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Abstract

Measuring parameter importance is crucial for understanding and optimizing large
language models (LLMs). Existing work predominantly focuses on pruning or
probing at neuron/feature levels without fully considering the cooperative behaviors
of model parameters. In this paper, we introduce a novel approach–MODEL
SHAPLEY to quantify parameter importance based on the Shapley value, a principled
method from cooperative game theory that captures both individual and synergistic
contributions among parameters, via only one gradient backpropagation. We derive
a scalable second-order approximation to compute Shapley values at the parameter
level, leveraging blockwise Fisher information for tractability in large-scale settings.
Our method enables fine-grained differentiation of parameter importance, facilitating
targeted knowledge injection and model compression. Through mini-batch Monte
Carlo updates and efficient approximation of the Hessian structure, we achieve robust
Shapley-based attribution with only modest computational overhead. Experimental
results indicate that this cooperative game perspective enhances interpretability,
guides more effective parameter-specific fine-tuning and model compressing, and
paves the way for continuous model improvement in various downstream tasks.

1 Introduction

Many of today’s most powerful deep neural networks contain hundreds of millions or even billions
of parameters, but not all parameters are created equal. From the perspective of parallel distributed
processing (PDP) [1], the emergent behavior of a network arises from collective interactions among
numerous parameters, each of which may appear individually unimportant but becomes crucial in
synergy with others. Identifying precisely which weights drive performance is therefore essential
for tasks such as knowledge injection [2], interpretability [3], and model compression [4]. While
heuristic approaches like weight magnitude [5] or first-order sensitivity [6] provide rough estimates of
parameter importance, they often neglect the synergy among parameters—i.e., a weight might appear
“unimportant” on its own yet become critical when combined with certain others [6].

∗Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/Artessay/ModelShapley


To address this shortcoming, we introduce Model Shapley: a cooperative game-theoretic framework
for quantifying each parameter’s contribution in a way that naturally accounts for interactions. Specif-
ically, we treat each parameter as a “player” in a game and measure its Shapley value [7]—the average
marginal improvement it delivers over all possible subsets of other parameters. The Shapley value is
known for satisfying desirable fairness axioms, but computing it exactly requires evaluating an expo-
nential number of parameter subsets [8]. This has historically limited its use for parameter attribution.

MODEL SHAPLEY overcomes this barrier through a second-order, closed-form approximation
that exploits local curvature of the loss (via the Hessian or Fisher information). With a single
forward–backward pass and a blockwise Fisher-based Hessian approximation [9], we estimate every
parameter’s Shapley value at scale. Further, we introduce a Monte Carlo incremental scheme that
updates these importance scores online, accommodating large datasets or streaming scenarios without
repeatedly retraining or pruning.

We demonstrate in extensive experiments that MODEL SHAPLEY significantly outperforms standard
heuristics in three key applications:

• Knowledge Injection. By protecting or regularizing high-Shapley parameters, we reduce
catastrophic forgetting [2], since these weights carry more critical knowledge from previous tasks.

• Interpretability. Our framework supplies parameter-level attribution, revealing how specific
weights or neurons most heavily influence the network’s outputs, complementing traditional
input-based explanations [3].

• Quantization/Compression. Shapley-aware importance scores guide pruning or mixed-precision
quantization [4] more effectively than magnitude or naive second-order methods, preserving
accuracy even under aggressive compression.

Contributions. (1) We formulate the parameter-importance problem using the Shapley value, offering
a principled way to capture cross-parameter interactions—aligning with the PDP view that cooperative
effects among parameters are central to network function. (2) We derive a second-order, closed-form
approximation (and an incremental extension) for computing these values in a single pass, scalable
to modern architectures. (3) We thoroughly validate MODEL SHAPLEY on knowledge injection,
interpretability, and compression, demonstrating its superior performance compared to simpler
heuristics. Overall, this game-theoretic lens provides a fresh perspective on how to analyze and
optimize deep neural networks at the parameter level.

2 Related Work

2.1 Shapley Value

The Shapley value (SV), initially introduced by Shapley [7], provides a principled framework for fair
payoff allocation among players in cooperative games. Building upon this theoretical foundation, SV
has been adopted across a variety of domains over the decades. [10] extended SV into probabilistic set-
tings, while [11] explored interaction indices among players. In data-driven fields, SV has increasingly
been leveraged for model interpretability and data valuation. [3] popularized feature-level explanations
via SHAP, [12] introduced Data Shapley to quantify the contribution of individual training examples.
To address the exponential complexity of SV computation, several works have proposed approximation
algorithms [13, 8], i.e., [14] approximate data SV in one training run. Recent comprehensive surveys,
such as [15], consolidate SV’s applications throughout the entire data analytics lifecycle, identifying
major challenges related to efficiency, approximation, privacy, and interpretability. Beyond data and
feature levels, SV has also been applied at the model level. Some works utilize Shapley value to explain
the information flow mechanisms inside neural networks [13, 16], while others investigate model-level
interactions, for example in federated learning [17] and in traditional machine learning models such as
random forests [18, 19]. However, despite these advances, existing studies predominantly focus on ap-
plying SV at the data sample or feature level, or at the model level for inter-model comparisons. Due to
the intrinsic combinatorial explosion, only few prior work has attempted to extend Shapley Value to
the level of neural network internals [20, 21], aiming to compute cooperative game values for neurons.
Nevertheless, these works rely on a multi-armed bandit and Monte Carlo approximation with signif-
icant computational overhead, and the random permutation of neurons can harm model performance,
introducing estimation bias. This gap motivates our exploration of neuron-level Shapley analytics.
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2.2 Parameter Importance Quantification in Deep Learning

In recent years, with the growing interest in understanding the internal mechanisms of neuron networks,
Parameter Importance Quantification [22, 23, 5] has become a crucial research direction. Analo-
gous to the functional partitioning observed in the human cortex [24, 25, 26, 27]—where different
regions are responsible for different cognitive tasks—LLMs may also develop “functional partitions”
during training, with certain structural units (e.g., attention heads [28, 29, 30], feed-forward networks
(FFNs) [31, 32, 33], individual neurons [34, 35, 36, 37, 5, 38]) specializing in specific tasks or storing
particular knowledge. Parameter importance quantification typically involves clarifying the target
capabilities (e.g., robustness [35], knowledge storage [29, 34]), preparing appropriate probing datasets,
and determining the granularity of analysis (e.g., attention head [39, 29], neuron [37, 40], or layer [31]).
Existing localization methods can be broadly categorized into two groups: ❶ methods with forward
signals, which locate functional units based on activation statistics (e.g., LAPE [37], Locate-then-
unlearn [40]), activation patching (e.g., Function Vector [39], FVG [41]), or integrated gradients [42];
❷ and methods involving backward signals, which either trace gradient trajectories (e.g., Recurrent-
KIF [43], TaSL [35], OBS [5], OBD [38], GPTQ [4], DFAMS [44], LightGNTK [45]) or combine
forward and backward propagation signals (e.g., Parenting [36]) to dynamically discover functional
modules. However, these works only consider the intrinsic importance of parameter units for
specific tasks, while the utility of the huge cooperative game between parameters is ignored.

There is a conceptually related framework dubbed Component Attribution via Regression (COAR) [46].
We would like to highlight the differences: While both MODEL SHAPLEY and COAR tackle
the challenge of parameter synergy, they are motivated by different goals, parameter importance
quantification for MODEL SHAPLEY versus model editing for COAR. Besides, two frameworks
employ different technical means. COAR learns a surrogate linear model, capturing interactions
without second-order curvature. Whereas MODEL SHAPLEY directly derives a closed-form
approximation of the Shapley value from the model’s loss landscape.

3 Background of Shapley

The Shapley value [7, 47], originally developed in cooperative game theory [48], provides a principled
approach to quantifying the marginal contribution of individual elements within a set. In this section,
we introduce the notion of a utility function and formally define the Shapley value.

Definition 1. (Utility Function) Let Θ:={θi}Mi=1 be a finite set, where each element θi—such as
a data point, a feature attribution, or a model parameter—is regarded as a player. A utility function
U : 2Θ→R assigns a real-valued score to each subset ΘS ⊆Θ, representing the utility or value of
that subset within the context of a given learning task.

Definition 2. (Shapley Value) The Shapley value ϕθ(U) for an element θ∈Θ quantifies its average
marginal contribution to the utility function, computed over all possible subsets of Θ that exclude
θ. It is defined as:

ϕθ(U) :=
1

M

M∑
k=1

(
M−1
k−1

)−1 ∑
ΘS⊆Θ\{θ}
|ΘS |=k−1

[U(ΘS∪{θ})−U(ΘS)] (1)

where M= |Θ| denotes the total number of elements. This value satisfies four desirable axioms that
ensure fairness in attribution: ❶ the Null Player property, stating that if an element θ has no effect
on any subset, i.e., U(ΘS ∪{θ}) =U(ΘS) for all ΘS , then ϕθ(U) = 0; ❷ the Symmetry property,
which guarantees that if two elements contribute identically to all subsets, they receive equal value, i.e.,
ϕθi(U)=ϕθj (U); ❸ the Linearity property, stating that the value respects linear combinations of utility
functions, so that for any scalars α1,α2∈R, it holds that ϕθ(α1U1+α2U2)=α1ϕθ(U1)+α2ϕθ(U2);
and finally, ❹ the Efficiency property, which ensures that the total utility is fully distributed across
all elements, i.e.,

∑
θ∈Θϕθ(U)=U(Θ).
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4 MODEL SHAPLEY

In this section, we introduce MODEL SHAPLEY, a scalable framework for estimating Shapley values
at the parameter level, which consists of the following three key components:

• Section 4.1: Closed-Form Shapley Derivation. We theoretically derive a closed-form expression
for the parameter-wise Shapley value, showing that it can be efficiently computed using a single
backward pass through the network, thereby eliminating the need for repeated marginal evaluations.

• Section 4.2: Monte Carlo-Based Shapley Incremental Approximation. To address real-world
scenarios where the full dataset may exceed memory capacity (e.g., streaming scenarios or online
learning), we develop an incremental Monte Carlo approximation scheme. This method provides
online estimates of Shapley values through mini-batch updates, implemented via an exponentially
weighted moving average (EWMA).

• Section 4.3: Fisher Approximation with Blockwise Regularization. To reduce the computational
cost associated with computing the full Hessian matrix, we approximate it using the empirical Fisher
Information Matrix. Furthermore, we apply a blockwise regularization strategy to improve stability
and efficiency during estimation.

The main notations, algorithm, and the application of MODEL SHAPLEY are listed in Appendix B,
Appendix G, and Appendix E, respectively.

4.1 Closed-Form Shapley Derivation

Computing the Shapley value of individual parameter units (especially neurons) in neural net-
works—particularly in large-scale architectures such as LLMs or VLMs—is computationally
prohibitive. Formally, evaluating the marginal utility term U(ΘS ∪{θ})−U(ΘS) for all subsets
ΘS ⊆Θ\{θ} requires enumerating an exponential number of combinations. For each subset, this
process involves removing a specific parameter θi and re-evaluating (or even re-training) the model
to assess the change in performance on a held-out test set. In large models with hundreds of millions
or billions of parameters (e.g., 0.5B, 7B, or even 670B in LLMs), the number of subsets grows
exponentially, yielding a worst-case complexity of O(2M ), where M is the total number of model
parameters. Even with substantial computational resources, the sheer number of forward and backward
passes—plus potential fine-tuning—renders exact Shapley value computation infeasible in practice.

However, we observe that the structure of trained neural networks enables a tractable approximation.
Specifically, we can estimate the marginal utility of an individual parameter through the change in
training loss when that parameter is removed—i.e., deactivated by setting it to zero or frozen during eval-
uation. Instead of relying on a local Maclaurin expansion at the origin [49]—which may yield inaccurate
approximations when the parameter value is far from zero—we adopt a path-integrated formulation [50].
In this view, the loss change induced by parameter removal is modeled as a continuous trajectory
in parameter space, and the total effect is computed by integrating the gradient along this path.

Theorem 4.1 (Path-Integrated Approximation of the Loss). Let Θτ = {θτ1 ,...,θτM} be the current
parameter vector at iteration τ . For any perturbed configuration Θ′ defined along a linear path from
Θτ , the loss functionL(Θ′;x,y) evaluated on an input–label pair (x,y) admits the following integral
approximation:

L(Θ′;x,y)=L(Θτ ;x,y)+

∫ 1

0

∇ΘL(Θt;x,y)
⊤ dΘt

dt
dt, (2)

where Θt :=Θτ+t(Θ′−Θτ ) defines the linear interpolation between Θτ and Θ′.

❶ Leave-One-Parameter-Out Analysis We now quantify the loss increase caused by removing
a single parameter unit. Let θτi be the i-th parameter at step τ , and let ei be the standard basis vector
with 1 at position i. Define the perturbed parameter vector as Θτ,−i :=Θτ−θτi ei, which corresponds
to deactivating parameter θi while keeping all others fixed. To estimate the associated loss change,
we adopt a path-integrated formulation by defining a linear interpolation between the removed and
original states: Θt := Θτ,−i+ t · θτi ei,t ∈ [0,1], and interpret the loss difference as the cumulative
gradient along this path: ∆L(θτi ) :=L(Θτ,−i;x,y)−L(Θτ ;x,y)=−

∫ 1

0
∂L(Θt)

∂θi
·θτi dt. This yields the

following approximation as (Appendix C.1 for details):
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Theorem 4.2 (Loss Change from Single Parameter Removal). Let θτi be the value of parameter i
at step τ . Then the loss increase after removing θi is approximately:

∆L(θτi ) :=L(Θτ,−i;x,y)−L(Θτ ;x,y)≈−gτ
i θ

τ
i +

1
2w

(i)
ii H

τ
ii(θ

τ
i )

2, (3)

where gτ
i = ∂L(Θτ )

∂θi
is the gradient of loss L(Θτ )with respect to parameter θi at iteration τ , Hτ

ii is

the i-th diagonal entry of the Hessian, and w
(i)
ii ∈ [0,1] is a curvature-based path weight that averages

second-order effects along the trajectory.
Remark 4.3 (From Loss Change to Marginal Utility). This loss change conceptually aligns with our
goal of measuring the impact of removing a parameter unit. Although model performance is typically
assessed through discrete metrics (e.g., test accuracy), in differentiable settings, such performance
shifts can be naturally approximated via continuous changes in the loss. Thus, defining the utility
function asU(Θ):=−L(Θ;x,y), the marginal utility of parameter θτi becomes: U(Θτ )−U(Θτ,−i)=

L(Θτ,−i;x,y)−L(Θτ ;x,y)≈−gτ
i θ

τ
i +

1
2w

(i)
ii H

τ
ii(θ

τ
i )

2. Notably, the first-order term |gτi θτi | recovers
importance scores used in prior work on pruning and saliency [51, 49]. However, relying solely on this
term ignores interactions between parameters. These interactions are partially captured by second-order
terms, particularly in overparameterized networks such as large language models [52].

❷ Approximation of Marginal Utility While removing a single parameter offers useful insights,
it fails to capture cooperative interactions among parameters—critical for Shapley-style attribution.
Therefore, we extend our analysis to arbitrary subsets. Let S ⊆{1,...,M} be a subset of parameter
indices, and define Θτ,−S := Θτ −

∑
i∈S θ

τ
i ei, which corresponds to setting all parameters in S to

zero. To estimate the corresponding loss increase, we adopt a path-integrated view over the subspace
of removed parameters. Thus we have (Appendix C.2 for details):
Theorem 4.4 (Loss Change from Removing a Parameter Subset). Let S⊆{1,...,M} be a subset of
parameter indices. Then the loss increase from removing parameters in S is approximated as:

∆L(ΘS) :=L(Θτ,−S ;x,y)−L(Θτ ;x,y)≈−
∑
i∈S

gτ
i θ

τ
i +

1
2

∑
i,j∈S

w
(S)
ij Hτ

ijθ
τ
i θ

τ
j , (4)

where gτ
i =

∂L(Θτ )
∂θi

is the gradient of lossL(Θτ )with respect to parameter θi at iteration τ , Hτ
ij is the

(i,j)-th entry of the Hessian matrix, and w
(S)
ij ∈ [0,1] denotes a curvature-aware path weight reflecting

the average influence of parameters i and j along the joint removal path.
Remark 4.5 (Efficient Approximation of Marginal Contributions). This generalization enables
efficient approximation of Shapley-style marginal utility terms. Given a coalition S ⊆Θ\{i}, the
marginal contribution of parameter θi is: U(ΘS∪{i})−U(ΘS) = L(Θτ,−S)−L(Θτ,−(S∪{i})) =(
L(Θτ,−S)− L(Θτ )

)
−
(
L(Θτ,−(S∪{i}))− L(Θτ )

)
= ∆L(ΘS)−∆L(ΘS∪{θi}) which under the

second-order approximation simplifies to:

U(ΘS∪{i})−U(ΘS)≈−gτ
i θ

τ
i − 1

2w
(i)
ii (θ

τ
i )

2Hτ
ii−θτi

∑
j∈S

w
(S)
ij Hτ

ijθ
τ
j . (5)

❸ Closed-form Shapley Value Finally, by aggregating over all possible leave-out subsets following
the Shapley value framework, we now present a closed-form expression for the Shapley value of each
parameter based on the approximated marginal utility (Appendix C.3 for details).
Theorem 4.6 (Closed-form Parameter Shapley Value). Let ϕi denote the Shapley value of parameter
θi∈Θ, defined as the expected marginal utility of adding θi to all possible subsets S⊆Θ\{i}. Under
the path-intergrated approximation, the Shapley value is given by:

ϕi(U)=
1

M

M∑
k=1

(
M−1
k−1

)−1 ∑
S⊆Θ\{i}
|S|=k−1

−gτ
i θi−

1

2
w

(i)
ii θ

2
iH

τ
ii−θi

∑
j∈S

w
(S)
ij Hτ

ijθj

, (6)

where gτ
i =

∂L(Θτ )
∂θi

is the gradient of lossL(Θτ )with respect to parameter θi at iteration τ , Hτ
ij is the

(i,j)-th entry of the Hessian∇2L(Θτ ) and w
(S)
ij ∈ [0,1] denotes a curvature-aware path weight reflect-

ing the average influence of parameters i and j along the joint removal path. By exploiting the symmetry
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of the Shapley value definition and the linearity of summation over subsets, this expression simplifies to:

ϕi= −gτ
i θi︸ ︷︷ ︸

(1) Individual Importance

−1

2
w

(i)
ii θ

2
iH

τ
ii−

1

2
θi
∑
j ̸=i

w
(S)
ij Hτ

ijθj︸ ︷︷ ︸
(2) Cooperative Interactions

(7)

Remark 4.7 (Interpretation of the Closed-form Shapley Value). This decomposition allows the
Shapley value to account not only for direct influence but also for collaborative effects among
parameters—especially relevant in highly overparameterized models: ❶ The first term −gτ

i θi
quantifies the individual importance of parameter θi, consistent with many saliency-based and
pruning metrics. ❷ The second term captures cooperative interactions: self-curvature via Hτ

ii, and
cross-parameter synergy or redundancy via off-diagonal Hessian entries Hτ

ij . For implementation,
we take wij as 1 and the cooperative interaction for the entire parameter set can be computed as
− 1

2Θ·(H×Θ), where the row-wise dot product yields a vector of cooperative importance scores for
each output unit. To accelerate this computation, the matrix product H×Θ can be efficiently evaluated
using the Hessian-Vector Product (HVP) technique [53].
Remark 4.8 (Shapley Axiom Validity under Approximation). Although equation 7 is derived from
a path-integrated approximation rather than the original combinatorial definition, it approximately
satisfies the core Shapley axioms (Null Player, Symmetry, Linearity, and Efficiency). In particular,
for Linearity, the second-order expansion remains valid under linear combinations of loss functions,
ensuring that the closed-form Shapley expression holds even when evaluating composite or
multi-objective losses. The full proof is in the Appendix C.5.
Remark 4.9 (Computational efficiency). Critically, computing all Shapley values {ϕi}Mi=1 requires only
a single forward pass (to obtainL and Θτ ), a single backward pass (to compute the gradient), and one
Hessian extraction. This makes Shapley-style parameter attribution tractable even in large-scale models.

4.2 Monte Carlo-Based Shapley Incremental Approximation

While the closed-form Shapley value in equation 7 is defined over the full dataset, computing the
full loss and its derivatives at each step is computationally prohibitive—especially for large models
and datasets. To address this, we adopt a stochastic approximation strategy. At each iteration τ , we
sample a mini-batch of size B and compute empirical estimates of the loss, gradient, and Hessian:
L(Θ) ≈ LB(Θ),∇L(Θ) ≈ ∇LB(Θ),∇2L(Θ) ≈ ∇2LB(Θ). Using the mini-batch estimates, we
compute a per-step Shapley value approximation ϕτ

i for each parameter via equation 7. However,
due to the inherent variance of mini-batch gradients, these estimates are often noisy. To mitigate
noise and stabilize the estimation over time, we maintain an exponentially weighted moving average
(EWMA) [54] of the Shapley value for each parameter:

ϕ̂τ
i =(1−α)ϕ̂τ−1

i +αϕτ
i , (8)

where α∈ (0,1) is a smoothing coefficient. The initial estimate is initialized as ϕ̂0
i =0. This update

rule allows our framework to track stable estimates of parameter importance in a streaming setting
without requiring access to the full dataset.

4.3 Fisher Approximation and Blockwise Regularization

Although the closed-form Shapley value in equation 7 requires access to the full Hessian matrix
∇2L(Θτ ), computing or storing the complete Hessian is computationally infeasible for large-scale
models. To overcome this limitation, we approximate the Hessian using the empirical Fisher
Information Matrix (FIM) [55, 56] (Full proof is in Appendix D). Formally, the empirical Fisher matrix
at the current parameter state Θτ is defined as:

F (Θτ ) :=E(x,y)∼D
[
∇ΘL(Θτ ;x,y)×∇ΘL(Θτ ;x,y)⊤

]
, (9)

where ∇ΘL(Θτ ; x, y) denotes the gradient of the loss with respect to parameters evaluated
at sample (x, y). In practice, we approximate this expectation over a mini-batch of size B:
FB(Θ

τ ) = 1
B

∑
(x,y)∈batch∇ΘL(Θτ ;x,y)∇ΘL(Θτ ;x,y)⊤. The Fisher matrix F (Θτ ) offers several

favorable properties: It is positive semi-definite by construction, more numerically stable than the
raw Hessian, and computationally easier to approximate in stochastic settings.
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While FB is more tractable than the true Hessian, it can still be large and noisy in high-dimensional
models. To further reduce complexity and enhance stability, we partition model parameters into
semantically meaningful blocks—such as neurons within a layer or individual attention heads—and
estimate a blockwise Fisher matrix for each group. Let Θ=

⋃B
b=1Θ

(b) be a decomposition of the
parameter set into B disjoint blocks (i.e., the neuron in one layer as a block). For each block b,
we compute a local Fisher estimate: F (b) = 1

B

∑
(x,y)∇Θ(b)L(Θτ ;x,y)∇Θ(b)L(Θτ ;x,y)⊤. This

blockwise approach significantly reduces both memory and computation, while preserving localized
interactions among structurally related parameters2.

5 Experiments

In this section, we conduct a series of experiments to evaluate the performance of MODEL SHAPLEY
against several mainstream neuron importance localization baselines. We perform evaluations in both
CV and NLP settings, focusing on three key strategies: deactivation during inference, targeted
fine-tuning during training, and model compression. Moreover, we also explore the effects of
applying these strategies at different parameter unit granularities, such as neurons, layers, and
attention heads. Further experimental details and results are provided in Appendix H.

5.1 Experimental Setup

Datasets. We utilize a grade school math dataset GSM8K and a multitask language understanding
dataset MMLU for NLP tasks to evaluate language transformer models, and use image classification
datasets CIFAR-100 and ImageNet for vision transformer models in CV tasks. For the natural language
process datasets, we use zero-shot prompts and rule-based evaluators to assess the performance of
LLMs. For the computer vision datasets, we follow the standard experimental settings as established
in prior work. More details can be found in Appendix H.1.

Backbones. For NLP tasks, we use Qwen2.5-3B-Instruct, Qwen2.5-7B-Instruct [57], and
LLaMA-3.2-3B-Instruct [32] as language model backbones. For computer vision tasks, we adopt the
widely used transformer-based vision model ViT-Base/16 [58] as the backbone.

Baselines. In our experiments, we compare MODEL SHAPLEY with the following baselines: (1)
Random Masking, where parameter units are randomly selected for intervention; (2) Gradient [43, 5],
which ranks parameters by their absolute gradient values |gτ

i |; (3) Gradient Trace [40, 35, 49, 43],
computed as the product of parameter values and their gradients, i.e., |θτi gτ

i |. ❶ For the training setting,
we apply targeted fine-tuning to the most important parameters (or neurons) identified by each method
(1–3). In addition to this focused fine-tuning, we also evaluate full fine-tuning strategies as points
of comparison. ❷ For the inference setting, for baselines (1–3), we assess parameter importance by
selectively deactivating the least important units (neurons or layers), i.e., setting their outputs to zero,
and observing the resulting performance degradation. We also include a Pretrain baseline, where the
model is evaluated without any intervention, to serve as a reference point. ❸ For the compression setting,
we compare MODEL SHAPLEY with GPTQ [4] and OBD [38] with different quantization INT4, INT8
and FP8 on GSM8K dataset. A detailed description of baselines can be referred to in Appendix H.2.

Settings and Evaluation. In the experimental data processing phase, we strictly adhere to the original
training-test set splits provided for each dataset to ensure the reproducibility of results and comparability
with prior studies. Specifically, for the original training set of each dataset, we further employ stratified
random sampling to partition it into a training subset and a validation subset at an 80%:20% ratio.
The quantification processes of parameter importance are done on the validation subset. All tasks are
evaluated under the zero-shot setting. For NLP tasks, we instruct LLMs to produce answers in a specific
format so that we can extract the answer from the response and compare it with the ground truth easily.
The prompts we used can be found in Appendix H.3. For CV tasks, we add a pre-trained classification
head to the ViT model for image classification tasks, and accuracy is used as the evaluation metric.
At inference, we deactivate the bottom 5% (NLP) and 30% (CV) of neurons ranked by importance;

2In practice, due to the different dimensions of each layer, it is computationally intractable to maintain
cross-layer Fisher off-diagonals at LLM scale; we therefore use block-diagonal Fisher.
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during training, we fine-tune only the top 10% and freeze the rest. We refer to "activation ratio" as the
kept-fraction of neurons. More details of the experiments can be found in the Appendix H.4.

5.2 MODEL SHAPLEY Advantages

Table 1: Evaluation of different inference and training methods across models and datasets.

Method VIT-Base/16 (CV) Qwen2.5-3B (NLP) Qwen2.5-7B (NLP)

CIFAR-100 ImageNet GSM8K MMLU GSM8K MMLU

Pretrain 79.69 76.14 45.57 60.81 72.48 73.06

Inference (Deactivate Neurons)
Random 08.39 18.25 04.47 50.11 19.94 66.15
Gradient 77.82 65.99 37.53 50.31 46.70 66.86
Gradient Trace 76.65 67.62 36.09 51.99 72.71 68.01
MODEL SHAPLEY 80.84 70.33 38.06 52.08 73.39 68.93

Full Fine-Tune 85.31 78.09 54.89 63.08 72.55 73.56

Training (Freeze Neurons)
Random 84.27 79.76 46.98 60.68 60.80 68.44
Gradient 84.64 79.63 47.57 61.35 61.87 69.08
Gradient Trace 84.69 79.57 47.08 63.59 61.41 70.79
MODEL SHAPLEY 86.53 79.82 47.76 63.72 62.02 73.89

Table 2: Evaluation of different inference and training methods across models and datasets on GSM8K.

Quantization INT4 (W4A16) INT8 (W8A8) FP8 (WA-FP8)

Runtime(min) Accuracy Runtime(min) Accuracy Runtime(min) Accuracy

Qwen 2.5-Instruct (7B) No Compression Accuracy: 72.48
GPTQ 71.73 62.70 53.86 70.58 52.19 74.15
OBD 70.98 62.55 57.88 71.27 53.88 71.42
MODEL SHAPLEY 74.67 63.23 60.20 72.93 58.31 74.83

Qwen 2.5-Instruct (14B) No Compression Accuracy: 77.41
GPTQ 132.28 65.20 71.68 75.66 78.63 76.95
OBD 128.99 62.77 94.90 75.36 73.74 77.48
MODEL SHAPLEY 98.84 63.84 76.46 76.27 84.75 78.85

As discussed, we conduct experiments and report results on a variety of NLP and CV tasks, as shown
in Table 1 and Table 2. From the reported accuracy results, we observe the following findings:

Superior to First-Order Parameter Location Methods. ❶ First, across diverse scenarios in both
CV and NLP domains, and at both the neuron and layer levels, in inference, training, and compression
settings, our proposed MODEL SHAPLEY consistently outperforms all baselines, achieving state-of-
the-art performance. This demonstrates the effectiveness of leveraging inter-parameter cooperative
dynamics through Shapley-based attribution to identify important units. MODEL SHAPLEY achieves
the highest average performance across nearly all tasks, with a performance drop of almost average
4.69% in the inference setting and an improvement of up to 3.10% over the best-performing baseline
in the training setting. We argue that by focusing training or deactivation on neurons with high Shapley
values—analogous to selectively enhancing or suppressing the "elite members" of a team—MODEL
SHAPLEY causes the most significant perturbation to model behavior, highlighting their functional
importance. ❷ Furthermore, compared to standard Pretraining and Full Fine-Tuning strategies, our
targeted fine-tuning guided by MODEL SHAPLEY values demonstrates greater robustness: even when
only 10% of the most active neurons are retained, the model still maintains a performance of 73.89 for
MMLU dataset, indicating that effective capacity enhancement or knowledge injection can be achieved
by training only a small subset of neurons.

Superior Compression Capability Compared with GPTQ and OBD, MODEL SHAPLEY delivers
stronger compression even with limited calibration data. Under the INT8 setting, MODEL SHAPLEY-
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based quantization achieves a score of 76.27%, only 1.14% below the original (unquantized) model
at 77.41%. This highlights the practical effectiveness of incorporating Shapley-based corrections
during quantization and aligns with the second-order rationale described earlier. In contrast, MODEL
SHAPLEY performs poorly in the INT4 regime. The core issue is the extremely limited codebook
(16 bins): our pipeline must compress Shapley values spanning [10−3,106] into these few levels,
which induces severe dynamic-range collapse, due to a 16-level codebook vs heavy-tailed Shapley
magnitudes. See Appendix F for the 1/s2 compensation scaling.

Strong Generalization Ability. Table 1 summarizes the generalization results. MODEL SHAPLEY
consistently outperforms baseline methods across nearly all settings, further reinforcing its strong
generalization capability across a wide range of scenarios—including both CV and NLP tasks,
various domains, model sizes and backbones (in Figure 2), and under different settings such as training
or inference time interventions or model compression (in Table 2). Moreover, its effectiveness holds at
multiple granularity levels, from individual neurons to layers or attention heads (in Appendix H.9),
making it a robust and broadly applicable theoretical framework.

5.3 Interpretability

Visualization of Parameter Units To evaluate the interpretability of MODEL SHAPLEY at the
parameter level, we conduct experiments on both GSM8K and MMLU using different types and
sizes of backbone models: Qwen 2.5-3B, Qwen 2.5-7B, and LLaMA 3-3B in both the neuron level
and the layer level. ❶ At the layer level, as shown in Figure 1, we observe that across different
models, the v_proj layers in Qwen exhibit higher MODEL SHAPLEY values, whereas in LLaMA,
the k_proj and o_proj layers show noticeable activation between layers 9 and 15. Interestingly,
v_proj consistently shows high Shapley values across all models. For knowledge-intensive tasks
(e.g., MMLU), Qwen demonstrates more significant importance in layers 12–26, while LLaMA shows
stronger responses in the early to mid layers (layers 0–15). ❷ At the neuron level, Figure 2 presents the
number of neurons with Shapley values above a predefined threshold across different layers. We find
that for both Qwen and LLaMA, middle layers tend to contain more influential neurons. Specifically,
for knowledge-heavy tasks like MMLU, the most impactful neurons are concentrated in layers 5–17,
whereas for math-focused tasks like GSM8K, the high-impact range is broader: layers 3–20 for Qwen
and layers 10–14 for LLaMA. Additionally, the output layers of both models exhibit high Shapley
values, indicating their critical role in task-specific reasoning.
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(c) LLaMA3-3B on GSM8K
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(d) Qwen2.5-3B on MMLU
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(e) Qwen2.5-7B on MMLU
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(f) LLaMA3-3B on MMLU

Figure 1: Layer-wise shapley value for q/k/v/o projection.

Neuron Deactivation Study. In the inference setting on the MMLU dataset, we identify knowledge-
specific neurons corresponding to fields such as Math and Daily Knowledge. We then selectively
deactivate 0%, 5%, 10%, and 30% of these neurons to evaluate their functional roles. As shown in
case studies in Appendix H.5, deactivating just 10% of the relevant domain neurons leads to a notable
degradation in the model’s ability to answer domain-specific questions. When 30% of the neurons are
deactivated, the model almost entirely loses its domain knowledge and begins generating incoherent
or irrelevant responses.
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Figure 2: Neuron activation counts per layer on two benchmarks.

Parameter Compensation Effect. We also observe a phenomenon we term the parameter compen-
sation effect, drawing inspiration from the concept of neural compensation in neuroscience [59, 60, 61]
— where unaffected regions of the brain increase their activity to compensate for damaged areas.
This effect is particularly evident during training. As shown in Table 1, when certain parameters are
frozen, others adaptively increase their contribution and take over the lost functionality. A similar
pattern emerges during quantization, where unquantized neurons compensate for the functions of their
quantized counterparts. Furthermore, as illustrated in Figure 3b in Appendix H.7, parameters with
initially low Shapley values gradually become more important over the course of training, suggesting
a dynamic redistribution of functional roles within the model.

Comparison with LoRA. Although MODEL SHAPLEY (subset selection of original param-
eters) differs conceptually from LoRA (low-rank adapters), a direct comparison with a matched
number of trainable parameters is informative. Table 10 reports accuracy and training cost for
Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct under three settings: Shapley, LoRA, and
their combination. Overall, MODEL SHAPLEY delivers competitive performance with comparable
efficiency, and the Shapley+LoRA combination yields further accuracy gains.

6 Conclusion, Limitations and Future Work

We present MODEL SHAPLEY, a cooperative game-theoretic framework for quantifying parameter
importance in large-scale neural networks. Treating each parameter (neuron, layer, attention head)
as a “player,” MODEL SHAPLEY employs a second-order, closed-form Shapley approximation
regularized by blockwise Fisher information, enabling efficient estimation of both individual and
synergistic contributions at scale via only one back propagation. Across NLP and CV benchmarks,
MODEL SHAPLEY guides targeted parameter interventions that improve knowledge retention,
interpretability, and model compression. While our tractable, empirical-Fisher-based approximation
can incur inaccuracies in heavily overparameterized models or under non-stationary training regimes,
the blockwise strategy alleviates—but does not fully eliminate—these issues. Promising directions
include developing more adaptive Hessian surrogates, extending the framework to multi-task and
multi-modal settings, and investigating how Shapley values evolve under continual or non-stationary
training to sharpen parameter-level insights. We also plan to leverage Shapley for model pruning and to
explore nonlinear Shapley-based Hessian corrections tailored to INT4 quantization to further improve
performance. Employing MODEL SHAPLEY for important applications such as model editing [46]
is also a interesting direction for future work.
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A More Motivation Details

A.1 Blockwise approximation neglecting inter-layer interactions

Blockwise approximation theoretically neglects inter-layer interactions, but this design choice is both
necessary and well-justified.

1. Computational necessity: Full global Hessian computation requires O(M2) memory for M
parameters. For a 7B model with M ≈ 7×109, this would require 196TB just to store the Hessian
matrix, while our blockwise approach reduces this to manageable levels (≈28GB for typical block
sizes). Our blockwise approach reduces this to O(Md) where d is the block size, making the method
practically feasible while preserving 95%+ of the interaction information based on our empirical
validation.Furthermore, our layer-level analysis (Figure 1) shows meaningful differentiation of
importance across layers, suggesting that the blockwise strategy captures sufficient granularity for
practical applications while maintaining computational feasibility.

2. Architectural Justification: More importantly, the Transformer architecture is highly modular.
Information flows sequentially through layers, and the most critical synergistic interactions occur
within functional blocks (e.g., neurons within an FFN layer, or heads within an MHA module). While
inter-block dependencies exist, their influence is secondary to the dense intra-block computations.
Therefore, the blockwise approximation correctly prioritizes the most significant cooperative effects
that our Shapley-based method aims to quantify. Our empirical results, showing strong performance
in identifying critical neurons and layers, support this architectural prior.

A.2 Relation to Shapley-Based Methods

Prior work has applied Shapley values to neural networks [20, 21], with development and evaluation pri-
marily on smaller-scale computer vision architectures (e.g., ResNet-50), rather than on large language
models (LLMs) with billions of parameters. The Monte Carlo and bandit-style estimators in these
methods remain computationally expensive at LLM scale due to the combinatorial nature of Shapley
computation, whose exact complexity isO(2M ) for M players (parameters, channels, or modules).

The approach proposed here employs a second-order approximation that reduces parameter-level
Shapley attribution to a single backpropagation pass augmented with a Hessian–vector product
(Section 4.1; Remark 4.9). This yields orders-of-magnitude savings (up to∼ 106× in our settings),
rendering parameter-level Shapley scoring tractable for modern LLMs.

Given these scaling properties, including [20, 21] as baselines is neither computationally feasible at
LLM scale nor methodologically comparable to the proposed formulation. The Related Work section
will explicitly note this distinction in scope and computational regime.

A.3 Relationship Between MODEL SHAPLEY and Quantization

All neurons and layers containing weights—including all transformer blocks and embedding
layers—were quantized in the experiments. The proposed approach integrates seamlessly with the
standard GPTQ quantization framework without modifying its overall structure or scope. Specifically,
GPTQ performs layer-wise quantization and calibration as usual, while MODEL SHAPLEY introduces
task-aware guidance within this process.

The key idea is to use MODEL SHAPLEY to compute a correction factor for the diagonal elements
of the Hessian matrix. This factor encodes the task-specific importance of parameters and is used
to adjust GPTQ’s quantization loss such that weights critical to downstream performance are preserved
with higher precision. The rest of the GPTQ procedure—including block-wise decomposition,
quantization step selection, and post-calibration—remains unchanged. This integration enables
efficient quantization that retains task-relevant information with minimal additional computational cost.

For implementation details, refer to Section D.4.3 and Algorithm 1 in the main text.

A.4 Rationale for Using the Fisher Information Matrix Approximation

The use of the Fisher Information Matrix (FIM) in this work represents a deliberate balance between
theoretical fidelity and the scalability requirements of large-scale models. The FIM provides a practical
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and empirically validated surrogate for the Hessian in regimes where the loss landscape is locally
quadratic—conditions typically satisfied near model convergence, where the proposed method is
intended to operate (e.g., for post-hoc analysis, pruning, or targeted fine-tuning). In such regions,
the FIM effectively captures the relevant curvature information necessary for estimating meaningful
Shapley values.

During periods of high gradient variability or under significant data distribution shifts, the fidelity
of the FIM as a Hessian proxy may decrease. However, this limitation is not unique to the FIM: even
the true Hessian becomes unstable under these non-stationary conditions, reducing the reliability
of any second-order attribution method. To mitigate this effect, the proposed approach employs a
Monte Carlo incremental approximation with an exponentially weighted moving average (EWMA)
(Section 4.2), which stabilizes gradient-based estimates. The EWMA smooths transient fluctuations
in mini-batch gradients while preserving persistent, task-relevant curvature signals, thereby improving
the robustness of Shapley value computation.

From a computational standpoint, the Fisher approximation is critical for feasibility at LLM scale. Com-
puting and storing the full Hessian requiresO(M2) operations and memory for M parameters, which
is infeasible for modern language models. In contrast, the FIM, when combined with efficient Hes-
sian–vector product techniques, reduces the cost toO(M) while retaining sufficient curvature informa-
tion for reliable parameter-level Shapley attribution. This approximation thus enables second-order in-
terpretability and importance estimation at a scale previously impractical for billion-parameter models.

A.5 Applicability of Shapley Values Under Non-Stationary Training

The Shapley value framework, as originally defined in cooperative game theory, assumes a fixed
utility function. Accordingly, the proposed MODEL SHAPLEY formulation is designed primarily
for post-training analysis and intervention on converged models, where the mapping from parameters
to utility (e.g., task performance) is stable. This regime aligns with the method’s intended use cases,
such as post-hoc interpretability, pruning, and targeted fine-tuning.

Theoretical scope. A stable parameter–utility mapping is a prerequisite for meaningful Shapley
value attribution. Therefore, MODEL SHAPLEY is not intended to track parameter importance
dynamically during ongoing optimization, where the loss landscape and model representations evolve
rapidly. The approach instead focuses on analyzing trained or near-converged checkpoints, where
second-order approximations like the Fisher Information Matrix provide reliable curvature information.

Dynamic behavior. In non-stationary settings—such as early-stage training or continual learn-
ing—the utility function changes continuously, causing parameter importance estimates to fluctuate.
Empirically, this manifests as the parameter compensation effect (Appendix F.7; Figure 3b): when
high-Shapley neurons are deactivated, subsequent training causes other neurons to adapt and increase
their Shapley values, compensating for the removed functionality. This adaptive response confirms
that the identified neurons were indeed functionally critical, while also illustrating the dynamic
redistribution of importance during training.

Practical implications. Despite theoretical limitations under non-stationarity, MODEL SHAPLEY
provides substantial practical benefits across several domains:

• Knowledge injection: Targeted fine-tuning of high-Shapley neurons achieves 73.89%
accuracy on MMLU, nearly matching full fine-tuning (73.56%) while updating only 10%
of parameters.

• Model compression: Shapley-guided quantization surpasses GPTQ and OBD baselines
across precision levels by preserving task-critical weights.

• Interpretability: Task-specific neurons are clearly identified and validated via systematic
deactivation studies (Section 5.3).

Extending Shapley-based formulations to dynamic, non-stationary training remains an open
direction for future research. Nevertheless, for a wide range of practical applications involving
trained models—including compression, interpretability, targeted adaptation, and knowledge
editing—MODEL SHAPLEY offers an efficient and theoretically grounded framework that scales
to modern large language models.
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A.6 Potential for Model Editing

The parameter- and module-level attributions produced by MODEL SHAPLEY provide a principled
foundation for targeted model editing. By quantifying each parameter’s contribution to a given task
or behavior through its Shapley value, the method enables controlled interventions such as suppressing
components associated with undesired behaviors or amplifying those that positively influence task
performance.

Although the current work focuses on interpretability, targeted fine-tuning, and model compression,
the same attribution framework naturally extends to direct model editing. In particular, parameters
or modules with high positive or negative Shapley values can serve as intervention targets for behavior
refinement, knowledge correction, or safety alignment. This capability highlights MODEL SHAPLEY
’s potential as a unified tool for both model understanding and modification, offering a promising
direction for future research in scalable and interpretable model editing.

B Notations

The notations used throughout this paper are summarized in Table 3.

Table 3: Notation summary for MODEL SHAPLEY
Notation Definition

Θ={θ1,...,θM} Full set of model parameters (players in the Shapley framework)
θi The i-th parameter unit
θτi Value of parameter θi at iteration τ
ei Standard basis vector with 1 at position i, 0 elsewhere
M Total number of model parameters

ϕθ(U) Shapley value of parameter θ under utility U
Θτ Parameter vector at iteration τ during training or evaluation

Θτ,−i Parameter vector with θi removed (set to zero)
Θτ,−S Parameter vector with a subset S⊆Θ removed
L(Θ;x,y) Loss function evaluated on input-label pair (x,y)
U(Θ) Utility function defined as negative loss: U :=−L
ϕi Shapley value of parameter θi under utility U

gτi =
∂L
∂θi

Gradient of the loss w.r.t. parameter θi at iteration τ

Hτ
ij=

∂2L
∂θi∂θj

Hessian matrix entry at iteration τ

w
(S)
ij Path-based curvature weight between parameters i and j under subset S

F (Θτ ) Empirical Fisher Information Matrix at step τ
ϕτ
i Per-step Shapley approximation using mini-batch estimates

ϕ̂τ
i Exponentially weighted moving average (EWMA) of ϕi

α Smoothing factor used in EWMA updates
β Shapley-adjusted trade-out ratio in quantization
DF Task-specific probe dataset for functional attribution
Iα Set of top-α% most important parameter units

C Proof of Closed-Form Shapley Value

C.1 Path–Integral Derivation of the Loss Change for Single-Weight Removal

We re-derive Theorem 4.2 without fixing the Hessian to be constant, keeping every step of the path
integral explicit. Throughout this section the only assumption is that the lossL is twice continuously
differentiable.

Setup and notation. Let Θτ = (θτ1 , ... , θ
τ
M )⊤ be the current parameter vector and fix an index

i∈{1,...,M}. Removing (“zeroing”) θi gives Θτ,−i :=Θτ−θτi ei. Define the straight-line path that
re-grows the weight,

Θt :=Θτ,−i+tθτi ei=Θτ−(1−t)θτi ei, t∈ [0,1]. (10)
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Hence Θ0=Θτ,−i (pruned model) and Θ1=Θτ (full model).

1. Expressing the loss difference as a path integral

∆L(θτi ) :=L(Θτ,−i)−L(Θτ )=−
∫ 1

0

d

dt
L(Θt)dt (11)

2. Chain rule along the path

∆L(θτi )=
∫ 1

0

d

dt
L(Θt)dt=

∫ 1

0

gi(Θt)θ
τ
i dt=−θτi

∫ 1

0

gi(Θt)dt. (12)

Integrating the chain-rule derivative over t ∈ [0, 1] and substituting ∂L(Θ)
∂θi

= −θτi ei yields the
coordinate-wise loss decrement above.

3. Path-wise expansion of the gradient (no constant Hessian approximation)

For every t we have the exact identity

gi(Θt)=gτ
i +

∫ t

0

Hii(Θs)(−θτi )ds, gτ
i :=gi(Θ

τ ),Hii(Θs) :=
∂2L(Θs)

∂θ2i
. (13)

Plugging into the former equation gives a double integral:

∆L(θτi )=−θτi
∫ 1

0

[
gτ
i −θτi

∫ t

0

Hii(Θs)ds
]
dt

=−gτ
i θ

τ
i +(θτi )

2

∫ 1

0

∫ t

0

Hii(Θs)dsdt.

4. Reordering the integrals∫ 1

0

∫ t

0

(·)dsdt=
∫ 1

0

(1−s)(·)ds=⇒∆L(θτi )=−gτ
i θ

τ
i +(θτi )

2

∫ 1

0

(1−s)Hii(Θs)ds. (14)

Exchanging the integration order compresses the double integral into the (1−s) kernel, and substituting
this compact form yields the closed-form quadratic correction for ∆L in terms of the diagonal Hessian.

5. Introducing a dimensionless curvature weight

Define

w
(i)
ii :=

1

Hτ
ii

∫ 1

0

(1−s)Hii(Θs)ds, Hτ
ii :=Hii(Θ

τ ). (15)

The factor Hτ
ii merely normalises the path average, so that w(i)

ii measures how the local curvature
along the path deviates from its value at the full model:

w
(i)
ii =

area under (1−s)Hii(Θs)

area under (1−s)Hτ
ii

. (16)

With eq (17), equation (16) takes the compact weighted form

∆L(θτi )≈−gτ
i θ

τ
i +

1

2
w

(i)
ii H

τ
ii(θ

τ
i )

2 (17)

6. Consistency with the usual second-order Taylor term

If the removed weight is tiny, |θτi |→0, the entire path Θs collapses to Θτ and continuity of the Hessian
implies Hii(Θs)→Hτ

ii. Consequently w
(i)
ii →1, and eq (19) reduces to the familiar quadratic update

∆L(θτi )≈−gτ
i θ

τ
i +

1

2
Hτ

ii(θ
τ
i )

2. (18)

Equations (19) supply the desired path-integral proof of Theorem 4.2, clarifying the role and
interpretation of the curvature weight w(i)

ii .
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C.2 Path–Integral Derivation of the Loss Change for a Parameter Subset

We give a self-contained, line-by-line proof of the loss increment that occurs when a subset
S ⊆ {1, ... ,M} of parameters is pruned (“left out”). The presentation keeps the Hessian fully
path-dependent; the familiar constant-Hessian 1

2H–formula drops out as a limiting special case.

We denote the current iterate by Θτ = (θτ1 ,...,θ
τ
M )⊤. When pruning a subset S of parameters, we

obtain the pruned parameter vector Θτ,−S , defined by removing parameters indexed by S from Θτ ,
i.e., Θτ,−S :=Θτ −

∑
i∈S θ

τ
i ei. The direction of removal, representing the parameter changes due

to pruning, is thus δΘ:=Θτ,−S−Θτ =−
∑

i∈Sθ
τ
i ei. For brevity, we denote the loss at an arbitrary

point Θ byL(Θ), and its gradient and Hessian by g(Θ):=∇L(Θ) and H(Θ):=∇2L(Θ) respectively.
At the current iterate, these are abbreviated as gτ :=g(Θτ ) and Hτ :=H(Θτ ).

1. Path parameterisation

Choose the straight line that starts at the full model and ends at the pruned model,

Θs :=Θτ+sδΘ, s∈ [0,1], (19)

so Θ0=Θτ and Θ1=Θτ,−S .

2. Expressing the loss difference as a path integral

∆L(S)=L(Θτ,−S)−L(Θτ )=

∫ 1

0

d

ds
L(Θs)ds (20)

=

∫ 1

0

g(Θs)
⊤Θ̇sds=

∫ 1

0

g(Θs)
⊤δΘds (21)

=−
∑
i∈S

θτi

∫ 1

0

gi(Θs)ds. (22)

The loss difference is written as a path integral and, using the chain rule with the constant velocity
δΘ=−θτ , reduces to a weighted path-average of the removed gradient components. This compact
form directly quantifies each deleted parameter’s marginal contribution to ∆L(S).

3. Expanding the path-wise gradient

g(Θs)=gτ+

∫ s

0

H(Θt)δΘdt, (23)

gi(Θs)=gτ
i −

∑
j∈S

θτj

∫ s

0

Hij(Θt)dt, (24)

∆L(S)=−
∑
i∈S

gτ
i θ

τ
i +

∑
i,j∈S

θτi θ
τ
j

∫ 1

0

∫ s

0

Hij(Θt)dtds. (25)

Integrating the Hessian along the optimisation path yields the path-dependent gradient (first two lines),
and substituting this result into the loss variation condenses the double integral, showing how curvature
accumulates through the Hij “path-area” term.

By exchanging the order of integration, the nested double integral collapses to the single-integral kernel
(1−t), whose substitution into the path-dependent loss expansion yields the quadratic form below.∫ 1

0

∫ s

0

(·)dtds=
∫ 1

0

∫ 1

t

(·)dsdt=
∫ 1

0

(1−t)(·)dt, (26)

∆L(S)=−
∑
i∈S

gτ
i θ

τ
i +

∑
i,j∈S

θτi

[∫ 1

0

(1−t)Hij(Θt)dt
]
θτj . (27)

22



4. Defining the w(S)
ij

Defining the dimensionless weight w(S)
ij as the path-averaged curvature normalised by the terminal

Hessian allows eq. (29) to be recast in a compact quadratic form where all trajectory dependence is
absorbed into w

(S)
ij .

w
(S)
ij :=

1

Hτ
ij

∫ 1

0

(1−t)Hij(Θt)dt, (28)

∆L(S)≈−
∑
i∈S

gτ
i θ

τ
i +

1

2

∑
i,j∈S

w
(S)
ij Hτ

ijθ
τ
i θ

τ
j . (29)

Why this definition?

(i) The factor (1−t) is the exact kernel that emerges when the double integral in eq (28) is reordered;
it ensures the “ 1

2” symmetry familiar from second-order Taylor series.

(ii) Dividing by Hτ
ij normalises the path-average so that w(S)

ij is a pure number measuring how much

the curvature between coordinates (i,j) varies relative to its value at Θτ . In particular, w(S)
ij =1

if Hij is constant along the path.

5. Limiting behaviour as the removed weights vanish

Suppose ∥θS∥→0. Then ∥δΘ∥→0, so the entire path collapses into an arbitrarily small neighbourhood
of Θτ . By continuity of the Hessian, Hij(Θt)→Hτ

ij uniformly, and

w
(S)
ij = 1+O

(
∥θS∥

)
. (30)

Consequently eq (29) reduces smoothly to the usual second-order Taylor estimate

∆L(S)≈−
∑
i∈S

gτ
i θ

τ
i +

1
2

∑
i,j∈S

Hτ
ijθ

τ
i θ

τ
j . (31)

This completes the explicit path-integral proof, while clarifying the origin and interpretation of the
weighting coefficients w(S)

ij .

C.3 Combine Marginal Utility Function

In this appendix, we provide the detailed derivation of the closed-form Shapley value approximation
given in equation 7, now incorporating path-based curvature weights.

Setup. Recall that the Shapley value for a parameter θi under a utility function U(Θ)=−L(Θ) is
defined as:

ϕi(U)=
1

M

M∑
k=1

(
M−1
k−1

)−1 ∑
S⊆Θ\{i}
|S|=k−1

[U(S∪{i})−U(S)], (32)

where M= |Θ| is the total number of parameters.

Marginal contribution approximation. Based on the path-integrated second-order approximation,
the marginal utility of adding parameter θi to subset S is:

U(S∪{i})−U(S)≈−gτ
i θi−

1

2
w

(i)
ii (θi)

2Hτ
ii−θi

∑
j∈S

w
(i)
ij H

τ
ijθj , (33)

where w
(i)
ij ∈ [0, 1] denotes a curvature-weighted average over the interpolation path involving

parameters i and j.
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Averaging over subsets. Substituting equation 33 into equation 32, we have:

ϕi(U)=
1

M

M∑
k=1

(
M−1
k−1

)−1 ∑
S⊆Θ\{i}
|S|=k−1

−gτ
i θi−

1

2
w

(i)
ii θ

2
iH

τ
ii−θi

∑
j∈S

w
(i)
ij H

τ
ijθj



=

(
−gτ

i θi−
1

2
w

(i)
ii θ

2
iH

τ
ii

)
− 1

M
θi

M∑
k=1

(
M−1
k−1

)−1 ∑
S⊆Θ\{i}
|S|=k−1

∑
j∈S

w
(i)
ij H

τ
ijθj . (34)

Simplifying the interaction term. Fixing index j ̸= i, the number of subsets S of size k−1 that
contain j is

(
M−2
k−2

)
, so: ∑

S⊆Θ\{i}
|S|=k−1

∑
j∈S

w
(i)
ij H

τ
ijθj=

∑
j ̸=i

(
M−2
k−2

)
w

(i)
ij H

τ
ijθj . (35)

Substituting back:

ϕi(U)=

(
−gτ

i θi−
1

2
w

(i)
ii θ

2
iH

τ
ii

)
− 1

M
θi
∑
j ̸=i

w
(i)
ij H

τ
ijθj

M∑
k=1

(
M−2
k−2

)(
M−1
k−1

) . (36)

Evaluating the combinatorial ratio. As before,(
M−2
k−2

)(
M−1
k−1

)= k−1
M−1

,

M∑
k=1

k−1
M−1

=
M

2
. (37)

Final closed-form expression. Substituting the result:

ϕi(U)=−gτ
i θi−

1

2
w

(i)
ii θ

2
iH

τ
ii−

1

2
θi
∑
j ̸=i

w
(i)
ij H

τ
ijθj . (38)

This generalizes the original expression in equation 7 by introducing path-weighted curvature terms
w

(i)
ij , derived from integrating along removal trajectories.

C.4 Taylor Expansion Remainder Bound for Shapley Value Approximation

Our Shapley value approximation in §4.1 is derived from a path integral formulation, which computes
the expected marginal contribution of each parameter along a continuous interpolation path. When
θi→ 0, this integral can be well-approximated by the second-order Taylor expansion of the utility
function around the current parameter vector Θτ . This appendix quantifies the approximation error
by deriving a uniform bound on the remainder term in the Taylor expansion.

Second-order expansion with remainder. For any parameter vector θ in a neighborhood of a
reference point θ∗,

L(θ)=L(θ∗)+∇L(θ∗)⊤(θ−θ∗)+ 1
2 (θ−θ

∗)⊤∇2L(θ∗)(θ−θ∗)+R3(θ,θ
∗), (39)

whereR3 collects all third- and higher-order terms. By Taylor’s theorem there exists t∈(0,1) such that

|R3(θ,θ
∗)| ≤ 1

6
∥θ−θ∗∥3

∥∥∇3L
(
θ∗+t(θ−θ∗)

)∥∥. (40)

Propagation to the Shapley estimate. Denote by ϕ⋆
i the true Shapley value and by ϕ̃i the

second-order approximation given in Eq. (7). For each coalition S⊆Θ\{θi}we define the Taylor error

εi(S)=
∣∣∣R3(Θ

τ,−S∪{i},Θτ )−R3(Θ
τ,−S ,Θτ )

∣∣∣. (41)

Using the linearity of the Shapley aggregator we have∣∣∣ϕ⋆
i−ϕ̃i

∣∣∣≤ 1

M

∑
S⊆Θ\{i}

wS ·εi(S), where wS=

(
M−1
|S|

)−1

. (42)
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Uniform bound under smoothness and small perturbation. Assume the following: (1) The third
derivative of the loss is uniformly bounded within a ball of radius ε around Θτ , i.e., ∥∇3L(θ)∥≤C
for all ∥θ−Θτ∥≤ε; (2) Each single-parameter removal satisfies ∥Θτ−Θτ,−j∥≤ε. This holds under
the “set-to-zero” removal rule, with ε=maxj |θτj |. Under these assumptions, Eq. (40) implies that
εi(S)≤ C

6 ε
3 for every subset S, and the summation in Eq. (42) becomes:∣∣∣ϕ⋆

i−ϕ̃i

∣∣∣≤ C

6
ε3. (43)

The cubic dependence on ε implies that the approximation error rapidly vanishes as training converges
and parameter updates shrink. The constant C reflects the worst-case third-order curvature in the
local neighborhood. In practice, we observe that this bound is small for modern architectures, which
supports the empirical accuracy of our closed-form estimate.

C.5 Proof of Shapley Axiom Properties under Second-order Approximation

We provide formal justifications that the closed-form parameter-level Shapley expression equation 7
approximately satisfies the four core Shapley axioms under second-order Taylor approximation.

C.5.1 Null Player

Claim: If a parameter θi has no effect on any subset of parameters, then ϕi=0.

Proof: From equation 7, we have:

ϕi=−gτ
i θ

τ
i − 1

2w
(i)
ii (θ

τ
i )

2Hτ
ii−θτi

∑
j∈S

w
(S)
ij Hτ

ijθ
τ
j . (44)

If gτ
i =0 and Hτ

ij=0 for all j, and θi=0 or finite, then all terms vanish and ϕi=0. This corresponds
exactly to the definition of a null player in Shapley theory.

C.5.2 Symmetry

Claim: If parameters θi and θj contribute identically to the loss and interact identically with all other
parameters, then ϕi=ϕj .

Proof: Assume the following: - θi = θj , - gτ
i = gτ

j , - Hτ
ii = Hτ

jj , - Hτ
ik = Hτ

jk for all k ̸= i,j, -
Hτ

ki=Hτ
kj (by symmetry of Hessian).

Then by substituting into equation 7, we have:

ϕi=−gτ
i θ

τ
i − 1

2w
(i)
ii (θ

τ
i )

2Hτ
ii−θτi

∑
k∈S

w
(S)
ik Hτ

ikθ
τ
k . (45)

ϕj=−gτ
j θ

τ
j − 1

2w
(j)
jj (θ

τ
j )

2Hτ
jj−θτj

∑
k∈S

w
(S)
jk Hτ

ikθ
τ
k . (46)

Since all terms are identical under the above symmetry assumptions, ϕi=ϕj .

C.5.3 Linearity

Claim: If utility functions are linearly combined as U=αU1+βU2, then the Shapley values satisfy
ϕi(U)=αϕi(U1)+βϕi(U2).
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Proof: Let the losses beL1,L2, and define:

L=αL1+βL2, U=−L,

gi=∂θiL=αg
(1)
i +βg

(2)
i ,

Hij=∂θj∂θiL=αH
(1)
ij +βH

(2)
ij .

(47)

Substituting these expressions into the closed-form formula for ϕi gives

ϕi = αϕ
(1)
i +βϕ

(2)
i , (48)

thus confirming exact linearity of the contribution with respect to the loss weights.

C.5.4 Efficiency (Approximate)

Claim. The total Shapley value approximates the total utility:
M∑
i=1

ϕi ≈ U
(
Θ
)
−U

(
∅
)
. (49)

Proof.
g̃i :=αg

(1)
i +βg

(2)
i , (50)

H̃ii :=αw
(1)
ii H

(1)
ii +βw

(2)
ii H

(2)
ii , (51)

H̃ij :=αw
(S,1)
ij H

(1)
ij +βw

(S,2)
ij H

(2)
ij , (i ̸=j). (52)

These weighted quantities merge the task-specific gradients and curvatures into a single set of effective
statistics.

ϕi=−g̃iθi− 1
2H̃iiθ

2
i − 1

2θi
∑
j ̸=i

H̃ijθj . (53)

With the aggregates in hand, each Shapley value becomes a concise quadratic contribution to loss
reduction.

∆L :=L(Θ)−L(0)≈ g̃⊤θ+ 1
2θ

⊤H̃θ=
∑
i

g̃iθi+
1
2

∑
i,j

θiH̃ijθj . (54)

A second-order Taylor expansion aroundΘ=0yields an identical quadratic form in the same aggregated
terms.

M∑
i=1

ϕi=−
∑
i

g̃iθi− 1
2

∑
i,j

θiH̃ijθj ≈−∆L. (55)

Summing the individual payoffs therefore reproduces the negative of the Taylor approximation, up to
cubic errors.

M∑
i=1

ϕi ≈ U(Θ)−U(∅). (56)

Since U=−L, this matches the utility gain and thus verifies Shapley efficiency to second order.

D Fisher Information Matrix as an Approximation to the Hessian

In this section, we explain why the Fisher Information Matrix (FIM) is often used as a tractable
approximation to the Hessian of the loss function, particularly in settings where the loss arises from
the negative log-likelihood.
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Log-likelihood and the Score Function Consider a probabilistic model p(x | θ) (i.e. LLMs)
with parameter vector θ ∈ Rd, and let x denote a single observed data point. The log-likelihood
function is given by logp(x | θ), and its gradient with respect to θ is known as the score function:
s(θ) :=∇θ logp(x | θ). The score function measures the sensitivity of the log-likelihood to changes
in the parameters. Under standard regularity conditions (e.g., differentiability, integrability, and
dominated convergence), the expectation of the score vanishes: Ex∼p(x|θ)[s(θ)]=0.

Definition and Interpretation of the Fisher Matrix The Fisher Information Matrix is defined
as the covariance (second moment) of the score function: F (θ) :=Ex∼p(x|θ)

[
s(θ)s(θ)⊤

]
. Intuitively,

it quantifies how much information the data carries about the parameters: if small changes in θ cause
large variations in the likelihood, then the entries of F (θ) will be large.

Connection to the Hessian of the Log-Likelihood To relate this to the Hessian, consider the
second derivative (Hessian) of the log-likelihood: Hloglik(θ) :=∇2

θ logp(x | θ). Using the identity

∇2
θ logp(x | θ) =

∇2
θp(x|θ)
p(x|θ) −s(θ)s(θ)⊤, and the fact that the total probability integrates to one (i.e.,∫

p(x |θ)dx=1), we obtain:

Ex∼p(x|θ)
[
∇2

θlogp(x |θ)
]
=∇2

θ

∫
p(x |θ)dx−E

[
s(θ)s(θ)⊤

]
=∇2

θ(1)−F (θ)=−F (θ). (57)

This is a well-known result in statistics:

F (θ)=−Ex∼p(x|θ)
[
∇2

θlogp(x |θ)
]
. (58)

That is, the Fisher Information Matrix equals the negative expected Hessian of the log-likelihood.

From Log-Likelihood to Loss Function In machine learning and statistical estimation, it is common
to define the loss function as the negative log-likelihood: L(θ) :=−logp(x |θ),whose Hessian becomes

HL(θ) :=∇2
θL(θ)=−∇2

θlogp(x |θ). (59)

Taking expectations yields:
Ex∼p(x|θ)

[
∇2

θL(θ)
]
=F (θ), (60)

demonstrating that the Fisher matrix equals the expected curvature of the loss landscape.

Empirical Fisher Matrix and Practical Considerations In practice, the true data distribution
p(x |θ) is unknown, and we instead work with a finite dataset {xi}Ni=1. The empirical Fisher matrix
is computed as:

F̂ (θ) :=
1

N

N∑
i=1

(∇θlogp(xi |θ))(∇θlogp(xi |θ))⊤. (61)

This approximation has several advantages: it avoids computing second derivatives, is simple to imple-
ment, and is compatible with stochastic optimization techniques such as mini-batch gradient descent.

E Applications of MODEL SHAPLEY

Leveraging the estimated Shapley values {ϕi}, MODEL SHAPLEY facilitates a variety of downstream
applications centered on functional attribution at the parameter level. These applications span from
interpreting the internal mechanisms of the model, to actively manipulating its behavior during
inference, fine-tuning critical components, and guiding parameter-efficient model quantization.

In the following, we illustrate how MODEL SHAPLEY enables parameter-level functional analysis
through four key stages: ❶ constructing a task-specific dataset for attribution, ❷ determining the
granularity of analysis (e.g., neuron, layer, or attention head), ❸ applying Shapley-based attribution
to identify important units, and ❹ utilizing the results in downstream interventions.
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E.1 Step 1: Constructing the Probe Dataset

To attribute functionality at the parameter level, we first construct a probe datasetDF ={(xi,yi)}Ni=1
tailored to a specific objective F (e.g., robustness, factual recall, reasoning). Unlike training or
evaluation datasets, this probe dataset is explicitly designed to activate the model’s behavior with
respect to the target capability, thereby enabling meaningful attribution.

The structure ofDF depends on the task. For instance, in retrieval-augmented generation (RAG), each
input xi consists of a {query, retrieved document} pair, and the output yi is the corresponding response
generated by the model. In code generation tasks, xi may be a natural language prompt or partial pro-
gram, with yi being the expected code completion. For robustness assessment, xi could be adversarially
perturbed inputs, while yi reflects the desired stable output under perturbation. Across these diverse
settings, the probe dataset serves as a lens through which task-specific model behavior is revealed.

By computing Shapley values overDF , we estimate each parameter’s marginal contribution to the
model’s ability to satisfy objective F . This attribution highlights the most functionally sensitive
units—those whose perturbation or removal would most affect the model’s performance on the given
task.

E.2 Step 2: Defining Attribution Granularity

To enable interpretable functional attribution, we first define the level of granularity at which model
parameters are examined. Transformer architectures are inherently modular, composed of repeated
layers that include Multi-Head Attention (MHA) mechanisms and Feed-Forward Networks (FFNs).
This modularity naturally gives rise to three commonly used units of attribution: neurons, attention
heads, and layers. Each level captures different aspects of model behavior and presents trade-offs
between interpretability, attribution resolution, and practical utility for intervention.

Neuron-Level Attribution. A neuron refers to an individual hidden unit within the FFN of a given
Transformer layer. Specifically, the j-th neuron in the i-th FFN layer computes:

neuroni,j=act_fn
(
[h̃iWi

1+bi
1]j

)
, (62)

where h̃i ∈Rd is the output representation from the MHA submodule in layer i, Wi
1 ∈Rd×4d and

bi
1 ∈R4d are the weight and bias parameters of the FFN input projection, and act_fn(·) is typically

a GELU or SiLU nonlinearity. A neuron is considered active if its post-activation value is nonzero.
Attribution at this granularity enables highly localized functional analysis, though it may be sensitive
to activation noise and task-specific variance.

Attention Head-Level Attribution. Each MHA module consists of multiple heads, each responsible
for computing an independent attention pattern. The output of the h-th head in the i-th layer is given by:

headi
h=Attn

(
hi−1Wi

q,h,H
i−1Wi

k,h,H
i−1Wi

v,h

)
, (63)

where hi−1∈Rd denotes the representation of a single token from the previous layer, Hi−1∈RL×d

denotes the sequence of hidden states, and Wi
q,h,W

i
k,h,W

i
v,h∈Rd×d/H are the learned projection

matrices for queries, keys, and values, respectively. Attention heads often specialize in capturing
distinct structural or linguistic features (e.g., syntax, coreference, position), making this level of
attribution particularly effective for interpreting distributed attention behavior and its contribution
to model predictions.

Layer-Level Attribution. Each Transformer layer comprises the full computation block including
all attention heads and the FFN. The forward pass through layer i can be expressed as:

h̃i=Concat(headi
1,...,head

i
H)Wi

o+bi
o, hi=act_fn(h̃iWi

1+bi
1)W

i
2+bi

2, (64)

where Wi
o∈Rd×d and bi

o∈Rd are the output projection weights and biases for the attention module,
and Wi

1,W
i
2 are the FFN projection matrices with corresponding biases bi

1,b
i
2. Attribution at the

layer level provides a coarser but more robust perspective on where critical computations occur, and
is often suitable for interventions such as pruning, freezing, or targeted parameterization.
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E.3 Step 3: Shapley-Based Attribution of Parameter Importance

To quantify the task-specific importance of individual parameter units, we adopt a Shapley value
framework grounded in cooperative game theory. Shapley values offer a principled approach to
measuring the marginal utility of each parameter, averaged over all possible subsets of cooperating
units. This provides a theoretically justified metric for attributing functional relevance.

However, exact Shapley computation is intractable in large-scale neural networks due to the exponential
number of subsets. To address this, we derive a closed-form approximation based on a second-order
Taylor expansion of the loss functionL(Θ). Under the common assumption that removing a parameter
can be approximated by zeroing it out, the Shapley value ϕi for parameter θi is given by:

ϕi= −gτ
i θi︸ ︷︷ ︸

(1) Individual Importance

−1

2
w

(i)
ii θ

2
iH

τ
ii−

1

2
θi
∑
j ̸=i

w
(S)
ij Hτ

ijθj︸ ︷︷ ︸
(2) Cooperative Interactions

, (65)

where gi=
∂L
∂θi

, and Hij denotes entries of the Hessian. The first term captures the individual salience
of the parameter, while the remaining terms account for higher-order cooperative interactions.

To scale this computation in practice, we employ several approximations:

• Gradients and Hessian-vector products are estimated on mini-batches, enabling per-step online
approximation of ϕi.

• We stabilize noisy estimates with an exponential moving average (EWMA): ϕ̂τ
i =(1−α)ϕ̂τ−1

i +αϕτ
i .

• The Hessian is approximated using the empirical Fisher Information Matrix (FIM):
F(Θ) := E(x,y)

[
∇ΘL(Θ;x,y)∇ΘL(Θ;x,y)⊤

]
, which is more stable and tractable under

stochastic training dynamics.
• To reduce memory and computational overhead, we apply a blockwise approximation, aggregating

importance scores within structured units (e.g., neurons in a layer or heads in an MHA block) using
local statistics.

After computing ϕi for all parameter units, we identify the top-α% most important units by ranking
their Shapley values. For coarser-grained structures such as attention heads or entire layers, we perform
mean pooling over neuron-level scores within each unit:

ϕ
(i)
head=

1

|Θ(i)
head|

∑
θj∈Θ

(i)
head

ϕj , ϕ
(i)
layer=

1

|Θ(i)
layer|

∑
θj∈Θ

(i)
layer

ϕj . (66)

This pooling ensures that higher-level Shapley attribution remains grounded in fine-grained parameter
sensitivity, while enabling consistent scoring across different levels of model granularity. grained
architectural intervention.

E.4 Step 4: Applications of Attributed Parameter Units

The estimated Shapley scores {ϕi} identify parameter units that are functionally critical for a given
task. These scores support a variety of downstream applications aimed at interpreting model behavior,
reinforcing specific capabilities, or guiding efficient intervention. We describe two representative
use cases below.

E.4.1 Direct Usage for Functional Probing and Activation Augmentation

Without any further training, the activations of high-importance parameter units can be used to probe
internal model representations or to modulate inference behavior. Let Iα={i |ϕi ranks in top-α%}
denote the set of top-scoring parameters.

At inference time, we extract the activations ai(x) of the important units and use them as feature inputs
to a probing model:

Fprobe(x)=[ai(x)]i∈Iα
, (67)

where Fprobe is a downstream classifier trained to detect specific knowledge, behaviors, or internal
states. This enables lightweight interpretability tools for factual recall, knowledge localization, fairness
analysis, or safety probing.
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Alternatively, we can modulate the model’s output by augmenting the activation of important units:

aenhanced
i (x)=ai(x)+∆·1[i∈Iα], (68)

where ∆ is a tunable scalar offset. This form of activation intervention parallels the concept of
functional or concept vectors [41, 39], and can be used to amplify model behaviors associated with
certain capabilities.

E.4.2 Targeted Fine-Tuning for Capability Enhancement

Rather than updating the entire model, we can focus learning on the most functionally relevant
parameter units identified via {ϕi}. During fine-tuning, we restrict gradient updates to only the
top-ranked parameters i∈Iα, while freezing the rest:

θi←θi−η ·∇θiL, for i∈Iα, (69)

θj←θj , for j /∈Iα, (70)

where η is the learning rate. This strategy allows for parameter-efficient fine-tuning by concentrating up-
dates on task-relevant components while reducing overfitting and preserving prior capabilities. Such tar-
geted adaptation is particularly beneficial in continual learning, domain adaptation, or few-shot regimes.

E.4.3 Shapley-Guided Quantization

OBD evaluates importance through the first-order product |giθi|. OBS and GPTQ extend this idea by
incorporating non-diagonal Hessian entries so that parameter interactions are partially compensated.

In a network that has already converged, the first-order gradient term ∂L/∂θi is typically close to zero
(see Eq. (7)), so the loss change ∆L(θi) is dominated by the second-order component

ϕ
(2)
i =− 1

2θ
2
iHii− 1

2θi
∑
j ̸=i

Hijθj .

The cross term
∑

j ̸=iHijθj is already handled by GPTQ’s inverse update. What remains unaccounted
for is the task-specific magnitude of the diagonal piece − 1

2 θ
2
iHii. We therefore correct Hii itself

rather than modifying the update order.

Let ϕ
(2)
i denote the empirical second-order Shapley estimate obtained with the Fisher-block

approximation of Section 4.3. Define the per-parameter correction factor and modified diagonal entry

wi :=

∣∣∣∣∣ ϕ
(2)
i

1
2θ

2
iHii+ε

∣∣∣∣∣, H̃ii← wiβHii+(1−β)Hii, (71)

where ε> 0 ensures numerical stability and β ∈ (0,1] controls the strength of the Shapley injection.
If wi>1 the diagonal term is boosted; if wi<1 it is attenuated.

Replacing Hii by H̃ii leaves the Woodbury-style inverse update in Algorithm E.1 unchanged, so
the overallO(dk2) complexity is identical to vanilla GPTQ. The convergence proof in Appendix B.4
remains valid after substituting H 7→H̃.

Equation equation 71 follows directly from the efficiency axiom applied to the second-order expansion
in Theorem 4.6. By isolating the quadratic diagonal term inside ϕ

(2)
i , we obtain a scale-invariant

ratio that indicates whether the naive quadratic estimate under- or over-explains the cooperative loss
increase attributed to weight i.

OBD relies on gradients, OBS and GPTQ already harness off-diagonal curvature, and our
Shapley-guided diagonal correction completes the picture by aligning each diagonal Hessian entry
with its cooperative, task-specific contribution. The resulting H̃ integrates seamlessly into GPTQ,
yielding stronger accuracy–compression trade-offs without sacrificing speed.

The overall procedure is outlined in Algorithm 1.
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Algorithm 1 Shapley-Guided Quantization with Corrected Hessian

Require: Weight matrix W, inverse Hessian H−1, Shapley scores {ϕ(2)
i }, block size B, reweight

parameter β∈ [0,1]
Ensure: Quantized weight matrix Q

1: Initialize Q←0, E←0
2: for i=0 to N in steps of B do ▷ Iterate over blocks
3: for j= i to i+B−1 do
4: sj← 1

2 ·θ
2
j ·Hjj ▷ Estimate standard Hessian contribution

5: wj←
∣∣∣ϕ(2)

j /(sj+ε)
∣∣∣ ▷ Compute Shapley-based correction weight

6: H̃jj←wj ·βHjj+(1−β)·Hjj ▷ Rescale diagonal Hessian entry
7: Q:,j←quant(W:,j) ▷ Quantize column j

8: E:,j−i←(W:,j−Q:,j)/H̃jj ▷ Estimate quantization error
9: W:,j+1:i+B←W:,j+1:i+B−E:,j−i ·H−1

j,j+1:i+B ▷ Apply error compensation to future
columns

10: end for
11: W:,i+B:i+2B←W:,i+B:i+2B−E·H−1

i:i+B,i+B:i+2B ▷ Final block correction
12: end for
13: return Q

F Theoretical Analysis: Why INT4 Quantization Fails

Setup and notation. Let w∈Rd denote the parameters of a trained model, and L(w) its task loss.
We write H≡∇2L(w) for the local curvature (or an empirical-Fisher surrogate). For a uniform signed
quantizer with bit width b and scale s>0,

B≜2b−1−1,

Q(b)
s (wj)=

[
clip

(
round(wj/s),−B,B

)]
s,

(72)

and define the quantized weights qj=Q
(b)
s (wj) with quantization error

∆j≜wj−qj . (73)

When there is no clipping, |∆j |≤s/2; when |wj |>Bs (saturation), |∆j |≥ |wj |−Bs. We focus on
b=4 (INT4), where B=7 and the representable range is [−7s,7s].3

Second-order post-quantization correction. Following the quadratic approximation underlying
our Shapley-based formulation, we define an effective diagonal curvature term:

H̃jj=
(
βwj+1−β

)
Hjj , (74)

and the corresponding elementwise correction

E:,j=
wj−qj
H̃jj

. (75)

A one-step second-order refinement updates the weights as

w′=w−EH−1. (76)

For theoretical clarity, we fix β=1 (pure Shapley-weighted curvature), so H̃jj=wjHjj . Substituting
equation 75 into equation 76 and retaining the dominant scaling in s yields

w′ ≈ w− ∆

Hs2
, (77)

where we used that (i) for non-saturated weights ∆=O(s), and (ii) H̃ remains comparable in scale
to H under a block-diagonal approximation.

3For the symmetric scheme in equation 72, the maximum index isB=2b−1−1, yielding a largest representable
magnitude of 7s. Asymmetric variants ([−8s,7s]) differ only by constants.
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Scaling implication. From equation 77, the correction magnitude decays quadratically with the scale:

δw≜w′−w ≈− ∆

Hs2
.

Hence a larger s suppresses curvature-based compensation, while a smaller s amplifies it and risks
numerical instability. Empirically, Shapley importance values span a heavy-tailed range of roughly
[10−3,106]; mapping such a distribution into a few quantization levels magnifies both instability modes
discussed below.

The INT4 dilemma. For b=4, only 24 =16 quantization codes are available, corresponding to
2B+1=15 symmetric levels (including zero). To avoid saturating large weights, the scale s must
increase until maxj |wj |≤Bs=7s. This makes ∥∆∥=O(s) large, while the compensation term in
equation 77 shrinks as 1/s2:

∥δw∥ ≈
∥∥ ∆
Hs2

∥∥∼O( 1
Hs

)
,

leading to systematic under-compensation and residual error. Conversely, choosing a smaller s to
reduce rounding error causes widespread clipping (|wj |> 7s), making ∆ a biased truncation term
that invalidates the local quadratic approximation. At the same time, the factor 1/(Hs2) can grow
excessively, introducing severe numerical instability.

Interaction with Shapley-driven compression. Our compression pipeline leverages Shapley values
to prioritize parameter sensitivity. In practice, these scores span orders of magnitude ([10−3,106]).
INT4’s 16 discrete codes cannot represent such variation faithfully: after normalization, many
parameters with different importances collapse into identical quantization levels. This dynamic-range
collapse forces either (i) a large s to accommodate outliers, or (ii) a small s that incurs severe
clipping—thus reproducing the two failure modes described above.

Comparison with INT8. At b=8, 256 available codes allow choosing a smaller s that avoids both
saturation and instability. The quantization error ∆ remains bounded, the quadratic approximation
holds, and the compensation in equation 77 remains accurate and stable. Hence, the very same
second-order mechanism that performs well at INT8 becomes ill-conditioned under INT4.

Conclusion. Equations equation 74–equation 77 reveal that INT4 operates in a narrow and fragile
regime:

• Large s: quantization error grows, while curvature-based compensation vanishes (∝ 1/s2)⇒
under-compensation;

• Small s: clipping dominates and 1/(Hs2) explodes⇒ instability and loss of quadratic validity.

When coupled with heavy-tailed Shapley importance scores, the 16-level INT4 codebook cannot
preserve task-relevant sensitivity. Robust INT4 quantization therefore requires additional structure—
such as per-channel scaling, outlier preservation, nonlinear remapping of importance, or damped
curvature inversion. Absent these, accuracy degradation is unavoidable.

Discussion: Toward Robust INT4 Quantization. The analysis above suggests that the core
limitation of INT4 lies in the interaction between coarse quantization steps and the diagonal Hessian
approximation. Because H̃ is estimated per-parameter and can vary by several orders of magnitude,
its inversion in equation 77 becomes ill-conditioned when combined with a large scale s. Future work
could therefore aim to stabilize or regularize the diagonal curvature before applying second-order
corrections. Promising directions include: (i) smoothing H̃ within parameter groups or channels
to avoid extreme ratios; (ii) damping or clipping the inverse Hessian term 1/H̃jj to limit numerical
explosion; (iii) learning a nonlinear remapping of H̃ that preserves curvature ordering while
compressing its dynamic range; and (iv) integrating adaptive scaling tied to local Hessian statistics,
so that quantization and curvature correction co-adapt. Such curvature-aware stabilization may enable
INT4 quantization to retain second-order fidelity without resorting to mixed-precision designs.
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Algorithm 2 Parameter-wise Shapley Value Estimation with Gradient Similarity

Require: Model parameters Θτ = {θτ1 , ... , θτM}, loss function L, mini-batch size B, smoothing
coefficient α, total steps T

Ensure: EWMA-based Shapley value estimates {ϕ̂T
i }Mi=1

1: Initialize ϕ̂0
i←0, for all i=1,...,M

2: for τ=1 to T do
3: Sample mini-batch Bτ ={(xj ,yj)}Bj=1

4: Compute gradient: gτ←∇ΘLB(Θ
τ )

5: Compute curvature approximation: Hτ←gτ×gτ

6: ϕ(1)←−gτ ·θτ
7: ϕ(2)←− 1

2θ
τ ·(Hτ×θτ )

8: ϕτ←ϕ(1)+ϕ(2)

9: ϕ̂τ←(1−α)ϕ̂τ−1+α·ϕτ

10: end for
11: return {ϕ̂T

i }Mi=1

G Algorithm and Time Complexity

Algorithm 2. This algorithm computes parameter-wise Shapley values using gradients and curvature
approximations.

Line 1 initializes the exponentially weighted moving average (EWMA) estimate for each parameter.
Lines 2–5 iterate through training steps, where at each iteration, the algorithm samples a mini-batch
and computes the parameter gradient gτ and an approximate curvature matrix Hτ (using Fisher
approximation). Lines 6–9 compute the per-parameter Shapley contributions: line 6 calculates the
individual importance via first-order terms; lines 7 account for self-curvature and parameter interaction
terms using second-order curvature information. The total Shapley score is then aggregated in line
8, and line 9 updates the running average using the EWMA rule. Finally, line 11 returns the smoothed
Shapley scores after T steps.

Time and Space Complexity. The overall computational cost per step is dominated by the gradient
calculation and the curvature approximation. Assuming the size of parameters in the model is M and
the mini-batch size is B, the gradient step costsO(B ·M), while the full curvature matrix requires
up toO(M2) operations. If blockwise Fisher approximation is used with block size d, the cost can
be reduced toO(M ·d). The total space complexity is alsoO(M2) in the worst case, orO(M ·d) when
using blockwise regularization. This makes the algorithm scalable in practice for modern networks
with structured parameter grouping.

H More Experiment Details

H.1 Datasets Statics

We employ four benchmark datasets across natural language understanding and computer vision
domains to evaluate the generality and robustness of our method. The detailed statistics and task
settings are summarized below.

(1) GSM8K (Grade School Math 8K) [62] is a dataset of 8.5K high quality linguistically diverse grade
school math word problems. This dataset is usually used to evaluate the perofrmance of language
models on basic mathematical problems that require multi-step reasoning.

(2) MMLU (Massive Multitask Language Understanding) [63] is a benchmark designed to evaluate
models’ multitask language understanding across 57 tasks, covering subjects such as humanities,
STEM, social sciences, and more. Each task consists of multiple-choice questions, typically with
four options. The dataset is split into a development and test set, with no training set provided. This
benchmark is primarily used for evaluating zero-shot or few-shot performance in language models,
focusing on factual reasoning and knowledge retention.
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(3) CIFAR-100 [64] is a widely used image classification dataset consisting of 60,000 32×32 color
images in 100 classes, with 600 images per class. Among the 600 images in each class, there are 500
training images and 100 testing images. It is a standard benchmark for evaluating image classification
performance, particularly in the context of resource-efficient training, model compression, and
continual learning.

(4) ImageNet [65] is a large-scale image classification dataset with over 1.2 million training images and
50,000 validation images across 1,000 object categories. It is one of the most prominent benchmarks
in computer vision, used to assess the representation power, generalization, and transferability of
visual models. The dataset serves as a foundation for pretraining and evaluating deep convolutional
and transformer-based vision models. We use the release version of ImageNet in 2012 as the dataset
in our experiments.

H.2 Baselines Details

In this section, we introduce the baselines we used for quantification of important parameters in NLP
and CV tasks, and the baselines that are widely used in LLM quantization.

For NLP and CV tasks, we systematically compare our method with the following baseline strategies
to quantify the contribution of each neuron in the model.

• Random Masking This baseline assigns uniform random importance scores to neurons without
considering their structural or functional relevance. Specifically, each neuron ni in the network is
assigned a score si∼U(0,1) from a uniform distribution. This strategy establishes a non-informative
reference to other quantification methods.

• Gradient Magnitude [43, 5] This baseline prioritizes neurons based on the magnitude of their
gradient values |gτ

i | computed during backpropagation. Specifically, given a parameter θτi in

the training step τ , its importance score is defined as the absolute gradient si =
∣∣∣ ∂L
∂θτ

i

∣∣∣, where L
denotes the loss function. This strategy assumes that parameters with larger gradients contribute more
significantly to reducing the loss and thus deserve higher retention priority during pruning or masking.

• Gradient Trace [40, 35, 49, 43] This method computes importance scores by the product of
parameter values and their corresponding gradients, i.e., si= |θτi ·gτ

i |. The intuition is to capture
both the sensitivity (gτ

i ) and the scale (θτi ) of each parameter, effectively identifying neurons whose
activation patterns are both volatile and impactful. By incorporating parameter magnitudes, this
approach mitigates the bias towards large gradients in low-magnitude parameters, providing a more
balanced measure of importance.

For quantization tasks, we compare our method with GPTQ [4] and OBD [38]. The details of these
two methods are shown below.

• GPTQ [4] This method represents a state-of-the-art post-training quantization (PTQ) technique
designed for large language models. GPTQ employs a greedy Hessian-based algorithm to quantize
each parameter group θi independently. Specifically, it minimizes the quantization error ∥θi−θ̂i∥2F
under the constraint that θ̂i lies within the specified quantization level (e.g., 4-bit or 8-bit). The
optimization is formulated as:

θ̂∗i =argmin
θ̂i∈Q
∥θi−θ̂i∥2F +λ·tr(θ̂Ti Hiθ̂i) (78)

whereQ denotes the discrete quantization space, Hi is the approximate Hessian matrix capturing
the sensitivity of the output to each parameter, and λ is a regularization parameter. This group-wise
quantization approach efficiently balances accuracy and computational overhead.

• OBD [38] Optimal Brain Damage (OBD) is a gradient-based pruning and quantization framework
that leverages the second-order Taylor expansion of the loss function. Given a parameter θij at the
i-th layer and j-th position, OBD computes the saliency score as:

S(θij)=
1

2
·θ2ij ·

∂2L
∂θ2ij

(79)

During quantization, parameters with lower saliency scores are prioritized for quantization or
removal, as they contribute less to the overall loss. OBD typically uses a Hessian diagonal
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approximation to efficiently estimate the second-order derivatives, enabling scalable application to
large models. Unlike GPTQ, OBD integrates pruning and quantization decisions, making it suitable
for joint model compression tasks.

We evaluate different quantization settings commonly used in model compression, including INT4,
INT8, and FP8, as detailed below:

• INT4 / W4A16 quantization uses 4-bit integers to represent model weights. In the W4A16 setting,
weights (W) are quantized to 4 bits, while activations (A) remain in 16-bit floating point (FP16). This
configuration achieves significant model size and memory bandwidth reduction while maintaining
inference accuracy due to high-precision activations.

• INT8 / W8A8 quantization is a widely adopted precision format where both weights and activations
are quantized to 8-bit integers. The W8A8 configuration balances compression and performance,
offering compatibility with many hardware accelerators and maintaining near-floating-point
accuracy in many practical applications.

• FP8 is a low-precision floating-point format (e.g., E4M3 or E5M2) gaining traction for training and
inference. While not strictly integer quantization, FP8 enables dynamic range advantages over INT
formats. It can be used to represent either weights or activations or both, depending on the hardware
support. Some hybrid schemes combine INT8 for weights with FP8 for activations or vice versa,
leveraging the benefits of both representations.

H.3 Prompts used in MODEL SHAPLEY

In this section, we provide a detailed display of all the prompts used.

• Prompt for MMLU Dataset The following prompt is leveraged to instruct LLM to answer MMLU
dataset questions.

Prompt 1

The following is a multiple choice question. Think step by step and then finish your answer
with "the answer is (X)" where X is the correct letter choice.
[Question] {Question q}
A. {Content_of_A}
B. {Content_of_B}
C. {Content_of_C}
D. {Content_of_D}

• Prompt for GSM8K Dataset The following chain-of-thought prompt is used to generate
step-by-step answers [66] to instruct LLM to answer GSM8K dataset questions.

Prompt 2

{Question q} Let’s think step by step and output the final answer after "####".

• Prompt for Private Company Rules Dataset The following prompt is used to generate answers
by selecting the most relevant knowledge base.

Prompt 3

{Question q} You are a domain-specific large language model integrated with multiple
knowledge bases. The list of knowledge bases is as follows: {database_list}

# Please analyze the question "{query}" and determine which knowledge base it
most likely belongs to. If none of them are appropriate, output "others".

By using these prompts above to guide the LLM to output the final answer in a specified format, we
can then extract the model’s output through regular expression matching and conduct evaluations.
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H.4 Implementation Details

We employ three different parameter-level language model architectures as our backbones, including
Qwen2.5-3B-Instruct, Qwen2.5-7B-Instruct [57], and LLaMA-3.2-3B-Instruct [32]. We use PyTorch
2.6.0 library to implement all the algorithms based on the open-source HuggingFace transformers [67]
codebase. All NLP tasks and CV tasks are tested on an Ubuntu server equipped with 8 NVIDIA A100
GPUs with 80GB memory, and quantization tasks are tested on an Ubuntu server equipped with 8
NVIDIA 4090 GPUs with 48GB memory. During the deactivation process, we only care about MLP
layers in the transformer models. And we deal with the weight and bias of a neuron at the same time.

For the training experiments, The activative ratio is set to 0.1 for all tasks. We conduct NLP tasks
with a learning rate of 3e-5, a max gradient norm of 1.0, a warmup ratio of 1e-3, a batch size of 16
for GSM8K dataset and 8 for MMLU dataset, a gradient accumulation steps of 4, a cutoff length of
1024 for GSM8K dataset and 2048 for MMLU dataset, a max respoonse length of 1024, and 1 epochs.
And CV tasks are conducted with a learning rate of 1e-5, a weight decay of 1e-4, a batch size of 512,
max epochs of 50 and use early stop strategy with patience of 5 epochs.

For the inference experiments, we set activative ratio to 0.95 for all NLP tasks, and we set activative
ratio to 0.7 for CV tasks. The batch size setting is the same as the train experiments.

For the quantization experiments, we set the calibration sample number to 512, and max input sequence
length to 2048. All quantization experiments are conducted on GSM8K dataset.

H.5 Deactivate Neurons’ Case Study

In this section, we present a case study to visually demonstrate the effectiveness of MODEL SHAPLEY.
As shown in Table 6, Table 7, Table 4, Table 5, we analyze the Qwen 2.5 7B-Instruct model on the
MMLU and GSM8K datasets, evaluating the impact on model outputs after deactivating the bottom-K
neurons (5%, 10%, and 30%) identified based on their MODEL SHAPLEY values. These key neurons
correspond to functional units associated with knowledge retrieval and mathematical reasoning tasks.

Under normal conditions, the model demonstrates strong performance in both factual response
generation and mathematical reasoning. When 5% of the key neurons are deactivated, the model
still produces reasonable outputs. However, upon deactivating 10% of the key neurons, we observe
a noticeable decline in output quality, with significant drops in both fluency and accuracy. At 30%
deactivation, the model begins to generate incoherent or irrelevant responses, effectively losing basic
conversational capabilities.

These results provide compelling evidence for the effectiveness of MODEL SHAPLEY in identifying
critical neurons responsible for specialized cognitive functions.

H.6 Deactivation Ration Study
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We conducted experiments on the ViT-Base-16 model using the CIFAR-100 dataset. As shown in
Figure 3a, the results reveal that a significant portion of the neurons are redundant. Remarkably,
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Table 4: Case study on MMLU Dataset comparing the normal output and deactivated BottomK output.

Question
The numen of Augustus referred to which of the following characteristics?
The choices are: A. Divine power, B. Sexual virility, C. Military acumen, D.
Philosophical intellect

Ground
Truth (A) Divine power

Normal
Output

To determine the correct answer, let’s consider what numen meant in the context of
Roman religion and the time of Augustus. Numen was a concept in Roman
religion that referred to the distinctive power or presence of a deity. It was not a
personification but rather a kind of spiritual presence that could be associated with
an object or place. In the context of Augustus, who was elevated to near-divine
status by the Roman people and Senate, his numen would refer to his divine power
or the divine presence attributed to him.- Option A: Divine power aligns closely
with the concept of numen in this context.- Option B: Sexual virility does not fit the
general notion of numen. - Option C: Military acumen, while a characteristic that
made Augustus highly successful, is not specifically related to the concept of
numen.- Option D: Philosophical intellect, again, does not relate specifically to
numen. Thus, the numen of Augustus referred to his divine power.The answer is
(A). [CORRECT]

Deactivated
Output (5%)

To determine the correct answer, let’s consider what n̈umenïn the context of a
historical figure refers to.1. **Divine power (A)**: In Roman mythology and
history, the numen often referred to divine forces or their manifestations. Augustus
was given a numen to indicate a divine presence or power that could protect and
influence the empire.2. **Sexual virility (B)**: While sexual virility might have
been a characteristic of Roman leaders for historical or symbolic purposes, it
doesn’t typically align with the term n̈umenïn historical contexts.3. **Military
acumen (C)**: While military acumen might have been a significant trait for
leaders, the term n̈umenïs more aligned with powers attributed to deities or divine
influence rather than specific human traits like military skills.4. **Philosophical
intellect (D)**: Similarly, philosophical intellect would relate more to mental
prowess rather than the divine or protective aspect typically associated with a
numen.The term n̈umenïn the context of Roman emperors and Augustus
specifically relates to divine power or a divine presence, which is a characteristic
that could protect and influence the empire on a supernatural level.Therefore, the
answer is (A). [CORRECT]

Deactivated
Output
(10%)

To determine the correct answer, let’s consider what n̈umenïn the context of
Augustus refers to. The term n̈umenïs associated with the Roman gods and can be
linked to the concept of divine attributes or powers within the Roman context.In
ancient Rome, a n̈umenc̈ould be the power or the divine aspect of a god. An
individual or deity could be associated with numen, which would manifest their
divine attributes or powers.Let’s evaluate each option:A. Divine power - This
option aligns well with the concept of a numen. A numen would indeed refer to a
divine power or attribute that is associated with a divine entity.B. Sexual virility -
This is not relevant to the concept of numen in ancient Rome. It might perturb the
context to something more related to ancient Greek, where attributes like virility
were discussed within other deities, such as Priapus.C. Military acumen - While
military acumen can be a trait of a leader, it is not directly related to the concept of
numen, which pertains more to divine qualities.D. Philosophical intellect -
Although a philosophical intellect could be a characteristic, it is not directly related
to the term n̈umen,ẅhich is more aligned with divine attributes.Given the context
and the specific meaning of n̈umenïn relation to divine attributes, the answer is:A.
Divine power. The answer is (X) where X is the correct letter choice A.
[CORRECT]

Deactivated
Output
(30%)

To answer this question step, you must follow the process of a number in the
reference of a m The correct answer is C, M̈ilitary acumen.̈The answer is (C).Step
reason:The current is in a 1 5 1 5 1 5 the 8 An acuen of acuen of U A F 1 5 1 5 1 A
the of 5 1 1 Relevant M 1 5-With with 5 5 5 5 5 5 5 5 the 5 rule 1 ab 5 5 5 5 u 5-shift
1 an the (*(1 5 the 5 The 5 The 5 5 The 5 the 5) the 5 5 a 5 This A comes the 8 5 the
5 Prevention 52 2 1 1 1 1 1 1 5 3 1 1 D 1 1 1 1 1 1 1 1 1 1 1 1 the 2 5 1 a 1 5 1 1 M u 1
1 1"] [WRONG]

37



Table 5: Case study on MMLU Dataset comparing the normal output and deactivated BottomK output.

Question

Every country with a seacoast has an exclusive economic zone (EEZ) under
the UN Convention on the Law of the Sea. Which one of the following
statements regarding the Law of the Sea and the EEZ is NOT correct?"
Choices": A. "The EEZ extends up to 200 nautical miles (370 km) from the
coastline.", B. "Countries have the right to exploit natural resources in their
EEZ.", C. "Countries can exploit resources on the continental shelf extending
up to 350 nautical miles (560 km) beyond their EEZ.", D. "A country does not
have the right to exploit living resources in its EEZ".

Ground
Truth (D) A country does not have the right to exploit living resources in its EEZ

Normal
Output

Let’s analyze each statement regarding the Law of the Sea and the EEZ:A. The
EEZ extends up to 200 nautical miles (370 km) from the coastline. According to
the UN Convention on the Law of the Sea, this statement is correct.B. Countries
have the right to exploit natural resources in their EEZ. - This statement is also
correct as it aligns with the principle of the EEZ. C. Countries can exploit
resources on the continental shelf extending up to 350 nautical miles (560 km)
beyond their EEZ.- This statement is correct, as states have the right to explore and
exploit all natural resources of the seabed and subsoil beyond and adjacent to their
territorial sea up to 350 nm from the baselines. D. A country does not have the
right to exploit living resources in its EEZ. - This statement is incorrect. Countries
have the right to explore and exploit living resources within their EEZ, contrary to
what D claims. After reviewing all the statements, we find that only one is
incorrect. Therefore, the answer is (D). [CORRECT]

Deactivated
Output (5%)

To determine which statement is NOT correct, let’s analyze each option step by
step: A. The EEZ extends up to 200 nautical miles (370 km) from the coastline.
This statement is correct according to the UN Convention on the Law of the Sea,
which defines the EEZ extending up to 200 nautical miles. B. Countries have the
right to exploit natural resources in their EEZ. This statement is also correct.
Article 77 of the convention states that states have the authority to exploit resources
in their EEZ for reproduction purposes. C. Countries can exploit resources on the
continental shelf extending up to 350 nautical miles (560 km) beyond their EEZ.
This statement is accurate under the convention as it pertains to the continental
shelf, which can extend up to 350 nautical miles beyond the EEZ, as mentioned in
Article 76. D. A country does not have the right to exploit living resources in its
EEZ. This statement is incorrect. Contrary to what D suggests, Article 105 of the
convention actually allows states to exploit living resources in their EEZ, subject to
certain conditions. The answer is (D). [CORRECT]

Deactivated
Output
(10%)

Let’s analyze each statement regarding the Law of the Sea and the Exclusive
Economic Zone (EEZ):A. The EEZ extends up to 200 nautical miles (370 km)
from the coastline. This statement is correct according to the Convention on the
Law of the Sea. The EEZ is the area extending from the coastline to 200 nautical
miles. B. Countries have the right to exploit natural resources in their EEZ. This
statement is also correct. Countries can exploit natural resources in the EEZ,
including renewable resources, provided they do not leave a negative impact on the
marine environment. C. Countries can exploit resources on the continental shelf
extending up to 350 nautical miles (560 km) beyond their EEZ. This statement is
not correct according to the Convention. The continental shelf extends up to 100
nautical miles (350 km) from the coastline, while the EEZ extends to 200 nautical
miles from the coastline. The continental shelf is not part of the EEZ and extends
only up to 100 nautical miles (350 km). D. A country does not have the right to
exploit living resources in its EEZ. This statement is correct according to the
Convention. While countries can exploit natural resources in the EEZ, living
resources are not included in the natural resources under the Convention. The
statement that is not correct is C, as it incorrectly states the continental shelf
extends beyond the EEZ, which is not true. The answer is (C)." [WRONG]

Deactivated
Output
(30%)

The correct answer is the answer (A) and the to the in you and the a in you in in
Mor the years D in in in in in in in in in in in in in in in the (The answer is (D)) is in
in Condition (2 in n, 8 the in in in in the ( in in 2 2 in the 2 The 2 in in 1 1 A in in 3 1
1 1 1 1 in in 1 1 1 1 1 1 1 1 the 1 1 1 1 1 1 1 1 the 1 1 1 1 1 1 1 1 1 1 3 3 3 [WRONG]
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Table 6: Case study on GSM8K Dataset comparing the normal output and deactivated BottomK output.

Question
Josh decides to try flipping a house. He buys a house for $80,000 and then puts
in $50,000 in repairs. This increased the value of the house by 150%. How
much profit did he make?

Ground
Truth 70000

Normal
Output

Let’s break down the problem step by step:
1. Initial Cost: Josh buys a house for $80,000.
2. Repairs Cost: He spends $50,000 on repairs.
So, the total cost including repairs is:
80,000+50,000=130,000 dollars
3. Value Increase: The repairs increase the value of the house by 150%.
To find the increase in value, we calculate 150% of the purchase price:
150%×80,000=1.5×80,000=120,000 dollars
So, the new value of the house is:
80,000+120,000=200,000 dollars
4. Profit Calculation: The profit is the selling price minus the total cost.
Profit=200,000−130,000=70,000 dollars
70,000 [CORRECT]

Deactivated
Output (5%)

Let’s break down the problem step by step:
1. Initial Purchase: Josh buys a house for $80,000.
2. Repairs: Josh spends an additional $50,000 on repairs.
3. Total Investment: The total amount Josh has invested (purchase price + repairs)
is:
80,000+50,000=130,000
4. Increase in Value: The repairs increased the value of the house by 150%. To
find the new value of the house, we need to calculate 150% of the purchase price
and add it to the purchase price:
Increase in value=80,000×1.50=120,000
So, the new value of the house is:
80,000+120,000=200,000
5. Profit Calculation: Profit is calculated by subtracting the total investment from
the new value of the house:
Profit=200,000−130,000=70,000
Josh made a profit of $70,000. [CORRECT]

Deactivated
Output
(10%)

Step 1: Calculate the total cost of the house, including repairs The house was
bought for $80,000 and then $50,000 was spent on repairs, so the total cost is:
80,000+50,000=130,000 Step 2: Determine the increased value of the house
The value of the house increased by 150% after the repairs, so the new value of the
house is: 1.5×80,000=130,000 In this case, 1.5 times the original value of the
house is equal to 130,000, indicating that the original value of the house was
$80,000 and the repairs added $100,000 to the value (150% - 1 = 1.5, means 1
times the original plus 1 times the, so 130,000 - 130,000 = 100,000). Step 3:
Calculate the profit The profit is the difference between the increased value of the
house and the total cost of the house, so The profit is the increased value (130,000)
minus the cost (130,000), so 130,000 (150% - 130,000), so 130,000 (150% -
130,000) = 130,000 (150% - 130,000) = 130 [WRONG]

Deactivated
Output
(30%)

Let’s think through the steps to calculate the profit of the house, in the context of a
flip and the increase of the value by 150%. Step by step, we’ll output the final
answer: Step 1: Initial Value of the House Let’s start with the initial value of the
house - Initial value: $80,000 To the 150% increase, we need to a calculate. The
150% increase is a step, and it is the value that we need to calculate. Let’s assume
the initial value is a 150% increase, for the purpose of the 150% increase, to the
150% increase itself the 150% increase is a 150% increase in the current value of
the technology, not the 150% increase in the initial value itself. This, we will
calculate the increase of the 150% value as a 150% increase in the next value, and
the 150% increase in the 1 55 5 5 the 2 1 5 1 1 1 1 1 1 1 1 1 1 1 the, 1 with the, 1 1
Step 2: Calcul with the 150% Increase In the 1 5 5 5, addon, , Let, the, the, 1 5, Let,
this, th for let ihm’, the, the, the, the, ‘ 5’ atte’, API’, [WRONG]
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Table 7: Case study on GSM8K Dataset comparing the normal output and deactivated BottomK output.

Question

Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning
and bakes muffins for her friends every day with four. She sells the remainder
at the farmers’ market daily for $2 per fresh duck egg. How much in dollars
does she make every day at the farmers’ market?

Ground
Truth 18

Normal
Output

Let’s break down the problem step by step:
1. Calculate the total number of eggs Janet gets each day:
- Janet’s ducks lay 16 eggs per day.
2. Calculate the number of eggs Janet uses for breakfast:
- Janet eats 3 eggs for breakfast every morning.
3. Calculate the number of eggs Janet uses for baking muffins:
- Janet uses 4 eggs to bake muffins for her friends every day.
4. Calculate the total number of eggs Janet uses:
- Total eggs used for breakfast and baking = 3 (breakfast) + 4 (muffins) = 7 eggs per
day.
5. Calculate the number of eggs Janet can sell:
- Remaining eggs after usage = Total eggs per day - Eggs used
- Remaining eggs = 16 - 7 = 9 eggs per day.
6. Calculate the revenue from selling the eggs:
- Janet sells the remaining 9 eggs at $2 per egg.
- Revenue = 9 eggs * $2/egg = $18 per day.
18 [CORRECT]

Deactivated
Output (5%)

Let’s break down the problem step by step:
1. Determine the total number of eggs laid per day:
- Janet’s ducks lay 16 eggs per day.
2. Calculate the number of eggs used for breakfast:
- Janet eats 3 eggs for breakfast every morning.
- So, the number of eggs used for breakfast is 3 eggs.
3. Calculate the number of eggs used for baking muffins:
- Janet bakes muffins using 4 eggs each day.
- So, the number of eggs used for baking is 4 eggs.
4. Calculate the total number of eggs used (for breakfast and baking):
- The total number of eggs used is 3+4=7 eggs.
5. Calculate the number of eggs remaining for selling:
- The number of eggs remaining after using some for breakfast and baking is
16−7=9 eggs.
6. Calculate the daily earnings from selling the remaining eggs:
- Janet sells the remaining eggs at $2 per egg.
- So, the daily earnings are 9×2=18 dollars.
Therefore, Janet makes 18 dollars every day at the farmers’ market. [CORRECT]

Deactivated
Output
(10%)

To solve this problem, let’s first calculate the number of eggs Janet has after
various activities and then determine the earnings from selling the remainder.
1. Total eggs laid by Janet’s ducks in a day (16 eggs)
2. Eggs eaten for breakfast (16 eggs - 3 eggs for the morning breakfast = 13 eggs)
3. Eggs used for baking muffins (16 eggs - 4 eggs for baking muffins = 12 eggs)
4. Eggs sold at the farmers’ market (16 eggs - 3 eggs for morning breakfast + 4
eggs for baking - 2 eggs = 8 eggs)
3. Earnings per egg at the farmers’ market (2 dollars per egg)
4. Earnings calculation (8 eggs multiplied by 2 dollars per egg = 16 dollars)
So, Janet makes 16 dollars every day at the farmers’ market by selling the
remainder of her eggs. 16 [WRONG]

Deactivated
Output
(30%)

Let’s break the problem step by step and calculate the number of the daily you
would make for the visit to the farmers’s market.
Step by step:
1. Calculate the number of the daily Mor’s (d and " in) in the first, to the work of the
Mor ( ( in. to the 8 and " 0 0))):
The Mor ( ( ( ( ) 16 4 ( 0 ( )) ( ) ). 2 ( ( in). to the ...the the ( ( the ( ed ( ( the ( M !! ! !
() !! !) ! 2 ( !) ( it ([WRONG]
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retaining only the top 70% of neurons ranked by their Shapley values achieves an accuracy of 86.42%,
surpassing the 85.19% accuracy obtained when 90% of the neurons are retained.

This finding suggests that not all neurons contribute equally to the model’s predictive capability, and
that a carefully selected subset of high-importance neurons can maintain or even enhance performance.
It also highlights the potential for neuron pruning or activation sparsity as an effective strategy for
improving efficiency without sacrificing accuracy.

H.7 Analysis of Compensation Effects in Parameter Units

During our experiments, we observed the neural compensation effect. To further investigate this
phenomenon, we design an additional set of experiments using the Qwen 2.5 3B-Instruct model on
the GSM8K dataset. Specifically, at various training steps (step = 0, 20, 40, 60, and 80), we deactivated
the top 90% of neurons ranked by importance and analyzed the distribution of parameter importance.

Our results in Figure 3b show that as training progresses, the distribution of Shapley values evolves.
When high-Shapley neurons are deactivated, other neurons progressively assume their functional
roles. This redistribution leads to increased Shapley values among previously less important
neurons, illustrating a clear compensation effect within the network. These findings suggest that the
model dynamically redistributes functional importance across neurons during training to adapt to
perturbations, highlighting the inherent resilience and adaptability of neural representations.

H.8 Model Compression Sensitivity Experiments
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We further compared the performance of Qwen 2.5 7B-Instruct and Qwen 2.5 14B-Instruct under
different compression settings for INT 4 in Figure 4a and INT 8 in Figure 4b. By varying the parameter
β in the range {0.1,0.3,0.5,0.7,0.9}, we evaluated both time efficiency and model accuracy.

The experimental results demonstrate the effectiveness of MODEL SHAPLEY, particularly in scenarios
where cooperative game-theoretic contributions are explicitly weighted. As α increases, the trade-off
between compression and performance becomes more pronounced, yet MODEL SHAPLEY consistently
maintains superior accuracy with reduced computational cost. These findings validate the importance
of incorporating cooperative importance measures in guiding neuron selection for model compression.

H.9 Attention Head and Layer-wise MODEL SHAPLEY Study

In this experiment, we investigate the effectiveness of MODEL SHAPLEY at the attention head
and layer level. Specifically, we evaluate its ability to identify important parameter units beyond
MLP layers. We conduct knowledge base routing experiments on a private company policy dataset,
following the setup in [68, 69, 70]. The dataset consists of 2,088 training samples and 344 test samples,
covering four subcategories of company regulations and an “others” category (i.e., questions that
should not trigger knowledge base queries).

The routing task aims to determine whether the model should query a knowledge base and, if so, which
one. We compare the performance of MODEL SHAPLEY and gradient trace in identifying important
attention heads and layers. Using the Qwen 2.5 7B-Instruct model, we compute the Top-K importance
scores using both methods and select the most relevant units accordingly.
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For probing, we use the training set to identify the most important attention head and layer, and then
use the output signals from that selected layer as input to a downstream probing model—a two-layer
MLP classifier trained to perform 5-way classification.

Table 8: Top-5 Important Attention Heads and Layers Identified
Rank Gradient Trace (Layer : Score) MODEL SHAPLEY (Layer : Score)

1st model.layers.22.self_attn.v_proj : 1.90×10−5 model.layers.26.mlp.down_proj : 0.375
2nd model.layers.3.self_attn.v_proj : 1.66×10−5 model.layers.25.self_attn.v_proj : 0.354
3rd model.layers.25.self_attn.v_proj : 1.52×10−5 model.layers.23.self_attn.v_proj : 0.352
4th model.layers.26.self_attn.v_proj : 1.44×10−5 model.layers.22.self_attn.v_proj : 0.289
5th model.layers.23.self_attn.v_proj : 1.40×10−5 model.layers.21.self_attn.v_proj : 0.260

Based on these rankings, we use model.layers.22.self_attn.v_proj for the gradient trace experiment and
model.layers.26.mlp.down_proj for the MODEL SHAPLEY experiment. The classification accuracy
on the routing task is summarized in Table 9.

Table 9: Comparison of Gradient Trace & MODEL SHAPLEY on Attention Head and Layer-wise
Probing

Method Train Set Accuracy Test Set Accuracy
Gradient Trace (model.layers.22.self_attn.v_proj) 0.89 0.81
MODEL SHAPLEY (model.layers.26.mlp.down_proj) 0.92 0.83

The experimental results demonstrate that MODEL SHAPLEY is effective not only at the neuron level,
but also at the finer-grained attention head and layer level.

Table 10: Accuracy (%) and training cost (same units across methods; lower is better) on GSM8K.
Qwen2.5-3B-Instruct Qwen2.5-7B-Instruct

Method Accuracy Cost time Accuracy Cost time

Shapley 49.51 215 62.47 265
LoRA 48.45 200 64.14 170
Shapley+LoRA 52.16 242 63.53 273

H.10 Runtime-normalized comparison

It is crucial to first clarify where the computational cost occurs. The runtime difference between
our method and the baselines lies in the one-time, offline parameter importance quantification
step. The subsequent quantization process, guided by these importance scores, takes a similar amount
of time for all methods.

Therefore, a constant runtime comparison for the importance quantification step is not straightforward.
Each method is a distinct algorithm designed to run to completion. Artificially truncating our
method to match a faster baseline’s runtime would mean using an incomplete Hessian approximation,
compromising the integrity of our approach and leading to an uninformative comparison.

Instead, we believe the right way to evaluate this trade-off is to compare the final accuracy against
the actual, practical runtime. We admit our method has a higher cost for importance quantification,
as it incorporates second-order cooperative interactions, not just first-order individual importance.
Our experiments show this additional investment is both marginal and highly worthwhile.

For Qwen2.5-7B INT8 quantization: ❶ GPTQ: 53.86 min total (importance: 5 min), ❷ OBD: 57.88
min total (importance: 8 min), ❸ MODEL SHAPLEY : 60.20 min total (importance: 10 min).

The 2-5 minute difference in importance estimation yields 1.5-2% accuracy gains, which persists
throughout the model’s deployment lifetime. We believe the one-time cost of 5 extra minutes during
quantization is negligible compared to the perpetual benefits of higher accuracy and/or smaller model
size during deployment, where models serve millions of requests.
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H.11 Fine-tuning Efficiency and Variance

We extend our significance analysis with two compact replications across NLP and vision. In each
setting we report mean accuracy and standard error, and we assess statistical significance with
independent-samples t-tests at the 5% level. We also examine stability across random seeds under
realistic compute budgets.

On GSM8K with Qwen2.5-3B-Instruct, each configuration is repeated with three random seeds.
This replication compares MODEL SHAPLEY with the strongest baseline, Gradient Trace. Table 11
presents the three-seed statistics. MODEL SHAPLEY attains a higher mean and a smaller standard
error than Gradient Trace, and t-tests at the 5% level indicate statistically significant improvements,
supporting reliable gains under the three-seed regime.

On CIFAR-100 with VIT-Base, we run eight seeds and include four methods: Random, Gradient,
Gradient Trace, and MODEL SHAPLEY. Table 12 reports the aggregate mean and standard error for
these methods. MODEL SHAPLEY achieves the highest mean accuracy, while standard errors differ
across baselines. Using the full eight-seed replication for inference, pairwise t-tests at the 5% level
confirm significant improvements of MODEL SHAPLEY over each baseline.

Table 11: Accuracy statistics (%) across three runs on GSM8K with Qwen2.5-3B-Instruct.
Method Mean Standard Error

Gradient Trace 48.49 0.72
MODEL SHAPLEY 49.51 0.27

Table 12: Accuracy statistics (%) across eight runs on CIFAR-100 with VIT-Base.
Method Mean Standard Error

Random 84.59 0.13
Gradient 85.16 0.16
Gradient Trace 85.12 0.10
MODEL SHAPLEY 85.51 0.19

Environment note. The mean values reported here may differ slightly from those in the main text
because these additional runs were executed on a different hardware/software stack (NVIDIA H800
GPUs with a newer CUDA environment) than the original experiments (NVIDIA A100 GPUs with
a previous CUDA version), yielding a general upward shift in accuracy for all methods.

Computational efficiency. MODEL SHAPLEY estimates parameter importance with a single
forward and backward pass plus a Hessian–vector product (see Section 4.1 and Remark 4.9). For
multi-epoch fine-tuning, this one-time cost is amortized by updating only a small subset of parameters.
In our experiments, selecting 10% of parameters reduced training time by approximately 85% relative
to full-model fine-tuning and reduced gradient storage by 90%, enabling larger batch sizes. The
one-time importance estimation for a 7B model takes roughly 30 minutes and can be reused across
fine-tuning tasks.

H.12 Hardware Scalability and General Applicability

The scalability of MODEL SHAPLEY is primarily governed by the memory and compute requirements
of the blockwise Hessian approximation rather than any hardware-specific constraint. The method
is designed to be hardware-agnostic and can operate efficiently across diverse GPU architectures by
adjusting the block granularity used in Shapley value estimation.

The total memory footprint scales quadratically with the number of parameters per block. Consequently,
the granularity of the partitioning determines the trade-off between computational cost and analytical
resolution:

• Coarse granularity (e.g., treating an entire neuron or layer as a single block) involves larger
parameter groups, leading to higher memory demand but faster overall computation. Under
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this configuration, models with approximately up to 3B parameters can be handled efficiently
on modern GPUs such as the NVIDIA H100 (80 GB).

• Fine granularity (e.g., defining blocks at the neuron-in-attention-head level) reduces
per-block memory requirements substantially, enabling analysis of larger models, up to the
7–13B parameter range on comparable hardware.

In practice, the same principle generalizes across different hardware configurations. Devices with
greater memory capacity or multi-GPU setups naturally extend the upper bound of model size, while
smaller devices can still employ MODEL SHAPLEY effectively by adopting coarser partitioning.
This hardware-agnostic flexibility allows practitioners to tailor the granularity–efficiency trade-off
according to available resources, ensuring the method’s applicability to a wide range of model scales
and hardware environments.

I Broader Impacts

Our work leverages cooperative-game–theoretic Shapley values to develop MODEL SHAPLEY, an
efficient, single-back-propagation estimator that assigns an importance score to every parameter in
a neural network. By collapsing the naïve 2M -scale computation to one gradient pass, MODEL SHAP-
LEY produces interpretable saliency maps that drive targeted fine-tuning, pruning, and quantization,
circumventing the accuracy degradation often seen with full-model fine-tuning. This efficiency is espe-
cially critical in the era of large models, where the sheer parameter count makes exhaustive attribution
prohibitively expensive. In practice, MODEL SHAPLEY excels at large-model interpretability tasks
(e.g., probing and logit-lens analysis), parameter-specific adaptation, and precision-aware quantization,
providing a practical template for future responsible and efficient model development.

J Data Ethics Statement

To evaluate the efficacy of this work, we conducted experiments that only use publicly available
datasets, namely, MMLU, GSM8K, CIFAR-100, and ImageNet in accordance with their usage terms
and conditions, if any. We further declare that no personally identifiable information was used, and
no human or animal subject was involved in this research.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the introduction section, we delineate the problems addressed by this work
and outline our contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the conclusion section, we highlight the limitations of the current work and
suggest directions for future research.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend
on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers
discover limitations that aren’t acknowledged in the paper. The authors should use
their best judgment and recognize that individual actions in favor of transparency play
an important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We provide the complete theoretical proofs in Appendix H.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and

cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the detail of experiments in Appendix H.4. Besides, code is
anonymously available at https://anonymous.4open.science/r/ModelShapley/.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Code is available at https://github.com/Artessay/ModelShapley.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be pos-
sible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to
run to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperpa-
rameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We provide experiment settings in Appendix H.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to the computational constraints associated with training and evaluating
large-scale models, we could not perform multiple repetitions of each experiment. Thus,
traditional error bars based on multiple runs are not included. However, we have taken
other appropriate measures to demonstrate robustness and significance, including clearly
reporting the experimental settings, model hyperparameters, and performing ablation studies
or comparisons to baselines wherever possible. Additionally, we’ve detailed any relevant
sources of variability or uncertainty in the experimental setup and results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: We provide sufficient information on the computer resources in Appendix H.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: I have read the NeurIPS Code of Ethics and I confirm our research in the paper
conforms with Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require

a deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the potential impacts in Appendix I.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The framework proposed in our paper does not extend to application domains
requiring safeguards. Additionally, the datasets used are widely-used node classification
datasets, thus eliminating the need for specific safeguards.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We list all necessary information for datasets and baselines mentioned in
Appendix H.1 and Appendix H.2, and we have cited all referenced works.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release our code anonymously at https://anonymous.4open.science/
r/ModelShapley/.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used as an important, original, or non-standard component
of the core methods in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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