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ABSTRACT

We study the problem of offline preference-based reinforcement learning (PbRL),
where the agent learns from pre-collected preference data by comparing trajectory
pairs. While prior work has established theoretical foundations for offline PbRL,
existing algorithms face significant practical limitations: some rely on compu-
tationally intractable optimization procedures, while others suffer from unstable
training and high performance variance. To address these challenges, we propose
Preference-based Value Optimization (PV0), a simple and practical algorithm that
achieves both strong empirical performance and theoretical guarantees. PVO di-
rectly optimizes the value function consistent with preference feedback by min-
imizing a novel value alignment loss. We prove that PVO attains a rate-optimal
sample complexity of O(¢~2), and further show that the value alignment loss is
applicable not only to value-based methods but also to actor—critic algorithms.
Empirically, PVO achieves robust and stable performance across diverse continu-
ous control benchmarks. It consistently outperforms strong baselines, including
methods without theoretical guarantees, while requiring no additional hyperpa-
rameters for preference learning. Moreover, our ablation study demonstrates that
substituting the standard TD loss with the value alignment loss substantially im-
proves learning from preference data, confirming its effectiveness for PbRL.

1 INTRODUCTION

One of the major challenges in reinforcement learning (RL) is designing suitable reward func-
tions for real-world tasks. Reward design often requires costly instrumentation such as motion
capture (Akkaya et al., [2019; [Peng et al., 2020), and poorly designed reward functions can signif-
icantly degrade training performance. Preference-based reinforcement learning (PbRL) provides a
compelling alternative by inferring the underlying reward signal from preference feedback, such as
human comparisons between trajectories (Christiano et al.,[2017)). This framework has demonstrated
its effectiveness in domains where direct reward specification is difficult, including robotics (Brown
et al.,[2019; [Shin et al.| [2023)), games (MacGlashan et al., [2017; |Warnell et al., 2018)), and language
models (Ziegler et al., 2019} |Stiennon et al.,2020; |Ouyang et al., 2022]).

In this work, we study offline PbRL, where learning is conducted using pre-collected datasets of
trajectories and preference feedback (Kim et al., |2023; |An et al.| 2023} [Hejna & Sadigh| [2024).
Offline RL (Levine et al.,|2020) is advantageous in scenarios where real-time online interaction may
be costly or unsafe. This consideration is especially relevant for PbRL, as collecting preference
feedback interactively can be prohibitively expensive or impractical.

Prior work on offline PbRL has introduced several algorithms with sample complexity guaran-
tees (Zhu et al., 2023} Zhan et al.| 2024a; |Pace et al.,[2025;Kang & Oh, 2025). However, these meth-
ods face significant practical limitations. Some are restricted to linear function approximation (Zhu
et al., [2023), some require solving computationally intractable optimization problems (Zhan et al.,
2024a)), and others exhibit unstable performance in practice (Kang & Oh, 2025).

In particular, |Zhan et al.|(2024a) formulate PbRL as a distributionally robust optimization problem:

. . "
T € arg max min Vi p =V,
x  reR(D), PhePn(D) 7 1

where R(D) and Py, (D) are confidence sets for the reward and transition models. This formulation
is computationally infeasible, primarily because the inner minimization over the confidence sets
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R (D) and Py, (D) requires searching over complex function classes. The overall joint optimization
over policy, reward, and transition models further compounds the computational burden.

More recently, [Kang & Oh| (2025) proposed an actor-critic-style PbRL algorithm, APPO. By re-
formulating the distributionally robust optimization into a regularized optimization, their approach
enables practical implementation. However, APPO achieves only a suboptimal sample complexity
bound of O(¢~*), which is weaker than the O(¢~2) bound of Zhan et al.| (20244). This inefficiency
arises from its reliance on standard actor-critic analyses in offline RL (Xie et al., 2021}, Zanette et al.,
2021;/Cheng et al., 2022 |[Nguyen-Tang & Arora,,[2023), which require bounding the cumulative con-
servatism bias across 7 iterations. More importantly, APPO often suffers from high performance
variance and unstable training. Even with hyperparameter tuning, it can fail to learn effective poli-
cies (see Section[3)). These issues further motivate the need for a more stable and efficient alternative
for offline PbRL.

To address these challenges, we propose Preference-based Value Optimization (PVO), an offline
PbRL algorithm that achieves both strong empirical performance and theoretical guarantees. PVO
directly optimizes the value function by minimizing a novel value alignment loss, in conjunction
with the concept of the induced reward function. Leveraging this formulation, we establish that PVO
achieves a rate-optimal sample complexity bound of O(s72).

Beyond introducing PVO, we revisit APPO (Kang & Oh}[2025)) and demonstrate that a variant incor-
porating the value alignment loss also admits a sample complexity guarantee. This finding highlights
that the value alignment loss serves as a unifying principle for provably efficient PbRL, applicable
to both value-based and actor-critic algorithms.

We evaluate PVO on high-dimensional continuous control benchmarks. Surprisingly, PVO consis-
tently outperforms state-of-the-art baselines, including empirical methods lacking theoretical guar-
antees. It is noteworthy that PVO exhibits robust and stable performance across various datasets,
without introducing additional hyperparameters for preference learning. Furthermore, our ablation
study demonstrates that replacing the standard TD loss with the value alignment loss improves the
performance of RL algorithms applied to preference dataset, thereby validating the advantage of
value alignment loss in PbRL. Our contributions are summarized as follows:

e Algorithm. We propose PVO, a simple and practical offline PbRL algorithm that achieves
both strong empirical performance and theoretical guarantees. It directly optimizes the value
function consistent with preference feedback by minimizing the novel value alignment loss.

* Theoretical Guarantee. We prove that PVO attains a rate-optimal O(¢~2) sample complexity
bound (Theorem @ We further show that APPO (Kang & Oh, [2025)) can be modified to
incorporate the value alignment loss, demonstrating that this loss is applicable to both value-
based and actor—critic algorithms for provably efficient PbRL.

¢ Empirical Performance. We show that PVO outperforms state-of-the-art baselines on contin-
uous control benchmarks. Notably, it maintains robust and stable performance across datasets
where existing methods suffer from high performance variance.

* Advantage of Value Alignment Loss. Our ablation study reveals that replacing the standard
TD loss with the value alignment loss significantly improves the performance of RL algorithms
on preference datasets. This confirms that the value alignment loss provides more reliable
learning signals in PbRL, where reward estimation errors are often unavoidable.

1.1 RELATED WORK

Offline PbRL Theory. In offline RL, ensuring a proper amount of conservatism in value or model
estimates is essential for theoretical guarantees. The principle of conservatism still holds for offline
PbRL, yet we also estimate the reward from preference feedback.

To deal with this challenge, Zhu et al.|(2023)) utilize pessimistic maximum likelihood estimation un-
der linear function approximation r (s, a) = 67 ¢(s, a). Their algorithm first constructs a confidence
set for the model parameter and then performs distributionally robust policy optimization to obtain
a conservative value function and corresponding policy. [Zhan et al.| (2024a) extended the idea to
general function classes with bounded bracketing number. They showed that bounded trajectory-
level concentrability is essential for offline PbRL by establishing a lower bound. While they provide
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a sample complexity bound, their algorithms are computationally intractable. Recently, Kang &
Ohl (2025) developed a computationally efficient approach based on actor-critic style policy opti-
mization. By framing PbRL as a two-player game between policy and reward model, they replaced
the distributionally robust optimization with tractable regularized optimization. A different yet re-
lated problem setting was studied by [Pace et al.| (2025). They developed a preference elicitation
method for offline PbRL. By choosing trajectory pairs for preference queries, they eliminated the
dependence on the reward concentrability coefficient.

Empirical Studies in PbRL Several works have explored applying deep learning techniques to
preference-based reinforcement learning. A simple yet effective approach involves training a re-
ward model on a preference dataset, then applying a standard RL algorithm using the reward signal
predicted by the learned model (Christiano et al., 2017; [Ibarz et al., 2018; [Lee et al.l 2021). The
reward model is typically assumed to produce a Markovian reward as in conventional RL, although
some works have considered non-Markovian rewards that depend on the entire trajectory (Kim et al.,
2023} Zhang et al.,|2024; Swamy et al., | 2024)).

A separate line of research seeks to learn value functions or policies directly from preference data,
without explicitly modeling rewards. |Hejna & Sadigh! (2024)); Hejna et al.| (2024) derive a direct
relationship between the preference distribution and value (or policy), and optimize the likelihood of
observed preferences accordingly. |/An et al.|(2023)) use a scoring function that evaluates policy based
on preference, while Kang et al.[(2023) propose hindsight information matching to directly optimize
the policy. Zhang et al| (2024) introduce a generative model that learns from positive/negative
trajectory pairs and applies behavior cloning to the model-generated positive trajectories.

Another active area of research focuses on improving the efficiency of preference data collection.
Lee et al.[(2021)) demonstrate that increasing trajectory diversity through unsupervised pretraining
improves performance, and [Liang et al.| (2022) achieve a similar goal via uncertainty-based explo-
ration. |Park et al.| (2022)) propose data augmentation techniques tailored for PbRL, while Hejna III
& Sadigh| (2023)) introduce a meta-learning framework for few-shot preference learning. (Choi et al.
(2024) extend the standard pairwise comparison setting to listwise comparisons, showing that this
richer feedback provides more informative supervision.

2 PRELIMINARIES

Markov Decision Processes. We consider an episodic MDP (S, A, H, P*,r*) with state space S,
action space A, and horizon H. P* = {P}}!L  are the transition probabilities, and r* = {r} }/L |
are the reward functions. For each episode, the agent starts at the initial state 31[7_1 and then interacts
with the environment for H steps. At step h € [H], the agent takes action a;, based on the current
state s,. The environment assigns reward 77 (s, @) and generates next state s5; following the
transition probability P} (- | sp,ap). In preference-based learning, the agent does not observe
rewards at each step, but preference feedback comparing a pair of trajectories, as we will discuss.

The agent’s strategy for taking actions is represented by policy m = {74, }.c[r], Where (- | ) is a
probability distribution over .A. We define the state value function and the action value function of
policy 7 as the expected sum of rewards over an episode, following the policy 7. Formally,

H H
Vi (s) i=Bn | > ralsn,an) | sp = 8] , @y =Ex [Z rh(Swsan) | sn = s,an = a
h'=h h'=h

We write V7., as V;7 and V{"(s1) = V{* for convenience. For any policy m and reward r, the
Bellman equation states the relation between state and action value functions as

QZ,T(‘S? 0,) = Th(‘S?a) + P*Vhﬂ-&-l,r(sv a’)? Vhﬁr(s) = QZ,T(S,TF), VHW+1(S) =0.
where we write Pg(s,a) := Ey o p(s,)[9(s")] and g(s, 7) := Eqr(s)lg(s,a)] forg: S — R.

Offline Preference-based Reinforcement Learning. In Preference-based RL, the agent cannot
observe the true reward r* but only binary preference feedback over trajectory pairs. For a mono-
tonically increasing link function ® : R — [0, 1] with bounded x = 1/(inf e[ g, Rp] ' (7)), We

'Our analysis naturally extends with initial state distribution.
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assume the preference feedback y™ € {0, 1} is generated by the following model:
Py =1]|7°71") = P(r! is preferred over 7°) = ®(r* (') — r*(7°))

where r*(7) = Zthl 77 (s, ap,) for given trajectory 7 = (s1,4a1,...,Su,an). The widely used
Bradely-Terry-Luce model (Bradley & Terry, |1952) is a special case of this model where @ is set to
be the sigmoid function o(x) = 1/(1 + exp(—zx)).

We have two offline datasets: a preference dataset Dpp = {(7™0, 71 y™)}M__ and a trajectory

dataset Dy = {(7™0,71)}N_, where every trajectories are sampled i.i.d. by executing the ref-
erence policy u. The distinction between Dpp and Dry is for notational convenience. Generally,
the two datasets may have common samples, e.g., we have a large D1y and get labels for some
trajectory pairs to create Dpp. Our goal is to find an e-optimal policy 7 with performance gap
Vi (s1) — Vi, (s1) < € for the optimal policy m*.

Function Approximation. We define function classes that we use to approximate models and value
functions. We have reward function class R = Ry X -+ x Ry C (S X A = [~ Ruax; Rmax, ),
transition function class P = Py X --- x Py C (8§ x A — A(S))¥, and function class F =
Fi XX Fg C(S*x A= [~Viax, Vinax, |) . We denote ¢ for the greedy policy corresponding
to f,ie., my(s) = argmax, f(s,a), and define Vy = {Vj, }nerm) as Vi(s) = fu(s,mys(s)) for
all s € S. As we do not make any assumption on the structure of the function classes, the function
classes can approximate complex structures such as neural networks. We define Il as the set of
greedy policies corresponding to F.

Additional Notations. We denote [n] := {1,2,...,n} for n € N. For given dataset D, we use

Egzep[f(x)] to denote ﬁ > ep f(z). For reward function r € R and trajectories 7°, 7' , we

write A(r; 70, 71) = r(7%) — r(r1). For f : S x A — R, we use the notation P[ f(s,a) =
Eg p(s,a),a~n(s)[f(s',a’)]. The notation f(x) < g(x) means that f(z) < Cg(x),Vx for some
absolute constant C' > 0.

3 ALGORITHM

In this section, we discuss how to learn a value function that is consistent with preference feedback.
The key idea lies in the concept of induced reward function and our novel value alignment loss.
Building on this idea, we propose Preference-based Value Optimization (PVO0), a simple offline PbRL
algorithm with a sample complexity guarantee. We also show that the APPO algorithm introduced
by Kang & Oh[(2025) can be interpreted as an actor-critic algorithm using the value alignment loss,
which implies a unified framework for PbRL.

3.1 ALIGNING VALUE FUNCTION WITH PREFERENCE

In preference-based reinforcement learning, feedback is provided for each trajectory pair
(Tm’o, Tm’l). To enable credit assignment, we must infer a reward function, which can be done
via maximum likelihood estimation over the dataset Dpg. Specifically, we learn a reward model

f € argmin,  Lrw(r) where

M
Lew(r) = = Y log ®((2y™ = 1)(r(r™") = r(z™"))) (1)

m=1

is the negative log likelihood loss. The standard MLE concentration bound (e.g., Lemma 2 in|{Zhan
et al.| (2024a)) guarantees the following:

2log(|R|6~1
Ero rnl((7%) = #(7) = 17 (20) 4 (7)) g IR )

A key point is that this concentration bound holds with respect to trajectory pairs (79, 71) ~ p rather
than individual states or transitions. Consequently, the squared Bellman error used in standard RL
is not compatible with PbRL. Then how can we learn value functions consistent with the preference
feedback? The concept of induced reward function plays a crucial role.
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Algorithm 1 PVO: Preference-based Value Optimization
1: Input: Datasets Dpg, Dy
2: Estimate 7 € argmin, . LRW ) (@, Ph € argminpcp, LTR (P
3: Optimize f € argmin; anl ( (170) — r(rh) — £(r™0) + 7
4: Return greedy policy 7 = 7 ; such that wf(s) = argmax,, f(s,a) fo

) forall h € [H] @)
()

allse S

Definition 1 (Induced Reward Function, Value Type). For f € F, we define the induced reward
functionry = {ry ;}1_, € (8 x A — R satisfying rp, f = fr. — P} Viy1,s. Similarly, we define
Th,f as tnr = fn — PnVht1,r where P is some transition model.

Our value type induced reward is different from the policy type induced reward used for the anal-
ysis of actor-critic algorithms (Zanette et al., 2021} Xie et al.| [2021; [Nguyen-Tang & Arora, 2023;
Kang & Oh, 2025) (Formal definition is presented in Definition [3). While the policy type def-
inition is rooted in the Bellman equation Qf = r; + PyV;T ; with respect to some policy ,
our value type definition is inspired by the Bellman optimality equation Q7 (s,a) = r7(s,a) +
Ey pr[maxy QF +1(s a')]. The value type induced reward enables us to directly optimize the
value )funcuon without actor-critic iterations as in [Kang & Oh| (2025), leading to more stable and
efficient learning, as we will see in Section [5

Equipped with the definition of induced reward function, we introduce the value alignment loss, a
simple loss function for consistent value learning:

La(ry, 7 Z 0) — rp(r™1) — F(7™0) + (7™ 1)) )

At first glance, Lya can be viewed as the squared trajectory-level error between the induced reward
function 7y and the reward model 7. While this view is valid, a more structured interpretation is
obtained by Definition [T}

N [/ H H 2
ﬁVA(Tf,f)ZZ (Z(fh—rh—PthH sy’ Z (fn = 7n = Py Viy1,5) (s, ,a21)> :
n=1 h=1

h=1

This expression reveals that Lya represents the difference in the cumulative Bellman errors of f
between a pair of trajectories. Minimizing Lya encourages f to be Bellman-consistent with respect
to 7, thus aligning it with the preference data. We therefore refer to Lya as value alignment loss.

3.2 PREFERENCE-BASED VALUE OPTIMIZATION

We present PVO, a direct application of the value alignment loss with Definition[I] The pseudo-code
is presented in Algorithm [I]

Model Learning. Our algorithm consists of two phases: model learning (Line 2) and value op-
timization (Line 3). In the model learning phase, we learn reward and transition models via
maximum likelihood estimation. Formally, we compute 7 = argmin,cx Lrw(r) (I) and P, €

arg minpep, [A/TRJL(P) where

L n(P Z > log P(sply | sp? ap?). 3)

n=1;e{0,1}

Value Optimization. In the value optimization phase, we minimize the value alignment loss:

N
fearg mlnz Fr(r™0) — iy (r™h) — A(r™0) + 72(771’1))2‘ S
feF

n=1

value alignment loss Lva (T¢,7)
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As we discussed, this facilitates the consistency of the value function with respect to #. Since (@) is
unconstrained, we can easily implement this using neural networks and gradient-based optimizers.
We present a practical deep RL implementation in Section [5]

3.3 REVISITING APPO WITH VALUE ALIGNMENT LOSS

The APPO algorithm (Kang & Oh, 2025) alternates between policy updates of the form wffl(a |
s) < mk (a | s) exp(nf}(s,a)) and value function optimization:

N H
f' € argmin (A SO [l w0 = falsi % an®)] + é(f))
fer n=1h=1
where E(f) = Y200, [FF (70) — 7 (71) = #(70) + #(7)

type induced reward f,’{tf and the reward model 7. This can be viewed as an ¢; variant of the value

is the /1 loss between the policy

alignment loss Lva, leading to a natural question:

Question: Can we still guarantee a sample complexity bound if £ (f) is replaced by Ly in APPO?

We answer this affirmatively: if APPO is modified to use value alignment loss as in Algorithm [2}
it enjoys a sample complexity guarantee (Theorem [B.I). The detailed discussion and analysis is
presented in Appendix [B] This suggests that the combination of the value alignment loss and the
induced reward function provides a unified framework applicable to both value optimization and
actor-critic methods.

3.4 PRACTICAL IMPLEMENTATION

PVO can be practically implemented with neural networks empowered by off-the-shelf deep learning
methods. We adapt PVO to the standard discounted MDP setting for deep PbRL (Christiano et al.,
2017), where we have preference feedback for trajectory segment pairs of length L.

Reward Learning. Since the value optimization objective {] uses a reward model 7, we train a
reward model based on the preference dataset Dpr. We train 7 by maximizing log likelihood
ﬁRW(DPF), yet it is possible to employ other advanced techniques for preference learning (Park
et al., [2022; [Shin et al.l [2023; [Hwang et al., 2024; (Chot et al., 2024). We note that reward model
training requires minimal computational cost: In our experiments, training a reward model with
1000 preference samples takes less than a minute, while value and policy learning take more than 2
hours for all algorithms.

Value Optimization. To implement the value optimization (Line 3 in Algorithm[I)) with deep neural
networks, we parameterize Q and V functions separately. The V function is trained via expectile
regression (Kostrikov et al.} 2022):

LV(DTJ) - E(s,a)EDTJ [L;(Q(S, (I) - V(S))] (5)
where L} (u) = |7 — 1 {u < 0} |u?. The optimization objective for the Q function is
N . 2
Lo(Dry) = Ero r1yepy [(TQ,V(TO) —rov(rh) = #(°) + () } : (6)

where rq v (7) = ZzL:1 (Q(s1,a;1) — ¥V (sp4t)) and 7(s) is an action sampled from 7 (- | s).

We use V(s;41) instead of PV (s;,a;), eliminating the need for training a transition model. This
approximation leads to good empirical performance, as shown in the experimental results.

Finally, the policy is extracted via advantage weighted regression (Peng et al., [ 2019):
L (Dry) = E(sa)epy [exp(B(Q(s,a) — V(s)))logm(a | 5)]. ()

4 THEORETICAL ANALYSIS

This section presents the sample complexity analysis of our proposed algorithms, PVO. Our analysis
is based on some standard assumptions in the PbRL literature. First, we assume that the function
classes are realizable (Chen et al.|[2023; [Zhan et al.,|2024a; |Pace et al.| [2025; Kang & Ohl 2025).
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Assumption 1 (Reward Function Class). The reward function class is realizable, i.e., r* € R. For
every r € R and trajectory T, it holds that |r(7)| < Ryay.

Assumption 2 (Transition Function Class). The transition function class is realizable, i.e., P* € P.

Assumption 3 (Value Function Class). For any policy 7, we have Q™ € F. In addition, | fr(s,a)| <

Vinax forall f € F, h € [H|, and (s,a) € S x A.

We define a PbRL version of uniform concentrability coefficient Munos & Szepesvari|(2008)); Chen
& Jiang|(2019). Note that is defined with respect to trajectory density instead of state-action density.

Definition 2 (PbRL Uniform Concentrability).

B0t mpulr (7°) =1 (71) — (1) + 7 (r1)]]
C,(F)= sup su
( ) ﬂEl_}D_‘FfEE— \/ETOﬂ.lNH[(’I”f(TO)—rf(Tl)_r*(TO)_Fr*(Tl))Q}

Now we present the sample complexity bounds. The proofs are presented in Section[C] Note that our
analysis naturally extends to infinite function classes using the standard covering number argument.

Theorem 4.1 (Sample complexity of PVO). Suppose Assumptions[I} 2] and[3|hold. With probability
at least 1 — §, Algorithm[I|achieves an -optimal policy with

Cu(F)?r? 10g(|R|5‘1)))7N e (Cu(f)QVﬁaxW(log(PIHJ_I) + 10g(|f|5‘1)))> .

g2 g2

MzO(

Compared to the sample complexity bounds of FREEHAND-transition (Zhan et al) [2024a), the
bound in Theorem is looser since the uniform concentrability C,, is a stronger condition than the
single-policy concentrability (Zhan et al., 2024a; [Kang & Ohl 2025). However, the sample complex-
ity bound of PVO still achieves rate-optimal O (™) for both M and N. Moreover, the sharp bounds
of FREEHAND-transition comes at the cost: FREEHAND-transition is computational intractable
due to its reliance on a distributionally robust optimization oracle. Compared with APPO (Kang
& Ohl 2025), PV0’s bound on N is sharper than O (=) bound of APPO, but APPO relies on the
weaker single-policy concentrability assumption. We note that APPO also has empirical limitations
such as unstable performance and additional hyperparameters as explained in Section 5] Therefore,
the sample complexity bound of PVO reveals a trade-off: despite having a weaker bound, PVO offers
significant advantages in terms of practical implementation and empirical performance.

5 EXPERIMENTS

In this section, we evaluate PVO in continuous control benchmarks with elaborate ablation studies.

5.1 EXPERIMENTAL SETUP

We evaluate PVO on the Meta-World (Yu et al., |2020) and DMControl (Tassa et al., |2018)) datasets
from|Choi et al.| (2024). They are widely used continuous control benchmarks with high-dimensional
state spaces. We mainly use Meta-World datasets for evaluation, and the results with the DM Control
dataset is presented in Appendix [F} We follow the experimental setup of [Choi et al|(2024) and [Kang
& Oh|(2025). The preference dataset consists of pairs of randomly sampled trajectory segments of
length 25, and the preference labels are generated based on the ground truth return of segments. We
measure algorithm performance using the success rate for Meta-World tasks and the episodic return
for DMControl tasks.

We consider the following baselines: (1) IQL (Kostrikov et al.l [2022)) with a learned reward model
is a simple yet strong baseline that has been widely adopted in previous studies (Kim et al., 2023
An et al.l 2023 Hejna & Sadighl 2024} Hejna et al.} [2024; |Choi et al.l [2024); (2) APPO (Kang &
Ohl[2025)) is a provably efficient algorithm based on adversarial training; (3) Preference Transformer
(PT) (Kim et al.| 2023) utilizes the Transformer (Vaswani, 2017) architecture for sequential reward
modeling; (4) DPPO (An et al.l 2023)) directly optimizes policy with preference score metric; (5)
IPL (Hejna & Sadigh| |2024) optimizes policy by maximizing the likelihood of observed preference
data. Further details on the setup are presented in Appendix [G]
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Figure 1: (Top two rows) Performance on Meta-World medium-replay datasets and (Bottom two
rows) medium-expert datasets, measured by success rate. For medium-replay datasets, we in-
clude results of PT, DPPO, and IPL from [Choi et al] (2024). For the medium-expert datasets, we
evaluate the top three algorithms from the medium-replay results. Each plot shows the mean and
standard deviation over five random seeds.
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Figure 2: Average performance on Meta-World medium-replay and medium-expert datasets.

5.2 EVALUATION ON PREFERENCE DATASETS

Figure [T] presents the performance of algorithms on Meta-World datasets, and Figure 2] summarizes
the overall results. PVO consistently outperforms baseline methods across diverse environments. In
particular, while baselines often exhibit high variance across datasets, PVO maintains robust per-
formance. For example, IQL performs comparably to PVO on the medium-replay sweep dataset,
but fails to learn on the medium-replay button-press-topdown dataset. This instability arises from
the nature of preference feedback, where agents rely on potentially misspecified reward estimation.
The stable performance of PVO indicates greater robustness to such reward model errors, which is a
significant advantage in the PbRL setting.
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Advantage of Value Alignment Loss Effect of Feedback Dataset Size Effect of Data Quality
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Figure 3: (Left) Overall performance of IQL, XQL, and TD3+BC with and without value alignment
loss (+VA indicates the modified version using the value alignment loss), aggregated by interquartile
mean (Agarwal et al.,[2021)). (Middle) Performance of algorithms on Meta-World medium-replay
dial-turn dataset, with varying number of preference feedback. (Right) Performance of algorithms on
mixture datasets of random and expert trajectories, with varying proportions of random trajectories.

Moreover, PVO introduces no additional hyperparameters for preference learning, requiring exactly
the same set of hyperparameters as IQL. This stands in contrast to existing PbRL methods that
depend on extra hyperparameters, such as the conservatism parameter in APPO, the smoothness and
conservatism regularizers in DPPO, and the regularization parameter in IPL.

5.3 ABLATION STUDY

Advantage of Value Alignment Loss.

The improvement of PVO over baselines stems from the value alignment loss (6). To isolate its
effect, we implemented additional baselines: TD3+BC (Fujimoto & Gul, 2021) (actor—critic) and
XQL (Garg et al.| [2023) (value-based). We compared their original versions, which use the standard
TD loss, with variants that employ the value alignment loss.

The left plot of Figure [Z] reports results on the Meta-World medium-replay datasets (8 tasks) with
1000 preference feedback. For both TD3+BC and XQL, replacing the TD loss with the value align-
ment loss yields substantial improvements. A similar pattern appears in the gap between PVO and
IQL, which share identical network architectures and expectile regression but differ in the use of the
value alignment loss. These results confirm that the value alignment loss provides a more informa-
tive learning signal than the standard TD loss.

From a theoretical perspective, we hypothesize that its advantage lies in mitigating the propaga-
tion of reward model errors. Unlike the TD loss, which can amplify such errors through Bellman
backups, the value alignment loss distributes errors at the trajectory level, smoothing their impact
on value estimation. This property may explain its empirical effectiveness in PbRL, where reward
model misspecification is often inevitable.

Effect of Preference Dataset Size and Data Quality.

We next study sensitivity to the amount of preference feedback. The middle plot of Figure [3] shows
that PVO achieves effective learning with as few as about 100 preference samples, exhibiting minimal
performance degradation.

We also examine the effect of data quality. On the Meta-World dial-turn task, we constructed
mixture datasets by combining expert and random trajectories with varying proportions r &
{0,0.25,0.5,0.75,1}. Here, r = 0 corresponds to an expert dataset, while » = 1 denotes a fully
random dataset. The result is presented in the right plot of Figure [3] As expected, performance
declines for all algorithms as r increases, since a larger proportion of random trajectories reduces
the amount of high-quality data available for learning. Importantly, PVO consistently maintains su-
periority across all mixture settings, demonstrating robustness even when the dataset substantially
diverges from the optimal policy distribution.
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REPRODUCIBILITY

The experimental details are described in Section[5]and Section|[G] including hyperparameters, neu-
ral network architecture, and dataset information. The code used to run experiments can be found
in the supplementary material where the README file explains how to configure training environ-
ment and execute scripts. The Meta-World medium-replay datasets and DMControl datasets are
available in the official repository of |Choi et al.[(2024). The Meta-World medium-expert datasets
are generated using the script provided in the official repository of |Hejna & Sadigh|(2024).
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A ADDITIONAL RELATED WORK

Problem Settings in Preference-based RL. Preference-based RL, sometimes called reinforce-
ment learning from human feedback (RLHF), involves learning from preference feedback rather
than explicit reward signals. Broadly, existing work in PbRL can be categorized into two lines:
The first—which we focus on in this paper—studies learning from preference feedback in general
stochastic MDPs (e.g. (Novoseller et al., [2020; (Christiano et al.| [2017)); The second line concen-
trates on deterministic MDPs or bandit problems, typically in the context of large language models
(e.g. (Rafailov et al., 2024} Xiong et al., [2024; |[Rosset et al., |2024; [Xie et al., 2025))). The latter
setting often considers fine-tuning a pretrained policy using preference feedback, and incorporates
regularization toward a pre-trained policy. In this work, we focus on the former setting and review
related work accordingly.

Online PbRL Theory. The theoretical analysis on online PbRL has emerged from the dueling ban-
dit problem (Yue et al. 2012), where the agent makes sequential decisions based on preferences
between selected actions. One of the earliest approaches was made by Novoseller et al.| (2020), who
establish an asymptotic Bayesian regret bound for a posterior sampling algorithm in tabular MDP.
Xu et al.| (2020) combine a reward-free exploration strategy and dueling bandit subroutines, offering
a finite-time sample complexity bound. Several works have studied PbRL with linear models. [Saha
et al.| (2023) propose a bandit-like algorithm that treats policy as action, and [Zhan et al.| (2024b))
develop a reward-agnostic experimental design algorithm. Wu & Sun| (2024)) utilize posterior sam-
pling techniques to prove a worst-case regret bound for the linear setting, and a Bayesian regret for
general function classes. Beyond linear settings, preference learning with general function approxi-
mation has gained attention. For instance, (Chen et al.| (2022) design an algorithm using exploration
bonus that achieves a regret bound dependent on Eluder dimension (Russo & Van Roy| 2013)). Wang
et al.| (2023) propose a reward learning framework that solves PbRL when augmented with standard
RL algorithms. Du et al.| (2024) analyze policy optimization algorithms for PbRL, under linear and
neural function approximation. [Chen et al|(2023) and Zhao et al|(2024) study risk-aware PbRL
using the conditional value-at-risk (CVaR) objective (Artzner, [1997). Another angle was explored
by Swamy et al.| (2024), who formulated the PbRL problem as a two-player zero-sum game over
policies, thereby generalizing to arbitrary reward representations.

B APPLYING VALUE ALIGNMENT L0OSSs TO APPO

Algorithm 2 PAC: Preference-based Actor-Critic (A variant of APPO (Kang & Oh, [2025)))

1: Input: Datasets Dpr, Dry, constants 7, A, Initial policy 7} = Unif(.A) for all h € [H]
2: Estimate 7 € arg min,.c Lrw(r) (I), Py, € arg minpep, Lrg i (P) forall h € [H] @)
3: fort=1,---,7Tdo
4 ft € argmin ()\ (fl (s1,7) — % PO f}’-t (T"’O)) + ﬁVA(f}“t,f))
fer

Update policy 7}, (a | s) oc 7h (a | s) exp(nf}(s,a)) for h € [H]
end for
7: Return 7 = 4 327t

A

In this section, we discuss how value alignment loss can be applied to APPO. We begin by formally
defining the policy type induced reward function.

Definition 3 (Induced Reward Function, Policy Type (Zanette et al.|[2021)). For f € F and m € 1],
the induced reward function % = {r;,f’f}thl € (SxA— R)"isdefinedasrf ; = fn—Pp" fry1.

Similarly, we define 7y  as vy ; = fn — Pf fny1 where P is some transition model.

We can naturally modify APPO to utilize value alignment loss with policy type induced reward.
The pseudo-code is presented in Algorithm 2] In the modified algorithm PAC, the /; loss between

the policy type induced reward fgff and the reward model 7 is replaced with value alignment loss

Lya(FF ;. 7).
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Now we theoretically analyze PAC. Following|Zhan et al.|(2024a)); Kang & Oh|(2025)), we define the
PbRL version of single-policy concentrability (Xie et al.|[2021; Uehara & Sun, |2021)).

Definition 4 (PbRL Single Policy Concentrability (Zhan et al.,2024a; |[Kang & Oh} 2025 ﬂ)
N L er o kB G B
T - *
8 er ety VEwo o [(rp(70) —rp(rh) = r*(70) + r*(r1))?]
where H;??T = {m={m}, | mn cexp(ni_, fi) Vh € [H], f1,..., ft € F,t € [T],n > 0}

is the set of softmax policies.

The single policy concentrability is bounded by the trajectory density ratio Crr = sup, ‘f;i((:)),

and it is known that the sample complexity of offline PbRL is lower bounded by Crr (Zhan et al.}
2024a)). We have the following sample complexity bound for PAC:

Theorem B.1 (Sample complexity of PAC). Suppose Assumptions (I} 2| and 3| hold. For properly
set n and N\, with probability at least 1 — 6, Algorithm [2| achieves an c-optimal policy with T =

Vi H? log | A|
2 >

[ (C;,T<f>2n2€1§g<m|al>>> P (c;,T<f>2vnfaxH2<log<|P|;61) + Tlog<|f|51>>>> |

The sample complexity bound for M matches that of APPO, while the bound for N incurs an
additional dependence on C;’T(}' ). This dependency arises from the use of the quadratic value
alignment loss, which requires a variant of the decoupling argument (e.g. (Foster et al., 2021; Dann
et all 2021; Jin et al.| [2021)) rather than the direct suboptimality decomposition in |Kang & Oh
(2025)). Theorem is significant in that it demonstrates the value alignment loss can be used in
actor-critic algorithms. Together with the analysis of PVO, this suggests that the value alignment
loss provides a unifying framework for provably efficient PbRL, applicable to both value-based and
actor-critic methods.

C DETAILED PROOFS
We present the proofs omitted in Section 4}

C.1 PROOF OF THEOREM [4.]]

First, we prove Theorem £.I} As we discussed, our PVO is a new type of algorithm that directly
optimizes the value function without actor-critic iteration or policy optimization oracle. Therefore,
our proof relies on a novel suboptimality decomposition utilizing the greedy property of 7 = 7 -
Proof of Theorem By Lemma|C.1] we have the following regret decomposition:

Vi (s1) = Vi (s1)

<VE (s1) = Vi, (1) + Vi (1) = Vi (s)

= (V" (s0) = Vi (o) 4+ V2 (1) = V(o) ) = (VA (1) = Vi (1) = VA, (1) + V(o))
=Eroons riopu A 7071 — A(Tf;TO,Tl)] +ETON7}771N#[A(TJ?;TO7T1) —A(r5; 70, )]

O I

The terms (I) and (II) represent the error of the induced reward function r ¢, under joint distributions
(7*, p) and (7, ), respectively. By Definition [2| each term is bounded by

0, (D) < /0, (FPEo 1 (A 70, 71) = Alrys 70, 7))

>We present the definition that APPO (Kang & Oh, [2025)) implicitly relies on—although it is not explicitly
stated in the paper—which is slightly stronger than the one used in|Zhan et al.|(2024a)).
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Therefore, it is left to bound the term Ejo r1.,[(A(r*; 7%, 71) — A(r; 7% 71))?], which can be
interpreted as the population version of our value alignment loss Lvs. Lemma provides the
bound, thus we finally have

V(1) = Vi(s1) < O Wcma (FlosllRs) | HVilon(PLESY + log<|f|6—1>1>> |

This implies the sample complexity presented in Theorem 4.1} O

Lemma C.1. Forany f € F and any policy , it holds that V\",. (s1) < Vi f(s1) = Vf{f (s1).

Proof. For h € [H + 1], we have fi,(s,m) < fn(s,ms) = Vj, ;(s) for all s € S by definition (we
set frr+1 = 0). Therefore, we have

rH
Vi, =B | D (fa = PiViraf)(sn, an)
Lh=1
=E, th ShyT) — sh+1~P,:(sh,ah)[Vh+1,f(5h+1)]‘|
rH
=Er Z (Sh,m) — Sh+1~P}t(Sh,ah)[fh+1(sh+17ﬂ-f)]‘|
o
< Eﬂ' th Sh,T) — sh+1~P,’:(sh,ah)[fh-i—l(sh-‘rlaﬂ)]]

= f1(81» ) < Viy(s1)

where we used telescoping sum in the second last step. Now applying a similar argument in reverse
order, we further have

Vi,1(s1) = fi(s1,7y)

H
= Z Eﬂ'f [fh(shv ah) - Es;,+1~P,:(sh,ah) [fh+1(8h+17 Wf)“
h=1

H
=B, [Y (fn = Py Vigrg)(sn,an)] = VL,
h=1

Lemma C.2. With probability at least 1 — §, we have
Ero rinul(AG4 70, 7Y) = Alryz 70, 7))

k*log(|RI6™1) | H2Va,[log(|PIHS™") +log(|F[6~")]
~ M * N

Proof. Lemma|[C.3|and Lemma [D.3]implies that
NE o p1u[(A(ry 7%, 7h) — AR 70, 71))]
< 2y )+ 167, o 71571

+8HV?

S4IA’VA(TAf7 maxzz Z HPIL P}L

n=1h=1j€{0,1}

< ALya(Pf, 7) + 8ea H2V2, Jog(|PIHO ™) + 16 H V2, log(|F16 ")

sh’J, 1) £ 16 H?V.2 log(|F|671)
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and similarly,
NEo r1ul(Alrgee 70, 71) = A7 70, 7))

Y

AN
ZLva(rge, r)—gHQVQ log(|F|6—1)

3 max

1.

Y

n=1h=1;€{0,1}

1. 1
3Lva(igr,7) = 2BV log(IPIHS ™) — HzVﬁax log(|F[67")

| V

On the other hand, the optimality of f (Line 3 in Algorithm [1}) implies that
Lya(#5,7) < Lya(Pgns, 7).
Combining the results, we have
NEro 1 ou[(A(rgs %, 71) = A 70, 7))
< ALya(Pf, ) + 8ea HP V2, Jog(|PIHO ™) + 16 H V2, log (| F 67"
< 4£VA(TQW*,7~) + 8o H?V2 log(|P|HS™Y) + 16 H?V,2, log(|F|6~1)
< 12NE, 0 1 [(A(* 70,71 — A(#; 70, 71))?)
+ 24c, H?V,2, Jog(|P|HS ™) + 80H? V2, log(|F|6 ™)
where we used the fact that Torr = r*. Therefore, it holds that
Eropi[(A(r* 70, 71) = Ay 70, 71))?)

sLlige 1) - 3HVn2mZZ 3 HPh PhH s gl 3H2Vn§axlog(\f|5—1

)

f?
< 2F 0 11 [(A( 70 — A(# 70, 71))?) 4+ 2E 0 o[ (A( 7071 — A(Tf;TO,T1>)2]
H?V2 [24c¢51 Hs ! 1 -1
< 26ETO,7-1NM[(A(T*;TO,T1) _ A(TA; 7_0’ 7_1))2] + Vmax[ c2 Og(|P| ]3 ) + 80 Og(|]:|5 )i
Now Lemma [D.4] concludes the proof. O
Lemma C.3. Forany f € F, the following inequalities hold:
Lya(Fy,7) < 2Lva(ry, 7) + 4H Vo, ZZ > th Al (s 7 ap?),

n=1h=1;€{0,1}

—LVA(Tf, )<_7LVA(7‘f7 +2HVn?axZZ Z HPh PhH Sh '@
n=1h=1;€{0,1}

Proof. By definition, we have that

Mm

Pr(r™7) —rp(T — Bu)Vigr s (sp7,ap?).
h:l
Therefore, it holds that
N
7 A oa o n N n (T (T 2
Lua(Pp, 7) = Y (™) = #p (7)) = #(7™0) + #(7™1))
n=1
N 2
=23 (rpr™) = () = #(70) 4 (7))
n=1

< 2ha(ry, 7) +4HVn‘faxZZ 3 HPh PhH (s77, ™)
n=1h=1;€{0,1}

18

N /H ,
+2Z <Z <(P — P)Vigr g (ap®, ap®) = (P = Pu) Vi g ag ajy 1)>>



Under review as a conference paper at ICLR 2026

where we use the Cauchy-Schwarz inequality. Similarly, using —(z +y)? < —1z% 4+ y?Vz,y € R,
we also have

—Ea (g, 7 )g—fLVA(rf, +2HVjaXZZ > e - PhH (77, a
n=1h=1;€{0,1}

C.2 PROOF OF THEOREM[B.1]

Now we prove Theorem Recall that the soft policy class H}‘ZfT is defined as

T = {m | mp o< exp( anh Vhe[H],f'... [ e Fite[T)}

=1

for constant > 0 whose value is specified by Lemma It is clear that log |H§f‘T| < T'log|F|.
Throughout the proof, we write 1t = r}rt and 7t = f}’t for convenience.

Proof of Theorem[B-1} By LemmalE.1|and the fact 7 = & >°/_ 7', we have that

v

T
(1) = Vi (1) = %Z (Vi (s) = ' (51))
T
- ;fz_; (ETN’T* [r' () = ()] + flsnm') = VT (s1) + ViTye(s1) — Vf:«t(sl))

ETONW*7TINH[T’t(TO) —r*(70) = () + ¥ (7 1))

I
Nl =
(]~

t=1

@

i ( Fis1,m) = VI (51) + Erm[r* (1) — frt(T)})

t=1

H\H

an

i (Vi (s0) = VT (o)

(1)

’ﬂ \

The term (II) is bounded by Lemma [C.4]and (III) is bounded by Lemma [E.3] For the term (I), note
that Definition 4] implies

B il (1) = 1#(7) = r1(r1) 4 17 ()
= ETONﬂ*,TlN#[A(Tt; TO,Tl) _ A(,,,*;7_077_1)}

IN

IN

I /\

\/(ETDNW*,lel_L [A(Tt, TO, Tl) — A(r*; 7—07 7—1)])2

(Eromme rimu At 70, 71) — A= 70, 71)])
Ero 1, [(A(rE 70, 71) — A(r=; 70, 71))2]

2
) Ero riul(A(r5 70, 71) = Al 70, 71)2]

mT J2Ero 1 [(A(rt; 70, 71) — A(r 70, 71))2)

1
9 ZT(]:)2 + ﬂEro,rl~u[(A(Tt;To7Tl) —A(r5 70, )7
QC;:’ (]:) + 2or NLVA('r r*)
EC;: (]:)2 + WLVA(Tt,f) + WLVA(’F,T*)
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where the third inequality uses Definition[d} and we use the AM-GM inequality with constant o > 0
in the second last step.

Combining the results, we have

VI (1) — Vi (s1)
o, 5 1 1 .. 1 3 - log | A|
<< L — o H
< 5GP+ (o = bl i) + (5 + )Ll )+ Ving 2T
log(|F ([T [6-1) + ¢ log(|P|H6~?
+%XH\/ SUFITE 15~ + calos(PIAT)

1
17 (o PV Tog(PLHG™) + B2V, log(FI I 167") + ean(N/M) log([RI6 ™))

a 1 1 1 3. ciNk?log(|R|?671) log |.A|
< ZCF 2 - - 2 ]
= 2C“vT(f) +(2aN 4A)LVA( ’ )+(aN+)\) M + Vi [ =575
log (| F[|TIRY:|071) + ca log(|P|H 1)
+4VmaxH\/ ¥

16
+ 5 (2H Vi log(IPIHO™Y) + H*Vigy log (| F|ITR|67") + e1s(N/M) log(|R|5™1))

caH2V2 log(|P|Hé—Y)+H2V2, 10g(|.7:|\H“"(‘T|6’1)+01R(N/M) log(|R|6—1)

Setting A\ = aN/2 and o =

NC*,,T(]:)
and using the fact log [TT%".| < T'log | F|, we have
Vit Vi
V2 H2(log(|P|H6=1) 4+ Tlog(|F|6—1))  w2log(|R|6—1)) log | A|

< * max maxH )
_O<\/#7T( )? ( N + i +V o
This concludes the proof. O
Lemma C.4. With probability at least 1 — 49, we have

t t mt * t 1 * 4 1 t o4

Filsy, ) = VT (s1) = Ern[r™(7) = 7°(7)] = 1 { 8Lwa(r",7) = 2 Lua (1", 7)

log (| F||TEY|6-1) + ¢o log(|P|H6—
3 WmH\/ B(F I3 + o log(|P| 1)
N
16 soft | o _
0 (caHPV2, Tog([PIHS™) + H2VE, dog(F|T107) + exn(N/M) log(IRI5 ™))
forallt € [T, where c1, co are some absolute constants.
Proof. The optimality of f* (Line 4 in Algorithm implies that
1 1o .
<f1 S1,m) = Z ) + Lua(#,7) < A (Ql (s1,7") — _lfg}t (Tn)> + Lya (e, 7)

N
1 N
= (v;T (1) = D e <T">> + Lua (7 7).



Under review as a conference paper at ICLR 2026

Combining this with Lemma|[C.3|and Lemma|[D.5] we have
filsi ') =V (s1)

1 al At 0 1 Y At 0 L/ t
< T D) = = Y i () 4 5 (Lvae 7) = Lua (7. 7))

N N
1 t n70 1 Trt n70 1A t A
S anz:lr (T ) - N;TQ,J (T ) )\ <2LVA( Q"t’ ) iLVA(T 7fr')
N H N H
Vinax . no SHV?2, N L
S M IS NEATARES =D MU IN AL A NEATR
n=1h=1 n=1h=1je{0,1}
1 N 1 N 1
t(..n,0 wt n.0 t N
< N;r (70 — N;rwt (T + 5 <2LVA(rQ,t,r) — 5 Lw(r ,7“))

colog(|P|H6 1) N 8co H?V2, log(|P|HGS™1)

N A '
Note that rg«t = r* by definition. Using the concentration inequalities in Lemma and
Lemma|[D-4] we further have

ff<sl, ) =V (s1)
N N 1 1.
§ ) = S+ 5 (2wl ) = 5w )

colog(|P|H6—1) N 8coH2V2 log(|P|HS )
N A

+ Vinax H

+ Vinax H

1

-1
< Een ) = (] 5 (30a(°07) = JLun(r) )+ Vo 2B

N

210g(|.7-'||1’[b°f [6—1

max

log(|P|HS™ ") + 16 H* V2, log(|F| [T [071)) + 2HVmax\/ ~
This is the desired result. O

Lemma C.5. Forany f € F and T € Hsj—?ﬁT, thefollowing inequalities hold:

1
+ X(8@11121/2

Lva (77, 7) < 2Lwa(r, 7) +4HV;3MZZ > th PhH sy ap?),
n=1h=1;€{0,1}

— L (7T, 7 )<—§LVA(rf, +2HV,3MZZ 3 HPh PhH s a
n=1h=1;€{0,1}

and

n,0 n,0
(s ap).

V N H R
L e ]

n=1h=1

N
1
AT (1,0 E (.10

n=1 n=1

Proof. The proofs for the first and the second inequalities are almost identical to that of Lamma[C.3}
The third inequality is obtained by

N H

Z; "0) Nzrf 70) %ZZ Ph (fh+1)(5207a20)
n=1 n=1h=1
V N H

S LA RO

h=1
max] to denote the function satisfying f7(s)

n=1

<

where we use the notation f7 : S — [—Viax,
Egor, [f(s,a)] foralls € S.
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D CONCENTRATION LEMMAS

Lemma D.1. Given 7, with probability at least 1 — 6, forall f € F and 7 € H}?J?T, it holds that

2 log (| F| I |51
<2Hme\/ og(| HNF,T| )

NZ: }r "0>—Er~u[7“f( )l

Proof. Fix f € F. Azuma-Hoeffding inequality implies, with probability at least 1 — 9,

2log (61
NZT nO TNM[rf( )] < 2H Vinax %
The union bound over all f € F and 7w € ngfT concludes the proof. O

Lemma D.2. Given 7, with probability at least 1 — 20, for all f € F, it holds that
Lva(r, #) < 2Ly (ry, 7) + 16H?V,2, log(|F|671)

and

L (Tf, 7) < 3LVA(Tf, )—|—8H2V2

max

log(|F|6~")

Proof. Fix f € F, then define filtration §,, = o(710, 711 ... 770 771 (we will use E,[-] to
denote E[- | §,]) and

XalF) = Bal(Alrps 7™, 70 = A3 70, 7))
— (A(rpy ™0 ™) — AT
so that X,,(f) € §y. With this random process, we have E,,[X,,(f)] = 0 and
En [ X5 (/)]
= Eul(A(rgi 70, 7Y = AGF 70, )] By [(A(rg 70,77 - A 70, 7))
< 4H2Vn?axE [(A(Tf;T”’O, T"’l) — A(ry ™ 0 T"’l))Q]

Freedman’s inequality (Lemma[E.5) implies that, with probability at least 1 — J,

al al log(6~)
D X)) SO ELXN(N + ——

n=1 C
. log(6~")
<4H2Vn%aXC E.[(A(rs; T 0 rly A 7’;7’"’0,7"’1 4+
Z s )= A( W+ =
for any ¢ € [0, 1/4H2V2‘ ]. Setting ¢ = 1/8H?V;2,,, we obtain

ZE (g7, 70) = A7 70, 7))
N

Z (rps 70,70 = AR 70, 77 1)% + 16H? V2, log(671),

which is equivalent to Lya (s, 7) < 2Lva (g, 7) + 16 H2V,2, log(6~"). We prove the first result by
taking a union bound over all f € F. To prove the second result, consider —X,,(f) and follow the
same logic with ¢ = 1/8H?V2

max*

Lemma D.3. Given 7, with probability at least 1 — 26, forall f € F and 7w € H;ﬂT it holds that
Lya(rf, ) < 2Lua(rf, ) + 16HV,p, log (| FI[TLZ7[57)

and
A 3

La(rF. 7) < SLua(rf. 7) + SHV,2, og (| F|| |5~
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Proof. The proof is almost identical to that of Lemma[D.2] We further consider a union bound over
IIspt . O

Lemma D.4 (Lemma 2 in|Zhan et al.|(20244)). With probability at least 1 — §, we have

1 r A
F Ll ) = Ero (A 70,71 = A 70, 7)) <
for some absolute constant c;.

Lemma D.5. With probability 1 — 6, for all k € [K|, h € [H], and j € {0, 1}, it holds that

S ol LT

n=1;e{0,1}

c1k2log(|R|67 1Y)

(sp?, ap’) < calog(|P|HO™")
where co is some absolute constant.

Proof. The standard MLE guarantee (e.g. Lemma 3 in|Zhan et al.| (2024a)) states that, with proba-
bility at least 1 — 9,

? log(|/P|HS !
Esnan)~n { P;TH (Smah)} < log([P1H3™7) ®)
1 N
forall h € [H].
For o fixed Py € Py define Xu(P) = [P =PI} (500 and 5, =

o(rt0, 71t 7m0, 7h1). Applying Lemmal[E.6]to (X, (f, h))nefn], We have

Z”Ph Ph” h ’ h )S

n=1

N
D Eu[llPn = Bl (5370 ap®)] + 4log(57 1)
n=1

[ N W

S VE G an)~nlll Pr = Pi3 (snoan)] + 4log(57")

Taking a union bound over all Ph € Pp and h € [H]|, and repeating the same argument for
X, (P,h) =P, — P*|| (s ,ah 1), with probability at least 1 — 4, it holds that

Z > 1P =B (537, ai7) < BNE (o, aymnlll Pa = PillY (snyan)] + 8log(2[P|HS ™)
n=1;€{0,1}

forall h € [H| and P € P. Combining this with (8), we conclude the proof. O
E SUPPORTING LEMMAS

Lemma E.1 (Sub-optimality Decomposition (Lemma B.4 in|Nguyen-Tang & Arora (2023)))). For
any f € F and any policies 7,7, we have

Vi (s1) — Vi (s1) ZE [E7(F)(snyan)] + fi(s1,7(s1)) = Vi (s1) + VlT,rr?“ ~ Vs

Ty
where EF(f)(s,a) = fu(s,a) —ri(s,a) — P,:’ﬁfhﬂ(s,a).

Lemma E.2 (Performance Difference Lemma). Let 7, pi be any policies. For any reward r, we
have that

H
VI (s1) = Vit (s1) = D Ex [QF (s, m(s0)) — QF (30, ()]
h=1
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Proof. Using the identity r, = Qf . — PyV;", ., we have

Vi (s1) = Vi (1) = Bx[r(s1, 1) + PV (s1,01) — QT (51, 7(s1))]
= EA[Q7 . (s1,01) — Q7 . (s1,7(s1)) + Pr V5L, (s1,01) — ByVi, (s1,a1)]
= EA[Q7 . (51,a1) — Q7 . (s1,7(51))] + Ex[VI",.(52) — VI, (s2)]

H
:ZIE [QF (s, (k) — QF (s, 7(sn))].
h=1

O
Lemma E.3 (Online Regret Bound (e.g. Lemma D.3 inKang & Oh|(2025))). For any sequence of
functions {f*}I_, € FT, the policy update (Line 5) in Algorithmwith n = lf/gzl“;‘ guarantees

that

T
* . ]
% g (Vfﬂ(sl) - Vfrt(Sl)) < Voar H O§7|;A|.

t=1

Lemma E.4 (Azuma-Hoeffding inequality). Let (X;)i<7 be a sequence of random variables
adapted to a filtration (§i)i<7. If | Xi| < B for some B > 0 almost surely, with probability at
least 1 — §, we have

Z X, —E[X, | §]| < B\/2T log(6—1).

Lemma E.5 (Freedman’s inequality). Let (X,).<r be a sequence of random variables adapted to a
filtration (§)i<7. Assume | X;| < B for some B > 0 and E[X, | ] = 0. With probability at least
1 — 0, forany n € [0,1/B), it holds that

ZXt < nZE (X2 | 3 + log( )

Lemma E.6 (Lemma 2 in Zhu & Nowak| (2022)). Let (X,);<r be a sequence of positive random
variables adapted to a filtration (§¢)i<7. If Xi < B almost surely for all t, then with probability at
least 1 — ¢, the following holds:

!

T
3
DX <5 D BN | 5] +4Bog(5™)

t=1

[\

~

T
STEX [ §) <2) ) X, +8Blog(67Y)
t=1

t=1
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F ADDITIONAL EXPERIMENTS

F.1 ON THE TRANSITION MODEL

Dataset (# of feedback) ‘ medium-replay (500) medium-replay (1000) medium-expert (500) medium-expert (1000)

PVO 66.20 69.14 68.06 73.00
PVO with transition model | 64.08 71.18 68.46 71.16
IQL 53.86 58.76 57.78 67.84

Table 1: Success rates on Meta-World datasets, averaged over five random seeds. PVO and its variant
with a learned transition model achieve similar performance.

The transition model in PVO plays a theoretical role in defining the value alignment loss and deriving
the sample-complexity analysis, where the expectation E, 5, . [V'(s")] is taken over the estimated

transition model. However, in practice, this term can be efficiently approximated using transition
samples from the dataset. Our practical implementation therefore follows this sample-based approx-
imation, a design choice originating from APPO Kang & Oh|(2025)), which employs a variant of our
value alignment loss (as discussed in Section[3.3)) and similarly replaces the model expectation with
dataset samples. This simplification reduces computational cost while maintaining performance.

To verify whether this simplification affects performance, we implemented a variant that explicitly
trains a transition model and computes the expectation term via sampling from it. Table [T compares
this variant with the original implementation on Meta-World datasets used in Section[3] trained with
500 and 1000 preference feedbacks. The results show that both implementations achieve highly
comparable performance, with neither consistently outperforming the other. These findings indicate
that while the transition model is conceptually important for theoretical formulation, it is not prac-
tically necessary for effective learning. Our sample-based implementation thus offers a simpler and
more computationally efficient realization of PVO.

F.2 EMPIRICAL COMPARISON WITH FLOW TO BETTER |ZHANG ET AL. (2024)

Dataset ‘ box-close dial-turn drawer-open lever-pull  sweep-into  sweep button-press-topdown  button-press-topdown-wall
PVO 58.72 +1661  84.32 +4m  100.00 000  96.64 +28¢ 27.84 +436  94.08 +631  43.36 + 1903 48.16 + 1454
FTB 0.00 +0.00 0.00 £000  97.60 +339 0.00 £000  62.67 +2371 0.00 000 0.00 000 0.00 =+ 0.00

Table 2: Success rates on Meta-World medium-replay datasets with 1000 preference feedback.
For FTB, we report the results averaged over three random seeds.

We also evaluated Flow to Better (FTB) |Zhang et al.| (2024) on the Meta-World medium-replay
datasets with 1000 preference feedback. We used the official implementation of FTB and default
hyperparameters, only adapting the episode length to be consistent with our datasets.

Interestingly, FTB performs very well on drawer-open and even outperforms PVO on sweep-into,
but collapses to 0% success on all other tasks. We note that a 0% success rate does not necessarily
mean that the method failed to learn at all — we do observe nontrivial improvements in episodic
returns during training — but rather that the learned policies rarely satisfy the success criteria on
these tasks.

Overall, these results suggest that FTB can be effective on certain tasks, yet exhibits substantial sen-
sitivity to the dynamics and data distribution. One possible explanation is that FTB ultimately relies
on imitation of generated trajectories: when the dataset contains sufficiently good trajectories, the
filtering-and-cloning procedure may succeed, whereas in tasks where high-quality demonstrations
are sparse, the model may end up cloning suboptimal behaviors. In contrast, PVO achieves consis-
tently strong performance across all tasks, including those where FTB collapses, which aligns with
our main goal: providing a simple, value-based offline PbRL algorithm that is both theoretically
grounded and practically robust.
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Figure 4: Performance on DMControl datasets measured by episode return. Each plot displays the
mean and standard deviation over five random seeds.

F.3 EVALUATION ON DMCONTROL DATASETS

We present additional experimental results that were omitted from Section|[3]
Figure [ shows the performance evaluation on the DMControl [Tassa et al.

due to space constraints.

(2018)) dataset. Overall,

PVO outperforms APPO by a large margin, which is consistent with the results in Section[5] Com-
pared to IQL, PVO performs better in the cheetah-run and quadruped-walk datasets, while showing
comparable performance in the walker-walk dataset.

F.4 COMPLETE NUMERICAL RESULTS

We provide the complete numerical results in the tables below. The results better than 95% of the
best performance are highlighted.

Dataset and # of feedback \ PT DPPO IPL IQL APPO  PVO (ours)
box-close-500 0.33 +1.16 10.20 £1147 593 £581 27.84 +2852 18.24 £ 1560 31.04 + 2244
dial-turn-500 68.67 +1239 26.67 +2223 31.53 + 1250 74.56 + 1032 80.96 +449 82.72 +649
drawer-open-500 88.73 +11.64 3593 +11.18 19.00 + 1363 98.24 +352 87.68 £ 1004 99.52 + 096
lever-pull-500 82.40 £2269 10.13 £1219 31.20 1576 8528 £318 75.76 £7.17  93.92 49
sweep-into-500 20.53 £826 23.07 £7.02 32.20 £735 20.96 £791 24.08 +591 37.92 + 11.00
sweep-500 43.07 +2457 10.47 £ 1584 27.20 + 2381 90.88 +625 26.80 +532 87.68 +38.97
button-press-topdown-500 22.87 906  3.93 +434 34.73 £ 1392 18.88 +12.14 53.52 + 1386 56.80 + 13.28
button-press-topdown-wall-500 0.87 +143 080 +151 8.93 +984 1424 £527 64.32 +209 39.36 + 1452
box-close-1000 227 +£286  9.33 £960 6.73 +841 40.96 + 2204 34.24 + 1849 58.72 + 1661
dial-turn-1000 68.60 £550 36.40 +2195 43.93 +1337 77.28 £ 1064 81.44 +673 84.32 +471
drawer-open-1000 95.40 +727 36.47 £730 28.53 +1837 99.52 +064 98.56 +268 100.00 + 0.00
lever-pull-1000 72.93 1016 853 £996 40.40 £ 1738 87.04 £564 76.96 £440 96.64 + 234
sweep-into-1000 20.27 +£784 2333 £780 30.40 £774 24.00 £597 18.16 £ 11.14 27.84 + 436
sweep-1000 29.13 + 1455 8.73 +1637 38.33 +2487 98.80 £ 101 17.36 + 1244 94.08 + 631
button-press-topdown-1000 18.27 1062 3.20 +£3.04 36.67 +17.40 20.00 £541 59.04 + 1897 43.36 + 19.03
button-press-topdown-wall-1000 |  2.13 +296  0.27 £ 085 14.07 £ 1147 22.48 +528 62.96 + 1838 48.16 + 14.54
Average | 39.78 15.47 26.86 56.31 55.01 67.63

Table 3: Success rates on Meta-World medium-replay dataset with 500 and 1000 preference feed-
back, averaged over five random seeds. The results of PT, DPPO, and IPL are from

(2024).
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Dataset and # of feedback \ IQL APPO PVO (ours)
box-close-500 19.68 + 11.96 1.92 561  49.44 + 12,19
dial-turn-500 13.60 +895 42.56 +£2327 73.44 + 2296
drawer-open-500 100.00 + 000 88.48 +965 100.00 =+ 0.00
lever-pull-500 71.28 £330 11.52 +98 66.56 + 18.12
sweep-into-500 89.44 +602 49.60 £2187 85.12 + 1486
sweep-500 99.12 + 078 352 +346  96.80 +2.48
button-press-topdown-500 59.84 +18.13 320 +640  70.40 + 1420
button-press-topdown-wall-500 9.28 +3.02 336 +672 272 +241
box-close-1000 57.28 +7172 1.92 £1.00  63.36 +23.67
dial-turn-1000 26.72 +2413 4256 + 1281 76.64 + 1272
drawer-open-1000 100.00 +000 80.16 +529  96.00 =+ 8.00
lever-pull-1000 77.68 +699 10.00 1018  69.28 +5.00
sweep-into-1000 95.04 192 3296 +974  93.28 + 334
sweep-1000 99.28 +0.73 0.40 o080  98.88 + 139
button-press-topdown-1000 7824 £ 1115 1440 £790  81.12 +5.02
button-press-topdown-wall-1000 8.48 +394 0.16 £ 032 5.44 + 776
Average | 62.81 24.17 70.53

Table 4: Success rates on Meta-World medium-expert dataset with 500 and 1000 preference feed-
back, averaged over five random seeds.

Dataset and # of feedback ‘ IQL APPO PVO (ours)
cheetah-run-500 299.59 +4796  91.48 +3926 465.46 +51.50
walker-walk-500 927.03 + 1915 697.69 +8059 792.14 +8536
quadruped-walk-500 213.30 +4879  91.58 £5299 210.90 +41.72
cheetah-run-1000 357.88 +1746  224.60 +79.16 500.48 + 41.60
walker-walk-1000 931.48 + 1711 822.87 +5464  894.65 + 2804
quadruped-walk-1000 176.16 + 7854  91.92 +3283 188.42 + 4395
Average \ 484.24 336.69 508.67

Table 5: Episode returns on DMControl dataset with 500 and 1000 preference feedback, averaged
over five random seeds.

G EXPERIMENTAL DETAILS

G.1 DATASETS

Dataset | box-close dial-turn  sweep sweep-into  drawer-open lever-pull  button-press-topdown  button-press-topdown-wall
medium-replay | 2.4M 900k 2.IM 300k 300k 900k 300k 450k
medium-expert | 900k 300k 900k 300k 300k 300k 300k 300k

Table 6: The sizes of Meta-World medium-replay datasets (Choi et al.,2024)) and medium-expert
datasets.

The DMControl medium-replay and Meta-World medium-replay datasets are created by |Choi
et al.| (2024). The datasets are generated from the replay buffers of online SAC (Haarnoja et al.,
2018)) agents. Following|Choi et al.[(2024), we use different dataset sizes for each Meta-World task,
as shown in Table[6] All DMcontrol datasets contain 300k transition samples.

We created the Meta-World medium-expert data using the code provided by Hejna & Sadigh
(2024). For dial-turn, sweep-into, drawer-open, and lever-pull tasks, we collected 50 trajectories
with an expert policy, 50 trajectories with expert policies for randomized variants and goals of the
task, 100 trajectories with expert policies for different tasks, 200 trajectories with a random policy,
and 200 trajectories with an e-greedy expert policy that takes greedy actions with a 50% probabil-
ity. In total, there are 600 trajectories (300k transitions) for each task dataset. Additionally, standard
Gaussian noise was added to the actions of each policy. The dataset sizes match those of the medium-
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replay dataset. For box-close and sweep tasks, we collected 1800 trajectories, maintaining the ratio
of sources.

To create the mixture datasets in the ablation study, we collected 600 trajectories from an expert
policy trained on multiple tasks and goals, and another 600 trajectories from a random policy. Then,
for each mixture ratio r € {0,0.25,0.5,0.75,1}, we formed a dataset consisting of 600(1 — r)
expert trajectories and 600r random trajectories. For example, the » = 0.25 contains 450 expert
trajectories and 150 random trajectories.

G.2 IMPLEMENTATION DETAILS.

We used the official implementation of (Choi et al.|(2024) and |Kang et al.|(2023) for reward models,
IQL agents, and APPO agents. The reward model is an ensemble of three fully connected neural
networks with three hidden layers of 128 neurons. The Q, V, and policy are parameterized as fully
connected neural networks with three hidden layers of 256 neurons. We set the hyperparameters
of IQL and APPO as suggested in (Choi et al.| (2024)) and [Kang & Oh| (2025)), except the advantage
weight of IQL which we searched over 3 € {3.0,10.0}. The detailed hyperparameters are listed in
Table[7]

We run experiments on an Intel Xeon Gold 6226R CPU and an Nvidia GeForce RTX 3090 GPUs.
For PVO, the use of a trajectory does not significantly slow the training. All algorithms take approx-
imately 2-3 hours to complete 250k gradient steps. The performance is measured by
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Algorithm

Component

Value

Reward model

Neural networks
Activation

Optimizer

Batch size

Epochs

Number of ensembles

3-layers, hidden dimension 128

ReLU for hidden layers, Tanh for final output
Adam (Kingma & Ba||2015) with learning rate 1e-3
512

300

3

Neural networks (Q, V, 1)
Activaton
Q,V, 7 optimizer

3-layers, hidden dimension 256
ReLU for hidden layers
Adam with learning rate 3e-4

PVO Batch size 256
Target Q soft update 0.005
B (IQL advantage weight) 10.0
7 (IQL expectile parameter) 0.7
discount factor 0.99
Neural networks (Q, V, 7) 3-layers, hidden dimension 256
Activaton ReLU for hidden layers
Q, V, 7 optimizer Adam with learning rate 3e-4
IQL Batch size 256
Target Q soft update 0.005
B (IQL advantage weight) 10.0
7 (IQL expectile parameter) 0.7
discount factor 0.99
Neural networks (Q, V, 7) 3-layers, hidden dimension 256
Activaton LeakyReLU for hidden layers
Q,V, a optimizer Adam with learning rate 3e-4
APPO T optimizer Adam with learning rate 3e-5
Batch size 256 transitions and 16 trajectory pairs
Target Q soft update 0.001
discount factor 0.99
Neural networks (Q, V, ) 3-layers, hidden dimension 256
Activaton ReLU for hidden layers
Q, V, 7 optimizer Adam with learning rate 3e-4
Batch size 256
TD3+BC Target Q soft update 0.005
a (BC weight) 2.5
Policy noise 0.2
Policy noise clip 0.5
discount factor 0.99
Neural networks (Q, V, m) 3-layers, hidden dimension 256
Activaton ReLU for hidden layers
Q, V, 7 optimizer Adam with learning rate 3e-4
Batch size 256
XQL Target Q soft update 0.005
B (Gumbel regression temperature) 1.0
discount factor 0.99

Table 7: Implementation details and hyperparameters.
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