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Abstract

Learning to communicate efficiently is central to multi-agent reinforcement learn-
ing (MARL). Existing methods often require agents to exchange messages inten-
sively, which abuses communication channels and leads to high communication
overhead. Only a few methods target on learning sparse communication, but they
allow limited information to be shared, which affects the efficiency of policy learn-
ing. In this work, we propose model-based communication (MBC), a learning
framework with a decentralized communication scheduling process. The MBC
framework enables multiple agents to make decisions with sparse communication.
In particular, the MBC framework introduces a model-based message estimator
to estimate the up-to-date global messages using past local data. A decentralized
message scheduling mechanism is also proposed to determine whether a message
shall be sent based on the estimation. We evaluated our method in a variety of
mixed cooperative-competitive environments. The experiment results show that
the MBC method shows better performance and lower channel overhead than the
state-of-art baselines.

1 Introduction

Multi-agent reinforcement learning (MARL) provides powerful approaches for agents to develop
effective cooperative and competitive policies. Recently these approaches have been applied in a
variety of complex environments, such as traffic light control Wang et al. [2022], robotics Gu et al.
[2017] and autonomous driving Wachi [2019]. Communication allows agents to share observations
and intentions, thus greatly improving the efficiency and success rate for completing specific tasks Liu
et al. [2020], Singh et al. [2019], Niu et al. [2021]. In communication MARL, agents communicate
with each other before taking action and learn message encoding and decoding protocol with back-
propagation Sukhbaatar et al. [2016]. In addition to encoding and decoding messages, agents need to
learn ‘when’ and ‘whom’ to send their messages. This is known as communication scheduling Kim
et al. [2019], Niu et al. [2021]. For example, IC3Net Singh et al. [2019] learns when to broadcast
messages, and I2C Ding et al. [2020] and ACML Mao et al. [2020] introduce gate mechanisms to
decide whether to send messages to specific agents. Moreover, FlowComm Du et al. [2021] and
MAGIC Niu et al. [2021] learn to dynamically generate communication graphs to schedule messages.

However, most communication MARL methods require intensive communication among agents,
which leads to high communication overhead. This issue is crucial for the real-world application
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of MARL methods where communication is costly Zhang and Lesser [2013]. For example, in
some practical scenarios, such as unmanned aerial vehicles, reducing communication overhead is a
fundamental concern due to the low-power property of the sensors Gu et al. [2020]. The existing
communication MARL algorithms rarely consider the cost during training and execution, resulting in
excessive and redundant communication Du et al. [2021], Zhang et al. [2020, 2019a]. On the other
hand, a few existing methods for reducing communication overhead Liu et al. [2020], Zhang et al.
[2020], Kim et al. [2019] do not allow agents to utilize enough information about the observations
and intentions of other agents, resulting in uncompetitive performance. To our knowledge, reducing
communication overhead while enabling agents to use as much information as possible to learn
optimal policies is a problem that has rarely been studied.

In order to deal with this problem, we propose a novel framework in communication MARL, which
we will call model-based communication (MBC). The basic idea of MBC is to enable agents to
utilize the previously exchanged messages to estimate current messages that agents may exchange.
The estimated messages, accessible to all individual agents, can be used by individual agents to
decide whether it is needed to send a message (in case the message deviates significantly from the
estimated message) or if the other agents can use their estimated message. The latter case will reduce
communication overhead.

In the MBC framework, this is realized by a message estimator that is designed to be trained in
a supervised manner to model the dynamics of global messages, so that agents can estimate the
current messages of other agents using their previous messages. In addition, a decentralized message
scheduling mechanism is introduced, which eliminates the necessity of additional communication to
a central scheduler and is therefore conducive to distributed deployment. According to the scheduling
in the MBC framework, each agent will send its messages only when other agents cannot estimate its
messages within an error threshold. In this way, MARL agents can correct the estimation error of the
global message by sending real messages with each other.

This paper makes the following contributions. 1) We propose to reduce the communication overhead
by replacing receiving messages from other agents with estimating others’ messages. To the best
of our knowledge, this is the first work to use a model-based method to reduce the communication
overhead in MARL approaches. 2) We design a decentralized message scheduling mechanism for
multi-agents to correct erroneous message estimations by communicating the real messages when
they cannot estimate the message accurately. 3) We verified the performance of our approach in a
series of mixed cooperative-competitive environments. Our approach shows around 5.16% better
performance on average than the state-of-the-art methods, around 22.33% lower communication
overhead on average than the previous most communication-efficient method, and less dependence
on the number of channels.

2 Related Work

Among the plethora of work on MARL Gronauer and Diepold [2022], Sharma et al. [2021], Zhu et al.
[2022], we summarize the literature in three subfields, which our approach closely relates to.

Communication scheduling in MARL. This subfield addresses the problems of when to communi-
cate and whom to address messages to. As the early works, IC3Net Singh et al. [2019] and SchedNet
Kim et al. [2019] learn to decide when to broadcast individual messages. Agent-Entity Graph Agarwal
et al. [2020] and G2ANet Liu et al. [2020] schedule communication among agents via a pretrained
graph. Most recently, FlowComm Du et al. [2021] and MAGIC Niu et al. [2021] learn to dynamically
generate graphs to determine when to communicate with whom. Communication scheduling can
reduce the communication overhead in multi-agent systems, which is significant for deployment
of MARL for real-world scenarios Niu et al. [2021], Liu et al. [2020], Zhang et al. [2020]. In line
with these works, our scheduling approach further reduces communication load while maintaining
collaboration among agents.

Message aggregation in MARL. The approaches in this area address how to learn to effectively
extract information from the received messages. Earlier approaches mostly average Singh et al.
[2019], Zhang et al. [2019b], Sukhbaatar et al. [2016], Foerster et al. [2016] or concatenate Kim
et al. [2019] the received messages to aggregate them. Some practices, such as pruning the incoming
messages Du et al. [2021], Liu et al. [2020] or adding attention mechanisms to them Das et al. [2019],
Jiang and Lu [2018], can alleviate this problem. Our approach builds on and adopts the multilayer
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nonlinear aggregation methods on received messages using the Graph Attention Networks (GATs)
Casanova et al. [2018], Niu et al. [2021] or attention mechanisms Das et al. [2019]. In particular,
to overcome the problem of numerous input messages, our approach uses GATs to aggregate the
information from estimated global messages.

Model-based multi-agent reinforcement learning. Model-based MARL alleviates the issue of
sample efficiency in model-free MARL Willemsen et al. [2021], Egorov and Shpilman [2022]. These
methods typically model the environment through supervised training. After the model learns to
accurately simulate the environment, the agent interacts with this model rather than the environment
Willemsen et al. [2021]. Inspired by the previous Model-based MARL approaches, we propose to
train a model in a supervised way to estimate the environmental dynamics. In particular, instead
of modelling the dynamics of the observations (in previous works), we model the dynamics of
communication messages (i.e. encoded observations). To the best of our knowledge, this is the first
work to introduce the model-based learning into communication of MARL.

3 Preliminaries

3.1 Markov Game

We follow the partially observable multi-agent Markov Game Littman [1994], Niu et al. [2021] to
study the communication in multi-agent reinforcement learning. A partially observable multi-agent
Markov Game is defined as a tuple < N ,S,A, T ,Ω, R, γ >. In this tuple, N = {1, 2, ..., n} is the
set of agents, S is the set of global state, A = A1 ×A2 × ...×AN is the set of joint actions where
Ai is the set of possible actions of agent i, T : S × A1 × ...× AN 7→ S is the transition function,
Ω = Ω1 × Ω2 × ... × Ωn is the set of joint observations where Ωi is the possible observations of
agent i, R is the reward function, and γ ∈ [0, 1] is a discounted factor. The trajectory of agent i
is represented by τ ti ∈ Ti = (Ω × Ai)∗ × Ω where (Ω × Ai)∗ represents the Kleene closure on
Ω ×Ai. At each time step t, agent i executes an action ati ∈ Ai based on its observation oti ∈ Ωi,
and receives an individual reward ri. Agent i is dedicated to adjust its policy πi to maximize the
individual rewards: Ri =

∑T
t=0 γ

trti , where T is the terminal time step.

3.2 MARL with Communication

When the above Markov game has been solved using multi-agent reinforcement learning with
communication, agent i makes decisions based on individual policy πi : Ωi ×AMi ×Ai 7→ [0, 1],
where AMi is the set of aggregated messages received by the i-th agent. Individual agent i uses
faggi : M1,M2, ...,MN 7→ AMi to aggregate received messages ami whereMj represents the set of
agent j’s possible sending messages. Moreover, agent j who sends message uses fencj : Ωj 7→Mj

to encode local observation into message mj . πi, faggi and fencj are jointly parameterized by
θi,j = [θπi , θfaggi , θfencj ], where θπi is the parameters of πi, θfaggi is the parameters of faggi , and
θfencj is the parameters of fencj .

In this work, we follow the previous policy gradient methods Mnih et al. [2016], Schulman et al.
[2017], Niu et al. [2021] to train policy πi, faggi and fencj jointly by maximizing the objective
J(θi,j) = Es∼ρ,ai∼πi

[Rti], where ρ is the initial state distribution and Rti =
∑T
t′=t γ

t′−trt
′

i is the
discounted total rewards of agent i from the time step t ∈ [0, T ]. This method performs gradient
ascent on θi,j .

∇θi,jJ(θi,j) = Es∼ρ,ai∼πi
[

T∑
t=1

∇θi,j log π(ati|τ ti , amt
i) ·Rti] (1)

where amt
i = faggi(m1, ...,mj , ...,mN ) and mj = fencj (otj). To reduce the variance, we adopt the

advantage function Ai(τ ti , a
t
i) = Rti − Vi(τ ti ) in place of Rti , where Vi is the expected cumulative

reward estimated by agent i.

3.3 Centralized Training & Decentralized Execution.

Centralized training & decentralized execution (CTDE) is a common paradigm in MARL Sunehag
et al. [2018], Jaques et al. [2019], Papoudakis et al. [2021]. In this paradigm, all global information is
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available in training, but in execution, agents are only allowed to utilize local or received information.
The existing approaches mostly use centralized value function and decentralized policies Rashid et al.
[2018], Foerster et al. [2018], Peng et al. [2021]. When it comes to communication, the encoding
and decoding of messages are performed decentralized in execution Singh et al. [2019], Ding et al.
[2020], Sukhbaatar et al. [2016]. Our approach follows the CTDE paradigm.

4 Methodology

In this section, we describe the detailed design of the Model-based Communication (MBC) framework.
The core idea of MBC is to estimate the current global message using local historical information to
reduce the requirement of receiving messages directly from other agents. This enables each agent to
maintain an error-controlled overview of the global information under a partial communication setup,
thus achieving high performance with low communication overhead. We first introduce the overview
structure of the MBC framework, then present the detailed design of each module.

4.1 Overview of the MBC Framework

We start with an intuitive example about how an individual agent makes decisions with communication
(as shown in Figure 1).

Figure 1: The demonstration of the proposed MBC framework, including the decision making process
of one agent at time step t-1 and t in a four-agent MARL system. In addition to the notations
mentioned in Section 3, (m̂t

j)i represents agent j’s message at t estimated by agent i.

To simplify the description, we demonstrate the procedure in a four-agent setting. At time step t− 1,
agent 1 uses Decision Generator to take action at−11 based on the local encoding mt−1

1 as well as
the aggregated message amt−1

1 . The mt−1
1 comes from its Message Encoders by encoding the local

observation ot−11 . The amt−1
1 is computed by the Message Aggregator using the overwritten message

vector [(m̂t−1
1 )1, (m̂

t−1
2 )1,m

t−1
3 , (m̂t−1

4 )1]. The components of this vector are either estimated
messages computed by local agent 1 (i.e., (m̂t−1

1 )1, (m̂
t−1
2 )1, (m̂

t−1
4 )1), or the real messages received

from other agents (i.e., mt−1
3 ).

To obtain this overwritten message vector at t − 1, agent i first estimates the current global mes-
sage vector [(m̂t−1

1 )1, (m̂
t−1
2 )1, (m̂

t−1
3 )1, (m̂

t−1
4 )1] via Message Estimator based on the overwritten

message vector provided from the previous time. Then, the received real message will overwrite
this estimated message vector to reduce the error of estimation. In this example, only (m̂t−1

3 )1 is
overwritten, because agent 1 only receives messages mt−1

3 from agent 3 at this moment.

In addition, once Message Estimator obtains the estimated global message vector, the self-estimation
component (m̂t−1

1 )1 will be taken out. The scheduling process then compares estimated (m̂t−1
1 )1

and real local message mt−1
1 to decide whether to send mt−1

1 to other agents. This sending process,
together with the overwriting, constitutes the communication before the decision.

At the next time step, agent 1 will repeat the above process. Notably, the demonstrated process in
Figure 1 works on each individual agent. In other words, all agents contain the same framework,
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and each one holds its individual modules (i.e., Message Estimator, Message Encoder, Message
Aggregator, and Decision Generator) and performs their individual scheduling and overwriting
processes. The parameters of the four modules are shared by all agents in the system. Next, we
present more details about how various modules and corresponding processes are modeled in the
MBC framework.

4.2 Decision-making with Messages

This subsection describes how the Message Encoder encodes messages and how the Decision
Generator generates actions. Agents in the system use a shared Message Encoder fenc to encode
the observations into messages. Specifically, the observation oti of any agent i is initially encoded
by a fully connected layer FC1, and then further encoded together with collected information from
previous steps by an LSTM layer Hochreiter and Schmidhuber [1997], Hausknecht and Stone [2015]
into mt

i.

Thereafter, agents use a shared individual π to make decisions based on the encoded observations and
aggregated messages. Specifically, the encoded observation mt

i is concatenated with the aggregated
message amt

i. Then, they are input into another fully connected layer FC2 to generate individual
decision ati. In summary, agent i generates an action through the following equation.

ati = fFC2(mt
i||amt

i) (2)

where fFC2 includes the fully connected layer FC2 and the action sampling process and (·||·)
denotes the concatenation operation.

4.3 Estimating Global Messages

This subsection describes how the Message Estimator is centrally trained and how the Message
Estimator uses previous global message vector to estimate the current global messages. Message
Estimator builds up a supervised learning model to estimate the up-to-date global message information
based on messages from the previous step. Since the key to our idea is to reduce the communication
channel overhead by using estimated messages as much as possible instead of received messages,
training an accurate Message Estimator is essential.

To train an accurate Message Estimator, we seek inspiration from model-based reinforcement learning
methods Janner et al. [2019], Nagabandi et al. [2018]. In the model-based MARL methods, agents
model the dynamics of the observations. This dynamics, which determines the joint observation
ot = [ot1, o

t
2, ..., o

t
N ] at time t, is modelled by the to be learned environment model fo:

ôt = fo(ô
t−1,at−1) (3)

where at−1 = [at−11 , at−12 , ..., at−1N ] is the action profile consisting of the actions of all agents at
time step t− 1. Since mt is essentially the encoding of ot, based on Equation (3), we assume that
the dynamics of the messages, which determines the joint message mt = [mt

1,m
t
2, ...,m

t
N ] at time t,

can also be estimated by the learned message model fM .

m̂t = fM (mt−1,at−1) (4)

where m̂t is the estimated joint message. To obtain the joint action at−1, we calculate its components
separately with Equation (2), at−1i = fFC2(mt−1

i ||am
t−1
i ), where amt−1

i = fagg(m
t−1) and fagg

is the function of Message Aggregator. Therefore, since at−1 depends on mt−1, we only require
mt−1 to calculate m̂t in equation (4). In this way, we learn a model for the global dynamic in
Equation (4) instead of on individual dynamic in Nagabandi et al. [2018], Kim et al. [2021]. Because
in the MBC framework, an (overwritten) global message vector is always available for every agent,
we can learn a global model to utilize more information as well as to train a stable message model.

During training, we collect real global messages and actions to train fM in a supervised way. We
use the Mean Square Error (MSE) between the true messages and the estimated messages as the loss
function.

LM (θfM ) = E(mt−1,mt)∼D[mt − fM (mt−1,at−1)]2 (5)

where θfM is the parameter of fM and D is a buffer that stores tuples (mt−1,mt) for t = 1, 2, ..., T .
To better train fM , we use D similar to Janner et al. [2019] to collect data as the training set during
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the interaction of agents with the environment. During training, (mt−1,mt) will be sampled in
batches from D to compute the gradient of Equation 5 and perform parameter updates on fM .

In execution, we deploy the same parameters of the trained fM to each agent locally. However, since
the global information in Equations (4) and (2) is not always available for agent i, we use locally
available information to estimate global message. Considering the general situation of Figure 1,
agent i computes its own estimation on global message (m̂t)i = [(m̂t

1)i, (m̂
t
2)i, ..., (m̂

t
N )i] with the

overwritten message vector (ṁt−1)i = [(ṁt−1
1 )i, (ṁ

t−1
2 )i, . . . , (ṁ

t−1
N )i] from the last time step,

where (ṁt−1
j )i = (m̂t−1

j )i or m
t−1
j depending on whether agent i has received a real message mt−1

j

from j. If a message mt−1
j was received, it will be used to overwrite the estimation (m̂t−1

j )i.

Therefore, in execution, agent i obtains its estimation on global message with the following equation.

(m̂t)i = fM
(
(ṁt−1)i, (â

t−1)i
)

(6)

where (ât−1)i = [(ât−1j )i] is the joint action estimated by agent i and (ât−1j )i =

fFC2((ṁt−1
j )i||fagg((ṁt−1)i)). Agent i needs to estimate the joint action because it cannot

observe the global action at current time step in decentralized execution. Here, agent i is able to
estimate the action of agent j individually because in our framework, different agents maintain
similar overwritten global message, i.e., (ṁt−1)j ≈ (ṁt−1)i, and all agents share the same param-
eters of fFC2 and fagg. The more components of (ṁt−1)i are overwritten, the more accurate this
approximation is. This also means a higher communication overhead as more messages are received.

4.4 Scheduling Messages

This subsection describes how to schedule messages. The scheduling process determines whether
the current local message should be sent to all other agents. The local message scheduling aims to
control the estimation error within a certain boundary. This can be done by checking whether other
agents are able to properly estimate the local message of agent i at this moment. In other words, if
other agents can estimate the message sent by agent i at time step t within the error bound, agent i
does not need to send its local encoded observation mt

i. (Message Estimator is shared and accessible
to all agents in execution). Otherwise, mt

i needs to be sent to other agents to help them recover from
the incorrect estimation.

We propose to schedule the message in a decentralized way. This allows the message dispatching
module to be better deployed in a distributed manner. To do this, it is necessary to use only the local
information available during the execution. As mentioned in Subsection 4.3, each agent estimates
others’ current messages using Equation (6) during execution. Since each agent shares the same
parameters of fM , fFC2, as well as fagg and maintains similar global message vector inputs, we can
use agent i’s estimation on itself to approximate other agents’ estimation on i, i.e., (m̂t

i)i ≈ (m̂t
i)j ,

where j 6= i. In other words, if agent i cannot estimate its own current message mt
i within an error

range, agent i will assume that other agents cannot estimate mt
i neither. Then, agent i should send its

message to other agents to help other agents recover from a wrong estimation.

In summary, we design the message scheduling as the following equation.

Iti =

{
1 if ||(m̂t

i)i −mt
i||2 > δ,

0 otherwise
(7)

where Iti is a binary value that indicates whether agent i sends its messages to other agents at time
step t, || · ||2 indicates L2 norm of a vector, δ is a hyperparameter representing the threshold value.
According to Equation (7), A smaller δ leads to more frequent communication, which improves
performance but increases communication overhead. Conversely, a larger δ reduces communication
frequency, leading to lower performance due to message estimation errors, while also decreasing
communication overhead.

In addition to the scheduling approach in Equation (7), to prevent the cumulative error in message
estimation, we force agents to send messages if they have not sent a message after a time window w.
Besides, when t = 0, we set all agents to send their messages to start the calculation of Equation (6).
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4.5 Aggregating Messages

This subsection describes how to aggregate messages from the current overwritten global message
vector. Since each agent needs to aggregate useful information from N messages, we solve this high
input dimensionality by following the ideas of GATs Casanova et al. [2018], Niu et al. [2021]. In the
calculation of individual agent i, the message in layer l is computed recursively by aggregating the
messages from the last layer l − 1:

(m
t(l)
j )i = σ(

∑
k∈N

(αjk)iW
(l)(m

t(l−1)
k )i) (8)

where (m
t(l)
j )i is the intermediate message component on layer l computed by agent i locally at

time step t, σ(·) is a nonlinear activation function (i.e. LeakyReLU Nwankpa et al. [2018] in our
experiments), N is the set of all agents in the system, W (l) is a learnable weighting matrix shared
among all nodes at layer l, and (αjk)i is the weight coefficient of agent k’s message for agent j, as
viewed by agent i. (αij)p is computed by the attention mechanism Casanova et al. [2018], Niu et al.
[2021]. From Equation (8), it can be seen that the fagg aggregates messages recursively and that the
parameters of the fagg consist of the learnableW (l) at each layer. In L-layer GATs, the input of GATs
first layer is (m

t(0)
j )i = (ṁt

j)i, where (ṁt
j)i comes from the component of the overwritten message

vector (ṁt−1)i. The output of the final layer is the aggregated message of agent i: ami = (m
t(L)
i )i.

5 Experiments

We evaluate MBC on three mixed cooperative-competitive environments which are widely utilized
tasks in previous the state-of-the-art work Zhang et al. [2020], Niu et al. [2021] to demonstrate the
superiority of MBC. All of those baselines target on solving mix cooperative-competitive tasks like
ours. These include CommNet Sukhbaatar et al. [2016] that requires all agents to communicate with
each other, IC3Net Singh et al. [2019] for learning when to send messages, TarMAC+IC3Net Das et al.
[2019] for learning aggregated messages using attention mechanism, GA-Comm Liu et al. [2020] for
learning communication graphs, MAGIC Niu et al. [2021] for centralized message scheduling, and
TMC Zhang et al. [2020] for decentralized message scheduling. Among these baselines, MAGIC is
the state-of-the-art method in terms of agent performance and TMC is the state-of-the-art method in
terms of efficient communication channel. Our code is open source1.

5.1 Performance

We first compare the performance of MBC with the baselines to validate the superiority of MBC in
solving MARL tasks. The performance of MBC and all baselines are presented in Figure 2. The error
bounds (i.e., shadow shapes) indicate the upper and lower bounds of the performance with 10 runs.
In PP-grid and CN-loc, the prey and landmarks are stationary. In these environments, our approach
achieves similar performance to the previous baselines, while our approach shows better sample
efficiency. When it comes to the more challenging PP-loc environment in which preys are moving,
MBC significantly outperforms previous methods and exhibits a smaller performance variance.

5.2 Communication Efficiency

We evaluate the communication efficiency of MBC in this subsection. We define the communication
efficiency using the ratio of performance to channel overhead. The larger this ratio is, the better
ability to achieve higher performance using fewer channels for the algorithm.

Figure 3 compares the communication efficiency of the algorithms. To avoid calculating negative
rewards, we take the algorithms’ reward increment over random policy and normalize them over
CommNet in the way similar to van Hasselt et al. [2016]: rnormalized(alg) =

ralg−rrandom

rCommNet−rrandom
,

where rnormalized(alg) is normalized reward for any alg method to be compared, ralg is the average
reward achieved by alg method, rCommNet and rrandom are the average rewards achieved by
CommNet method and by a random policy, respectively. In our experiments, we consider a message

1https://github.com/shan0126/Model-Based-Communication
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(a) PP-grid (b) CN-loc (c) PP-loc

Figure 2: Learning curves of various communication MARL algorithms in three mixed cooperative-
competitive environments.

(a) Comparison on performance
.

(b) Comparison on channels (c) Comparison on ratio of perfor-
mance to channels

Figure 3: Communication efficiency comparison of various communication MARL algorithms in
three mixed cooperative-competitive environments.

from one agent to another as one communication channel. The normalized channel cnormalized(alg)
for method alg is calculated by: cnormalized(alg) =

calg

N(N−1) , where calg is the average channel
consumed by alg method and N is the number of agent in the system. Figure 3(a) and 3(b) shows
the performance and communication channel of each algorithm. Figure 3(c) presents the ratio of
performance to channel overhead. The results show our MBC method can achieve higher performance
with less channel overhead. Figure 3(c) demonstrates the significant improvement in communication
efficiency of MBC compared to baselines.

As motivated in the introduction, achieving good performance with fewer channels is especially
important in environments where communications are costly. Figure 4 shows the learning curves of
MBC and MAGIC on CN-loc and PP-loc where the cost per communication channel is 0.001, 0.002
and 0.005 respectively. Both MBC and MAGIC use the environmental rewards to learn decisions.

(a) CN-loc (b) PP-loc

Figure 4: The learning curves with communication overhead is counted in the reward.

When the cost of the channel increases, the learning curve of MAGIC shifts significantly downward,
whereas the learning curve of MBC only becomes slightly lower. This indicates that our approach is
more stable and more efficient in environments where communication is costly. It further validate the
feasibility of our method.
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5.3 Channel Dependency

In real-world situations, agents may also need to accomplish tasks with restricted communication
channels. Thus, we further validate the feasibility of our method by examining the influence of
communication channel restriction on the performance of MBC. We compare our MBC with TMC that
has the lowest communication overhead baseline in terms of channel dependency. The performance
changes of two methods over different channels are shown in Figure 5(a). We limit the allowed
communication channels in the training. Dense communication basically allows full communication,
while sparse only allows up to 6 channels. We use these learned models to perform the task and record
how many steps are needed to complete the task when we allow different numbers of communication
channels. The horizontal axis of Figure 5(a) is average channel overhead per time step, and the
vertical axis is the steps required for all predators to catch the prey in the PP-grid environment. The
smaller the required steps, the more efficient the algorithm is in completing the task.

(a) The achieved performance
changes over channels in PP-
grid.

(b) Estimation error of agent
with communication.

Figure 5: Performance changes over channels and estimation error changes over time steps.

As shown in Figure 5, with sparse communication training, TMC always requires more steps to
complete the task than MBC in execution (compare blue and green lines). With dense communication
training, TMC and MBC can achieve similar performance in the execution when there are enough
communication channels. However, when there are fewer communication channels available, the
efficiency of the TMC to complete the task becomes significantly lower, while the performance of
MBC is only slightly reduced, as shown on the orange and red lines. In summary, MBC is more
capable of communication with constraints on channels.

5.4 Interpretation on Message Scheduling

A remarkable feature of MBC is that communication is used to reduce estimation error on global
message. Thus, we investigate the effects of communication (i.e. received messages) on the message
estimation error. To do this, we track dynamic changes of the estimation error on global messages
in one agent and plot them in Figure 5(b). As shown in the figure, the estimation error is decreased
when more then one messages are received from other agents. This indicate the effectiveness of
communication on correcting local estimation on global message.

6 Conclusion and future work

In this paper, we propose MBC which utilizes a message model to estimate up-to-date messages of
other agents instead of always receiving messages from them. A decentralized message scheduling
mechanism is also designed to correct the error of the agent’s message estimation. The proposed
method allows multiple agents to make collaborative decisions with sparse communication. In a
variety of mixed cooperative-competitive environments, MBC shows better performance and lower
communication overhead than the state-of-the-art method. The future work may include: 1) exploring
alternative message prediction loss functions, e.g., predicting only messages influencing the agent’s
decisions, to make the message prediction more helpful for decision making; 2) developing a sparse
communication learning that decides whether to send a message based on a small penalty for sending
messages; 3) formulating a theoretical statement about the quality of joint decision-making based on
the estimated messages never larger than δ.
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