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Abstract

With the rise and ubiquity of larger deep learn-001
ing models, the need for high-quality compres-002
sion techniques is growing in order to deploy003
these models widely. The sheer parameter004
count of these models makes it difficult to fit005
them into the memory constraints of different006
hardware. In this work, we present a novel ap-007
proach to model compression by merging sim-008
ilar parameter groups within a model, rather009
than pruning away less important parameters.010
Specifically, we select, align, and merge sep-011
arate feed-forward sublayers in Transformer012
models, and test our method on language mod-013
eling, image classification, and machine transla-014
tion. With our method, we demonstrate perfor-015
mance comparable to the original models while016
combining more than a third of model feed-017
forward sublayers, and demonstrate improved018
performance over a strong layer-pruning base-019
line. For instance, we can remove over 21%020
of total parameters from a Vision Transformer,021
while maintaining 99% of its original perfor-022
mance. Additionally, we observe that some023
groups of feed-forward sublayers exhibit high024
activation similarity, which may help explain025
their surprising mergeability.026

1 Introduction027

Recent advances in deep learning have been028

marked by large, pre-trained models in order to029

achieve state-of-the-art performance. With this030

trend towards growing parameter counts, more031

high-quality compression techniques are needed032

that balance compression effectiveness and model033

performance. These techniques help facilitate034

model use across a variety of inference settings035

and hardware availability.036

Much of the prior work in model compression037

has built upon on distillation, quantization, and038

pruning techniques (Hinton et al., 2015; Fiesler039

et al., 1990; LeCun et al., 1989). Prior work on040

pruning has introduced many techniques identi-041

fying regions of parameters that can be removed 042

from the model without drastically changing perfor- 043

mance. These techniques target individual neurons 044

or general regions of a model—like attention heads, 045

parameter chunks, or even entire layers. (Voita 046

et al., 2019; Lagunas et al., 2021; Sajjad et al., 047

2023). However, while “unimportant” features are 048

targeted for pruning techniques, we can also target 049

“redundant” features for compression. There has 050

been far less focus on compression methods that 051

target redundancy within a model. 052

When targeting redundant features for compres- 053

sion, we can turn to merging sets of similar pa- 054

rameters rather than pruning them. Relatedly, the 055

research area of model merging has explored merg- 056

ing parameters from two or more separate mod- 057

els in order to combine their functionalities into 058

a single model (Goddard et al., 2024; Yang et al., 059

2024a). In our case, we can imagine extending 060

parameter merging to merge sublayers within one 061

model, rather than just separate models. 062

To this end, we propose a novel compression 063

method that aligns, merges, and ties separate feed- 064

forward (FF) sublayers within Transformer archi- 065

tectures (Vaswani et al., 2017). We target FF sub- 066

layers in particular due to their large parameter 067

count and easy mergeability. Through our testing, 068

we find that these groups of FF sublayers are no- 069

tably compressible via merging, giving rise to a 070

simple and surprisingly effective framework appli- 071

cable to a variety of existing pre-trained models. 072

We highlight the contributions of our work: 073

1. We propose a novel model compression 074

method inspired by recent work in model 075

merging. This approach is orthogonal to pop- 076

ular compression methods like quantization. 077

2. Across three different Transformer-based 078

models, namely GPT-2, ViT, and a machine 079

translation model, we show that merging over 080

one-third of feed-forward sublayers and fine- 081
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Figure 1: Overview of the feed-forward alignment and merging algorithm used to compress models in an example
three layers of a Transformer. Multi-headed attention is abbreviated to MHA, feed-forward sublayers are depicted
with W in and W out weights, and Add&Norm operations are depicted with

⊕
, connected by arrows indicating

residual connections.1 Permutation transformation matrices are shown as Pi. Our method includes a permutation
finding step, applying the transformations, merging transformed parameters, and finally tying the merged parameters.
By merging and tying k feed-forwards, we can reduce the model size by k − 1 feed-forward sublayers.

tuning the resulting model can achieve perfor-082

mance comparable to the original models.083

3. To explore the surprising effectiveness of084

merging, we compare different feed-forward085

outputs from the same model, and find regions086

with highly similar activations. These same087

patterns do not occur in attention outputs.088

4. We release an easily extensible toolkit for our089

compression method at anonymous_code.090

2 Related Work091

In this section, we review prior work related to092

weight tying for efficient models, and work related093

to pruning and redundancy. We also summarize094

major compression techniques in Table 1, and com-095

pare them to our merging-based approach.096

2.1 Weight tying for smaller models097

Prior work on weight tying has largely focused on098

training models from scratch with specific tying099

schemes. Tying input and output embedding layers100

helps cap total parameter count, but more impor-101

tantly provides important gradient sharing signal102

1This diagram shows a Post-LN Transformer, but our
method easily applies to Pre-LN Transformers as well.

2Quantization can improve batch throughput during infer-
ence, which can result in run time savings, but it generally
does not improve inference speed at a constant batch size.

for better generalization in language generation 103

tasks (Press and Wolf, 2017; Inan et al., 2017). In 104

the case of non-embedding layers in Transformers, 105

prior work has explored numerous weight tying 106

patterns for training new models (Dehghani et al., 107

2019; Reid et al., 2021; Takase and Kiyono, 2023). 108

Liu et al. (2024) use heavy weight sharing between 109

Transformer layers at initialization to achieve state- 110

of-the-art sub-billion parameter language models. 111

Pires et al. (2023) specifically tie widened FF sub- 112

layers at initialization and train machine translation 113

(MT) models that outperform standard Transformer 114

MT models. In our work, we instead start from a 115

pre-trained model, and then use weight sharing as 116

a tool to reduce the overall parameter count. 117

2.2 Pruning and redundancy 118

Prior work has explored different aspects of re- 119

dundancy between Transformer components, and 120

suggested several techniques to reduce or exploit 121

this phenomenon. Dalvi et al. (2020) use centered 122

kernel alignment (CKA) to show layer redundancy 123

in BERT and XLNet, and use correlation clustering 124

to find and remove redundant sets of neurons. Men 125

et al. (2024); Gromov et al. (2024) propose remov- 126

ing entire Transformer layers in deep, decoder-only 127

language models to achieve inference speedups at 128

a small performance drop. Li et al. (2024) pro- 129

pose a compression method for sparsely-activated 130
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Motivation Training Required Run Time Savings

Quantization reduce precision No No2

Pruning remove unimportant parameters generally fine-tuning Depends
Distillation train smaller student from teacher Yes Yes
Merging combine redundant parameters fine-tuning No

Table 1: A summary and comparison of different compression methods, including merging.

mixture-of-expert (SMoE) models that draws from131

model merging work to compress some experts in132

large SMoE models. Our method extends a similar133

approach to a much wider set of models.134

3 Merging Feed-Forward Sublayers135

In this section, we discuss feed-forward sublay-136

ers as a merging target, explain permutation-based137

neuron alignment, and describe our compression138

method.139

3.1 Targeting feed-forward sublayers140

We focus our interest on Transformer FF sublay-141

ers for several reasons. Firstly, these sublayers142

constitute around two-thirds of non-embedding pa-143

rameters in Transformer encoder or decoder mod-144

els. Compressing these parameters can result in145

substantial overall savings in a model. Secondly,146

the parameterization of FF sublayers is far simpler147

than the other major sub-block of a Transformer148

layer, namely multi-headed attention (MHA). This149

structural simplicity makes it a good candidate for150

merging-based compression approaches.151

Beyond these practical considerations, prior152

work establishes several properties of Transformer153

FF sublayers that make them good candidates for154

compression via merging. Li et al. (2023) show155

that they can be very sparsely activated, where non-156

zero FF activations can be as low as 3-5%. Other157

work has demonstrated evidence that adjacent Lay-158

erNorm and FF blocks, in both Post- and Pre-LN159

architectures, results in some weakening of the con-160

textualization effects of FF sublayers (Kobayashi161

et al., 2024). The authors allude to redundancy in162

Transformer FF processing due to this interaction.163

Finally, Pires et al. (2023) train Transformer-based164

translation models with only one widened and tied165

encoder FF block with experimental success.166

3.2 Background on permutation-based167

neuron alignment168

We propose a merging technique that combines169

several similar sublayers into a single parameter set.170

Our merging technique is inspired by prior work 171

in permutation symmetries of neurons (Li et al., 172

2015). This technique has been used in studying 173

convergent learning between models, as well as 174

performing model merging between two or more 175

separate models (Tatro et al., 2020; Entezari et al., 176

2022; Ainsworth et al., 2023). 177

Permutation-based neuron alignment techniques 178

seek to find an optimal ordering of neurons in one 179

layer that more closely matches the ordering of 180

neurons from another layer, without changing the 181

its output. Given two layers to align, we compute a 182

forward pass through both using exemplar data in 183

order to collect activations. The layers are generally 184

corresponding parameters from different models. 185

This results in two activation sets Xα, Xβ ∈ Rn×d, 186

where n is the number of example data points, and 187

d is the model dimension. 188

To determine corresponding neurons from the 189

activations, we compute cross-correlation C, in 190

line with prior work (Li et al., 2015). µ represents 191

mean vectors, and σ standard deviation vectors. 192

C =
E
[
(Xα − µ(Xα))

T (Xβ − µ(Xβ))
]

σ(Xα)σ(Xβ)
(1) 193

The resulting matrix C ∈ Rd×d reflects how each 194

neuron j in Xα correlates with each neuron k in 195

Xβ . To find the neuron alignment that maximizes 196

total correlation, we solve the following optimiza- 197

tion problem, where Πd is the space of all permuta- 198

tions of length d (Li et al., 2015; Tatro et al., 2020): 199

π∗ = max
π∈Πd

d∑
j=1

C(j, π(j)) (2) 200

This problem is a case of the Linear Assignment 201

Problem, and we solve for π∗ using the Jonker- 202

Volgenant algorithm implementation provided by 203

scipy (Crouse, 2016). 204

3.3 Combining feed-forward sublayers 205

Now, with the appropriate background, we describe 206

our compression method. For our method, we first 207

3



assume that we have some predetermined number208

of feed-forward sublayers k that we want to merge.209

This number can be inferred given a overall param-210

eter reduction ratio, or set otherwise. In summary,211

our compression method aligns the ordering of the212

neurons between the multiple feed-forward sublay-213

ers in order to merge them.214

Given a window of k adjacent feed-forward sub-215

layers, we compute a forward pass using a subset216

of data in order to compute features for each feed-217

forward hidden state. In other words, for Trans-218

former FF sublayer xout = W outϕ(W inxin + bin) +219

bout, we obtain features just before the ϕ activa-220

tion. We consider only the neurons just after W in221

because prior work has shown that to reorder the222

input to W in and output of W out requires permut-223

ing many additional weights due to the residual224

connections in order to maintain functional equiv-225

alence (Verma and Elbayad, 2024). For each of226

the k feed-forward sublayers, we collect features227

Xi ∈ Rn×d i ∈ [0, k − 1], where n is the num-228

ber of tokens or patches processed, and d is the229

feed-forward dimension.3230

We designate the first feed-forward sublayer231

of the set to be an “anchor”, and compute the232

permutation-finding algorithm on each pair of fea-233

tures where one index is always the anchor. In other234

words, for each sublayer i ∈ [1, k − 1], we have in-235

puts X0 and Xi, and find πi using the permutation236

finding algorithm from Section 3.2.237

After converting function πi to its corresponding238

permutation matrix Pi, we transform the k−1 non-239

anchor feed-forward sublayers. We then average240

these k FF sublayers, and replace each of them with241

their average, as in Equations 3–6. Finally, we tie242

these weights so that in memory they appear as just243

one sublayer, effectively removing the parameters244

from k − 1 FF sublayers.245

W in∗ =
1

k

(
W in

0 +

k−1∑
i=1

PiW
in
i

)
(3)246

bin∗ =
1

k

(
bin
0 +

k−1∑
i=1

Pib
in
i

)
(4)247

W out∗ =
1

k

(
W out

0 +

k−1∑
i=1

W out
i P T

i

)
(5)248

bout =
1

k

(
k−1∑
i=0

bout
i

)
(6)249

3The layer indices reflect local index within the set of k
versus global layer index.

3.4 Selecting sublayers to merge 250

In selecting the k adjacent feed-forward sublayers 251

to merge, we take a sliding window approach. For 252

all starting layer indices from 0 to (Nlayers − 1)− 253

k, we apply the method outlined in Section 3.3, 254

and evaluate the resulting compressed model on a 255

validation set. 256

Although we propose to test each potential win- 257

dow, in reality, the cost of computing permutations 258

and parameter arithmetic is low. The largest costs 259

in each iteration is computing features and testing 260

candidates. However, we only compute features 261

once despite testing Nlayers − k models, because 262

one forward pass through the exemplar data is suffi- 263

cient for creating all necessary correlation matrices. 264

The best candidate is the one with the highest post- 265

merge evaluation score. We note that there may be 266

other possible selection heuristics in this setting,. 267

Finally, we follow our merging procedure with 268

recovery fine-tuning to quickly heal performance 269

on the downstream task. We include an algorithm 270

for our selection method in Algorithm 1. 271

Algorithm 1 Feed-Forward Sublayer Merge

Input: Model parameters θin, collected features
{Xi}

Nlayers−1
i=0 , batched fine-tuning data Dft

Input constants: k, Nlayers, MAXUPDATES

Initialize: θselected, BESTSCORE← 0
for i = 0 to (Nlayers − 1)− k do

θmerged ← COMPRESS(θin, {Xi}
Nlayers−1
i=0 , k)

if EVAL(θmerged) > BESTSCORE then
θselected ← θmerged

end if
end for
for i = 0 to MAXUPDATES do
θselected ← UPDATE(θselected, Dft(i))

end for
Output: θselected

4 Experimental Setup 272

For testing the extensibility of our method, we ap- 273

ply our compression method to several different 274

Transformer-based models. Specifically, we use 275

GPT-2 (Radford et al., 2019), the Vision Trans- 276

former (ViT) (Dosovitskiy et al., 2020), and a 277

Transformer-based machine translation model from 278

OPUS-MT (Tiedemann and Thottingal, 2020). We 279

select this variety of models in order to cover a 280

diversity of model types (decoder-only, encoder, 281

encoder-decoder) and different modalities. 282
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For each setting, we list the model used, the ex-283

ample data for computing alignments, and finally284

the data used for recovery fine-tuning and evalua-285

tion. Additional fine-tuning hyperparameters are286

included in Appendix A, and data details in Ap-287

pendix B.288

4.1 Language modeling289

For our experiments, we use GPT-2 Large, which290

has 36 layers, a feed-forward dimension of 5120,291

and is trained on English text (Radford et al., 2019).292

For computing example activations, we use 10k293

tokens from the validation set of the English Wiki-294

text103 dataset (Merity et al., 2017). Finally, we295

use the train and test sets from the Wikitext103 for296

fine-tuning and evaluation, respectively.297

Unlike the other two tasks, the pre-training data298

for GPT-2 is not publicly available, so we use Wiki-299

text103 training data for fine-tuning. Due to this300

discrepancy, our uncompressed GPT-2 baseline is301

also fine-tuned on Wikitext103 train. Because we302

have access to the training data for our machine303

translation and ViT models, we do not provide a304

fine-tuned baseline for those as the data we use305

already appears in their original training data.306

We fine-tune our GPT-2 models for up to 100k307

steps with batches of 2048 tokens. We select the308

best model based on validation perplexity and re-309

port average test perplexity with a sliding window310

of 512 tokens.311

4.2 Image classification with ViT312

We use a vision transformer (ViT) for our im-313

age classification experiments, with resolution of314

224x224, and patch size of 16x16 (Dosovitskiy315

et al., 2020). ViT is a 12-layer Transformer encoder316

model pre-trained on ImageNet-21k, and subse-317

quently fine-tuned on ImageNet-1k. ImageNet-1k318

is a classification task where images belong to one319

of 1000 categories (Russakovsky et al., 2015). For320

computing activations, we use 10k patches from321

the ImageNet-1k validation set. Evaluation results322

are computed on original validation labels.323

We fine-tune our ViT models on ImageNet-1k324

train for up to 50k steps with a batch size of 128,325

and report accuracy.326

4.3 Machine translation327

For our experiments on machine translation, we328

use a 12-layer Chinese-English Transformer-based329

translation model from an OPUS-MT release330

(Tiedemann and Thottingal, 2020). For computing331

activations, we use 10k tokens from the Tatoeba 332

validation set4 (Tiedemann, 2020). For fine-tuning, 333

we use the original training data released by the 334

Tatoeba translation challenge, sourced from OPUS 335

(Tiedemann, 2012). We apply our method to both 336

the encoder and decoder separately, constituting 337

two anchors. However, we search windows in sync, 338

meaning that the same window from the encoder 339

and decoder are merged, but separately. 340

We fine-tune our translation models for up to 341

100k steps with a batch size of 64 sentences. We 342

use sacrebleu to compute BLEU scores for evalu- 343

ation (Papineni et al., 2002; Post, 2018). 344

4.4 Layer pruning baseline 345

Recent work on structured pruning of Transformers 346

has seen many methods presenting ways to remove 347

full layers from a model and then optionally fine- 348

tune the compressed model (Men et al., 2024; Gro- 349

mov et al., 2024; Yang et al., 2024b). We focus on 350

a structured pruning baseline as many unstructured 351

pruning methods do not actually realize compres- 352

sion unless they achieve 1) high sparsity ratios and 353

2) use specialized sparse libraries to store sparse 354

weights. On the other hand, our method easily 355

realizes compression due to weight tying. 356

Many layer-pruning methods rely on similarity 357

measures to choose a set of adjacent layers to prune. 358

However, we forgo any specific similarity tech- 359

niques and instead choose the best subset after eval- 360

uation much like our own technique, via a sliding 361

window. After selecting the best pruned model, 362

we then fine-tune the model with the same specifi- 363

cations as our method. In all, this encapsulates a 364

strong, structured pruning baseline that generalizes 365

many layer-pruning based techniques. 366

5 Results 367

5.1 Merging feed-forward sublayers across 368

compression ratios 369

We evaluate our compression method on image 370

classification using ViT, language modeling using 371

GPT-2, and machine translation using an OPUS- 372

MT zh-en model, and report our results in Figure 373

2. We report results at 1/3, 1/2 and (n− 1)/n feed- 374

forward sublayers removed, in order to test our 375

method at different overall compression ratios.5 We 376

4counted on the source side
5We note that the OPUS-MT ratios trends are different due

to the enc-dec architecture.
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Figure 2: Results across all three tasks depicting compression versus performance results. We include results from
our main method, labeled as Permute FF Merge, as well as our method without permutation alignment, depicted
as Vanilla FF Merge. We note that our method retains almost complete performance at one-third of feed-forward
sublayers removed, across all tasks, and continues to retain high performance at one-half of FF sublayers removed.

also report results from our compression method377

without the permutation step, labeled as “Vanilla.”378

From our results, we see that even up to 1/2 of FF379

sublayer parameters removed, which is over 30%380

in parameter reduction for ViT and GPT-2,6 our381

method can retain high performance, similar to the382

base model. At 1/3 of FF sublayers removed, per-383

formance is almost identical to the original model,384

resulting in only a 1% accuracy drop in ViT, 1 PPL385

increase in GPT-2, and 2 BLEU drop in the transla-386

tion model. Full numerical results can be found in387

Appendix C. Prior work suggests in this sub-billion388

parameter regime, smaller models are more dif-389

ficult targets of compression methods (Ashkboos390

et al., 2024).391

Our findings also hold across all three of our392

tasks tested, suggesting that our method general-393

izes to different types of models. Additionally, we394

can notice that permutation-based compression is395

consistently better compared to no-permute vanilla396

baselines, demonstrating the effectiveness of align-397

ing features before merging. This effectiveness is398

more pronounced at larger numbers of FF sublay-399

ers removed. In summary, our results show that400

1) post-training weight tying is a simple and effec-401

tive compression method and 2) permutation-based402

alignment of these shared weights can improve fi-403

nal compression performance.404

In Figure 3, we compare our method at 1/3 and405

1/2 FFs removed to our layer-pruning baseline.7406

We drop layers to attempt to match the reduction407

ratios of our own methods, constituting 1/6 and408

1/3 of layers dropped for all three models. How-409

6We include embedding parameters in all % parameter
reduction and compression ratio calculations.

7These reduction ratios reflect ratios found in layer-pruning
literature.

ever, since we cannot match exact ratios, we plot 410

the exact parameter reduction ratios and perfor- 411

mance, and compare. As seen in the figure, our 412

method consistently matches or outperforms the 413

layer-dropping method. This comparison confirms 414

that merging is a competitive alternative to strong 415

pruning-based methods for model compression. 416

5.2 Choice of merged sublayers 417

In our merging algorithm, we choose which layers 418

to merge by computing performance over sliding 419

windows of k indices. For each of our model/task 420

pairs, we plot the pre-tuning performance of the 421

merging algorithm on 1/3 of FF sublayers dropped 422

across all windows, to observe their differences. 423

Results are shown in Figure 4. Before tuning, it 424

appears that the choice of layers seems to be im- 425

portant, resulting in different performance. 426

However, these differences reduce once recovery 427

fine-tuning is performed. To see this, we randomly 428

select 3 sets of k consecutive layers for each of 429

our tasks, and apply recovery fine-tuning to these 430

compressed models. In Table 2, we observe that 431

all models achieve similar performance after fine- 432

tuning. Nevertheless, the choice of layers might be 433

important if non-adjacent merges are allowed; this 434

is potential future work. 435

5.3 Choice of anchor layer 436

In addition to analyzing the subset of layers to 437

merge, we also wish to understand the sensitivity 438

of our merging compression method to the choice 439

of anchor layer for our alignment step. In section 440

3.3, we choose the first feed-forward sublayer in 441

the sequence to serve as the reference, and compute 442

permutations aligning the following sublayers to 443

8We display loss on Wikitext-103 for visibility.
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Figure 3: Results across all three tasks depicting compression versus performance for our method and a strong
layer-dropping baseline method. We perform layer dropping for 1/6 and 1/3 of layers dropped, and fine-tune the
best pre-tuned set of dropped layers for all sliding windows. Across the parameter reduction range shown, our
merging-based compression method outperforms or matches layer-dropping across the three tasks.
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Figure 4: Performance curves over different ranges of merged feed-forward sublayers representing 1/3 FFs removed.
Across all three tasks, there are clear ranges of merged sublayers that retain more performance when merged.8

ViT GPT-2 OPUS-MT
Accuracy(%) ↑ PPL ↓ BLEU ↑

Best pre-tune 79.2 17.3 33.5
Random 1 79.5 18.3 33.9
Random 2 78.5 17.1 33.8
Random 3 78.9 17.3 33.1

Table 2: Results comparing our compression method @
1/3 of feed-forward sublayers removed with different
sublayer groups. We include three random consecutive
selections of sublayers, excluding the original selection.

this reference. Here, we additionally consider using444

either the last of the sequence, or the middle of the445

sequence, and report results in our 1/3 feed-forward446

merge setting in Table 3.447

Given the similar results across settings, our448

merging approach is robust to the choice of ref-449

erence or anchor layer, enhancing the reliability of450

our permutation-based alignment method to find451

corresponding features for a useful merge.452

5.4 Additional compression via quantization453

While our compression method focuses on reduc-454

ing model size via parameter sharing, quantization455

ViT GPT-2 OPUS-MT
Accuracy(%) ↑ PPL ↓ BLEU ↑

Anchor First 79.2 17.3 33.5
Anchor Middle 79.5 17.4 33.4
Anchor Last 79.0 17.4 33.5

Table 3: Results comparing our compression method
with 1/3 of feed-forward sublayers removed, but with
different anchor locations.

can also reduce the overall storage needed for a 456

model via reducing parameter precision. If our 457

method performs orthogonally to state-of-the-art 458

quantization, both methods may be used together 459

for additional storage savings. We experiment with 460

the LLM.int8() quantization method due to its effec- 461

tiveness and widespread adoption (Dettmers et al., 462

2022). We quantize our models after removing 1/3 463

of FF sublayers, and report results in Table 4. 464

Combining our method with quantization pro- 465

vides even smaller compression ratios, while retain- 466

ing high performance. Coupling quantization with 467

additional compression, like our method, helps to 468

realize compression ratios like 20% when consid- 469

ering total model storage complexity. 470

7



Our Method +LLM.int8()

Model Metric Compression Performance Compression Performance

ViT Accuracy(%) ↑ 78% 79.2 20% 79.2
GPT-2 PPL ↓ 80% 17.3 22% 17.3
OPUS-MT BLEU ↑ 89% 33.5 51% 33.5

Table 4: Compression results across three tasks, before and after additional compression via quantization. In this
case, compression is measured in terms of total model storage complexity (disk space) instead of parameter count.
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Figure 5: CKA plots of feed-forward sublayer hidden states across three different models. In all three settings, we
see clear regions of high similarity between different FF layers. We do not compare between encoder and decoder
feed-forward sublayers in the Translation model due the differences in token inputs.

5.5 Similarity trends across feed-forward471

sublayers472

Given the success of simply aligning and merging473

adjacent feed-forward sublayers for compression,474

we look further into possible signs of redundancy475

in their representations, as alluded to in previous476

work (Pires et al., 2023; Kobayashi et al., 2024).477

To this end, we compare outputs between FF sub-478

layers within the same models. Across our three479

tasks, we use 10k tokens or patches from task vali-480

dation sets to compute a set of output states from481

all feed-forward sublayers. Then, we use Centered482

Kernel Alignment (CKA) to compute their similar-483

ity. CKA is a state-of-the-art method for comparing484

the similarity between neural network activations485

(Kornblith et al., 2019). We plot similarity values486

for all pairwise interactions between FF sublayers487

in all three of our model types, shown in Figure 5.488

We notice that across all three model/task pairs,489

clear regions of high similarity between FF out-490

puts can be observed, despite FF sublayers being491

interleaved with multi-headed attention sublayers.492

We note that similar behavior is not seen in atten-493

tion sublayers, as seen in Appendix D. While prior494

work has shown similarities between the outputs of495

adjacent full Transformer layers, this similarity can496

be explained in part to the residual computations 497

that add the prior sublayer output to the current 498

sublayer output (Kornblith et al., 2019; Dalvi et al., 499

2020). However, here we isolate the FF outputs 500

from the stream of residual computations, before 501

this output is added back to its input, making the ob- 502

served similarity more surprising due to the greater 503

independence between FF computations. 504

6 Conclusion 505

In this work, we propose a novel compression 506

method that applies to Transformer models via 507

merging and tying adjacent sets of FF sublayers. 508

Our method serves as an alternative to existing 509

compression approaches, and opens possibilities of 510

future methods that examine the use of parameter 511

merging and weight tying as a post-training com- 512

pression technique. We demonstrate our method’s 513

extensibility across diverse tasks, and show that it 514

helps retain high performance even after removing 515

1/2 of FF sublayers, and outperforms a strong layer 516

pruning baseline. Finally, we find that several FF 517

sublayers activate very similarly despite being sep- 518

arated by attention sublayers, which may be related 519

to their surprising mergeability. 520

8



7 Limitations521

This merging-based compression method sits be-522

tween many unstructured pruning methods and523

structured pruning methods, where the former gen-524

erally does not result in speed-up or easily real-525

ized compression, but the latter can more easily526

lead to both speed-up and easily realized compres-527

sion. Given that this work does lead to easily real-528

ized compression, but does not create an inference529

speed-up, this is a main limitation of our work.530

Additionally, our method is designed and tested531

on models that use a Transformer-based architec-532

ture. While weight-tying and neuron alignment533

may apply straightforwardly to other architectures,534

we do not test this, which constitutes another limi-535

tation of this work.536
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Yifei Yang, Zouying Cao, and Hai Zhao. 2024b. Laco:740
Large language model pruning via layer collapse.741
arXiv preprint arXiv:2402.11187.742

A Fine-tuning details 743

A.1 GPT-2 744

Hyperparameter Value

Start LR 5e-5
LR Schedule inv_sqrt
fp16 True
batch size 2
n_steps 100K

Table 5: Hyperparameters used for GPT-2 fine-tuning

A.2 ViT 745

Hyperparameter Value

Start LR 5e-5
LR Schedule lin_decay with min
decay_steps 20K
Min LR 1e-6
fp16 True
batch size 128
n_steps 50K

Table 6: Hyperparameters used for ViT fine-tuning

A.3 Machine Translation 746

We select our best model using validation BLEU, 747

computed on a 2000 instance subset of the full 748

Tatoeba validation set. 749

Hyperparameter Value

Start LR 5e-5
LR Schedule inv_sqrt
fp16 True
batch size 64
n_steps 100K

Table 7: Hyperparameters used for OPUS-MT fine-
tuning

B Dataset details 750

We report the dataset statistics for our evaluations 751

and training data used in this work in Table 8. For 752

fine-tuning data, we note that updates reported in 753

Appendix A give a better idea of data usage rather 754

than the training counts provided here. 755
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Dataset Train Validation Test

ImageNet-1k 12,281,167 50,000 -
Wikitext-103 1,801,350 3,760 4,358
OPUS/Tatoeba 41,649,946 43,074 10,389

Table 8: The number of instances used in each fine-
tuning and evaluation datasets. Instances are image for
ImageNet, lines of text for Wikitext-103, and bitext
pairs for OPUS/Tatoeba.

C Full Results at varying compression756

ratios757

We report our full results across compression ratios758

in Table 9.759

D Attention Layer Similarity760

We compute CKA similarity between all atten-761

tion sublayer pairs, using the same 10k tokens or762

patches from our CKA results on FF sublayers. The763

features are from the output of the linear layer just764

after the dot-product attention computation. Re-765

sults appear in Figure 6.766
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Model Metric Merged Indices FFs Removed Vanilla Permute

ViT Accuracy (%) ↑

– 0/12 80.3 80.3
3-7 4/12 77.8 79.2
4-10 6/12 75.3 76.3
0-11 11/12 39.0 58.1

GPT-2 PPL ↓

– 0/36 16.16 16.16
22-34 12/36 17.39 17.27
16-34 18/36 19.01 18.66
0-35 35/36 23.02 21.31

OPUS-MT BLEU ↑

– 0/12 35.8 35.8
2-4/2-4 4/12 33.3 33.5
0-3/0-3 6/12 32.8 33.2
0-5/0-5 11/12 29.3 30.1

Table 9: Full numerical results on compression results at 1/3 FF sublayers removed, 1/2 FF sublayers removed, and
(n− 1)/n FF sublayers removed. Original, uncompressed models are included in the first row of results for each
model, indicated by 0 FFs removed and no merged indices.
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Figure 6: CKA plots of multi-headed self-attention sublayer activations across three different trained models.
Attention activations are largely dissimilar from each other across model types. We do not compare between encoder
and decoder attention sublayers in the translation model due the differences in token inputs.
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