

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

OFFLINE PREFERENCE-BASED VALUE OPTIMIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

We study the problem of offline preference-based reinforcement learning (PbRL), where the agent learns from pre-collected preference data by comparing trajectory pairs. While prior work has established theoretical foundations for offline PbRL, existing algorithms face significant practical limitations: some rely on computationally intractable optimization procedures, while others suffer from unstable training and high performance variance. To address these challenges, we propose *Preference-based Value Optimization* (PVO), a simple and practical algorithm that achieves both strong empirical performance and theoretical guarantees. PVO directly optimizes the value function consistent with preference feedback by minimizing a novel *value alignment loss*. We prove that PVO attains a rate-optimal sample complexity of $\mathcal{O}(\varepsilon^{-2})$, and further show that the value alignment loss is applicable not only to value-based methods but also to actor-critic algorithms. Empirically, PVO achieves robust and stable performance across diverse continuous control benchmarks. It consistently outperforms strong baselines, including methods without theoretical guarantees, while requiring no additional hyperparameters for preference learning. Moreover, our ablation study demonstrates that substituting the standard TD loss with the value alignment loss substantially improves learning from preference data, confirming its effectiveness for PbRL.

1 INTRODUCTION

One of the major challenges in reinforcement learning (RL) is designing suitable reward functions for real-world tasks. Reward design often requires costly instrumentation such as motion capture (Akkaya et al., 2019; Peng et al., 2020), and poorly designed reward functions can significantly degrade training performance. Preference-based reinforcement learning (PbRL) provides a compelling alternative by inferring the underlying reward signal from preference feedback, such as human comparisons between trajectories (Christiano et al., 2017). This framework has demonstrated its effectiveness in domains where direct reward specification is difficult, including robotics (Brown et al., 2019; Shin et al., 2023), games (MacGlashan et al., 2017; Warnell et al., 2018), and language models (Ziegler et al., 2019; Stiennon et al., 2020; Ouyang et al., 2022).

In this work, we study offline PbRL, where learning is conducted using pre-collected datasets of trajectories and preference feedback (Kim et al., 2023; An et al., 2023; Hejna & Sadigh, 2024). Offline RL (Levine et al., 2020) is advantageous in scenarios where real-time online interaction may be costly or unsafe. This consideration is especially relevant for PbRL, as collecting preference feedback interactively can be prohibitively expensive or impractical.

Prior work on offline PbRL has introduced several algorithms with sample complexity guarantees (Zhu et al., 2023; Zhan et al., 2024a; Pace et al., 2025; Kang & Oh, 2025). However, these methods face significant practical limitations. Some are restricted to linear function approximation (Zhu et al., 2023), some require solving computationally intractable optimization problems (Zhan et al., 2024a), and others exhibit unstable performance in practice (Kang & Oh, 2025).

In particular, Zhan et al. (2024a) formulate PbRL as a distributionally robust optimization problem:

$$\hat{\pi} \in \arg \max_{\pi} \min_{r \in \mathcal{R}(\mathcal{D}), P_h \in \mathcal{P}_h(\mathcal{D})} V_{1,r,P}^{\pi} - V_{1,r}^{\mu},$$

where $\mathcal{R}(\mathcal{D})$ and $\mathcal{P}_h(\mathcal{D})$ are confidence sets for the reward and transition models. This formulation is computationally infeasible, primarily because the inner minimization over the confidence sets

054 $\mathcal{R}(\mathcal{D})$ and $\mathcal{P}_h(\mathcal{D})$ requires searching over complex function classes. The overall joint optimization
 055 over policy, reward, and transition models further compounds the computational burden.
 056

057 More recently, Kang & Oh (2025) proposed an actor-critic-style PbRL algorithm, APPO. By re-
 058 formulating the distributionally robust optimization into a regularized optimization, their approach
 059 enables practical implementation. However, APPO achieves only a suboptimal sample complexity
 060 bound of $\mathcal{O}(\varepsilon^{-4})$, which is weaker than the $\mathcal{O}(\varepsilon^{-2})$ bound of Zhan et al. (2024a). This inefficiency
 061 arises from its reliance on standard actor-critic analyses in offline RL (Xie et al., 2021; Zanette et al.,
 062 2021; Cheng et al., 2022; Nguyen-Tang & Arora, 2023), which require bounding the cumulative
 063 conservatism bias across T iterations. More importantly, APPO often suffers from high performance
 064 variance and unstable training. Even with hyperparameter tuning, it can fail to learn effective poli-
 065 cies (see Section 5). These issues further motivate the need for a more stable and efficient alternative
 066 for offline PbRL.

067 To address these challenges, we propose *Preference-based Value Optimization* (PVO), an offline
 068 PbRL algorithm that achieves both strong empirical performance and theoretical guarantees. PVO
 069 directly optimizes the value function by minimizing a novel *value alignment loss*, in conjunction
 070 with the concept of the *induced reward function*. Leveraging this formulation, we establish that PVO
 071 achieves a rate-optimal sample complexity bound of $\mathcal{O}(\varepsilon^{-2})$.

072 Beyond introducing PVO, we revisit APPO (Kang & Oh, 2025) and demonstrate that a variant incor-
 073 porating the value alignment loss also admits a sample complexity guarantee. This finding highlights
 074 that the value alignment loss serves as a unifying principle for provably efficient PbRL, applicable
 075 to both value-based and actor-critic algorithms.

076 We evaluate PVO on high-dimensional continuous control benchmarks. Surprisingly, PVO consis-
 077 tently outperforms state-of-the-art baselines, including empirical methods lacking theoretical guar-
 078 antees. It is noteworthy that PVO exhibits robust and stable performance across various datasets,
 079 without introducing additional hyperparameters for preference learning. Furthermore, our ablation
 080 study demonstrates that replacing the standard TD loss with the value alignment loss improves the
 081 performance of RL algorithms applied to preference dataset, thereby validating the advantage of
 082 value alignment loss in PbRL. Our contributions are summarized as follows:

- 083 • **Algorithm.** We propose PVO, a simple and practical offline PbRL algorithm that achieves
 084 both strong empirical performance and theoretical guarantees. It directly optimizes the value
 085 function consistent with preference feedback by minimizing the novel value alignment loss.
- 086 • **Theoretical Guarantee.** We prove that PVO attains a rate-optimal $\mathcal{O}(\varepsilon^{-2})$ sample complexity
 087 bound (Theorem 4.1). We further show that APPO (Kang & Oh, 2025) can be modified to
 088 incorporate the value alignment loss, demonstrating that this loss is applicable to both value-
 089 based and actor-critic algorithms for provably efficient PbRL.
- 090 • **Empirical Performance.** We show that PVO outperforms state-of-the-art baselines on contin-
 091 uous control benchmarks. Notably, it maintains robust and stable performance across datasets
 092 where existing methods suffer from high performance variance.
- 093 • **Advantage of Value Alignment Loss.** Our ablation study reveals that replacing the standard
 094 TD loss with the value alignment loss significantly improves the performance of RL algorithms
 095 on preference datasets. This confirms that the value alignment loss provides more reliable
 096 learning signals in PbRL, where reward estimation errors are often unavoidable.

097 1.1 RELATED WORK

100 **Offline PbRL Theory.** In offline RL, ensuring a proper amount of conservatism in value or model
 101 estimates is essential for theoretical guarantees. The principle of conservatism still holds for offline
 102 PbRL, yet we also estimate the reward from preference feedback.

103 To deal with this challenge, Zhu et al. (2023) utilize pessimistic maximum likelihood estimation un-
 104 der linear function approximation $r(s, a) = \theta^T \phi(s, a)$. Their algorithm first constructs a confidence
 105 set for the model parameter and then performs distributionally robust policy optimization to obtain
 106 a conservative value function and corresponding policy. Zhan et al. (2024a) extended the idea to
 107 general function classes with bounded bracketing number. They showed that bounded trajectory-
 108 level concentrability is essential for offline PbRL by establishing a lower bound. While they provide

108 a sample complexity bound, their algorithms are computationally intractable. Recently, Kang &
 109 Oh (2025) developed a computationally efficient approach based on actor-critic style policy opti-
 110 mization. By framing PbRL as a two-player game between policy and reward model, they replaced
 111 the distributionally robust optimization with tractable regularized optimization. A different yet re-
 112 lated problem setting was studied by Pace et al. (2025). They developed a preference elicitation
 113 method for offline PbRL. By choosing trajectory pairs for preference queries, they eliminated the
 114 dependence on the reward concentrability coefficient.

115 **Empirical Studies in PbRL** Several works have explored applying deep learning techniques to
 116 preference-based reinforcement learning. A simple yet effective approach involves training a re-
 117 ward model on a preference dataset, then applying a standard RL algorithm using the reward signal
 118 predicted by the learned model (Christiano et al., 2017; Ibarz et al., 2018; Lee et al., 2021). The
 119 reward model is typically assumed to produce a Markovian reward as in conventional RL, although
 120 some works have considered non-Markovian rewards that depend on the entire trajectory (Kim et al.,
 121 2023; Zhang et al., 2024; Swamy et al., 2024).

122 A separate line of research seeks to learn value functions or policies directly from preference data,
 123 without explicitly modeling rewards. Hejna & Sadigh (2024); Hejna et al. (2024) derive a direct
 124 relationship between the preference distribution and value (or policy), and optimize the likelihood of
 125 observed preferences accordingly. An et al. (2023) use a scoring function that evaluates policy based
 126 on preference, while Kang et al. (2023) propose hindsight information matching to directly optimize
 127 the policy. Zhang et al. (2024) introduce a generative model that learns from positive/negative
 128 trajectory pairs and applies behavior cloning to the model-generated positive trajectories.

129 Another active area of research focuses on improving the efficiency of preference data collection.
 130 Lee et al. (2021) demonstrate that increasing trajectory diversity through unsupervised pretraining
 131 improves performance, and Liang et al. (2022) achieve a similar goal via uncertainty-based explo-
 132 ration. Park et al. (2022) propose data augmentation techniques tailored for PbRL, while Hejna III
 133 & Sadigh (2023) introduce a meta-learning framework for few-shot preference learning. Choi et al.
 134 (2024) extend the standard pairwise comparison setting to listwise comparisons, showing that this
 135 richer feedback provides more informative supervision.

137 2 PRELIMINARIES

139 **Markov Decision Processes.** We consider an episodic MDP $(\mathcal{S}, \mathcal{A}, H, P^*, r^*)$ with state space \mathcal{S} ,
 140 action space \mathcal{A} , and horizon H . $P^* = \{P_h^*\}_{h=1}^H$ are the transition probabilities, and $r^* = \{r_h^*\}_{h=1}^H$ are the reward functions.
 141 For each episode, the agent starts at the initial state s_1 ¹, and then interacts
 142 with the environment for H steps. At step $h \in [H]$, the agent takes action a_h based on the current
 143 state s_h . The environment assigns reward $r_h^*(s_h, a_h)$ and generates next state s_{h+1} following the
 144 transition probability $P_h^*(\cdot | s_h, a_h)$. In preference-based learning, *the agent does not observe*
 145 *rewards at each step, but preference feedback comparing a pair of trajectories*, as we will discuss.

146 The agent’s strategy for taking actions is represented by policy $\pi = \{\pi_h\}_{h \in [H]}$, where $\pi_h(\cdot | s)$ is a
 147 probability distribution over \mathcal{A} . We define the state value function and the action value function of
 148 policy π as the expected sum of rewards over an episode, following the policy π . Formally,

$$149 \quad V_{h,r}^\pi(s) := \mathbb{E}_\pi \left[\sum_{h'=h}^H r_h(s_{h'}, a_{h'}) \mid s_h = s \right], \quad Q_{h,r}^\pi := \mathbb{E}_\pi \left[\sum_{h'=h}^H r_h(s_{h'}, a_{h'}) \mid s_h = s, a_h = a \right].$$

150 We write V_{h,r^*}^π as V_h^π and $V_1^\pi(s_1) = V_1^\pi$ for convenience. For any policy π and reward r , the
 151 Bellman equation states the relation between state and action value functions as

$$152 \quad Q_{h,r}^\pi(s, a) = r_h(s, a) + P^* V_{h+1,r}^\pi(s, a), \quad V_{h,r}^\pi(s) = Q_{h,r}^\pi(s, \pi), \quad V_{H+1}^\pi(s) = 0.$$

153 where we write $Pg(s, a) := \mathbb{E}_{s' \sim P(s, a)}[g(s')]$ and $g(s, \pi) := \mathbb{E}_{a \sim \pi(s)}[g(s, a)]$ for $g : \mathcal{S} \mapsto \mathbb{R}$.

154 **Offline Preference-based Reinforcement Learning.** In Preference-based RL, the agent cannot
 155 observe the true reward r^* but only binary preference feedback over trajectory pairs. For a mono-
 156 tonically increasing link function $\Phi : \mathbb{R} \mapsto [0, 1]$ with bounded $\kappa = 1/(\inf_{x \in [-R_{\max}, R_{\max}]} \Phi'(x))$, we

157 ¹Our analysis naturally extends with initial state distribution.

162 assume the preference feedback $y^m \in \{0, 1\}$ is generated by the following model:
 163

$$164 \quad \mathbb{P}(y = 1 \mid \tau^0, \tau^1) = \mathbb{P}(\tau^1 \text{ is preferred over } \tau^0) = \Phi(r^*(\tau^1) - r^*(\tau^0))$$

165 where $r^*(\tau) = \sum_{h=1}^H r_h^*(s_h, a_h)$ for given trajectory $\tau = (s_1, a_1, \dots, s_H, a_H)$. The widely used
 166 Bradely-Terry-Luce model (Bradley & Terry, 1952) is a special case of this model where Φ is set to
 167 be the sigmoid function $\sigma(x) = 1/(1 + \exp(-x))$.
 168

169 We have two offline datasets: a preference dataset $\mathcal{D}_{\text{PF}} = \{(\tau^{m,0}, \tau^{m,1}, y^m)\}_{m=1}^M$ and a trajectory
 170 dataset $\mathcal{D}_{\text{TJ}} = \{(\tau^{n,0}, \tau^{n,1})\}_{n=1}^N$ where every trajectories are sampled i.i.d. by executing the
 171 reference policy μ . The distinction between \mathcal{D}_{PF} and \mathcal{D}_{TJ} is for notational convenience. Generally,
 172 the two datasets may have common samples, e.g., we have a large \mathcal{D}_{TJ} and get labels for some
 173 trajectory pairs to create \mathcal{D}_{PF} . Our goal is to find an ϵ -optimal policy $\hat{\pi}$ with performance gap
 174 $V_{1,r^*}(s_1) - V_{1,\hat{\pi}}(s_1) \leq \epsilon$ for the optimal policy π^* .
 175

Function Approximation. We define function classes that we use to approximate models and value
 176 functions. We have reward function class $\mathcal{R} = \mathcal{R}_1 \times \dots \times \mathcal{R}_H \subset (\mathcal{S} \times \mathcal{A} \rightarrow [-R_{\max}, R_{\max},])^H$,
 177 transition function class $\mathcal{P} = \mathcal{P}_1 \times \dots \times \mathcal{P}_H \subset (\mathcal{S} \times \mathcal{A} \rightarrow \Delta(\mathcal{S}))^H$, and function class $\mathcal{F} =$
 178 $\mathcal{F}_1 \times \dots \times \mathcal{F}_H \subset (\mathcal{S} \times \mathcal{A} \rightarrow [-V_{\max}, V_{\max},])^H$. We denote π_f for the greedy policy corresponding
 179 to f , i.e., $\pi_f(s) = \arg \max_a f(s, a)$, and define $V_f = \{V_{h,f}\}_{h \in [H]}$ as $V_f(s) = f_h(s, \pi_f(s))$ for
 180 all $s \in \mathcal{S}$. As we do not make any assumption on the structure of the function classes, the function
 181 classes can approximate complex structures such as neural networks. We define $\Pi_{\mathcal{F}}$ as the set of
 182 greedy policies corresponding to \mathcal{F} .
 183

Additional Notations. We denote $[n] := \{1, 2, \dots, n\}$ for $n \in \mathbb{N}$. For given dataset \mathcal{D} , we use
 184 $\mathbb{E}_{x \in \mathcal{D}}[f(x)]$ to denote $\frac{1}{|\mathcal{D}|} \sum_{x \in \mathcal{D}} f(x)$. For reward function $r \in \mathcal{R}$ and trajectories τ^0, τ^1 , we
 185 write $\Delta(r; \tau^0, \tau^1) = r(\tau^0) - r(\tau^1)$. For $f : \mathcal{S} \times \mathcal{A} \mapsto \mathbb{R}$, we use the notation $P_h^{\pi} f(s, a) :=$
 186 $\mathbb{E}_{s' \sim P(s, a), a' \sim \pi(s')}[f(s', a')]$. The notation $f(x) \lesssim g(x)$ means that $f(x) \leq Cg(x), \forall x$ for some
 187 absolute constant $C > 0$.
 188

189 3 ALGORITHM

191 In this section, we discuss how to learn a value function that is consistent with preference feedback.
 192 The key idea lies in the concept of *induced reward function* and our novel *value alignment loss*.
 193 Building on this idea, we propose Preference-based Value Optimization (PVO), a simple offline PbRL
 194 algorithm with a sample complexity guarantee. We also show that the APPO algorithm introduced
 195 by Kang & Oh (2025) can be interpreted as an actor-critic algorithm using the value alignment loss,
 196 which implies a unified framework for PbRL.
 197

198 3.1 ALIGNING VALUE FUNCTION WITH PREFERENCE

200 In preference-based reinforcement learning, feedback is provided for each trajectory pair
 201 $(\tau^{m,0}, \tau^{m,1})$. To enable credit assignment, we must infer a reward function, which can be done
 202 via maximum likelihood estimation over the dataset \mathcal{D}_{PF} . Specifically, we learn a reward model
 203 $\hat{r} \in \arg \min_{r \in \mathcal{R}} \hat{L}_{\text{RW}}(r)$ where
 204

$$205 \quad \hat{L}_{\text{RW}}(r) = - \sum_{m=1}^M \log \Phi((2y^m - 1)(r(\tau^{m,1}) - r(\tau^{m,0}))) \quad (1)$$

208 is the negative log likelihood loss. The standard MLE concentration bound (e.g., Lemma 2 in Zhan
 209 et al. (2024a)) guarantees the following:

$$210 \quad \mathbb{E}_{\tau^0, \tau^1 \sim \mu}[(\hat{r}(\tau^0) - \hat{r}(\tau^1) - r^*(\tau^0) + r^*(\tau^1))^2] \lesssim \frac{\kappa^2 \log(|\mathcal{R}| \delta^{-1})}{M}.$$

213 A key point is that this concentration bound holds with respect to trajectory pairs $(\tau^0, \tau^1) \sim \mu$ rather
 214 than individual states or transitions. Consequently, the squared Bellman error used in standard RL
 215 is not compatible with PbRL. Then how can we learn value functions consistent with the preference
 216 feedback? The concept of *induced reward function* plays a crucial role.

216 **Algorithm 1** PVO: Preference-based Value Optimization

217 1: **Input:** Datasets $\mathcal{D}_{\text{PF}}, \mathcal{D}_{\text{TJ}}$
218 2: Estimate $\hat{r} \in \arg \min_{r \in \mathcal{R}} \hat{L}_{\text{RW}}(r)$ (1), $\hat{P}_h \in \arg \min_{P \in \mathcal{P}_h} \hat{L}_{\text{TR},h}(P)$ for all $h \in [H]$ (3)
219 3: Optimize $\hat{f} \in \arg \min_{f \in \mathcal{F}} \sum_{n=1}^N (r(\tau^{n,0}) - r(\tau^{n,1}) - \hat{r}(\tau^{n,0}) + \hat{r}(\tau^{n,1}))^2$
220 4: Return greedy policy $\hat{\pi} = \pi_{\hat{f}}$ such that $\pi_{\hat{f}}(s) = \arg \max_a \hat{f}(s, a)$ for all $s \in \mathcal{S}$
221

223
224 **Definition 1** (Induced Reward Function, Value Type). *For $f \in \mathcal{F}$, we define the induced reward*
225 *function $r_f = \{r_{h,f}\}_{h=1}^H \in (\mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R})^H$ satisfying $r_{h,f} = f_h - P_h^* V_{h+1,f}$. Similarly, we define*
226 *$\hat{r}_{h,f}$ as $\hat{r}_{h,f} = f_h - \hat{P}_h V_{h+1,f}$ where \hat{P} is some transition model.*
227

228 Our *value type* induced reward is different from the *policy type* induced reward used for the analysis
229 of actor-critic algorithms (Zanette et al., 2021; Xie et al., 2021; Nguyen-Tang & Arora, 2023;
230 Kang & Oh, 2025) (Formal definition is presented in Definition 3). While the policy type definition
231 is rooted in the Bellman equation $Q_h^\pi = r_h^\star + P_h^* V_{h+1}^\pi$ with respect to some policy π ,
232 our value type definition is inspired by the *Bellman optimality equation* $Q_h^{\pi^*}(s, a) = r_h^*(s, a) +$
233 $\mathbb{E}_{s' \sim P_h^*} [\max_{a'} Q_{h+1}^{\pi^*}(s', a')]$. The value type induced reward enables us to directly optimize the
234 value function without actor-critic iterations as in Kang & Oh (2025), leading to more stable and
235 efficient learning, as we will see in Section 5.
236

237 Equipped with the definition of induced reward function, we introduce the *value alignment loss*, a
238 simple loss function for consistent value learning:
239

240
$$\hat{L}_{\text{VA}}(r_f, \hat{r}) = \sum_{n=1}^N (r_f(\tau^{n,0}) - r_f(\tau^{n,1}) - \hat{r}(\tau^{n,0}) + \hat{r}(\tau^{n,1}))^2. \quad (2)$$
241

242 At first glance, \hat{L}_{VA} can be viewed as the squared trajectory-level error between the induced reward
243 function r_f and the reward model \hat{r} . While this view is valid, a more structured interpretation is
244 obtained by Definition 1:
245

246
$$\hat{L}_{\text{VA}}(r_f, \hat{r}) = \sum_{n=1}^N \left(\sum_{h=1}^H (f_h - \hat{r}_h - P_h^* V_{h+1,f})(s_h^{n,0}, a_h^{n,0}) - \sum_{h=1}^H (f_h - \hat{r}_h - P_h^* V_{h+1,f})(s_h^{n,1}, a_h^{n,1}) \right)^2.$$
247

248 This expression reveals that \hat{L}_{VA} represents the difference in the cumulative Bellman errors of f
249 between a pair of trajectories. Minimizing \hat{L}_{VA} encourages f to be Bellman-consistent with respect
250 to \hat{r} , thus aligning it with the preference data. We therefore refer to \hat{L}_{VA} as value alignment loss.
251
252 3.2 PREFERENCE-BASED VALUE OPTIMIZATION
253
254 We present PVO, a direct application of the value alignment loss with Definition 1. The pseudo-code
255 is presented in Algorithm 1.
256

257 **Model Learning.** Our algorithm consists of two phases: model learning (Line 2) and value
258 optimization (Line 3). In the model learning phase, we learn reward and transition models via
259 maximum likelihood estimation. Formally, we compute $\hat{r} = \arg \min_{r \in \mathcal{R}} \hat{L}_{\text{RW}}(r)$ (1) and $\hat{P}_h \in$
260 $\arg \min_{P \in \mathcal{P}_h} \hat{L}_{\text{TR},h}(P)$ where
261

262
$$\hat{L}_{\text{TR},h}(P) = - \sum_{n=1}^N \sum_{j \in \{0,1\}} \log P(s_{h+1}^{n,j} | s_h^{n,j}, a_h^{n,j}). \quad (3)$$
263

264 **Value Optimization.** In the value optimization phase, we minimize the value alignment loss:
265

266
$$\hat{f} \in \arg \min_{f \in \mathcal{F}} \underbrace{\sum_{n=1}^N (\hat{r}_f(\tau^{n,0}) - \hat{r}_f(\tau^{n,1}) - \hat{r}(\tau^{n,0}) + \hat{r}(\tau^{n,1}))^2}_{\text{value alignment loss } \hat{L}_{\text{VA}}(\hat{r}_f, \hat{r})}. \quad (4)$$
267

As we discussed, this facilitates the consistency of the value function with respect to \hat{r} . Since (4) is unconstrained, we can easily implement this using neural networks and gradient-based optimizers. We present a practical deep RL implementation in Section 5.

3.3 REVISITING APPO WITH VALUE ALIGNMENT LOSS

The APPO algorithm (Kang & Oh, 2025) alternates between policy updates of the form $\pi_h^{t+1}(a | s) \propto \pi_h^t(a | s) \exp(\eta f_h^t(s, a))$ and value function optimization:

$$f^t \in \arg \min_{f \in \mathcal{F}} \left(\lambda \sum_{n=1}^N \sum_{h=1}^H \left[f_h(s_h^{n,0}, \pi_h^t(s_h^{n,0})) - f_h(s_h^{n,0}, a_h^{n,0}) \right] + \hat{\mathcal{E}}(f) \right)$$

where $\hat{\mathcal{E}}(f) = \sum_{n=1}^N \left| \hat{r}_f^{\pi^t}(\tau^{n,0}) - \hat{r}_f^{\pi^t}(\tau^{n,1}) - \hat{r}(\tau^{n,0}) + \hat{r}(\tau^{n,1}) \right|$ is the ℓ_1 loss between the policy type induced reward $\hat{r}_{h,f}^{\pi^t}$ and the reward model \hat{r} . This can be viewed as an ℓ_1 variant of the value alignment loss \hat{L}_{VA} , leading to a natural question:

Question: *Can we still guarantee a sample complexity bound if $\hat{\mathcal{E}}(f)$ is replaced by \hat{L}_{VA} in APPO?*

We answer this affirmatively: if APPO is modified to use value alignment loss as in Algorithm 2, it enjoys a sample complexity guarantee (Theorem B.1). The detailed discussion and analysis is presented in Appendix B. This suggests that the combination of the value alignment loss and the induced reward function provides a unified framework applicable to both value optimization and actor-critic methods.

3.4 PRACTICAL IMPLEMENTATION

PVO can be practically implemented with neural networks empowered by off-the-shelf deep learning methods. We adapt PVO to the standard discounted MDP setting for deep PbRL (Christiano et al., 2017), where we have preference feedback for trajectory segment pairs of length L .

Reward Learning. Since the value optimization objective 4 uses a reward model \hat{r} , we train a reward model based on the preference dataset \mathcal{D}_{PF} . We train \hat{r} by maximizing log likelihood $\hat{L}_{RW}(\mathcal{D}_{PF})$, yet it is possible to employ other advanced techniques for preference learning (Park et al., 2022; Shin et al., 2023; Hwang et al., 2024; Choi et al., 2024). We note that reward model training requires minimal computational cost: In our experiments, training a reward model with 1000 preference samples takes less than a minute, while value and policy learning take more than 2 hours for all algorithms.

Value Optimization. To implement the value optimization (Line 3 in Algorithm 1) with deep neural networks, we parameterize Q and V functions separately. The V function is trained via expectile regression (Kostrikov et al., 2022):

$$L_V(\mathcal{D}_{TJ}) = \mathbb{E}_{(s,a) \in \mathcal{D}_{TJ}} [L_2^\tau(Q(s, a) - V(s))] \quad (5)$$

where $L_2^\tau(u) = |\tau - \mathbb{1}\{u < 0\}|u^2$. The optimization objective for the Q function is

$$L_Q(\mathcal{D}_{TJ}) = \mathbb{E}_{(\tau^0, \tau^1) \in \mathcal{D}_{TJ}} \left[(r_{Q,V}(\tau^0) - r_{Q,V}(\tau^1) - \hat{r}(\tau^0) + \hat{r}(\tau^1))^2 \right]. \quad (6)$$

where $r_{Q,V}(\tau) = \sum_{l=1}^L (Q(s_l, a_l) - \gamma V(s_{l+1}))$ and $\pi(s)$ is an action sampled from $\pi(\cdot | s)$. We use $V(s_{l+1})$ instead of $\hat{P}V(s_l, a_l)$, eliminating the need for training a transition model. This approximation leads to good empirical performance, as shown in the experimental results.

Finally, the policy is extracted via advantage weighted regression (Peng et al., 2019):

$$L_\pi(\mathcal{D}_{TJ}) = \mathbb{E}_{(s,a) \in \mathcal{D}_{TJ}} [\exp(\beta(Q(s, a) - V(s))) \log \pi(a | s)]. \quad (7)$$

4 THEORETICAL ANALYSIS

This section presents the sample complexity analysis of our proposed algorithms, PVO. Our analysis is based on some standard assumptions in the PbRL literature. First, we assume that the function classes are realizable (Chen et al., 2023; Zhan et al., 2024a; Pace et al., 2025; Kang & Oh, 2025).

324 **Assumption 1** (Reward Function Class). *The reward function class is realizable, i.e., $r^* \in \mathcal{R}$. For
325 every $r \in \mathcal{R}$ and trajectory τ , it holds that $|r(\tau)| \leq R_{\max}$.*

326 **Assumption 2** (Transition Function Class). *The transition function class is realizable, i.e., $P^* \in \mathcal{P}$.*

328 **Assumption 3** (Value Function Class). *For any policy π , we have $Q^\pi \in \mathcal{F}$. In addition, $|f_h(s, a)| \leq$
329 V_{\max} for all $f \in \mathcal{F}$, $h \in [H]$, and $(s, a) \in \mathcal{S} \times \mathcal{A}$.*

330 We define a PbRL version of uniform concentrability coefficient Munos & Szepesvári (2008); Chen
331 & Jiang (2019). Note that is defined with respect to trajectory density instead of state-action density.

333 **Definition 2** (PbRL Uniform Concentrability).

$$334 \quad \mathcal{C}_\mu(\mathcal{F}) = \sup_{\pi \in \Pi_{\mathcal{F}}} \sup_{f \in \mathcal{F}} \frac{|\mathbb{E}_{\tau^0 \sim \pi, \tau^1 \sim \mu} [r_f(\tau^0) - r_f(\tau^1) - r^*(\tau^0) + r^*(\tau^1)]|}{335 \quad \sqrt{\mathbb{E}_{\tau^0, \tau^1 \sim \mu} [(r_f(\tau^0) - r_f(\tau^1) - r^*(\tau^0) + r^*(\tau^1))^2]}}$$

337 Now we present the sample complexity bounds. The proofs are presented in Section C. Note that our
338 analysis naturally extends to infinite function classes using the standard covering number argument.

340 **Theorem 4.1** (Sample complexity of PVO). *Suppose Assumptions 1, 2, and 3 hold. With probability
341 at least $1 - \delta$, Algorithm 1 achieves an ε -optimal policy with*

$$342 \quad M = \mathcal{O}\left(\frac{\mathcal{C}_\mu(\mathcal{F})^2 \kappa^2 \log(|\mathcal{R}| \delta^{-1}))}{\varepsilon^2}\right), N = \mathcal{O}\left(\frac{\mathcal{C}_\mu(\mathcal{F})^2 V_{\max}^2 H^2 (\log(|\mathcal{P}| H \delta^{-1}) + \log(|\mathcal{F}| \delta^{-1}))}{\varepsilon^2}\right).$$

346 Compared to the sample complexity bounds of FREEHAND-transition (Zhan et al., 2024a), the
347 bound in Theorem 4.1 is looser since the uniform concentrability \mathcal{C}_μ is a stronger condition than the
348 single-policy concentrability (Zhan et al., 2024a; Kang & Oh, 2025). However, the sample complex-
349 ity bound of PVO still achieves rate-optimal $\mathcal{O}(\varepsilon^{-2})$ for both M and N . Moreover, the sharp bounds
350 of FREEHAND-transition comes at the cost: FREEHAND-transition is computational intractable
351 due to its reliance on a distributionally robust optimization oracle. Compared with APPPO (Kang
352 & Oh, 2025), PVO’s bound on N is sharper than $\mathcal{O}(\varepsilon^{-4})$ bound of APPPO, but APPPO relies on the
353 weaker single-policy concentrability assumption. We note that APPPO also has empirical limitations
354 such as unstable performance and additional hyperparameters as explained in Section 5. Therefore,
355 the sample complexity bound of PVO reveals a trade-off: despite having a weaker bound, PVO offers
356 significant advantages in terms of practical implementation and empirical performance.

357 5 EXPERIMENTS

359 In this section, we evaluate PVO in continuous control benchmarks with elaborate ablation studies.

361 5.1 EXPERIMENTAL SETUP

363 We evaluate PVO on the Meta-World (Yu et al., 2020) and DMControl (Tassa et al., 2018) datasets
364 from Choi et al. (2024). They are widely used continuous control benchmarks with high-dimensional
365 state spaces. We mainly use Meta-World datasets for evaluation, and the results with the DMControl
366 dataset is presented in Appendix F. We follow the experimental setup of Choi et al. (2024) and Kang
367 & Oh (2025). The preference dataset consists of pairs of randomly sampled trajectory segments of
368 length 25, and the preference labels are generated based on the ground truth return of segments. We
369 measure algorithm performance using the success rate for Meta-World tasks and the episodic return
370 for DMControl tasks.

371 We consider the following baselines: (1) IQL (Kostrikov et al., 2022) with a learned reward model
372 is a simple yet strong baseline that has been widely adopted in previous studies (Kim et al., 2023;
373 An et al., 2023; Hejna & Sadigh, 2024; Hejna et al., 2024; Choi et al., 2024); (2) APPPO (Kang &
374 Oh, 2025) is a provably efficient algorithm based on adversarial training; (3) Preference Transformer
375 (PT) (Kim et al., 2023) utilizes the Transformer (Vaswani, 2017) architecture for sequential reward
376 modeling; (4) DPPO (An et al., 2023) directly optimizes policy with preference score metric; (5)
377 IPL (Hejna & Sadigh, 2024) optimizes policy by maximizing the likelihood of observed preference
378 data. Further details on the setup are presented in Appendix G.

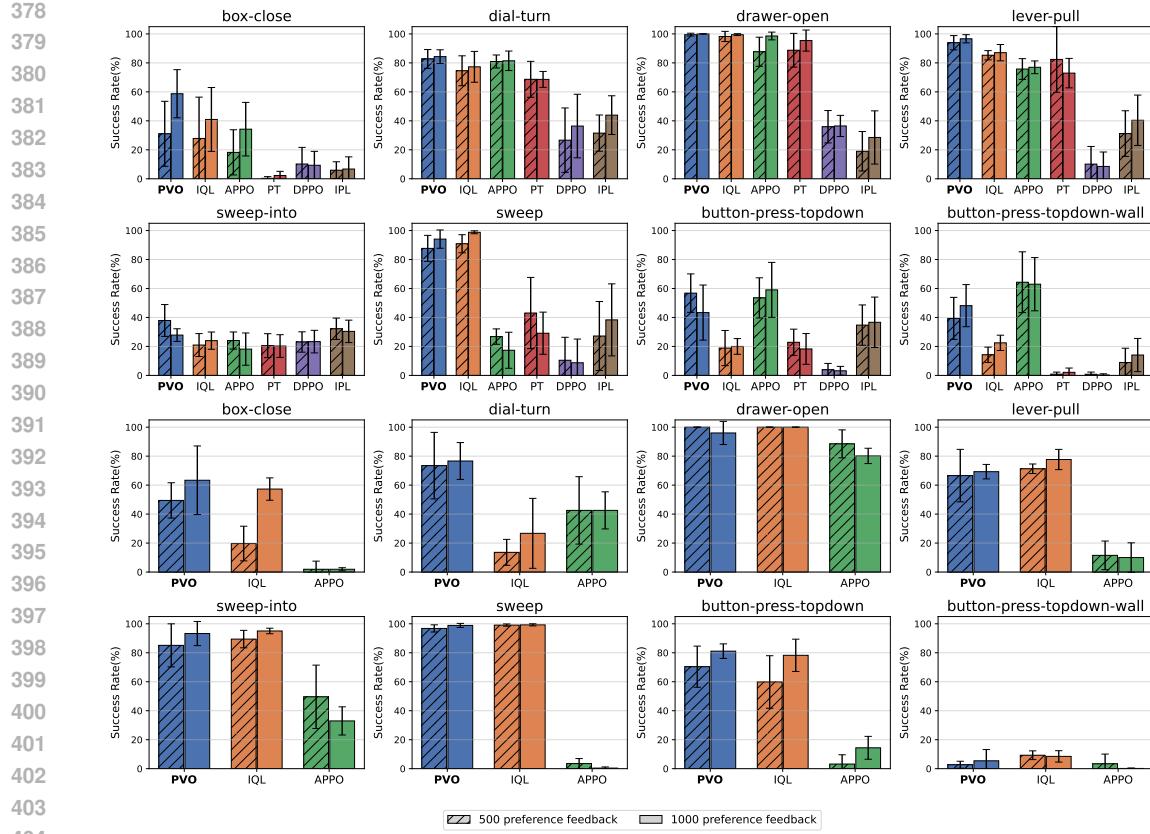


Figure 1: (Top two rows) Performance on Meta-World medium-replay datasets and (Bottom two rows) medium-expert datasets, measured by success rate. For medium-replay datasets, we include results of PT, DPPO, and IPL from Choi et al. (2024). For the medium-expert datasets, we evaluate the top three algorithms from the medium-replay results. Each plot shows the mean and standard deviation over five random seeds.

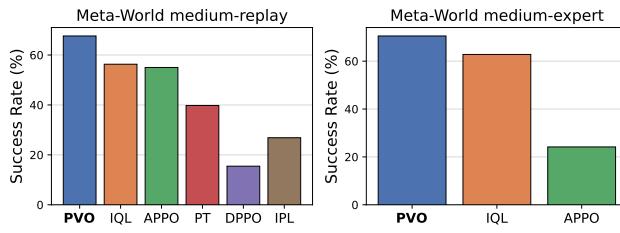


Figure 2: Average performance on Meta-World medium-replay and medium-expert datasets.

5.2 EVALUATION ON PREFERENCE DATASETS

Figure 1 presents the performance of algorithms on Meta-World datasets, and Figure 2 summarizes the overall results. PVO consistently outperforms baseline methods across diverse environments. In particular, while baselines often exhibit high variance across datasets, PVO maintains robust performance. For example, IQL performs comparably to PVO on the medium-replay sweep dataset, but fails to learn on the medium-replay button-press-topdown dataset. This instability arises from the nature of preference feedback, where agents rely on potentially misspecified reward estimation. The stable performance of PVO indicates greater robustness to such reward model errors, which is a significant advantage in the PbRL setting.

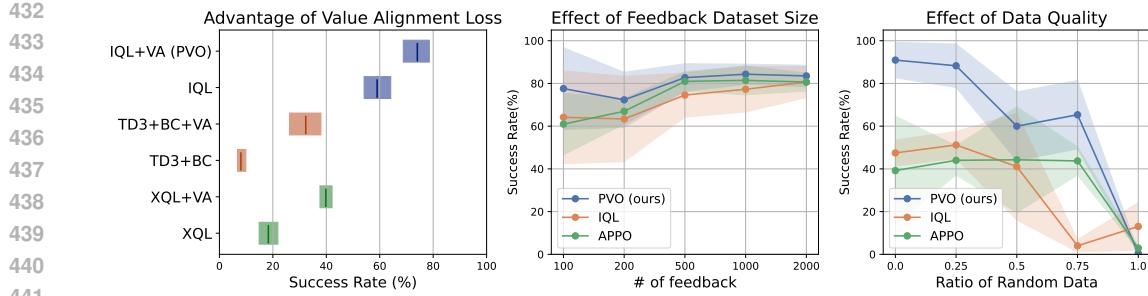


Figure 3: (Left) Overall performance of IQL, XQL, and TD3+BC with and without value alignment loss (+VA indicates the modified version using the value alignment loss), aggregated by interquartile mean (Agarwal et al., 2021). (Middle) Performance of algorithms on Meta-World **medium-replay** dial-turn dataset, with varying number of preference feedback. (Right) Performance of algorithms on mixture datasets of random and expert trajectories, with varying proportions of random trajectories.

Moreover, PVO introduces no additional hyperparameters for preference learning, requiring exactly the same set of hyperparameters as IQL. This stands in contrast to existing PbRL methods that depend on extra hyperparameters, such as the conservatism parameter in APPO, the smoothness and conservatism regularizers in DPPO, and the regularization parameter in IPL.

5.3 ABLATION STUDY

Advantage of Value Alignment Loss.

The improvement of PVO over baselines stems from the value alignment loss (6). To isolate its effect, we implemented additional baselines: TD3+BC (Fujimoto & Gu, 2021) (actor-critic) and XQL (Garg et al., 2023) (value-based). We compared their original versions, which use the standard TD loss, with variants that employ the value alignment loss.

The left plot of Figure 2 reports results on the Meta-World **medium-replay** datasets (8 tasks) with 1000 preference feedback. For both TD3+BC and XQL, replacing the TD loss with the value alignment loss yields substantial improvements. A similar pattern appears in the gap between PVO and IQL, which share identical network architectures and expectile regression but differ in the use of the value alignment loss. These results confirm that the value alignment loss provides a more informative learning signal than the standard TD loss.

From a theoretical perspective, we hypothesize that its advantage lies in mitigating the propagation of reward model errors. Unlike the TD loss, which can amplify such errors through Bellman backups, the value alignment loss distributes errors at the trajectory level, smoothing their impact on value estimation. This property may explain its empirical effectiveness in PbRL, where reward model misspecification is often inevitable.

Effect of Preference Dataset Size and Data Quality.

We next study sensitivity to the amount of preference feedback. The middle plot of Figure 3 shows that PVO achieves effective learning with as few as about 100 preference samples, exhibiting minimal performance degradation.

We also examine the effect of data quality. On the Meta-World dial-turn task, we constructed mixture datasets by combining expert and random trajectories with varying proportions $r \in \{0, 0.25, 0.5, 0.75, 1\}$. Here, $r = 0$ corresponds to an expert dataset, while $r = 1$ denotes a fully random dataset. The result is presented in the right plot of Figure 3. As expected, performance declines for all algorithms as r increases, since a larger proportion of random trajectories reduces the amount of high-quality data available for learning. Importantly, PVO consistently maintains superiority across all mixture settings, demonstrating robustness even when the dataset substantially diverges from the optimal policy distribution.

486 REPRODUCIBILITY
487

488 The experimental details are described in Section 5 and Section G, including hyperparameters, neu-
489 ral network architecture, and dataset information. The code used to run experiments can be found
490 in the supplementary material where the README file explains how to configure training environ-
491 ment and execute scripts. The Meta-World `medium-replay` datasets and DMControl datasets are
492 available in the official repository of Choi et al. (2024). The Meta-World `medium-expert` datasets
493 are generated using the script provided in the official repository of Hejna & Sadigh (2024).

494
495 REFERENCES
496

497 Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
498 Deep reinforcement learning at the edge of the statistical precipice. *Advances in neural informa-
499 tion processing systems*, 34:29304–29320, 2021.

500 Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,
501 Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a
502 robot hand. *arXiv preprint arXiv:1910.07113*, 2019.

503 Gaon An, Junhyeok Lee, Xingdong Zuo, Norio Kosaka, Kyung-Min Kim, and Hyun Oh Song.
504 Direct preference-based policy optimization without reward modeling. *Advances in Neural Infor-
505 mation Processing Systems*, 36:70247–70266, 2023.

506 Philippe Artzner. Thinking coherently. *Risk*, 10:68–71, 1997.

507 Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
508 of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.

509 Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond sub-
510 optimal demonstrations via inverse reinforcement learning from observations. In *International
511 conference on machine learning*, pp. 783–792. PMLR, 2019.

512 Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement learning.
513 In *International conference on machine learning*, pp. 1042–1051. PMLR, 2019.

514 Xiaoyu Chen, Han Zhong, Zhuoran Yang, Zhaoran Wang, and Liwei Wang. Human-in-the-loop:
515 Provably efficient preference-based reinforcement learning with general function approximation.
516 In *International Conference on Machine Learning*, pp. 3773–3793. PMLR, 2022.

517 Yu Chen, Yihan Du, Pihe Hu, Siwei Wang, Desheng Wu, and Longbo Huang. Provably efficient
518 iterated cvar reinforcement learning with function approximation and human feedback. In *The
519 Twelfth International Conference on Learning Representations*, 2023.

520 Ching-An Cheng, Tengyang Xie, Nan Jiang, and Alekh Agarwal. Adversarially trained actor critic
521 for offline reinforcement learning. In *International Conference on Machine Learning*, pp. 3852–
522 3878. PMLR, 2022.

523 Heewoong Choi, Sangwon Jung, Hongjoon Ahn, and Taesup Moon. Listwise reward estimation
524 for offline preference-based reinforcement learning. In *Forty-first International Conference on
525 Machine Learning*, 2024.

526 Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
527 reinforcement learning from human preferences. *Advances in neural information processing sys-
528 tems*, 30, 2017.

529 Christoph Dann, Mehryar Mohri, Tong Zhang, and Julian Zimmert. A provably efficient model-free
530 posterior sampling method for episodic reinforcement learning. *Advances in Neural Information
531 Processing Systems*, 34:12040–12051, 2021.

532 Yihan Du, Anna Winnicki, Gal Dalal, Shie Mannor, and R. Srikant. Exploration-driven policy op-
533 timization in RLHF: Theoretical insights on efficient data utilization. In *Forty-first International
534 Conference on Machine Learning*, 2024.

540 Dylan J Foster, Sham M Kakade, Jian Qian, and Alexander Rakhlin. The statistical complexity of
 541 interactive decision making. *arXiv preprint arXiv:2112.13487*, 2021.

542

543 Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
 544 *Advances in neural information processing systems*, 34:20132–20145, 2021.

545

546 Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme q-learning: Maxent RL
 547 without entropy. In *The Eleventh International Conference on Learning Representations*, 2023.
 548 URL <https://openreview.net/forum?id=SJ0Lde3tRL>.

549

550 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
 551 maximum entropy deep reinforcement learning with a stochastic actor. In *International conference on
 552 machine learning*, pp. 1861–1870. Pmlr, 2018.

553

554 Joey Hejna and Dorsa Sadigh. Inverse preference learning: Preference-based rl without a reward
 555 function. *Advances in Neural Information Processing Systems*, 36, 2024.

556

557 Joey Hejna, Rafael Rafailov, Harshit Sikchi, Chelsea Finn, Scott Niekum, W. Bradley Knox, and
 558 Dorsa Sadigh. Contrastive preference learning: Learning from human feedback without rein-
 559 force learning. In *The Twelfth International Conference on Learning Representations*, 2024.

560

561 Donald Joseph Hejna III and Dorsa Sadigh. Few-shot preference learning for human-in-the-loop rl.
 562 In *Conference on Robot Learning*, pp. 2014–2025. PMLR, 2023.

563

564 Minyoung Hwang, Gunmin Lee, Hogun Kee, Chan Woo Kim, Kyungjae Lee, and Songhwai Oh. Se-
 565 quential preference ranking for efficient reinforcement learning from human feedback. *Advances
 566 in Neural Information Processing Systems*, 36, 2024.

567

568 Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei. Reward
 569 learning from human preferences and demonstrations in atari. *Advances in neural information
 570 processing systems*, 31, 2018.

571

572 Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. Bellman eluder dimension: New rich classes of rl
 573 problems, and sample-efficient algorithms. *Advances in neural information processing systems*,
 574 34:13406–13418, 2021.

575

576 Hyungkyu Kang and Min-hwan Oh. Adversarial policy optimization for offline preference-based
 577 reinforcement learning. In *The Thirteenth International Conference on Learning Representations*,
 578 2025. URL <https://openreview.net/forum?id=5Y9NT61W21>.

579

580 Yuchen Kang, Diyuan Shi, Jinxin Liu, Li He, and Donglin Wang. Beyond reward: Offline
 581 preference-guided policy optimization. In *International Conference on Machine Learning*, pp.
 582 15753–15768. PMLR, 2023.

583

584 Changyeon Kim, Jongjin Park, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. Pref-
 585 erence transformer: Modeling human preferences using transformers for RL. In *The Eleventh
 586 International Conference on Learning Representations*, 2023.

587

588 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *3rd Interna-
 589 tional Conference on Learning Representations (ICLR)*, 2015. URL <https://arxiv.org/abs/1412.6980>. arXiv preprint arXiv:1412.6980.

590

591 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
 592 learning. In *International Conference on Learning Representations*, 2022.

593

594 Kimin Lee, Laura M Smith, and Pieter Abbeel. Pebble: Feedback-efficient interactive reinforcement
 595 learning via relabeling experience and unsupervised pre-training. In *International Conference on
 596 Machine Learning*, pp. 6152–6163. PMLR, 2021.

597

598 Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
 599 rial, review, and perspectives on open problems. *arXiv preprint arXiv:2005.01643*, 2020.

600

601 Xinran Liang, Katherine Shu, Kimin Lee, and Pieter Abbeel. Reward uncertainty for exploration in
 602 preference-based reinforcement learning. In *International Conference on Learning Representa-
 603 tions*, 2022. URL <https://openreview.net/forum?id=0WZVD-1-ZrC>.

594 James MacGlashan, Mark K Ho, Robert Loftin, Bei Peng, Guan Wang, David L Roberts, Matthew E
 595 Taylor, and Michael L Littman. Interactive learning from policy-dependent human feedback. In
 596 *International conference on machine learning*, pp. 2285–2294. PMLR, 2017.

597 Rémi Munos and Csaba Szepesvári. Finite-time bounds for fitted value iteration. *Journal of Machine*
 598 *Learning Research*, 9(5), 2008.

600 Thanh Nguyen-Tang and Raman Arora. On sample-efficient offline reinforcement learning: Data
 601 diversity, posterior sampling and beyond. *Advances in neural information processing systems*, 36:
 602 61115–61157, 2023.

603 Ellen Novoseller, Yibing Wei, Yanan Sui, Yisong Yue, and Joel Burdick. Dueling posterior sam-
 604 pling for preference-based reinforcement learning. In *Conference on Uncertainty in Artificial*
 605 *Intelligence*, pp. 1029–1038. PMLR, 2020.

606 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 607 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 608 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 609 27730–27744, 2022.

610 Alizée Pace, Bernhard Schölkopf, Gunnar Ratsch, and Giorgia Ramponi. Preference elicitation for
 611 offline reinforcement learning. In *The Thirteenth International Conference on Learning Repre-
 612 sentations*, 2025.

613 Jongjin Park, Younggyo Seo, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. SURF:
 614 Semi-supervised reward learning with data augmentation for feedback-efficient preference-based
 615 reinforcement learning. In *International Conference on Learning Representations*, 2022. URL
 616 <https://openreview.net/forum?id=TfhfZLQ2EJ0>.

617 Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
 618 Simple and scalable off-policy reinforcement learning. *arXiv preprint arXiv:1910.00177*, 2019.

619 Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan, and Sergey Levine. Learn-
 620 ing agile robotic locomotion skills by imitating animals. *arXiv preprint arXiv:2004.00784*, 2020.

621 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 622 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*
 623 *in Neural Information Processing Systems*, 36, 2024.

624 Corby Rosset, Ching-An Cheng, Arindam Mitra, Michael Santacroce, Ahmed Awadallah, and
 625 Tengyang Xie. Direct nash optimization: Teaching language models to self-improve with general
 626 preferences. *arXiv preprint arXiv:2404.03715*, 2024.

627 Daniel Russo and Benjamin Van Roy. Eluder dimension and the sample complexity of optimistic
 628 exploration. *Advances in Neural Information Processing Systems*, 26, 2013.

629 Aadirupa Saha, Aldo Pacchiano, and Jonathan Lee. Dueling rl: Reinforcement learning with trajec-
 630 tory preferences. In *International Conference on Artificial Intelligence and Statistics*, pp. 6263–
 631 6289. PMLR, 2023.

632 Daniel Shin, Anca Dragan, and Daniel S. Brown. Benchmarks and algorithms for offline preference-
 633 based reward learning. *Transactions on Machine Learning Research*, 2023. ISSN 2835-8856.

634 Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
 635 Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. *Advances*
 636 *in Neural Information Processing Systems*, 33:3008–3021, 2020.

637 Gokul Swamy, Christoph Dann, Rahul Kidambi, Steven Wu, and Alekh Agarwal. A minimaximalist
 638 approach to reinforcement learning from human feedback. In *Forty-first International Conference*
 639 *on Machine Learning*, 2024.

640 Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
 641 den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. *arXiv*
 642 *preprint arXiv:1801.00690*, 2018.

648 Masatoshi Uehara and Wen Sun. Pessimistic model-based offline reinforcement learning under
 649 partial coverage. *arXiv preprint arXiv:2107.06226*, 2021.
 650

651 A Vaswani. Attention is all you need. *Advances in Neural Information Processing Systems*, 2017.
 652

653 Yuanhao Wang, Qinghua Liu, and Chi Jin. Is rlhf more difficult than standard rl? a theoretical
 654 perspective. *Advances in Neural Information Processing Systems*, 36:76006–76032, 2023.
 655

656 Garrett Warnell, Nicholas Waytowich, Vernon Lawhern, and Peter Stone. Deep tamer: Interac-
 657 tive agent shaping in high-dimensional state spaces. In *Proceedings of the AAAI conference on*
 658 *artificial intelligence*, volume 32, 2018.
 659

660 Runzhe Wu and Wen Sun. Making RL with preference-based feedback efficient via randomization.
 661 In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=Pe2lo3Q0vo>.
 662

663 Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-consistent
 664 pessimism for offline reinforcement learning. *Advances in neural information processing systems*,
 34:6683–6694, 2021.
 665

666 Tengyang Xie, Dylan J Foster, Akshay Krishnamurthy, Corby Rosset, Ahmed Hassan Awad-
 667 alah, and Alexander Rakhlin. Exploratory preference optimization: Harnessing implicit q*-
 668 approximation for sample-efficient RLHF. In *The Thirteenth International Conference on Learn-
 669 ing Representations*, 2025. URL <https://openreview.net/forum?id=QYigQ6gXNw>.
 670

671 Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang.
 672 Iterative preference learning from human feedback: Bridging theory and practice for rlhf under
 673 kl-constraint. In *International Conference on Machine Learning*, pp. 54715–54754. PMLR, 2024.
 674

675 Yichong Xu, Ruosong Wang, Lin Yang, Aarti Singh, and Artur Dubrawski. Preference-based re-
 676 inforcement learning with finite-time guarantees. *Advances in Neural Information Processing
 677 Systems*, 33:18784–18794, 2020.
 678

679 Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
 680 Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
 681 In *Conference on robot learning*, pp. 1094–1100. PMLR, 2020.
 682

683 Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten Joachims. The k-armed dueling bandits
 684 problem. *Journal of Computer and System Sciences*, 78(5):1538–1556, 2012.
 685

686 Andrea Zanette, Martin J Wainwright, and Emma Brunskill. Provable benefits of actor-critic meth-
 687 ods for offline reinforcement learning. *Advances in neural information processing systems*, 34:
 688 13626–13640, 2021.
 689

690 Wenhao Zhan, Masatoshi Uehara, Nathan Kallus, Jason D. Lee, and Wen Sun. Provable offline
 691 preference-based reinforcement learning. In *The Twelfth International Conference on Learning
 692 Representations*, 2024a.
 693

694 Wenhao Zhan, Masatoshi Uehara, Wen Sun, and Jason D. Lee. Provable reward-agnostic preference-
 695 based reinforcement learning. In *The Twelfth International Conference on Learning Representa-
 696 tions*, 2024b.
 697

698 Zhilong Zhang, Yihao Sun, Junyin Ye, Tian-Shuo Liu, Jiaji Zhang, and Yang Yu. Flow to better: Of-
 699 fine preference-based reinforcement learning via preferred trajectory generation. In *The Twelfth
 700 International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=EG68RSznLT>.
 701

702 Yujie Zhao, Jose Aguilar Escamilla, Weyl Lu, and Huazheng Wang. Ra-pbrl: Provably efficient
 703 risk-aware preference-based reinforcement learning. *Advances in Neural Information Processing
 704 Systems*, 37:60835–60871, 2024.
 705

706 Banghua Zhu, Michael Jordan, and Jiantao Jiao. Principled reinforcement learning with human feed-
 707 back from pairwise or k-wise comparisons. In *International Conference on Machine Learning*,
 708 pp. 43037–43067. PMLR, 2023.

702 Yinglun Zhu and Robert Nowak. Efficient active learning with abstention. *Advances in Neural*
703 *Information Processing Systems*, 35:35379–35391, 2022.
704

705 Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
706 Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. *arXiv*
707 *preprint arXiv:1909.08593*, 2019.

708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 A ADDITIONAL RELATED WORK
757

758 **Problem Settings in Preference-based RL.** Preference-based RL, sometimes called reinforcement
759 learning from human feedback (RLHF), involves learning from preference feedback rather
760 than explicit reward signals. Broadly, existing work in PbRL can be categorized into two lines:
761 The first—which we focus on in this paper—studies learning from preference feedback in general
762 stochastic MDPs (e.g. (Novoseller et al., 2020; Christiano et al., 2017)); The second line concen-
763 trates on deterministic MDPs or bandit problems, typically in the context of large language models
764 (e.g. (Rafailov et al., 2024; Xiong et al., 2024; Rosset et al., 2024; Xie et al., 2025)). The latter
765 setting often considers fine-tuning a pretrained policy using preference feedback, and incorporates
766 regularization toward a pre-trained policy. In this work, we focus on the former setting and review
767 related work accordingly.

768 **Online PbRL Theory.** The theoretical analysis on online PbRL has emerged from the dueling bandit
769 problem (Yue et al., 2012), where the agent makes sequential decisions based on preferences
770 between selected actions. One of the earliest approaches was made by Novoseller et al. (2020), who
771 establish an asymptotic Bayesian regret bound for a posterior sampling algorithm in tabular MDP.
772 Xu et al. (2020) combine a reward-free exploration strategy and dueling bandit subroutines, offering
773 a finite-time sample complexity bound. Several works have studied PbRL with linear models. Saha
774 et al. (2023) propose a bandit-like algorithm that treats policy as action, and Zhan et al. (2024b)
775 develop a reward-agnostic experimental design algorithm. Wu & Sun (2024) utilize posterior sam-
776 pling techniques to prove a worst-case regret bound for the linear setting, and a Bayesian regret for
777 general function classes. Beyond linear settings, preference learning with general function approxi-
778 mation has gained attention. For instance, Chen et al. (2022) design an algorithm using exploration
779 bonus that achieves a regret bound dependent on Eluder dimension (Russo & Van Roy, 2013). Wang
780 et al. (2023) propose a reward learning framework that solves PbRL when augmented with standard
781 RL algorithms. Du et al. (2024) analyze policy optimization algorithms for PbRL, under linear and
782 neural function approximation. Chen et al. (2023) and Zhao et al. (2024) study risk-aware PbRL
783 using the conditional value-at-risk (CVaR) objective (Artzner, 1997). Another angle was explored
784 by Swamy et al. (2024), who formulated the PbRL problem as a two-player zero-sum game over
785 policies, thereby generalizing to arbitrary reward representations.

786 B APPLYING VALUE ALIGNMENT LOSS TO APPD
787788 **Algorithm 2** PAC: Preference-based Actor-Critic (A variant of APPD (Kang & Oh, 2025))

789 1: **Input:** Datasets $\mathcal{D}_{\text{PF}}, \mathcal{D}_{\text{TJ}}$, constants η, λ , Initial policy $\pi_h^1 = \text{Unif}(\mathcal{A})$ for all $h \in [H]$
790 2: Estimate $\hat{r} \in \arg \min_{r \in \mathcal{R}} \hat{L}_{\text{RW}}(r)$ (1), $\hat{P}_h \in \arg \min_{P \in \mathcal{P}_h} \hat{L}_{\text{TR},h}(P)$ for all $h \in [H]$ (3)
791 3: **for** $t = 1, \dots, T$ **do**
792 4: $f^t \in \arg \min_{f \in \mathcal{F}} \left(\lambda \left(f_1(s_1, \pi^t) - \frac{1}{N} \sum_{n=1}^N \hat{r}_f^{\pi^t}(\tau^{n,0}) \right) + \hat{L}_{\text{VA}}(\hat{r}_f^{\pi^t}, \hat{r}) \right)$
793 5: Update policy $\pi_h^{t+1}(a | s) \propto \pi_h^t(a | s) \exp(\eta f_h^t(s, a))$ for $h \in [H]$
794 6: **end for**
795 7: Return $\hat{\pi} = \frac{1}{T} \sum_{t=1}^T \pi^t$

800 In this section, we discuss how value alignment loss can be applied to APPD. We begin by formally
801 defining the policy type induced reward function.

802 **Definition 3** (Induced Reward Function, Policy Type (Zanette et al., 2021)). *For $f \in \mathcal{F}$ and $\pi \in \Pi$,
803 the induced reward function $r_f^\pi = \{r_{h,f}^\pi\}_{h=1}^H \in (\mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R})^H$ is defined as $r_{h,f}^\pi = f_h - P_h^{\star,\pi} f_{h+1}$.
804 Similarly, we define $\hat{r}_{h,f}^\pi$ as $\hat{r}_{h,f}^\pi = f_h - \hat{P}_h^\pi f_{h+1}$ where \hat{P} is some transition model.*

805 We can naturally modify APPD to utilize value alignment loss with policy type induced reward.
806 The pseudo-code is presented in Algorithm 2. In the modified algorithm PAC, the ℓ_1 loss between
807 the policy type induced reward $\hat{r}_{h,f}^{\pi^t}$ and the reward model \hat{r} is replaced with value alignment loss
808 $\hat{L}_{\text{VA}}(\hat{r}_{h,f}^{\pi^t}, \hat{r})$.

Now we theoretically analyze PAC. Following Zhan et al. (2024a); Kang & Oh (2025), we define the PbRL version of single-policy concentrability (Xie et al., 2021; Uehara & Sun, 2021).

Definition 4 (PbRL Single Policy Concentrability (Zhan et al., 2024a; Kang & Oh, 2025)²).

$$\mathcal{C}_{\mu, T}^*(\mathcal{F}) = \sup_{f \in \mathcal{F}, \pi \in \Pi_{\mathcal{F}, T}^{\text{soft}}} \frac{|\mathbb{E}_{\tau^0 \sim \pi^*, \tau^1 \sim \mu} [r_f^\pi(\tau^0) - r_f^\pi(\tau^1) - r^*(\tau^0) + r^*(\tau^1)]|}{\sqrt{\mathbb{E}_{\tau^0, \tau^1 \sim \mu} [(r_f(\tau^0) - r_f(\tau^1) - r^*(\tau^0) + r^*(\tau^1))^2]}}$$

where $\Pi_{\mathcal{F}, T}^{\text{soft}} = \{\pi = \{\pi_h\}_{h=1}^H \mid \pi_h \propto \exp(\eta \sum_{i=1}^t f_h^i) \forall h \in [H], f^1, \dots, f^t \in \mathcal{F}, t \in [T], \eta > 0\}$ is the set of softmax policies.

The single policy concentrability is bounded by the trajectory density ratio $C_{TR} = \sup_{\tau} \frac{d\pi^*(\tau)}{d\mu(\tau)}$, and it is known that the sample complexity of offline PbRL is lower bounded by C_{TR} (Zhan et al., 2024a). We have the following sample complexity bound for PAC:

Theorem B.1 (Sample complexity of PAC). *Suppose Assumptions 1, 2, and 3 hold. For properly set η and λ , with probability at least $1 - \delta$, Algorithm 2 achieves an ε -optimal policy with $T = \frac{V_{\max}^2 H^2 \log |\mathcal{A}|}{\varepsilon^2}$,*

$$M = \mathcal{O} \left(\frac{\mathcal{C}_{\mu, T}^*(\mathcal{F})^2 \kappa^2 \log(|\mathcal{R}| \delta^{-1}))}{\varepsilon^2} \right), \mathcal{O} \left(\frac{\mathcal{C}_{\mu, T}^*(\mathcal{F})^2 V_{\max}^2 H^2 (\log(|\mathcal{P}| H \delta^{-1}) + T \log(|\mathcal{F}| \delta^{-1})))}{\varepsilon^2} \right).$$

The sample complexity bound for M matches that of APPO, while the bound for N incurs an additional dependence on $\mathcal{C}_{\mu, T}^*(\mathcal{F})$. This dependency arises from the use of the quadratic value alignment loss, which requires a variant of the decoupling argument (e.g. (Foster et al., 2021; Dann et al., 2021; Jin et al., 2021)) rather than the direct suboptimality decomposition in Kang & Oh (2025). Theorem B.1 is significant in that it demonstrates the value alignment loss can be used in actor-critic algorithms. Together with the analysis of PVO, this suggests that the *value alignment loss provides a unifying framework for provably efficient PbRL*, applicable to both value-based and actor-critic methods.

C DETAILED PROOFS

We present the proofs omitted in Section 4.

C.1 PROOF OF THEOREM 4.1

First, we prove Theorem 4.1. As we discussed, our PVO is a new type of algorithm that directly optimizes the value function without actor-critic iteration or policy optimization oracle. Therefore, our proof relies on a novel suboptimality decomposition utilizing the greedy property of $\hat{\pi} = \pi_{\hat{f}}$.

Proof of Theorem 4.1. By Lemma C.1, we have the following regret decomposition:

$$\begin{aligned} & V_1^{\pi^*}(s_1) - V_1^{\hat{\pi}}(s_1) \\ & \leq V_1^{\pi^*}(s_1) - V_{1, r_{\hat{f}}}^{\pi^*}(s_1) + V_{1, r_{\hat{f}}}^{\hat{\pi}}(s_1) - V_1^{\hat{\pi}}(s_1) \\ & = \underbrace{\left(V_1^{\pi^*}(s_1) - V_{1, r_{\hat{f}}}^{\pi^*}(s_1) + V_{1, r_{\hat{f}}}^{\mu}(s_1) - V_1^{\mu}(s_1) \right)}_{(I)} + \underbrace{\left(V_{1, r_{\hat{f}}}^{\hat{\pi}}(s_1) - V_1^{\hat{\pi}}(s_1) - V_{1, r_{\hat{f}}}^{\mu}(s_1) + V_1^{\mu}(s_1) \right)}_{(II)} \\ & = \underbrace{\mathbb{E}_{\tau^0 \sim \pi^*, \tau^1 \sim \mu} [\Delta(r^*; \tau^0, \tau^1) - \Delta(r_{\hat{f}}; \tau^0, \tau^1)]}_{(I)} + \underbrace{\mathbb{E}_{\tau^0 \sim \hat{\pi}, \tau^1 \sim \mu} [\Delta(r_{\hat{f}}; \tau^0, \tau^1) - \Delta(r^*; \tau^0, \tau^1)]}_{(II)} \end{aligned}$$

The terms (I) and (II) represent the error of the induced reward function r_f , under joint distributions (π^*, μ) and $(\hat{\pi}, \mu)$, respectively. By Definition 2, each term is bounded by

$$(I), (II) \leq \sqrt{\mathcal{C}_{\mu}(\mathcal{F})^2 \mathbb{E}_{\tau^0, \tau^1 \sim \mu} [(\Delta(r^*; \tau^0, \tau^1) - \Delta(r_{\hat{f}}; \tau^0, \tau^1))^2]}.$$

²We present the definition that APPO (Kang & Oh, 2025) implicitly relies on—although it is not explicitly stated in the paper—which is slightly stronger than the one used in Zhan et al. (2024a).

864 Therefore, it is left to bound the term $\mathbb{E}_{\tau^0, \tau^1 \sim \mu}[(\Delta(r^*; \tau^0, \tau^1) - \Delta(r_{\hat{f}}; \tau^0, \tau^1))^2]$, which can be
 865 interpreted as the population version of our value alignment loss \hat{L}_{VA} . Lemma C.2 provides the
 866 bound, thus we finally have
 867

$$868 \quad 869 \quad V_1^{\pi^*}(s_1) - V_1^{\hat{\pi}}(s_1) \leq \mathcal{O} \left(\sqrt{\mathcal{C}_\mu(\mathcal{F})^2 \left(\frac{\kappa^2 \log(|\mathcal{R}| \delta^{-1})}{M} + \frac{H^2 V_{\max}^2 [\log(|\mathcal{P}| H \delta^{-1}) + \log(|\mathcal{F}| \delta^{-1})]}{N} \right)} \right). \\ 870$$

871 This implies the sample complexity presented in Theorem 4.1. \square
 872

873 **Lemma C.1.** *For any $f \in \mathcal{F}$ and any policy π , it holds that $V_{1,r_f}^{\pi}(s_1) \leq V_{1,f}(s_1) = V_{1,r_f}^{\pi_f}(s_1)$.*
 874

875 *Proof.* For $h \in [H+1]$, we have $f_h(s, \pi) \leq f_h(s, \pi_f) = V_{h,f}(s)$ for all $s \in \mathcal{S}$ by definition (we
 876 set $f_{H+1} = 0$). Therefore, we have
 877

$$\begin{aligned} 878 \quad V_{1,r_f}^{\pi} &= \mathbb{E}_{\pi} \left[\sum_{h=1}^H (f_h - P_h^* V_{h+1,f})(s_h, a_h) \right] \\ 879 \\ 880 \\ 881 \quad &= \mathbb{E}_{\pi} \left[\sum_{h=1}^H f_h(s_h, \pi) - \mathbb{E}_{s_{h+1} \sim P_h^*(s_h, a_h)} [V_{h+1,f}(s_{h+1})] \right] \\ 882 \\ 883 \\ 884 \quad &= \mathbb{E}_{\pi} \left[\sum_{h=1}^H f_h(s_h, \pi) - \mathbb{E}_{s_{h+1} \sim P_h^*(s_h, a_h)} [f_{h+1}(s_{h+1}, \pi_f)] \right] \\ 885 \\ 886 \\ 887 \quad &\leq \mathbb{E}_{\pi} \left[\sum_{h=1}^H f_h(s_h, \pi) - \mathbb{E}_{s_{h+1} \sim P_h^*(s_h, a_h)} [f_{h+1}(s_{h+1}, \pi)] \right] \\ 888 \\ 889 \\ 890 \quad &= f_1(s_1, \pi) \leq V_{1,f}(s_1) \end{aligned}$$

891 where we used telescoping sum in the second last step. Now applying a similar argument in reverse
 892 order, we further have
 893

$$\begin{aligned} 894 \quad V_{1,f}(s_1) &= f_1(s_1, \pi_f) \\ 895 \\ 896 \quad &= \sum_{h=1}^H \mathbb{E}_{\pi_f} [f_h(s_h, a_h) - \mathbb{E}_{s_{h+1} \sim P_h^*(s_h, a_h)} [f_{h+1}(s_{h+1}, \pi_f)]] \\ 897 \\ 898 \quad &= \mathbb{E}_{\pi_f} [\sum_{h=1}^H (f_h - P_h^* V_{h+1,f})(s_h, a_h)] = V_{1,r_f}^{\pi_f} \end{aligned}$$

901 \square
 902

903 **Lemma C.2.** *With probability at least $1 - \delta$, we have*
 904

$$\begin{aligned} 905 \quad \mathbb{E}_{\tau^0, \tau^1 \sim \mu}[(\Delta(r^*; \tau^0, \tau^1) - \Delta(r_{\hat{f}}; \tau^0, \tau^1))^2] \\ 906 \\ 907 \quad \lesssim \frac{\kappa^2 \log(|\mathcal{R}| \delta^{-1})}{M} + \frac{H^2 V_{\max}^2 [\log(|\mathcal{P}| H \delta^{-1}) + \log(|\mathcal{F}| \delta^{-1})]}{N} \\ 908 \end{aligned}$$

909 *Proof.* Lemma C.3 and Lemma D.5 implies that
 910

$$\begin{aligned} 911 \quad N \mathbb{E}_{\tau^0, \tau^1 \sim \mu}[(\Delta(r_{\hat{f}}; \tau^0, \tau^1) - \Delta(\hat{r}; \tau^0, \tau^1))^2] \\ 912 \\ 913 \quad \leq 2 \hat{L}_{\text{VA}}(r_{\hat{f}}, \hat{r}) + 16 H^2 V_{\max}^2 \log(|\mathcal{F}| \delta^{-1}) \\ 914 \\ 915 \quad \leq 4 \hat{L}_{\text{VA}}(\hat{r}_{\hat{f}}, \hat{r}) + 8 H V_{\max}^2 \sum_{n=1}^N \sum_{h=1}^H \sum_{j \in \{0,1\}} \left\| P_h^* - \hat{P}_h \right\|_1^2 (s_h^{n,j}, a_h^{n,j}) + 16 H^2 V_{\max}^2 \log(|\mathcal{F}| \delta^{-1}) \\ 916 \\ 917 \quad \leq 4 \hat{L}_{\text{VA}}(\hat{r}_{\hat{f}}, \hat{r}) + 8 c_2 H^2 V_{\max}^2 \log(|\mathcal{P}| H \delta^{-1}) + 16 H^2 V_{\max}^2 \log(|\mathcal{F}| \delta^{-1}) \end{aligned}$$

918 and similarly,

$$\begin{aligned}
 & N\mathbb{E}_{\tau^0, \tau^1 \sim \mu}[(\Delta(r_{Q^{\pi^*}}; \tau^0, \tau^1) - \Delta(\hat{r}; \tau^0, \tau^1))^2] \\
 & \geq \frac{2}{3}\hat{L}_{\text{VA}}(r_{Q^{\pi^*}}, \hat{r}) - \frac{16}{3}H^2V_{\max}^2 \log(|\mathcal{F}|\delta^{-1}) \\
 & \geq \frac{1}{3}\hat{L}_{\text{VA}}(\hat{r}_{Q^{\pi^*}}, \hat{r}) - \frac{4}{3}HV_{\max}^2 \sum_{n=1}^N \sum_{h=1}^H \sum_{j \in \{0,1\}} \left\| P_h^* - \hat{P}_h \right\|_1^2 (s_h^{n,j}, a_h^{n,j}) - \frac{16}{3}H^2V_{\max}^2 \log(|\mathcal{F}|\delta^{-1}) \\
 & \geq \frac{1}{3}\hat{L}_{\text{VA}}(\hat{r}_{Q^{\pi^*}}, \hat{r}) - \frac{4}{3}c_2H^2V_{\max}^2 \log(|\mathcal{P}|H\delta^{-1}) - \frac{16}{3}H^2V_{\max}^2 \log(|\mathcal{F}|\delta^{-1})
 \end{aligned}$$

928 On the other hand, the optimality of \hat{f} (Line 3 in Algorithm 1) implies that

$$\hat{L}_{\text{VA}}(\hat{r}_{\hat{f}}, \hat{r}) \leq \hat{L}_{\text{VA}}(\hat{r}_{Q^{\pi^*}}, \hat{r}).$$

931 Combining the results, we have

$$\begin{aligned}
 & N\mathbb{E}_{\tau^0, \tau^1 \sim \mu}[(\Delta(r_{\hat{f}}; \tau^0, \tau^1) - \Delta(\hat{r}; \tau^0, \tau^1))^2] \\
 & \leq 4\hat{L}_{\text{VA}}(\hat{r}_{\hat{f}}, \hat{r}) + 8c_2H^2V_{\max}^2 \log(|\mathcal{P}|H\delta^{-1}) + 16H^2V_{\max}^2 \log(|\mathcal{F}|\delta^{-1}) \\
 & \leq 4\hat{L}_{\text{VA}}(\hat{r}_{Q^{\pi^*}}, \hat{r}) + 8c_2H^2V_{\max}^2 \log(|\mathcal{P}|H\delta^{-1}) + 16H^2V_{\max}^2 \log(|\mathcal{F}|\delta^{-1}) \\
 & \leq 12N\mathbb{E}_{\tau^0, \tau^1 \sim \mu}[(\Delta(r^*; \tau^0, \tau^1) - \Delta(\hat{r}; \tau^0, \tau^1))^2] \\
 & \quad + 24c_2H^2V_{\max}^2 \log(|\mathcal{P}|H\delta^{-1}) + 80H^2V_{\max}^2 \log(|\mathcal{F}|\delta^{-1})
 \end{aligned}$$

939 where we used the fact that $r_{Q^{\pi^*}} = r^*$. Therefore, it holds that

$$\begin{aligned}
 & E_{\tau^0, \tau^1 \sim \mu}[(\Delta(r^*; \tau^0, \tau^1) - \Delta(r_{\hat{f}}; \tau^0, \tau^1))^2] \\
 & \leq 2E_{\tau^0, \tau^1 \sim \mu}[(\Delta(r^*; \tau^0, \tau^1) - \Delta(\hat{r}; \tau^0, \tau^1))^2] + 2E_{\tau^0, \tau^1 \sim \mu}[(\Delta(\hat{r}; \tau^0, \tau^1) - \Delta(r_{\hat{f}}; \tau^0, \tau^1))^2] \\
 & \leq 26E_{\tau^0, \tau^1 \sim \mu}[(\Delta(r^*; \tau^0, \tau^1) - \Delta(\hat{r}; \tau^0, \tau^1))^2] + \frac{H^2V_{\max}^2[24c_2 \log(|\mathcal{P}|H\delta^{-1}) + 80 \log(|\mathcal{F}|\delta^{-1})]}{N}.
 \end{aligned}$$

946 Now Lemma D.4 concludes the proof. \square

947 **Lemma C.3.** *For any $f \in \mathcal{F}$, the following inequalities hold:*

$$\begin{aligned}
 \hat{L}_{\text{VA}}(\hat{r}_f, \hat{r}) & \leq 2\hat{L}_{\text{VA}}(r_f, \hat{r}) + 4HV_{\max}^2 \sum_{n=1}^N \sum_{h=1}^H \sum_{j \in \{0,1\}} \left\| P_h^* - \hat{P}_h \right\|_1^2 (s_h^{n,j}, a_h^{n,j}), \\
 -\hat{L}_{\text{VA}}(\hat{r}_f, \hat{r}) & \leq -\frac{1}{2}\hat{L}_{\text{VA}}(r_f, \hat{r}) + 2HV_{\max}^2 \sum_{n=1}^N \sum_{h=1}^H \sum_{j \in \{0,1\}} \left\| P_h^* - \hat{P}_h \right\|_1^2 (s_h^{n,j}, a_h^{n,j}),
 \end{aligned}$$

955 *Proof.* By definition, we have that

$$\hat{r}_f(\tau^{n,j}) - r_f(\tau^{n,j}) = \sum_{h=1}^H (P_h^* - \hat{P}_h) V_{h+1,f}(s_h^{n,j}, a_h^{n,j}).$$

956 Therefore, it holds that

$$\begin{aligned}
 \hat{L}_{\text{VA}}(\hat{r}_f, \hat{r}) & = \sum_{n=1}^N (\hat{r}_f(\tau^{n,0}) - \hat{r}_f(\tau^{n,1}) - \hat{r}(\tau^{n,0}) + \hat{r}(\tau^{n,1}))^2 \\
 & = 2 \sum_{n=1}^N (r_f(\tau^{n,0}) - r_f(\tau^{n,1}) - \hat{r}(\tau^{n,0}) + \hat{r}(\tau^{n,1}))^2 \\
 & \quad + 2 \sum_{n=1}^N \left(\sum_{h=1}^H \left((P_h^* - \hat{P}_h) V_{h+1,f}(a_h^{n,0}, a_h^{n,1}) - (P_h^* - \hat{P}_h) V_{h+1,f}(a_h^{n,1}, a_h^{n,0}) \right) \right)^2 \\
 & \leq 2\hat{L}_{\text{VA}}(r_f, \hat{r}) + 4HV_{\max}^2 \sum_{n=1}^N \sum_{h=1}^H \sum_{j \in \{0,1\}} \left\| P_h^* - \hat{P}_h \right\|_1^2 (s_h^{n,j}, a_h^{n,j}).
 \end{aligned}$$

972 where we use the Cauchy-Schwarz inequality. Similarly, using $-(x+y)^2 \leq -\frac{1}{2}x^2 + y^2 \forall x, y \in \mathbb{R}$,
 973 we also have

$$975 -\hat{L}_{\text{VA}}(\hat{r}_f, \hat{r}) \leq -\frac{1}{2}\hat{L}_{\text{VA}}(r_f, \hat{r}) + 2HV_{\max}^2 \sum_{n=1}^N \sum_{h=1}^H \sum_{j \in \{0,1\}} \left\| P_h^* - \hat{P}_h \right\|_1^2 (s_h^{n,j}, a_h^{n,j}).$$

977 \square 978
979 C.2 PROOF OF THEOREM B.1
980981 Now we prove Theorem B.1. Recall that the soft policy class $\Pi_{\mathcal{F}, T}^{\text{soft}}$ is defined as
982

983
$$\Pi_{\mathcal{F}, T}^{\text{soft}} = \{\pi \mid \pi_h \propto \exp(\eta \sum_{i=1}^t f_h^i) \forall h \in [H], f^1, \dots, f^t \in \mathcal{F}, t \in [T]\}$$

984 for constant $\eta > 0$ whose value is specified by Lemma E.3. It is clear that $\log |\Pi_{\mathcal{F}, T}^{\text{soft}}| \leq T \log |\mathcal{F}|$.
985986 Throughout the proof, we write $r^t = r_f^{\pi^t}$ and $\hat{r}^t = \hat{r}_f^{\pi^t}$ for convenience.
987988
989 *Proof of Theorem B.1.* By Lemma E.1 and the fact $\hat{\pi} = \frac{1}{T} \sum_{t=1}^T \pi^t$, we have that
990

$$\begin{aligned} 991 V_1^{\pi^*}(s_1) - V_1^{\hat{\pi}}(s_1) &= \frac{1}{T} \sum_{t=1}^T \left(V_1^{\pi^*}(s_1) - V_1^{\pi^t}(s_1) \right) \\ 992 &= \frac{1}{T} \sum_{t=1}^T \left(\mathbb{E}_{\tau \sim \pi^*} [r^t(\tau) - r^*(\tau)] + f_1^t(s_1, \pi^t) - V_1^{\pi^t}(s_1) + V_{1,r^t}^{\pi^*}(s_1) - V_{1,r^t}^{\pi^t}(s_1) \right) \\ 993 &= \underbrace{\frac{1}{T} \sum_{t=1}^T \mathbb{E}_{\tau^0 \sim \pi^*, \tau^1 \sim \mu} [r^t(\tau^0) - r^*(\tau^0) - r^t(\tau^1) + r^*(\tau^1)]}_{(I)} \\ 994 &\quad + \underbrace{\frac{1}{T} \sum_{t=1}^T \left(f_1^t(s_1, \pi^t) - V_1^{\pi^t}(s_1) + \mathbb{E}_{\tau \sim \mu} [r^*(\tau) - r^t(\tau)] \right)}_{(II)} \\ 995 &\quad + \underbrace{\frac{1}{T} \sum_{t=1}^T \left(V_{1,r^t}^{\pi^*}(s_1) - V_{1,r^t}^{\pi^t}(s_1) \right)}_{(III)} \\ 996 &997 \\ 998 &999 \\ 999 &1000 \\ 1000 &1001 \\ 1001 &1002 \\ 1002 &1003 \\ 1003 &1004 \\ 1004 &1005 \\ 1005 &1006 \\ 1006 &1007 \\ 1007 &1008 \end{aligned}$$

1008 The term (II) is bounded by Lemma C.4 and (III) is bounded by Lemma E.3. For the term (I), note
1009 that Definition 4 implies
1010

$$\begin{aligned} 1011 \mathbb{E}_{\tau^0 \sim \pi^*, \tau^1 \sim \mu} [r^t(\tau^0) - r^*(\tau^0) - r^t(\tau^1) + r^*(\tau^1)] \\ 1012 &= \mathbb{E}_{\tau^0 \sim \pi^*, \tau^1 \sim \mu} [\Delta(r^t; \tau^0, \tau^1) - \Delta(r^*; \tau^0, \tau^1)] \\ 1013 &\leq \sqrt{(\mathbb{E}_{\tau^0 \sim \pi^*, \tau^1 \sim \mu} [\Delta(r^t; \tau^0, \tau^1) - \Delta(r^*; \tau^0, \tau^1)])^2} \\ 1014 &\leq \sqrt{\left(\frac{(\mathbb{E}_{\tau^0 \sim \pi^*, \tau^1 \sim \mu} [\Delta(r^t; \tau^0, \tau^1) - \Delta(r^*; \tau^0, \tau^1)])^2}{\mathbb{E}_{\tau^0, \tau^1 \sim \mu} [(\Delta(r^t; \tau^0, \tau^1) - \Delta(r^*; \tau^0, \tau^1))^2]} \right) \mathbb{E}_{\tau^0, \tau^1 \sim \mu} [(\Delta(r^t; \tau^0, \tau^1) - \Delta(r^*; \tau^0, \tau^1))^2]} \\ 1015 &\leq \sqrt{\mathcal{C}_{\mu, T}^*(\mathcal{F})^2 \mathbb{E}_{\tau^0, \tau^1 \sim \mu} [(\Delta(r^t; \tau^0, \tau^1) - \Delta(r^*; \tau^0, \tau^1))^2]} \\ 1016 &\leq \frac{\alpha}{2} \mathcal{C}_{\mu, T}^*(\mathcal{F})^2 + \frac{1}{2\alpha} \mathbb{E}_{\tau^0, \tau^1 \sim \mu} [(\Delta(r^t; \tau^0, \tau^1) - \Delta(r^*; \tau^0, \tau^1))^2] \\ 1017 &= \frac{\alpha}{2} \mathcal{C}_{\mu, T}^*(\mathcal{F})^2 + \frac{1}{2\alpha N} L_{\text{VA}}(r^t, r^*) \\ 1018 &\leq \frac{\alpha}{2} \mathcal{C}_{\mu, T}^*(\mathcal{F})^2 + \frac{1}{\alpha N} L_{\text{VA}}(r^t, \hat{r}) + \frac{1}{\alpha N} L_{\text{VA}}(\hat{r}, r^*) \\ 1019 &1020 \\ 1020 &1021 \\ 1021 &1022 \\ 1022 &1023 \\ 1023 &1024 \\ 1024 &1025 \end{aligned}$$

1026 where the third inequality uses Definition 4, and we use the AM-GM inequality with constant $\alpha > 0$
1027 in the second last step.

1028 Combining the results, we have

$$\begin{aligned}
1030 \quad & V_1^{\pi^*}(s_1) - V_1^{\hat{\pi}}(s_1) \\
1032 \quad & \leq \frac{\alpha}{2} \mathcal{C}_{\mu, T}^*(\mathcal{F})^2 + \left(\frac{1}{2\alpha N} - \frac{1}{4\lambda} \right) L_{VA}(r^t, \hat{r}) + \left(\frac{1}{\alpha N} + \frac{3}{\lambda} \right) L_{VA}(\hat{r}, r^*) + V_{\max} H \sqrt{\frac{\log |\mathcal{A}|}{2T}} \\
1034 \quad & + 4V_{\max} H \sqrt{\frac{\log(|\mathcal{F}| \|\Pi_{\mathcal{F}, T}^{\text{soft}}\| \delta^{-1}) + c_2 \log(|\mathcal{P}| H \delta^{-1})}{N}} \\
1035 \quad & + \frac{16}{\lambda} (c_2 H^2 V_{\max}^2 \log(|\mathcal{P}| H \delta^{-1}) + H^2 V_{\max}^2 \log(|\mathcal{F}| \|\Pi_{\mathcal{F}, T}^{\text{soft}}\| \delta^{-1}) + c_1 \kappa(N/M) \log(|\mathcal{R}| \delta^{-1})) \\
1037 \quad & \leq \frac{\alpha}{2} \mathcal{C}_{\mu, T}^*(\mathcal{F})^2 + \left(\frac{1}{2\alpha N} - \frac{1}{4\lambda} \right) L_{VA}(r^t, \hat{r}) + \left(\frac{1}{\alpha N} + \frac{3}{\lambda} \right) \frac{c_1 N \kappa^2 \log(|\mathcal{R}|^2 \delta^{-1})}{M} + V_{\max} H \sqrt{\frac{\log |\mathcal{A}|}{2T}} \\
1039 \quad & + 4V_{\max} H \sqrt{\frac{\log(|\mathcal{F}| \|\Pi_{\mathcal{F}, T}^{\text{soft}}\| \delta^{-1}) + c_2 \log(|\mathcal{P}| H \delta^{-1})}{N}} \\
1041 \quad & + \frac{16}{\lambda} (c_2 H^2 V_{\max}^2 \log(|\mathcal{P}| H \delta^{-1}) + H^2 V_{\max}^2 \log(|\mathcal{F}| \|\Pi_{\mathcal{F}, T}^{\text{soft}}\| \delta^{-1}) + c_1 \kappa(N/M) \log(|\mathcal{R}| \delta^{-1})) \\
1043 \quad & \leq \frac{\alpha}{2} \mathcal{C}_{\mu, T}^*(\mathcal{F})^2 + \left(\frac{1}{2\alpha N} - \frac{1}{4\lambda} \right) L_{VA}(r^t, \hat{r}) + \left(\frac{1}{\alpha N} + \frac{3}{\lambda} \right) \frac{c_1 N \kappa^2 \log(|\mathcal{R}|^2 \delta^{-1})}{M} + V_{\max} H \sqrt{\frac{\log |\mathcal{A}|}{2T}} \\
1045 \quad & + 4V_{\max} H \sqrt{\frac{\log(|\mathcal{F}| \|\Pi_{\mathcal{F}, T}^{\text{soft}}\| \delta^{-1}) + c_2 \log(|\mathcal{P}| H \delta^{-1})}{N}} \\
1047 \quad & + \frac{16}{\lambda} (c_2 H^2 V_{\max}^2 \log(|\mathcal{P}| H \delta^{-1}) + H^2 V_{\max}^2 \log(|\mathcal{F}| \|\Pi_{\mathcal{F}, T}^{\text{soft}}\| \delta^{-1}) + c_1 \kappa(N/M) \log(|\mathcal{R}| \delta^{-1})) \\
1049 \quad & \text{Setting } \lambda = \alpha N/2 \text{ and } \alpha = \sqrt{\frac{c_2 H^2 V_{\max}^2 \log(|\mathcal{P}| H \delta^{-1}) + H^2 V_{\max}^2 \log(|\mathcal{F}| \|\Pi_{\mathcal{F}, T}^{\text{soft}}\| \delta^{-1}) + c_1 \kappa(N/M) \log(|\mathcal{R}| \delta^{-1})}{N \mathcal{C}_{\mu, T}^*(\mathcal{F})^2}} \\
1050 \quad & \text{and using the fact } \log |\Pi_{\mathcal{F}, T}^{\text{soft}}| \leq T \log |\mathcal{F}|, \text{ we have}
\end{aligned}$$

$$\begin{aligned}
1052 \quad & V_1^{\pi^*} - V_1^{\hat{\pi}} \\
1054 \quad & \leq \mathcal{O} \left(\sqrt{\mathcal{C}_{\mu, T}^*(\mathcal{F})^2 \left(\frac{V_{\max}^2 H^2 (\log(|\mathcal{P}| H \delta^{-1}) + T \log(|\mathcal{F}| \delta^{-1}))}{N} + \frac{\kappa^2 \log(|\mathcal{R}| \delta^{-1})}{M} \right)} + V_{\max} H \sqrt{\frac{\log |\mathcal{A}|}{2T}} \right).
\end{aligned}$$

1057 This concludes the proof. \square

1060 **Lemma C.4.** *With probability at least $1 - 4\delta$, we have*

$$\begin{aligned}
1062 \quad & f_1^t(s_1, \pi^t) - V_1^{\pi^t}(s_1) - \mathbb{E}_{\tau \sim \mu}[r^*(\tau) - r^t(\tau)] - \frac{1}{\lambda} \left(3L_{VA}(r^*, \hat{r}) - \frac{1}{4} L_{VA}(r^t, \hat{r}) \right) \\
1064 \quad & \leq 4V_{\max} H \sqrt{\frac{\log(|\mathcal{F}| \|\Pi_{\mathcal{F}, T}^{\text{soft}}\| \delta^{-1}) + c_2 \log(|\mathcal{P}| H \delta^{-1})}{N}} \\
1066 \quad & + \frac{16}{\lambda} (c_2 H^2 V_{\max}^2 \log(|\mathcal{P}| H \delta^{-1}) + H^2 V_{\max}^2 \log(|\mathcal{F}| \|\Pi_{\mathcal{F}, T}^{\text{soft}}\| \delta^{-1}) + c_1 \kappa(N/M) \log(|\mathcal{R}| \delta^{-1}))
\end{aligned}$$

1070 for all $t \in [T]$, where c_1, c_2 are some absolute constants.

1073 *Proof.* The optimality of f^t (Line 4 in Algorithm 2) implies that

$$\begin{aligned}
1075 \quad & \lambda \left(f_1^t(s_1, \pi^t) - \frac{1}{N} \sum_{n=1}^N \hat{r}^t(\tau^{n,0}) \right) + \hat{L}_{VA}(\hat{r}^t, \hat{r}) \leq \lambda \left(Q_1^{\pi^t}(s_1, \pi^t) - \frac{1}{N} \sum_{n=1}^N \hat{r}_{Q^{\pi^t}}^{\pi^t}(\tau^n) \right) + \hat{L}_{VA}(\hat{r}_{Q^{\pi^t}}^{\pi^t}, \hat{r}) \\
1077 \quad & = \lambda \left(V_1^{\pi^t}(s_1) - \frac{1}{N} \sum_{n=1}^N \hat{r}_{Q^{\pi^t}}^{\pi^t}(\tau^n) \right) + \hat{L}_{VA}(\hat{r}_{Q^{\pi^t}}^{\pi^t}, \hat{r}).
\end{aligned}$$

1080 Combining this with Lemma C.3 and Lemma D.5, we have
1081
1082
$$f_1^t(s_1, \pi^t) - V_1^{\pi^t}(s_1)$$

1083
$$\leq \frac{1}{N} \sum_{n=1}^N \hat{r}^t(\tau^{n,0}) - \frac{1}{N} \sum_{n=1}^N \hat{r}_{Q^{\pi^t}}^{\pi^t}(\tau^{n,0}) + \frac{1}{\lambda} \left(\hat{L}_{\text{VA}}(\hat{r}_{Q^{\pi^t}}^{\pi^t}, \hat{r}) - \hat{L}_{\text{VA}}(\hat{r}^t, \hat{r}) \right)$$

1084
1085
$$\leq \frac{1}{N} \sum_{n=1}^N r^t(\tau^{n,0}) - \frac{1}{N} \sum_{n=1}^N r_{Q^{\pi^t}}^{\pi^t}(\tau^{n,0}) + \frac{1}{\lambda} \left(2\hat{L}_{\text{VA}}(r_{Q^{\pi^t}}^{\pi^t}, \hat{r}) - \frac{1}{2}\hat{L}_{\text{VA}}(r^t, \hat{r}) \right)$$

1086
1087
$$+ \frac{V_{\max}}{N} \sum_{n=1}^N \sum_{h=1}^H \left\| P_h^* - \hat{P}_h \right\|_1 (s_h^{n,0}, a_h^{n,0}) + \frac{8HV_{\max}^2}{\lambda} \sum_{n=1}^N \sum_{h=1}^H \sum_{j \in \{0,1\}} \left\| P_h^* - \hat{P}_h \right\|_1^2 (s_h^{n,j}, a_h^{n,j})$$

1088
1089
$$\leq \frac{1}{N} \sum_{n=1}^N r^t(\tau^{n,0}) - \frac{1}{N} \sum_{n=1}^N r_{Q^{\pi^t}}^{\pi^t}(\tau^{n,0}) + \frac{1}{\lambda} \left(2\hat{L}_{\text{VA}}(r_{Q^{\pi^t}}^{\pi^t}, \hat{r}) - \frac{1}{2}\hat{L}_{\text{VA}}(r^t, \hat{r}) \right)$$

1090
1091
$$+ V_{\max}H \sqrt{\frac{c_2 \log(|\mathcal{P}|H\delta^{-1})}{N}} + \frac{8c_2 H^2 V_{\max}^2 \log(|\mathcal{P}|H\delta^{-1})}{\lambda}.$$

1092

1093 Note that $r_{Q^{\pi^t}}^{\pi^t} = r^*$ by definition. Using the concentration inequalities in Lemma D.2 and
1094 Lemma D.4, we further have

1095
$$f_1^t(s_1, \pi^t) - V_1^{\pi^t}(s_1)$$

1096
$$\leq \frac{1}{N} \sum_{n=1}^N r^t(\tau^{n,0}) - \frac{1}{N} \sum_{n=1}^N r_{Q^{\pi^t}}^{\pi^t}(\tau^{n,0}) + \frac{1}{\lambda} \left(2\hat{L}_{\text{VA}}(r_{Q^{\pi^t}}^{\pi^t}, \hat{r}) - \frac{1}{2}\hat{L}_{\text{VA}}(r^t, \hat{r}) \right)$$

1097
1098
$$+ V_{\max}H \sqrt{\frac{c_2 \log(|\mathcal{P}|H\delta^{-1})}{N}} + \frac{8c_2 H^2 V_{\max}^2 \log(|\mathcal{P}|H\delta^{-1})}{\lambda}$$

1099
1100
$$\leq \mathbb{E}_{\tau \sim \mu} [r^t(\tau) - r^*(\tau)] + \frac{1}{\lambda} \left(3L_{\text{VA}}(r^*, \hat{r}) - \frac{1}{4}L_{\text{VA}}(r^t, \hat{r}) \right) + V_{\max}H \sqrt{\frac{c_2 \log(|\mathcal{P}|H\delta^{-1})}{N}}$$

1101
1102
$$+ \frac{1}{\lambda} (8c_2 H^2 V_{\max}^2 \log(|\mathcal{P}|H\delta^{-1}) + 16H^2 V_{\max}^2 \log(|\mathcal{F}| \|\Pi_{\mathcal{F},T}^{\text{soft}}\| \delta^{-1})) + 2HV_{\max} \sqrt{\frac{2 \log(|\mathcal{F}| \|\Pi_{\mathcal{F},T}^{\text{soft}}\| \delta^{-1})}{N}}.$$

1103

1104 This is the desired result. \square

1105 **Lemma C.5.** For any $f \in \mathcal{F}$ and $\pi \in \Pi_{\mathcal{F},T}^{\text{soft}}$, the following inequalities hold:

1106
$$\hat{L}_{\text{VA}}(\hat{r}_f^{\pi}, \hat{r}) \leq 2\hat{L}_{\text{VA}}(r_f^{\pi}, \hat{r}) + 4HV_{\max}^2 \sum_{n=1}^N \sum_{h=1}^H \sum_{j \in \{0,1\}} \left\| P_h^* - \hat{P}_h \right\|_1^2 (s_h^{n,j}, a_h^{n,j}),$$

1107
1108
$$-\hat{L}_{\text{VA}}(\hat{r}_f^{\pi}, \hat{r}) \leq -\frac{1}{2}\hat{L}_{\text{VA}}(r_f^{\pi}, \hat{r}) + 2HV_{\max}^2 \sum_{n=1}^N \sum_{h=1}^H \sum_{j \in \{0,1\}} \left\| P_h^* - \hat{P}_h \right\|_1^2 (s_h^{n,j}, a_h^{n,j}),$$

1109

1110 and

1111
$$\left| \frac{1}{N} \sum_{n=1}^N \hat{r}_f^{\pi}(\tau^{n,0}) - \frac{1}{N} \sum_{n=1}^N r_f^{\pi}(\tau^{n,0}) \right| \leq \frac{V_{\max}}{N} \sum_{n=1}^N \sum_{h=1}^H \left\| P_h^* - \hat{P}_h \right\|_1 (s_h^{n,0}, a_h^{n,0}).$$

1112

1113 *Proof.* The proofs for the first and the second inequalities are almost identical to that of Lemma C.3.
1114 The third inequality is obtained by

1115
$$\left| \frac{1}{N} \sum_{n=1}^N \hat{r}_f^{\pi}(\tau^{n,0}) - \frac{1}{N} \sum_{n=1}^N r_f^{\pi}(\tau^{n,0}) \right| = \left| \frac{1}{N} \sum_{n=1}^N \sum_{h=1}^H (P_h^* - \hat{P}_h)(f_{h+1}^{\pi})(s_h^{n,0}, a_h^{n,0}) \right|$$

1116
1117
$$\leq \frac{V_{\max}}{N} \sum_{n=1}^N \sum_{h=1}^H \left\| P_h^* - \hat{P}_h \right\|_1 (s_h^{n,0}, a_h^{n,0}).$$

1118

1119 where we use the notation $f_h^{\pi} : \mathcal{S} \rightarrow [-V_{\max}, V_{\max}]$ to denote the function satisfying $f_h^{\pi}(s) =$
1120 $\mathbb{E}_{a \sim \pi_h} [f(s, a)]$ for all $s \in \mathcal{S}$. \square

1134 **D CONCENTRATION LEMMAS**
 1135

1136 **Lemma D.1.** *Given \hat{r} , with probability at least $1 - \delta$, for all $f \in \mathcal{F}$ and $\pi \in \Pi_{\mathcal{F}, T}^{\text{soft}}$, it holds that*

$$1138 \quad \left| \frac{1}{N} \sum_{n=1}^N r_f^\pi(\tau^{n,0}) - \mathbb{E}_{\tau \sim \mu}[r_f^\pi(\tau)] \right| \leq 2HV_{\max} \sqrt{\frac{2 \log(|\mathcal{F}| |\Pi_{\mathcal{F}, T}^{\text{soft}}| \delta^{-1})}{N}}$$

1141 *Proof.* Fix $f \in \mathcal{F}$. Azuma-Hoeffding inequality implies, with probability at least $1 - \delta$,

$$1143 \quad \left| \frac{1}{N} \sum_{n=1}^N r_f^\pi(\tau^{n,0}) - \mathbb{E}_{\tau \sim \mu}[r_f^\pi(\tau)] \right| \leq 2HV_{\max} \sqrt{\frac{2 \log(\delta^{-1})}{N}}.$$

1146 The union bound over all $f \in \mathcal{F}$ and $\pi \in \Pi_{\mathcal{F}, T}^{\text{soft}}$ concludes the proof. \square

1148 **Lemma D.2.** *Given \hat{r} , with probability at least $1 - 2\delta$, for all $f \in \mathcal{F}$, it holds that*

$$1149 \quad L_{\text{VA}}(r_f, \hat{r}) \leq 2\hat{L}_{\text{VA}}(r_f, \hat{r}) + 16H^2V_{\max}^2 \log(|\mathcal{F}| \delta^{-1})$$

1150 and

$$1152 \quad \hat{L}_{\text{VA}}(r_f, \hat{r}) \leq \frac{3}{2}L_{\text{VA}}(r_f, \hat{r}) + 8H^2V_{\max}^2 \log(|\mathcal{F}| \delta^{-1})$$

1154 *Proof.* Fix $f \in \mathcal{F}$, then define filtration $\mathfrak{F}_n = \sigma(\tau^{1,0}, \tau^{1,1}, \dots, \tau^{n,0}, \tau^{n,1})$ (we will use $\mathbb{E}_n[\cdot]$ to
 1155 denote $\mathbb{E}[\cdot | \mathfrak{F}_n]$) and

$$1157 \quad X_n(f) = \mathbb{E}_n[(\Delta(r_f; \tau^{n,0}, \tau^{n,1}) - \Delta(\hat{r}; \tau^{n,0}, \tau^{n,1}))^2] \\ 1158 \quad \quad \quad - (\Delta(r_f; \tau^{n,0}, \tau^{n,1}) - \Delta(\hat{r}; \tau^{n,0}, \tau^{n,1}))^2$$

1159 so that $X_n(f) \in \mathfrak{F}_n$. With this random process, we have $\mathbb{E}_n[X_n(f)] = 0$ and

$$1161 \quad \mathbb{E}_n[X_n^2(f)] \\ 1162 \quad = \mathbb{E}_n[(\Delta(r_f; \tau^{n,0}, \tau^{n,1}) - \Delta(\hat{r}; \tau^{n,0}, \tau^{n,1}))^4] - \mathbb{E}_n[(\Delta(r_f; \tau^{n,0}, \tau^{n,1}) - \Delta(\hat{r}; \tau^{n,0}, \tau^{n,1}))^2]^2 \\ 1163 \quad \leq 4H^2V_{\max}^2 \mathbb{E}_n[(\Delta(r_f; \tau^{n,0}, \tau^{n,1}) - \Delta(\hat{r}; \tau^{n,0}, \tau^{n,1}))^2]$$

1164 Freedman's inequality (Lemma E.5) implies that, with probability at least $1 - \delta$,

$$1166 \quad \sum_{n=1}^N X_n(f) \leq \zeta \sum_{n=1}^N \mathbb{E}_n[X_n^2(f)] + \frac{\log(\delta^{-1})}{\zeta} \\ 1167 \quad \leq 4H^2V_{\max}^2 \zeta \sum_{n=1}^N \mathbb{E}_n[(\Delta(r_f; \tau^{n,0}, \tau^{n,1}) - \Delta(\hat{r}; \tau^{n,0}, \tau^{n,1}))^2] + \frac{\log(\delta^{-1})}{\zeta}$$

1172 for any $\zeta \in [0, 1/4H^2V_{\max}^2]$. Setting $\zeta = 1/8H^2V_{\max}^2$, we obtain

$$1174 \quad \sum_{n=1}^N \mathbb{E}_n[(\Delta(r_f; \tau^{n,0}, \tau^{n,1}) - \Delta(\hat{r}; \tau^{n,0}, \tau^{n,1}))^2] \\ 1175 \quad \leq 2 \sum_{n=1}^N (\Delta(r_f; \tau^{n,0}, \tau^{n,1}) - \Delta(\hat{r}; \tau^{n,0}, \tau^{n,1}))^2 + 16H^2V_{\max}^2 \log(\delta^{-1}),$$

1179 which is equivalent to $L_{\text{VA}}(r_f, \hat{r}) \leq 2\hat{L}_{\text{VA}}(r_f, \hat{r}) + 16H^2V_{\max}^2 \log(\delta^{-1})$. We prove the first result by
 1180 taking a union bound over all $f \in \mathcal{F}$. To prove the second result, consider $-X_n(f)$ and follow the
 1181 same logic with $\zeta = 1/8H^2V_{\max}^2$. \square

1183 **Lemma D.3.** *Given \hat{r} , with probability at least $1 - 2\delta$, for all $f \in \mathcal{F}$ and $\pi \in \Pi_{\mathcal{F}, T}^{\text{soft}}$, it holds that*

$$1184 \quad L_{\text{VA}}(r_f^\pi, \hat{r}) \leq 2\hat{L}_{\text{VA}}(r_f^\pi, \hat{r}) + 16H^2V_{\max}^2 \log(|\mathcal{F}| |\Pi_{\mathcal{F}, T}^{\text{soft}}| \delta^{-1})$$

1186 and

$$1187 \quad \hat{L}_{\text{VA}}(r_f^\pi, \hat{r}) \leq \frac{3}{2}L_{\text{VA}}(r_f^\pi, \hat{r}) + 8H^2V_{\max}^2 \log(|\mathcal{F}| |\Pi_{\mathcal{F}, T}^{\text{soft}}| \delta^{-1})$$

1188 *Proof.* The proof is almost identical to that of Lemma D.2. We further consider a union bound over
 1189 $\Pi_{\mathcal{F}, T}^{\text{soft}}$. \square
 1190

1191 **Lemma D.4** (Lemma 2 in Zhan et al. (2024a)). *With probability at least $1 - \delta$, we have*
 1192

$$1193 \frac{1}{N} L_{VA}(r^*, \hat{r}) = \mathbb{E}_{\tau^0, \tau^1 \sim \mu}[(\Delta(r^*; \tau^0, \tau^1) - \Delta(\hat{r}; \tau^0, \tau^1))^2] \leq \frac{c_1 \kappa^2 \log(|\mathcal{R}| \delta^{-1})}{M}$$

1195 *for some absolute constant c_1 .*

1196 **Lemma D.5.** *With probability $1 - \delta$, for all $k \in [K]$, $h \in [H]$, and $j \in \{0, 1\}$, it holds that*
 1197

$$1198 \sum_{n=1}^N \sum_{j \in \{0, 1\}} \left\| \hat{P}_h - P_h^* \right\|_1^2 (s_h^{n,j}, a_h^{n,j}) \leq c_2 \log(|\mathcal{P}| H \delta^{-1})$$

1202 *where c_2 is some absolute constant.*

1203

1204 *Proof.* The standard MLE guarantee (e.g. Lemma 3 in Zhan et al. (2024a)) states that, with proba-
 1205 bility at least $1 - \delta$,
 1206

$$1207 \mathbb{E}_{(s_h, a_h) \sim \mu} \left[\left\| \hat{P}_h - P_h^* \right\|_1^2 (s_h, a_h) \right] \lesssim \frac{\log(|\mathcal{P}| H \delta^{-1})}{N} \quad (8)$$

1209 for all $h \in [H]$.
 1210

1211 For a fixed $P_h \in \mathcal{P}_h$, define $X_n(P, h) = \|P_h - P_h^*\|_1^2 (s_h^{n,0}, a_h^{n,0})$ and $\mathfrak{F}_n =$
 1212 $\sigma(\tau^{1,0}, \tau^{1,1}, \dots, \tau^{n,0}, \tau^{t,1})$. Applying Lemma E.6 to $(X_n(f, h))_{n \in [N]}$, we have
 1213

$$1214 \sum_{n=1}^N \|P_h - P_h^*\|_1^2 (s_h^{n,0}, a_h^{n,0}) \leq \frac{3}{2} \sum_{n=1}^N \mathbb{E}_n [\|P_h - P_h^*\|_1^2 (s_h^{n,0}, a_h^{n,0})] + 4 \log(\delta^{-1})$$

$$1217 = \frac{3}{2} N \mathbb{E}_{(s_h, a_h) \sim \mu} [\|P_h - P_h^*\|_1^2 (s_h, a_h)] + 4 \log(\delta^{-1})$$

1219 Taking a union bound over all $P_h \in \mathcal{P}_h$ and $h \in [H]$, and repeating the same argument for
 1220 $\tilde{X}_n(P, h) = \|P_h - P_h^*\|_1^2 (s_h^{n,1}, a_h^{n,1})$, with probability at least $1 - \delta$, it holds that
 1221

$$1222 \sum_{n=1}^N \sum_{j \in \{0, 1\}} \|P_h - P_h^*\|_1^2 (s_h^{n,j}, a_h^{n,j}) \leq 3N \mathbb{E}_{(s_h, a_h) \sim \mu} [\|P_h - P_h^*\|_1^2 (s_h, a_h)] + 8 \log(2|\mathcal{P}| H \delta^{-1})$$

1225 for all $h \in [H]$ and $P \in \mathcal{P}$. Combining this with (8), we conclude the proof. \square
 1226

1227

1228 E SUPPORTING LEMMAS

1229

1230 **Lemma E.1** (Sub-optimality Decomposition (Lemma B.4 in Nguyen-Tang & Arora (2023))). *For
 1231 any $f \in \mathcal{F}$ and any policies $\pi, \tilde{\pi}$, we have*
 1232

$$1233 V_1^\pi(s_1) - V_1^{\tilde{\pi}}(s_1) = \sum_{h=1}^H \mathbb{E}_\pi [\mathcal{E}_h^{\tilde{\pi}}(f)(s_h, a_h)] + f_1(s_1, \tilde{\pi}(s_1)) - V_1^{\tilde{\pi}}(s_1) + V_{1, r_f^{\tilde{\pi}}}^\pi - V_{1, r_f^{\tilde{\pi}}}^{\tilde{\pi}}$$

1236 where $\mathcal{E}_h^{\tilde{\pi}}(f)(s, a) = f_h(s, a) - r_h^*(s, a) - P_h^{*, \tilde{\pi}} f_{h+1}(s, a)$.
 1237

1238 **Lemma E.2** (Performance Difference Lemma). *Let $\pi, \tilde{\pi}$ be any policies. For any reward r , we
 1239 have that*

$$1240 V_{1, r}^\pi(s_1) - V_{1, r}^{\tilde{\pi}}(s_1) = \sum_{h=1}^H \mathbb{E}_\pi [Q_{h, r}^{\tilde{\pi}}(s_h, \pi(s_h)) - Q_{h, r}^{\tilde{\pi}}(s_h, \tilde{\pi}(s_h))].$$

1242 *Proof.* Using the identity $r_h = Q_{h,r}^\pi - P_h^* V_{h+1,r}^\pi$, we have
 1243

$$\begin{aligned}
 1244 \quad V_{1,r}^\pi(s_1) - V_{1,r}^{\tilde{\pi}}(s_1) &= \mathbb{E}_\pi[r(s_1, a_1) + P_h^* V_{1,r}^\pi(s_1, a_1) - Q_{1,r}^{\tilde{\pi}}(s_1, \tilde{\pi}(s_1))] \\
 1245 &= \mathbb{E}_\pi[Q_{1,r}^{\tilde{\pi}}(s_1, a_1) - Q_{1,r}^{\tilde{\pi}}(s_1, \tilde{\pi}(s_1)) + P_h^* V_{2,r}^\pi(s_1, a_1) - P_h^* V_{2,r}^{\tilde{\pi}}(s_1, a_1)] \\
 1246 &= \mathbb{E}_\pi[Q_{1,r}^{\tilde{\pi}}(s_1, a_1) - Q_{1,r}^{\tilde{\pi}}(s_1, \tilde{\pi}(s_1))] + \mathbb{E}_\pi[V_{1,r}^\pi(s_2) - V_{1,r}^{\tilde{\pi}}(s_2)] \\
 1247 &= \dots \\
 1248 &= \sum_{h=1}^H \mathbb{E}_\pi[Q_{h,r}^{\tilde{\pi}}(s_h, \pi(s_h)) - Q_{h,r}^{\tilde{\pi}}(s_h, \tilde{\pi}(s_h))].
 \end{aligned}$$

□

1249
 1250 **Lemma E.3** (Online Regret Bound (e.g. Lemma D.3 in Kang & Oh (2025))). *For any sequence of
 1251 functions $\{f^t\}_{t=1}^T \in \mathcal{F}^T$, the policy update (Line 5) in Algorithm 2 with $\eta = \sqrt{\frac{\log |\mathcal{A}|}{V_{\max}^2 T}}$ guarantees
 1252 that*

$$1253 \quad \frac{1}{T} \sum_{t=1}^T \left(V_{1,r^t}^{\pi^*}(s_1) - V_{1,r^t}^{\pi^t}(s_1) \right) \leq V_{\max} H \sqrt{\frac{\log |\mathcal{A}|}{2T}}.$$

1254 **Lemma E.4** (Azuma-Hoeffding inequality). *Let $(X_t)_{t \leq T}$ be a sequence of random variables
 1255 adapted to a filtration $(\mathfrak{F}_t)_{t \leq T}$. If $|X_t| \leq B$ for some $B > 0$ almost surely, with probability at
 1256 least $1 - \delta$, we have*

$$1257 \quad \left| \sum_{t=1}^T X_t - \mathbb{E}[X_t | \mathfrak{F}_t] \right| \leq B \sqrt{2T \log(\delta^{-1})}.$$

1258 **Lemma E.5** (Freedman's inequality). *Let $(X_t)_{t \leq T}$ be a sequence of random variables adapted to a
 1259 filtration $(\mathfrak{F}_t)_{t \leq T}$. Assume $|X_t| \leq B$ for some $B > 0$ and $\mathbb{E}[X_t | \mathfrak{F}_t] = 0$. With probability at least
 1260 $1 - \delta$, for any $\eta \in [0, 1/B]$, it holds that*

$$1261 \quad \sum_{t=1}^T X_t \leq \eta \sum_{t=1}^T \mathbb{E}[X_t^2 | \mathfrak{F}_t] + \frac{\log(\delta^{-1})}{\eta}.$$

1262 **Lemma E.6** (Lemma 2 in Zhu & Nowak (2022)). *Let $(X_t)_{t \leq T}$ be a sequence of positive random
 1263 variables adapted to a filtration $(\mathfrak{F}_t)_{t \leq T}$. If $X_t \leq B$ almost surely for all t , then with probability at
 1264 least $1 - \delta$, the following holds:*

$$\begin{aligned}
 1265 \quad \sum_{t=1}^T X_t &\leq \frac{3}{2} \sum_{t=1}^T \mathbb{E}[X_t | \mathfrak{F}_t] + 4B \log(\delta^{-1}), \\
 1266 \quad \sum_{t=1}^T \mathbb{E}[X_t | \mathfrak{F}_t] &\leq 2 \sum_{t=1}^T X_t + 8B \log(\delta^{-1})
 \end{aligned}$$

1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

1296

F ADDITIONAL EXPERIMENTS

1297

F.1 ON THE TRANSITION MODEL

Dataset (# of feedback)	medium-replay (500)	medium-replay (1000)	medium-expert (500)	medium-expert (1000)
PVO	66.20	69.14	68.06	73.00
PVO with transition model	64.08	71.18	68.46	71.16
IQL	53.86	58.76	57.78	67.84

1305
1306 Table 1: Success rates on Meta-World datasets, averaged over five random seeds. PVO and its variant
1307 with a learned transition model achieve similar performance.1308
1309 The transition model in PVO plays a theoretical role in defining the value alignment loss and deriving
1310 the sample-complexity analysis, where the expectation $\mathbb{E}_{s' \sim \hat{P}(s, a)}[V(s')]$ is taken over the estimated
1311 transition model. However, in practice, this term can be efficiently approximated using transition
1312 samples from the dataset. Our practical implementation therefore follows this sample-based approx-
1313 imation, a design choice originating from APPO Kang & Oh (2025), which employs a variant of our
1314 value alignment loss (as discussed in Section 3.3) and similarly replaces the model expectation with
1315 dataset samples. This simplification reduces computational cost while maintaining performance.1316
1317 To verify whether this simplification affects performance, we implemented a variant that explicitly
1318 trains a transition model and computes the expectation term via sampling from it. Table 1 compares
1319 this variant with the original implementation on Meta-World datasets used in Section 5, trained with
1320 500 and 1000 preference feedbacks. The results show that both implementations achieve highly
1321 comparable performance, with neither consistently outperforming the other. These findings indicate
1322 that while the transition model is conceptually important for theoretical formulation, it is not prac-
1323 tically necessary for effective learning. Our sample-based implementation thus offers a simpler and
1324 more computationally efficient realization of PVO.1325

F.2 EMPIRICAL COMPARISON WITH FLOW TO BETTER ZHANG ET AL. (2024)

Dataset	box-close	dial-turn	drawer-open	lever-pull	sweep-into	sweep	button-press-topdown	button-press-topdown-wall
PVO	58.72 \pm 16.61	84.32 \pm 4.71	100.00 \pm 0.00	96.64 \pm 2.84	27.84 \pm 4.36	94.08 \pm 6.31	43.36 \pm 19.03	48.16 \pm 14.54
FTB	0.00 \pm 0.00	0.00 \pm 0.00	97.60 \pm 3.39	0.00 \pm 0.00	62.67 \pm 23.71	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00

1331
1332 Table 2: Success rates on Meta-World **medium-replay** datasets with 1000 preference feedback.
1333 For FTB, we report the results averaged over three random seeds.1334
1335 We also evaluated Flow to Better (FTB) Zhang et al. (2024) on the Meta-World **medium-replay**
1336 datasets with 1000 preference feedback. We used the official implementation of FTB and default
1337 hyperparameters, only adapting the episode length to be consistent with our datasets.1338
1339 Interestingly, FTB performs very well on drawer-open and even outperforms PVO on sweep-into,
1340 but collapses to 0% success on all other tasks. We note that a 0% success rate does not necessarily
1341 mean that the method failed to learn at all – we do observe nontrivial improvements in episodic
1342 returns during training – but rather that the learned policies rarely satisfy the success criteria on
1343 these tasks.1344
1345 Overall, these results suggest that FTB can be effective on certain tasks, yet exhibits substantial sen-
1346 sitivity to the dynamics and data distribution. One possible explanation is that FTB ultimately relies
1347 on imitation of generated trajectories: when the dataset contains sufficiently good trajectories, the
1348 filtering-and-cloning procedure may succeed, whereas in tasks where high-quality demonstrations
1349 are sparse, the model may end up cloning suboptimal behaviors. In contrast, PVO achieves consist-
1350 ently strong performance across all tasks, including those where FTB collapses, which aligns with
1351 our main goal: providing a simple, value-based offline PbRL algorithm that is both theoretically
1352 grounded and practically robust.

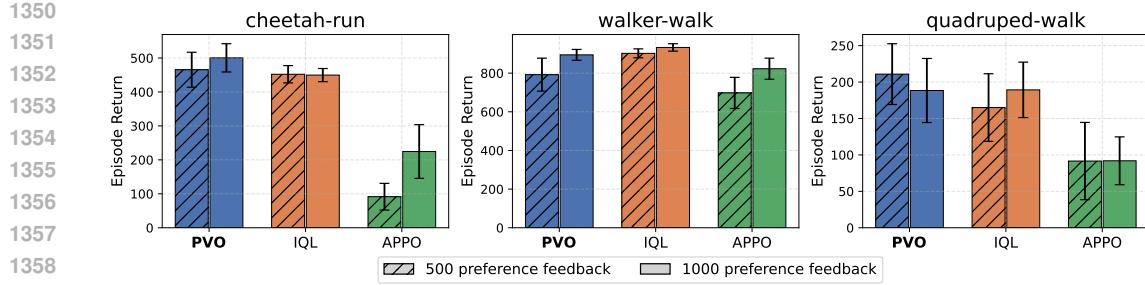


Figure 4: Performance on DMControl datasets measured by episode return. Each plot displays the mean and standard deviation over five random seeds.

F.3 EVALUATION ON DMCONTROL DATASETS

We present additional experimental results that were omitted from Section 5 due to space constraints. Figure 4 shows the performance evaluation on the DMControl Tassa et al. (2018) dataset. Overall, PVO outperforms APPO by a large margin, which is consistent with the results in Section 5. Compared to IQL, PVO performs better in the cheetah-run and quadruped-walk datasets, while showing comparable performance in the walker-walk dataset.

F.4 COMPLETE NUMERICAL RESULTS

We provide the complete numerical results in the tables below. The results better than 95% of the best performance are highlighted.

Dataset and # of feedback	PT	DPPO	IPL	IQL	APPO	PVO (ours)
box-close-500	0.33 ± 1.16	10.20 ± 11.47	5.93 ± 5.81	27.84 ± 28.52	18.24 ± 15.60	31.04 ± 22.44
dial-turn-500	68.67 ± 12.39	26.67 ± 22.23	31.53 ± 12.50	74.56 ± 10.32	80.96 ± 4.49	82.72 ± 6.49
drawer-open-500	88.73 ± 11.64	35.93 ± 11.18	19.00 ± 13.63	98.24 ± 3.52	87.68 ± 10.04	99.52 ± 0.96
lever-pull-500	82.40 ± 22.69	10.13 ± 12.19	31.20 ± 15.76	85.28 ± 3.18	75.76 ± 7.17	93.92 ± 4.92
sweep-into-500	20.53 ± 8.26	23.07 ± 7.02	32.20 ± 7.35	20.96 ± 7.91	24.08 ± 5.91	37.92 ± 11.00
sweep-500	43.07 ± 24.57	10.47 ± 15.84	27.20 ± 23.81	90.88 ± 6.25	26.80 ± 5.32	87.68 ± 8.97
button-press-topdown-500	22.87 ± 9.06	3.93 ± 4.34	34.73 ± 13.92	18.88 ± 12.14	53.52 ± 13.86	56.80 ± 13.28
button-press-topdown-wall-500	0.87 ± 1.43	0.80 ± 1.51	8.93 ± 9.84	14.24 ± 5.27	64.32 ± 20.99	39.36 ± 14.52
box-close-1000	2.27 ± 2.86	9.33 ± 9.60	6.73 ± 8.41	40.96 ± 22.04	34.24 ± 18.49	58.72 ± 16.61
dial-turn-1000	68.60 ± 5.50	36.40 ± 21.95	43.93 ± 13.37	77.28 ± 10.64	81.44 ± 6.73	84.32 ± 4.71
drawer-open-1000	95.40 ± 7.27	36.47 ± 7.30	28.53 ± 18.37	99.52 ± 0.64	98.56 ± 2.68	100.00 ± 0.00
lever-pull-1000	72.93 ± 10.16	8.53 ± 9.96	40.40 ± 17.38	87.04 ± 5.64	76.96 ± 4.40	96.64 ± 2.84
sweep-into-1000	20.27 ± 7.84	23.33 ± 7.80	30.40 ± 7.74	24.00 ± 5.97	18.16 ± 11.14	27.84 ± 4.36
sweep-1000	29.13 ± 14.55	8.73 ± 16.37	38.33 ± 24.87	98.80 ± 1.01	17.36 ± 12.44	94.08 ± 6.31
button-press-topdown-1000	18.27 ± 10.62	3.20 ± 3.04	36.67 ± 17.40	20.00 ± 5.41	59.04 ± 18.97	43.36 ± 19.03
button-press-topdown-wall-1000	2.13 ± 2.96	0.27 ± 0.85	14.07 ± 11.47	22.48 ± 5.28	62.96 ± 18.38	48.16 ± 14.54
Average	39.78	15.47	26.86	56.31	55.01	67.63

Table 3: Success rates on Meta-World medium-replay dataset with 500 and 1000 preference feedback, averaged over five random seeds. The results of PT, DPPO, and IPL are from Choi et al. (2024).

1404	Dataset and # of feedback	IQL	APPO	PVO (ours)
1405	box-close-500	19.68 \pm 11.96	1.92 \pm 5.61	49.44 \pm 12.19
1406	dial-turn-500	13.60 \pm 8.95	42.56 \pm 23.27	73.44 \pm 22.96
1407	drawer-open-500	100.00 \pm 0.00	88.48 \pm 9.65	100.00 \pm 0.00
1408	lever-pull-500	71.28 \pm 3.30	11.52 \pm 9.89	66.56 \pm 18.12
1409	sweep-into-500	89.44 \pm 6.02	49.60 \pm 21.87	85.12 \pm 14.86
1410	sweep-500	99.12 \pm 0.78	3.52 \pm 3.46	96.80 \pm 2.48
1411	button-press-topdown-500	59.84 \pm 18.13	3.20 \pm 6.40	70.40 \pm 14.20
1412	button-press-topdown-wall-500	9.28 \pm 3.02	3.36 \pm 6.72	2.72 \pm 2.41
1413	box-close-1000	57.28 \pm 7.72	1.92 \pm 1.09	63.36 \pm 23.67
1414	dial-turn-1000	26.72 \pm 24.13	42.56 \pm 12.81	76.64 \pm 12.72
1415	drawer-open-1000	100.00 \pm 0.00	80.16 \pm 5.29	96.00 \pm 8.00
1416	lever-pull-1000	77.68 \pm 6.99	10.00 \pm 10.18	69.28 \pm 5.00
1417	sweep-into-1000	95.04 \pm 1.92	32.96 \pm 9.74	93.28 \pm 8.34
1418	sweep-1000	99.28 \pm 0.73	0.40 \pm 0.80	98.88 \pm 1.39
1419	button-press-topdown-1000	78.24 \pm 11.15	14.40 \pm 7.90	81.12 \pm 5.02
1420	button-press-topdown-wall-1000	8.48 \pm 3.94	0.16 \pm 0.32	5.44 \pm 7.76
1421	Average	62.81	24.17	70.53

Table 4: Success rates on Meta-World `medium-expert` dataset with 500 and 1000 preference feedback, averaged over five random seeds.

1425	Dataset and # of feedback	IQL	APPO	PVO (ours)
1426	cheetah-run-500	299.59 \pm 47.96	91.48 \pm 39.26	465.46 \pm 51.50
1427	walker-walk-500	927.03 \pm 19.15	697.69 \pm 80.59	792.14 \pm 85.36
1428	quadruped-walk-500	213.30 \pm 48.79	91.58 \pm 52.99	210.90 \pm 41.72
1429	cheetah-run-1000	357.88 \pm 17.46	224.60 \pm 79.16	500.48 \pm 41.60
1430	walker-walk-1000	931.48 \pm 17.11	822.87 \pm 54.64	894.65 \pm 28.04
1431	quadruped-walk-1000	176.16 \pm 78.54	91.92 \pm 32.83	188.42 \pm 43.95
1432	Average	484.24	336.69	508.67

Table 5: Episode returns on DMControl dataset with 500 and 1000 preference feedback, averaged over five random seeds.

G EXPERIMENTAL DETAILS

G.1 DATASETS

Dataset	box-close	dial-turn	sweep	sweep-into	drawer-open	lever-pull	button-press-topdown	button-press-topdown-wall
medium-replay	2.4M	900k	2.1M	300k	300k	900k	300k	450k
medium-expert	900k	300k	900k	300k	300k	300k	300k	300k

Table 6: The sizes of Meta-World `medium-replay` datasets (Choi et al., 2024) and `medium-expert` datasets.

The DMControl `medium-replay` and Meta-World `medium-replay` datasets are created by Choi et al. (2024). The datasets are generated from the replay buffers of online SAC (Haarnoja et al., 2018) agents. Following Choi et al. (2024), we use different dataset sizes for each Meta-World task, as shown in Table 6. All DMcontrol datasets contain 300k transition samples.

We created the Meta-World `medium-expert` data using the code provided by Hejna & Sadigh (2024). For dial-turn, sweep-into, drawer-open, and lever-pull tasks, we collected 50 trajectories with an expert policy, 50 trajectories with expert policies for randomized variants and goals of the task, 100 trajectories with expert policies for different tasks, 200 trajectories with a random policy, and 200 trajectories with an ε -greedy expert policy that takes greedy actions with a 50% probability. In total, there are 600 trajectories (300k transitions) for each task dataset. Additionally, standard Gaussian noise was added to the actions of each policy. The dataset sizes match those of the medium-

1458 replay dataset. For box-close and sweep tasks, we collected 1800 trajectories, maintaining the ratio
 1459 of sources.

1460 To create the mixture datasets in the ablation study, we collected 600 trajectories from an expert
 1461 policy trained on multiple tasks and goals, and another 600 trajectories from a random policy. Then,
 1462 for each mixture ratio $r \in \{0, 0.25, 0.5, 0.75, 1\}$, we formed a dataset consisting of $600(1 - r)$
 1463 expert trajectories and $600r$ random trajectories. For example, the $r = 0.25$ contains 450 expert
 1464 trajectories and 150 random trajectories.

1465

1466 G.2 IMPLEMENTATION DETAILS.

1467

1468 We used the official implementation of Choi et al. (2024) and Kang et al. (2023) for reward models,
 1469 IQL agents, and APPO agents. The reward model is an ensemble of three fully connected neural
 1470 networks with three hidden layers of 128 neurons. The Q, V, and policy are parameterized as fully
 1471 connected neural networks with three hidden layers of 256 neurons. We set the hyperparameters
 1472 of IQL and APPO as suggested in Choi et al. (2024) and Kang & Oh (2025), except the advantage
 1473 weight of IQL which we searched over $\beta \in \{3.0, 10.0\}$. The detailed hyperparameters are listed in
 1474 Table 7.

1475 We run experiments on an Intel Xeon Gold 6226R CPU and an Nvidia GeForce RTX 3090 GPUs.
 1476 For PVO, the use of a trajectory does not significantly slow the training. All algorithms take approx-
 1477 imately 2-3 hours to complete 250k gradient steps. The performance is measured by

1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511

Algorithm	Component	Value
Reward model	Neural networks	3-layers, hidden dimension 128
	Activation	ReLU for hidden layers, Tanh for final output
	Optimizer	Adam (Kingma & Ba, 2015) with learning rate 1e-3
	Batch size	512
	Epochs	300
	Number of ensembles	3
PVO	Neural networks (Q, V, π)	3-layers, hidden dimension 256
	Activaton	ReLU for hidden layers
	Q, V, π optimizer	Adam with learning rate 3e-4
	Batch size	256
	Target Q soft update	0.005
	β (IQL advantage weight)	10.0
IQL	τ (IQL expectile parameter)	0.7
	discount factor	0.99
	Neural networks (Q, V, π)	3-layers, hidden dimension 256
	Activaton	ReLU for hidden layers
	Q, V, π optimizer	Adam with learning rate 3e-4
	Batch size	256
APPO	Target Q soft update	0.005
	β (IQL advantage weight)	10.0
	τ (IQL expectile parameter)	0.7
	discount factor	0.99
	Neural networks (Q, V, π)	3-layers, hidden dimension 256
	Activaton	LeakyReLU for hidden layers
TD3+BC	Q, V, α optimizer	Adam with learning rate 3e-4
	π optimizer	Adam with learning rate 3e-5
	Batch size	256 transitions and 16 trajectory pairs
	Target Q soft update	0.001
	discount factor	0.99
	Neural networks (Q, V, π)	3-layers, hidden dimension 256
XQL	Activaton	ReLU for hidden layers
	Q, V, π optimizer	Adam with learning rate 3e-4
	Batch size	256
	Target Q soft update	0.005
	α (BC weight)	2.5
	Policy noise	0.2
TD3+BC	Policy noise clip	0.5
	discount factor	0.99
	Neural networks (Q, V, π)	3-layers, hidden dimension 256
	Activaton	ReLU for hidden layers
	Q, V, π optimizer	Adam with learning rate 3e-4
	Batch size	256
XQL	Target Q soft update	0.005
	β (Gumbel regression temperature)	1.0
	discount factor	0.99

Table 7: Implementation details and hyperparameters.