branches,
the start vertex is located at the end of this chain. Finally, to increase the degrees of the vertices in
the graph, we create additional vertices until we have a total of |V | vertices. For each new vertex Vi,
sample a number of child and parent vertices:

nchildren
i ∼ Uniform{0, 1, 2, 3}, (7)

nparents
i ∼ Uniform{1{nchildren

i = 0}, . . . , 3}, (8)
where 1{x} is the indicator function whose value is 1 if x is true, and 0 otherwise. We sample
nchildren
i child vertices from V1, . . . , Vi−1 without replacement where the probability of sampling

Vj is proportional to 1
2 + deg−(Vj) where deg−(v) is the in-degree of v (at the time of sampling).

Similarly, we sample nparents
i parent vertices from {V1, . . . , Vi−1}\descendants(Vi) without replace-

ment where the probability of sampling Vj is proportional to 1
2 + deg+(Vj) where deg+(v) is the

out-degree of v. Note we avoid sampling from the descendants of Vi in order to avoid creating
cycles. We chose this sampling scheme in order to produce a handful of vertices with high in- or
out-degree, and to prevent the model from exploiting a heuristic when all vertices have low degree.
This distribution is an example of a scale-free distribution over directed graphs (Bollobás et al.,
2003).
As in the naı̈ve distribution, after generating the graph, we randomly permute the vertex IDs so that
the IDs contain no information about the graph topology. If the resulting graph does not fit within
the model input, we reject the sample and try again.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.2 NATURAL LANGUAGE PROOF SEARCH RESULTS

Figure 9 shows the results of our experiments on the natural language proof search task, as described
in Section 3.1.2.

106 107 108

Training examples

10−2

10−1

100

T
ra

in
in

g
lo

ss

Maximum input graph size
6

9

14

19

25

30

106 107 108

Training examples

2× 10−1

3× 10−1

4× 10−1

6× 10−1

T
es

t
lo

ss

Maximum input graph size
6

9

14

19

25

30

106 107 108

Training examples

10−2

10−1

100

M
in

im
u

m
tr

ai
n

lo
ss

Maximum input graph size
6

9

14

19

25

30

106 107 108

Training examples

2× 10−1

3× 10−1

4× 10−1

6× 10−1

M
in

im
u

m
te

st
lo

ss

Maximum input graph size
6

9

14

19

25

30

1013 1014 1015 1016

Floating-point operations

10−2

10−1

100

M
in

im
u

m
tr

ai
n

lo
ss

Maximum input graph size
6

9

14

19

25

30

1013 1014 1015 1016

Floating-point operations

2× 10−1

3× 10−1

4× 10−1

6× 10−1

M
in

im
u

m
te

st
lo

ss

Maximum input graph size
6

9

14

19

25

30

FIGURE 9: Training and test loss vs number of training examples seen, for models trained on the natural
language proof search task, with varying maximum input graph sizes. All models were trained on the balanced
distribution. Test loss was evaluated on held-out examples from the naı̈ve distribution. Test loss is smoothed by
averaging over a window of 81 data points, where each data point is recorded at every 218 = 262K examples.
In the top row, 5 seeds are shown for each maximum input graph size. In the middle and bottom row, the
minimum loss over the seeds is shown. In the bottom row, the x-axis is rescaled as FLOPs.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.3 ALGORITHM RECONSTRUCTION PSEUDOCODE

Algorithm 1: Pseudocode of the procedure to compute the set of explainable attention operations of a
transformer M for a given input x.

1 function reconstruct computation graph(input example x, transformer M)
2 let L be the number of layers in M
3 initialize Nl,i as an empty set for all l ∈ {0, . . . , L} and all i ∈ {1, . . . , |x|}
4 initialize E as an empty set
5 for i ∈ 1, . . . , |x| do
6 add token feature xi to N0,i

7 add position feature i to N0,i

8 for l ∈ 1, . . . , L do
9 for i ∈ 1, . . . , |x| do

10 for j ∈ 1, . . . , |x| do
11 let e represent the attention operation at layer l that copies from source token i to target token j

/* this is computed in Step IV. as described in Section 4.1 */

12 let fS
1 , . . . , f

S
u be the features in token i on which e depends

13 let fT
1 , . . . , fT

v be the features in token j on which e depends
14 if {fS

1 , . . . , f
S
u } ⊆ Nl−1,i and {fT

1 , . . . , fT
v } ⊆ Nl−1,j

/* mark this attention operation as explainable */
15 add e to E
16 add {fS

1 , . . . , f
S
u } ∪ {fT

1 , . . . , fT
v } to Nl,j

/* Nl,i now contains the set of features that are explainably
contained in the embedding vector of token i at layer l */

/* E contains the set of all explainable attention operations */
/* next, filter the explainable attention operations that are not

useful for the model’s prediction */
17 let S be an empty stack
18 push (L, n) onto S
19 initialize E∗ as an empty set
20 while S is not empty do
21 pop (l, j) from S
22 for attention operation e ∈ E at layer l whose target is token j do
23 add e to E∗

24 let i be the source token of the attention operation e
25 push (l − 1, i) onto S

26 return N , E∗

A.4 ADDITIONAL SCALING RESULTS

Figure 10 provides a visualization of the training dynamics of the transformer when trained with
varying maximum input graph sizes. Figure 6 focuses on the slice at 236M training examples.

A.5 SCALING DECODER-ONLY MODELS WITH ROTARY POSITIONAL EMBEDDINGS

We repeat the experiments in Section 5 on decoder-only transformers with learned token embeddings
(initialized randomly from a Gaussian distribution) and rotary positional embeddings (RoPE), which
are summed rather than concatenated. We observe in Figure 11 that decoder-only models with RoPE
similarly struggle to learn to search on larger graphs. In addition, in Figure 12, we see that increasing
the model scale does not help the model to learn the task more easily.

A.6 DFS EXAMPLE

Figure 13 shows a DFS example, as described for the task in Section 6.1.

A.7 GENERATING DFS EXAMPLES WITH SPECIFIC BACKTRACK DISTANCES

To generate graphs with a specific backtrack distance B, we first sample a DAG from the naı̈ve
distribution. We then divide the (topologically-sorted) graph into two subgraphs: the first |V | − B
vertices form the first subgraph G1, and the last B vertices form the second subgraph G2. G1 will
contain the goal vertex, and G2 will contain the list of vertices visited so far (i.e., the DFS trace).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

105 106 107 108

Training examples

10−1

100
T

ra
in

in
g

lo
ss

Maximum input graph size
9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

106 107 108

Training examples

10−3

10−2

10−1

100

T
es

t
lo

ss

Maximum input graph size
9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

105 106 107 108

Training examples

10−1

100

M
in

im
u

m
tr

ai
n

in
g

lo
ss

Maximum input graph size
9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

106 107 108

Training examples

10−3

10−2

10−1

100

M
in

im
u

m
te

st
lo

ss

Maximum input graph size
9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

FIGURE 10: Training and test loss vs number of training examples seen, for models with trained on varying
maximum input graph sizes. All models were trained on the balanced distribution. Test loss was evaluated on
held-out examples from the naı̈ve distribution. Test loss is smoothed by averaging over a window of 81 data
points, where each data point is recorded at every 218 = 262K examples. In the top row, 14 seeds are shown
for each maximum input graph size. In the bottom row, the minimum loss over the seeds is shown.

106 107 108

Training examples

10−1

100

M
in

im
u

m
tr

ai
n

lo
ss

Maximum input graph size
9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

106 107 108

Training examples

10−2

10−1

100

M
in

im
u

m
te

st
lo

ss

Maximum input graph size
9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

FIGURE 11: Training and test loss vs number of training examples seen, for decoder-only transformers using
rotary positional embeddings. Test loss was evaluated on held-out examples from the naı̈ve distribution. We fix
the model size and vary the maximum input graph size. All models were trained on the balanced distribution.
Test loss is smoothed by averaging over a window of 81 data points, where each data point is recorded at every
218 = 262K examples.

Let G1,−1 be the last vertex in G1 (in the topological ordering) and let G2,1 be the first vertex in
G2. Next, we select the start vertex s: If G1,−1 is the only parent vertex of G2,1, we sample the start
vertex uniformly at random from G1 \ {G1,−1}. If not, then we sample a start vertex uniformly at
random from parents(G2,1) \ {G1,−1} (since we need to leave at least one vertex in G1 to be the
goal). Then we sample the goal vertex g uniformly at random from the set of vertices in G1 that
come after s.
We have to make sure there exists a path from g to every vertex in G that comes after s. Iterating
over the vertices in G from left to right, starting with the vertex right after g, if there is no path from
s to that vertex, we add an edge between s and that vertex.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

1013 1014 1015 1016

Floating-point operations

100

M
in

im
u

m
tr

ai
n

lo
ss

Non-embedding
parameters

2.2M

6.0M

17.9M

60.4M

1013 1014 1015 1016

Floating-point operations

100

M
in

im
u

m
te

st
lo

ss

Non-embedding
parameters

2.2M

6.0M

17.9M

60.4M

FIGURE 12: Training and test loss vs FLOPs, for decoder-only transformers using rotary positional embed-
dings. Test loss is computed on held-out examples from the naı̈ve distribution. We fix the maximum input
graph size to 31 vertices and vary the model size. All models were trained on the balanced distribution. Test
loss is smoothed by averaging over a window of 81 data points, where each data point is recorded at every
218 = 262K examples.

Depth-first search example:

8

4

3

1

622

sta
rt

goal

E 4 1 E 8 3 E 3 6 E 8 4 E 2 3 Q 8 6 P P P 8 4 1

Model input (with standard padding):

graph edges
DFS trace with

standard padding

st
ar

t v
er

te
x

go
al

ve
rte

x

E 4 1 E 8 3 E 3 6 E 8 4 E 2 3 Q 8 6 P 8 P 4 1 P

Model input (with random padding):
DFS trace with

random padding

Label: 3

FIGURE 13: (left) Example of a depth-first search example on a directed acyclic graph where the model has
visited the vertices 8, 4, and 1 so far. (right) The corresponding transformer input and output label. We
experiment with two padding methods: (1) standard padding where the DFS trace is left-padded, and (2)
random padding where padding is randomly inserted between vertices in the trace.

Now that we have generated the graph, we next produce the DFS trace: We start with s and visit
every vertex in G2. The next correct step in the DFS algorithm would be to backtrack from a vertex
in G2 to any child vertex of s that is in G1. Thus, the backtrack distance of this example is |G2| = B.
As with the other graph and DFS example distributions, we randomly permute the vertex IDs as the
last step.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.8 DFS SCALING

106 107 108

Training examples

100

M
in

im
u

m
tr

ai
n

lo
ss

Maximum input graph size
11

15

19

23

27

31

35

39

43

47

106 107 108

Training examples

3× 10−1

4× 10−1

6× 10−1

M
in

im
u

m
te

st
lo

ss

Maximum input graph size
11

15

19

23

27

31

35

39

43

47

106 107 108

Training examples

100

6× 10−1

2× 100

3× 100

M
in

im
u

m
tr

ai
n

lo
ss

Non-embedding
parameters

0.4M

5.5M

13.3M

26.0M

47.2M

106 107 108

Training examples

2× 10−1

3× 10−1

4× 10−1

6× 10−1

M
in

im
u

m
te

st
lo

ss

Non-embedding
parameters

0.4M

5.5M

13.3M

26.0M

47.2M

1013 1014 1015 1016

Floating-point operations

100

6× 10−1

2× 100

3× 100

M
in

im
u

m
tr

ai
n

lo
ss

Non-embedding
parameters

0.4M

5.5M

13.3M

26.0M

47.2M

1013 1014 1015 1016

Floating-point operations

2× 10−1

3× 10−1

4× 10−1

6× 10−1

M
in

im
u

m
te

st
lo

ss

Non-embedding
parameters

0.4M

5.5M

13.3M

26.0M

47.2M

FIGURE 14: Training and test loss vs number of training examples seen, for models trained on the depth-first
search task. Test loss is computed on held-out examples from the balanced distribution with backtrack 8. In
the top row, we fix the model size and vary the maximum input graph size. In the middle and bottom rows, we
fix the maximum input graph size and vary the model size. Note the x-axis in the bottom row is FLOPs. All
models were trained on the balanced distribution. Test loss is smoothed by averaging over a window of 81 data
points, where each data point is recorded at every 218 = 262K examples. For each point, we plot the minimum
loss over 15 seeds.

A.9 NON-STANDARD PADDING IN DFS

We train a 7-layer transformer with input size 128 on the DFS task and evaluate on held-out examples
with various backtrack distances. The results are shown in the top row of Figure 15. We observe that

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Tested on examples with backtrack distance

Standard training

Trained with
random padding

1.00 0.84 0.56 0.46 0.44 0.32 0.33 0.22 0.20 0.21 0.23 0.22 0.22 0.20 0.28 0.15

1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.97 0.93 0.95 0.92 0.93 0.92 0.88 0.87

FIGURE 15: Accuracy of model trained on the depth-first search task with and without random padding. All
evaluation is performed on held-out examples. Both models were trained on 746M examples.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

the backtrack distance in the DFS search task is analogous to the lookahead distance in the original
search task, where the probability of generating examples from the naı̈ve distribution with higher
backtrack distances is vanishingly low. However, unlike the original search task, we can augment
training examples by adding padding between vertices in the sequence of visited vertices to help
teach the model to backtrack greater distances. More precisely, starting with the right-most token,
we add k padding tokens where k ∼ Uniform(0, . . . , Tavailable) where Tavailable is the total number
of available padding tokens. We repeat this process for every token, from right to left. We observe
in the second row of Figure 15 that when trained on these randomly-padded inputs, the model
more robustly learns to backtrack to greater distances. Unlike in the original search task where we
carefully developed the balanced distribution to train the model to search to greater lookaheads,
a simple post-hoc augmentation of the examples was sufficient to successfully train the model to
perform DFS search.
We note that while random padding may help the model to generalize to larger backtrack distances
than those shown in training, they do not help the model to learn to search on larger graphs, as
our scaling experiments have shown. In the scaling experiments, the training distribution contains
examples of all possible backtrack distances, uniformly distributed.

A.10 GENERATING SELECTION-INFERENCE EXAMPLES

To generate a selection-inference example with a given frontier size F and branch count B, we first
sample the graph size |V | (number of vertices) from Uniform({2, . . . , Emax − F + 1}), where Emax
is the maximum number of edges that fit for the given transformer input size. Next, we arrange |V |
vertices from left to right (in topological order) without edges: V1, . . . , V|V |. We select the index of
the “current” vertex from c ∼ Uniform({1, . . . , |V | − B}). We then sample the indices of the start
and goal vertices:

s ∼ Uniform({1, . . . ,min(c, |V | − F)}), (9)
g ∼ Uniform({max(c+ 1, s+ F), . . . , |V |}). (10)

Add initial edges: Next, we iterate over each vertex in the graph Vi, from left to right,
and add edges as follows: First sample a number of parent vertices for Vi from nparents

i ∼
Uniform({0, . . . , ⌊min(i− 1, n

24⌋+1)}) where n is the transformer input size (in tokens). Next, we
sample parent vertices from among {V1, . . . , Vi−1} one at a time, with probability proportional to
the out-degree of each vertex. We add an edge between the selected parent and Vi and repeat until
we have nparents

i parent vertices. However, if one of the potential parents is the current vertex Vc, and
the number of child vertices of Vc is B, we exclude it from the set of potential parents, as we want
to ensure the branch count of Vc is not larger than B.
Construct the frontier: Next, we sample the frontier vertices, which will be the vertices that have
unvisited child vertices. Vs and Vc are automatically added to the set of frontier vertices. We
sample the remaining vertices from {Vs+1, . . . , V|V |} \ {Vg} uniformly at random until we have F
frontier vertices. We then perform selection-inference from Vs, selecting edges to explore uniformly
at random, but we avoid selecting an outgoing edge from any frontier vertex, and we perform the
search until no available edges remain. Let E be the list of visited edges (in the order they were
visited). Note that there may still exist frontier vertices that have not been reached in E . For each of
these frontier vertices Vi: We randomly select an ancestor Va that has been reached in E and replace
a random parent of Vi with Va, and add the edge Va → Vi into E . However, it is possible that there
is no path from Vs to Vi, in which case no ancestor of Vi has been reached in E . In this case, we
select a vertex from {Vs, . . . , Vi−1} that has been reached in E , uniformly at random, and add it as
a parent of Vi. The new edge is added to E . Note that each time an edge is added to E , we move it
into a random valid position.
Ensure each frontier vertex has an unvisited child: At this point, we have guaranteed that every
frontier vertex has been reached in E . Next, we have to ensure that every frontier vertex has at least
one unvisited child vertex. For each frontier vertex Vi without unvisited child vertices, we select a
new child vertex Vj from {Vi+1, . . . , V|V |} that has not been reached in E . Next, we randomly select
a parent of Vj that has not been reached in E and replace it with Vi. If Vj has no such parent, we
simply add the edge Vi → Vj .
Make sure the current node has B child vertices: Next, we want to ensure that Vc has exactly B
child vertices. First, we add frontier vertices as children of Vc: we select a frontier vertex Vf from
{Vc+1, . . . , V|V |} uniformly at random. If this vertex does not already have an edge from Vc, we add
one. We replace the edge in E containing Vf as the target with the new edge Vc → Vf . We repeat

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

until max(0, 2F + B − Emax) frontier vertices are children of Vc (or there are no further frontier
vertices available). Then, we add non-frontier vertices as children of Vc: select a non-frontier vertex
Vj from {Vc+1, . . . , V|V |} uniformly at random. We randomly sample a parent of Vj that has not
been reached in E and replace it with Vc. If Vj has no such parent, we simply add the edge Vc → Vj .
Repeat until Vc has B child vertices.
Make sure the goal vertex is reachable from the start vertex: If Vg is not reachable from Vs,
select a random reachable vertex Vi such that i < g and add the edge Vi → Vg .
Remove some superfluous edges: We next remove a number of superfluous edges (i.e., edges that
are not in E , are not needed to keep Vs and Vg connected, or are not needed to connect frontier
vertices to an unvisited child vertex). If there are more than Emax edges, we remove superfluous
edges randomly until Emax edges remain. Otherwise, we randomly remove n superfluous edges
where n is the number of edges we have added since adding the initial edges.
Add more edges to E: Next, we continue the selection-inference procedure from earlier to add
additional edges to E , taking care that each frontier vertex still has at least one unvisited child
vertex. We continue until we have nE edges, where nE = i with probability proportional to i and
nE ∈ {|E|, . . . , Emax}. This step helps to make sure the size of E is more uniformly distributed.
As with the other graph and DFS example distributions, we randomly permute the vertex IDs as the
last step.
Note that since selection-inference consists of two subtasks, we have to encode the inputs differently.
Rather than a list of visited vertices, we encode the list of visited edges. The example in Figure 13
would look like:
Input: E 4 1 E 8 3 E 3 6 E 8 4 E 2 3 Q 8 6 P P P P P P 8 4 P 4 1 P, Label: 8
Input: E 4 1 E 8 3 E 3 6 E 8 4 E 2 3 Q 8 6 P P P P P 8 4 P 4 1 P 8, Label: 3

The top example is one of the selection subtask, where the model must predict a previously-visited
vertex with unvisited child vertices. The bottom is an example of the inference subtask, where given
the vertex 8, the model must predict an unvisited child vertex. Interestingly, we find transformers
do well on the selection subtask, but fare poorly on the inference subtask when given large input
graphs.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

A.11 SELECTION-INFERENCE SCALING

105 106 107 108

Training examples

100

2× 100

3× 100

4× 100
T

ra
in

in
g

lo
ss

Maximum input graph size
13

18

23

29

45

106 107 108

Training examples

2× 10−1

3× 10−1

4× 10−1

6× 10−1

T
es

t
lo

ss

Maximum input graph size
13

18

23

29

45

FIGURE 16: Training and test loss vs number of training examples seen, for models trained on the selection-
inference task. Test loss is computed on held-out examples from the balanced distribution with frontier size 4
and branch count 4. We fix the model size and vary the maximum input graph size. All models were trained on
the balanced distribution. Test loss is smoothed by averaging over a window of 81 data points, where each data
point is recorded at every 218 = 262K examples.

1014 1015 1016

Floating-point operations

2× 100

3× 100

4× 100

T
ra

in
in

g
lo

ss

Non-embedding
parameters

3.2M

3.8M

13.4M

14.8M

40.3M

1013 1014 1015 1016

Floating-point operations

4× 10−1

6× 10−1

T
es

t
lo

ss

Non-embedding
parameters

3.2M

3.8M

13.4M

14.8M

40.3M

FIGURE 17: Training and test loss vs FLOPs, for models trained on the selection-inference task. Test loss is
computed on held-out examples from the balanced distribution with frontier size 4 and branch count 4. We fix
the maximum input graph size to 45 vertices and vary the model size. All models were trained on the balanced
distribution. Test loss is smoothed by averaging over a window of 81 data points, where each data point is
recorded at every 218 = 262K examples.

24

	Introduction
	Related work
	Search in directed acyclic graphs
	Experiments
	Sensitivity to training distribution
	Proof search in natural language

	Mechanistic interpretation of transformers on graph search
	Reconstructing algorithms from inputs
	Experiments

	Does scaling help?
	Does in-context exploration (i.e., chain-of-thought) help?
	Depth-first search
	Selection-inference

	Conclusion
	Appendix
	Graph generation details
	Naïve distribution
	Balanced distribution

	Natural language proof search results
	Algorithm reconstruction pseudocode
	Additional scaling results
	Scaling decoder-only models with rotary positional embeddings
	DFS example
	Generating DFS examples with specific backtrack distances
	DFS scaling
	Non-standard padding in DFS
	Generating selection-inference examples
	Selection-inference scaling

