Merging Feed-Forward Sublayers for Compressed Transformers

Anonymous ACL submission

Abstract

With the rise and ubiquity of larger deep learn-
ing models, the need for high-quality compres-
sion techniques is growing in order to deploy
these models widely. The sheer parameter
count of these models makes it difficult to fit
them into the memory constraints of different
hardware. In this work, we present a novel ap-
proach to model compression by merging sim-
ilar parameter groups within a model, rather
than pruning away less important parameters.
Specifically, we select, align, and merge sep-
arate feed-forward sublayers in Transformer
models, and test our method on language mod-
eling, image classification, and machine transla-
tion. With our method, we demonstrate perfor-
mance comparable to the original models while
combining more than a third of model feed-
forward sublayers, and demonstrate improved
performance over a strong layer-pruning base-
line. For instance, we can remove over 21%
of total parameters from a Vision Transformer,
while maintaining 99% of its original perfor-
mance. Additionally, we observe that some
groups of feed-forward sublayers exhibit high
activation similarity, which may help explain
their surprising mergeability.

1 Introduction

Recent advances in deep learning have been
marked by large, pre-trained models in order to
achieve state-of-the-art performance. With this
trend towards growing parameter counts, more
high-quality compression techniques are needed
that balance compression effectiveness and model
performance. These techniques help facilitate
model use across a variety of inference settings
and hardware availability.

Much of the prior work in model compression
has built upon on distillation, quantization, and
pruning techniques (Hinton et al., 2015; Fiesler
et al., 1990; LeCun et al., 1989). Prior work on
pruning has introduced many techniques identi-

fying regions of parameters that can be removed
from the model without drastically changing perfor-
mance. These techniques target individual neurons
or general regions of a model—Ilike attention heads,
parameter chunks, or even entire layers. (Voita
et al., 2019; Lagunas et al., 2021; Sajjad et al.,
2023). However, while “unimportant” features are
targeted for pruning techniques, we can also target
“redundant” features for compression. There has
been far less focus on compression methods that
target redundancy within a model.

When targeting redundant features for compres-
sion, we can turn to merging sets of similar pa-
rameters rather than pruning them. Relatedly, the
research area of model merging has explored merg-
ing parameters from two or more separate mod-
els in order to combine their functionalities into
a single model (Goddard et al., 2024; Yang et al.,
2024a). In our case, we can imagine extending
parameter merging to merge sublayers within one
model, rather than just separate models.

To this end, we propose a novel compression
method that aligns, merges, and ties separate feed-
forward (FF) sublayers within Transformer archi-
tectures (Vaswani et al., 2017). We target FF sub-
layers in particular due to their large parameter
count and easy mergeability. Through our testing,
we find that these groups of FF sublayers are no-
tably compressible via merging, giving rise to a
simple and surprisingly effective framework appli-
cable to a variety of existing pre-trained models.

We highlight the contributions of our work:

1. We propose a novel model compression
method inspired by recent work in model
merging. This approach is orthogonal to pop-
ular compression methods like quantization.

2. Across three different Transformer-based
models, namely GPT-2, ViT, and a machine
translation model, we show that merging over
one-third of feed-forward sublayers and fine-

B 8}

a5 Win Wout MHA Win L Wout
0 0 0 1 1 1

{n 8}

MHAZ sz ™ Wou; T Apply transformations

@
= mcan{ , [win| | win } — mean s [wout] , [yyout
1 2 1 2

MHA win

1 *

Win wout
*

Wout
0 * *

Merge FF parameters

MHA Wwin
5 .

wout Tie merged weights

Figure 1: Overview of the feed-forward alignment and merging algorithm used to compress models in an example
three layers of a Transformer. Multi-headed attention is abbreviated to MHA, feed-forward sublayers are depicted
with W™ and W°" weights, and Add&Norm operations are depicted with €, connected by arrows indicating

residual connections.!

Permutation transformation matrices are shown as P;. Our method includes a permutation

finding step, applying the transformations, merging transformed parameters, and finally tying the merged parameters.
By merging and tying k feed-forwards, we can reduce the model size by k — 1 feed-forward sublayers.

tuning the resulting model can achieve perfor-
mance comparable to the original models.

3. To explore the surprising effectiveness of
merging, we compare different feed-forward
outputs from the same model, and find regions
with highly similar activations. These same
patterns do not occur in attention outputs.

4. We release an easily extensible toolkit for our
compression method at anonymous_code.

2 Related Work

In this section, we review prior work related to
weight tying for efficient models, and work related
to pruning and redundancy. We also summarize
major compression techniques in Table 1, and com-
pare them to our merging-based approach.

2.1 Weight tying for smaller models

Prior work on weight tying has largely focused on
training models from scratch with specific tying
schemes. Tying input and output embedding layers
helps cap total parameter count, but more impor-
tantly provides important gradient sharing signal

'"This diagram shows a Post-LN Transformer, but our
method easily applies to Pre-LN Transformers as well.

2Quantization can improve batch throughput during infer-
ence, which can result in run time savings, but it generally
does not improve inference speed at a constant batch size.

for better generalization in language generation
tasks (Press and Wolf, 2017; Inan et al., 2017). In
the case of non-embedding layers in Transformers,
prior work has explored numerous weight tying
patterns for training new models (Dehghani et al.,
2019; Reid et al., 2021; Takase and Kiyono, 2023).
Liu et al. (2024) use heavy weight sharing between
Transformer layers at initialization to achieve state-
of-the-art sub-billion parameter language models.
Pires et al. (2023) specifically tie widened FF sub-
layers at initialization and train machine translation
(MT) models that outperform standard Transformer
MT models. In our work, we instead start from a
pre-trained model, and then use weight sharing as
a tool to reduce the overall parameter count.

2.2 Pruning and redundancy

Prior work has explored different aspects of re-
dundancy between Transformer components, and
suggested several techniques to reduce or exploit
this phenomenon. Dalvi et al. (2020) use centered
kernel alignment (CKA) to show layer redundancy
in BERT and XLNet, and use correlation clustering
to find and remove redundant sets of neurons. Men
et al. (2024); Gromov et al. (2024) propose remov-
ing entire Transformer layers in deep, decoder-only
language models to achieve inference speedups at
a small performance drop. Li et al. (2024) pro-
pose a compression method for sparsely-activated

https://anonymous.4open.science/r/merging-ffs-compression

Training Required | Run Time Savings

Motivation
Quantization | reduce precision
Pruning remove unimportant parameters
Distillation train smaller student from teacher
Merging combine redundant parameters

No No?
generally fine-tuning | Depends
Yes Yes
fine-tuning No

Table 1: A summary and comparison of different compression methods, including merging.

mixture-of-expert (SMoE) models that draws from
model merging work to compress some experts in
large SMoE models. Our method extends a similar
approach to a much wider set of models.

3 Merging Feed-Forward Sublayers

In this section, we discuss feed-forward sublay-
ers as a merging target, explain permutation-based
neuron alignment, and describe our compression
method.

3.1 Targeting feed-forward sublayers

We focus our interest on Transformer FF sublay-
ers for several reasons. Firstly, these sublayers
constitute around two-thirds of non-embedding pa-
rameters in Transformer encoder or decoder mod-
els. Compressing these parameters can result in
substantial overall savings in a model. Secondly,
the parameterization of FF sublayers is far simpler
than the other major sub-block of a Transformer
layer, namely multi-headed attention (MHA). This
structural simplicity makes it a good candidate for
merging-based compression approaches.

Beyond these practical considerations, prior
work establishes several properties of Transformer
FF sublayers that make them good candidates for
compression via merging. Li et al. (2023) show
that they can be very sparsely activated, where non-
zero FF activations can be as low as 3-5%. Other
work has demonstrated evidence that adjacent Lay-
erNorm and FF blocks, in both Post- and Pre-LN
architectures, results in some weakening of the con-
textualization effects of FF sublayers (Kobayashi
et al., 2024). The authors allude to redundancy in
Transformer FF processing due to this interaction.
Finally, Pires et al. (2023) train Transformer-based
translation models with only one widened and tied
encoder FF block with experimental success.

3.2 Background on permutation-based
neuron alignment

We propose a merging technique that combines
several similar sublayers into a single parameter set.

Our merging technique is inspired by prior work
in permutation symmetries of neurons (Li et al.,
2015). This technique has been used in studying
convergent learning between models, as well as
performing model merging between two or more
separate models (Tatro et al., 2020; Entezari et al.,
2022; Ainsworth et al., 2023).

Permutation-based neuron alignment techniques
seek to find an optimal ordering of neurons in one
layer that more closely matches the ordering of
neurons from another layer, without changing the
its output. Given two layers to align, we compute a
forward pass through both using exemplar data in
order to collect activations. The layers are generally
corresponding parameters from different models.
This results in two activation sets X, Xg € R™xd
where n is the number of example data points, and
d is the model dimension.

To determine corresponding neurons from the
activations, we compute cross-correlation C, in
line with prior work (Li et al., 2015). p represents
mean vectors, and o standard deviation vectors.

E (X = i(Xa))" (X5 = u(X5)
o(Xa)o(Xs)

C= D
The resulting matrix C' € R%*¢ reflects how each
neuron j in X, correlates with each neuron £ in
Xg. To find the neuron alignment that maximizes
total correlation, we solve the following optimiza-
tion problem, where 11, is the space of all permuta-
tions of length d (Li et al., 2015; Tatro et al., 2020):

d
x _ .)
m=max » C(j,7()) @)

7j=1
This problem is a case of the Linear Assignment
Problem, and we solve for 7* using the Jonker-
Volgenant algorithm implementation provided by

scipy (Crouse, 2016).

3.3 Combining feed-forward sublayers

Now, with the appropriate background, we describe
our compression method. For our method, we first

assume that we have some predetermined number
of feed-forward sublayers & that we want to merge.
This number can be inferred given a overall param-
eter reduction ratio, or set otherwise. In summary,
our compression method aligns the ordering of the
neurons between the multiple feed-forward sublay-
ers in order to merge them.

Given a window of & adjacent feed-forward sub-
layers, we compute a forward pass using a subset
of data in order to compute features for each feed-
forward hidden state. In other words, for Trans-
former FF sublayer x°% = Wulg(Wingn 4 pin) 4
b, we obtain features just before the ¢ activa-
tion. We consider only the neurons just after W
because prior work has shown that to reorder the
input to T/ and output of TW°" requires permut-
ing many additional weights due to the residual
connections in order to maintain functional equiv-
alence (Verma and Elbayad, 2024). For each of
the k feed-forward sublayers, we collect features
X; € R4 4 € [0,k — 1], where n is the num-
ber of tokens or patches processed, and d is the
feed-forward dimension.?

We designate the first feed-forward sublayer
of the set to be an “anchor”, and compute the
permutation-finding algorithm on each pair of fea-
tures where one index is always the anchor. In other
words, for each sublayer i € [1, k — 1], we have in-
puts Xy and X, and find 7; using the permutation
finding algorithm from Section 3.2.

After converting function 7; to its corresponding
permutation matrix P;, we transform the k£ — 1 non-
anchor feed-forward sublayers. We then average
these k FF sublayers, and replace each of them with
their average, as in Equations 3—6. Finally, we tie
these weights so that in memory they appear as just
one sublayer, effectively removing the parameters
from k — 1 FF sublayers.

k—1
. 1 . .
W= (Wé“ > HW£“> ©
1=1
‘ 1/ . =
b= (bb“ +2 Pz-bé“> 4)
i=1
k—1
Wout* _ 1 <W0ut + Z WoutPT> (5)
- k 0 i i
=1
k-1
pout = 1 (Z b‘?“‘) (6)
k, 7
=0

3The layer indices reflect local index within the set of k
versus global layer index.

3.4 Selecting sublayers to merge

In selecting the k adjacent feed-forward sublayers
to merge, we take a sliding window approach. For
all starting layer indices from 0 to (Njayers — 1) —
k, we apply the method outlined in Section 3.3,
and evaluate the resulting compressed model on a
validation set.

Although we propose to test each potential win-
dow, in reality, the cost of computing permutations
and parameter arithmetic is low. The largest costs
in each iteration is computing features and testing
candidates. However, we only compute features
once despite testing Niayers — k models, because
one forward pass through the exemplar data is suffi-
cient for creating all necessary correlation matrices.
The best candidate is the one with the highest post-
merge evaluation score. We note that there may be
other possible selection heuristics in this setting,.

Finally, we follow our merging procedure with
recovery fine-tuning to quickly heal performance
on the downstream task. We include an algorithm
for our selection method in Algorithm 1.

Algorithm 1 Feed-Forward Sublayer Merge

Input: Model parameters 6;,, collected features
{Xi}f-vzkgers_l, batched fine-tuning data Dy
Input constants: k, Njayers, MAXUPDATES
Initialize: Ogejected, BESTSCORE «— 0
for i = 0 to (Njayers — 1) — k do
Omerged <— COMPRESS (in, {Xi}f\i“g”“l, k)
if EVAL(Omerged) > BESTSCORE then
Hselected — emerged
end if
end for
for : = 0 to MAXUPDATES do
Hselected — UPDATE(Qselecteda th(Z))
end for
Output: Hselected

4 Experimental Setup

For testing the extensibility of our method, we ap-
ply our compression method to several different
Transformer-based models. Specifically, we use
GPT-2 (Radford et al., 2019), the Vision Trans-
former (ViT) (Dosovitskiy et al., 2020), and a
Transformer-based machine translation model from
OPUS-MT (Tiedemann and Thottingal, 2020). We
select this variety of models in order to cover a
diversity of model types (decoder-only, encoder,
encoder-decoder) and different modalities.

For each setting, we list the model used, the ex-
ample data for computing alignments, and finally
the data used for recovery fine-tuning and evalua-
tion. Additional fine-tuning hyperparameters are
included in Appendix A, and data details in Ap-
pendix B.

4.1 Language modeling

For our experiments, we use GPT-2 Large, which
has 36 layers, a feed-forward dimension of 5120,
and is trained on English text (Radford et al., 2019).
For computing example activations, we use 10k
tokens from the validation set of the English Wiki-
text103 dataset (Merity et al., 2017). Finally, we
use the train and test sets from the Wikitext103 for
fine-tuning and evaluation, respectively.

Unlike the other two tasks, the pre-training data
for GPT-2 is not publicly available, so we use Wiki-
text103 training data for fine-tuning. Due to this
discrepancy, our uncompressed GPT-2 baseline is
also fine-tuned on Wikitext103 train. Because we
have access to the training data for our machine
translation and ViT models, we do not provide a
fine-tuned baseline for those as the data we use
already appears in their original training data.

We fine-tune our GPT-2 models for up to 100k
steps with batches of 2048 tokens. We select the
best model based on validation perplexity and re-
port average test perplexity with a sliding window
of 512 tokens.

4.2 Image classification with ViT

We use a vision transformer (ViT) for our im-
age classification experiments, with resolution of
224x224, and patch size of 16x16 (Dosovitskiy
etal., 2020). ViT is a 12-layer Transformer encoder
model pre-trained on ImageNet-21k, and subse-
quently fine-tuned on ImageNet-1k. ImageNet-1k
is a classification task where images belong to one
of 1000 categories (Russakovsky et al., 2015). For
computing activations, we use 10k patches from
the ImageNet-1k validation set. Evaluation results
are computed on original validation labels.

We fine-tune our ViT models on ImageNet-1k
train for up to 50k steps with a batch size of 128,
and report accuracy.

4.3 Machine translation

For our experiments on machine translation, we
use a 12-layer Chinese-English Transformer-based
translation model from an OPUS-MT release
(Tiedemann and Thottingal, 2020). For computing

activations, we use 10k tokens from the Tatoeba
validation set* (Tiedemann, 2020). For fine-tuning,
we use the original training data released by the
Tatoeba translation challenge, sourced from OPUS
(Tiedemann, 2012). We apply our method to both
the encoder and decoder separately, constituting
two anchors. However, we search windows in sync,
meaning that the same window from the encoder
and decoder are merged, but separately.

We fine-tune our translation models for up to
100k steps with a batch size of 64 sentences. We
use sacrebleu to compute BLEU scores for evalu-
ation (Papineni et al., 2002; Post, 2018).

4.4 Layer pruning baseline

Recent work on structured pruning of Transformers
has seen many methods presenting ways to remove
full layers from a model and then optionally fine-
tune the compressed model (Men et al., 2024; Gro-
mov et al., 2024; Yang et al., 2024b). We focus on
a structured pruning baseline as many unstructured
pruning methods do not actually realize compres-
sion unless they achieve 1) high sparsity ratios and
2) use specialized sparse libraries to store sparse
weights. On the other hand, our method easily
realizes compression due to weight tying.

Many layer-pruning methods rely on similarity
measures to choose a set of adjacent layers to prune.
However, we forgo any specific similarity tech-
niques and instead choose the best subset after eval-
uation much like our own technique, via a sliding
window. After selecting the best pruned model,
we then fine-tune the model with the same specifi-
cations as our method. In all, this encapsulates a
strong, structured pruning baseline that generalizes
many layer-pruning based techniques.

5 Results

5.1 Merging feed-forward sublayers across
compression ratios

We evaluate our compression method on image
classification using ViT, language modeling using
GPT-2, and machine translation using an OPUS-
MT zh-en model, and report our results in Figure
2. We report results at 1/3, 1/2 and (n — 1) /n feed-
forward sublayers removed, in order to test our
method at different overall compression ratios.” We

“counted on the source side
SWe note that the OPUS-MT ratios trends are different due
to the enc-dec architecture.

0 FFs

4 FFs

o]
o

6 FFs

--e- Vanilla FF Merge
—e— Permute FF Merge

--e- Vanilla FF Merge
—e— Permute FF Merge

~
o

ImageNet-1k Accuracy T
(=)
o

35FFs| @350 FFs
A @ 36

- c

L34 =4 FFs 6Frs
N e s
50 832
1FFs
40{ ~*" Vanilla FF Merge . © 30 N
—e— Permute FF Merge 28
30
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 5 10 15 20 25 30
% Parameter Reduction % Parameter Reduction % Parameter Reduction
(a) ViT (b) GPT-2 (c) OPUS-MT

Figure 2: Results across all three tasks depicting compression versus performance results. We include results from
our main method, labeled as Permute FF Merge, as well as our method without permutation alignment, depicted
as Vanilla FF Merge. We note that our method retains almost complete performance at one-third of feed-forward
sublayers removed, across all tasks, and continues to retain high performance at one-half of FF sublayers removed.

also report results from our compression method
without the permutation step, labeled as “Vanilla.”

From our results, we see that even up to 1/2 of FF
sublayer parameters removed, which is over 30%
in parameter reduction for ViT and GPT-2,° our
method can retain high performance, similar to the
base model. At 1/3 of FF sublayers removed, per-
formance is almost identical to the original model,
resulting in only a 1% accuracy drop in ViT, 1 PPL
increase in GPT-2, and 2 BLEU drop in the transla-
tion model. Full numerical results can be found in
Appendix C. Prior work suggests in this sub-billion
parameter regime, smaller models are more dif-
ficult targets of compression methods (Ashkboos
etal., 2024).

Our findings also hold across all three of our
tasks tested, suggesting that our method general-
izes to different types of models. Additionally, we
can notice that permutation-based compression is
consistently better compared to no-permute vanilla
baselines, demonstrating the effectiveness of align-
ing features before merging. This effectiveness is
more pronounced at larger numbers of FF sublay-
ers removed. In summary, our results show that
1) post-training weight tying is a simple and effec-
tive compression method and 2) permutation-based
alignment of these shared weights can improve fi-
nal compression performance.

In Figure 3, we compare our method at 1/3 and
1/2 FFs removed to our layer-pruning baseline.’
We drop layers to attempt to match the reduction
ratios of our own methods, constituting 1/6 and
1/3 of layers dropped for all three models. How-

®We include embedding parameters in all % parameter
reduction and compression ratio calculations.

"These reduction ratios reflect ratios found in layer-pruning
literature.

ever, since we cannot match exact ratios, we plot
the exact parameter reduction ratios and perfor-
mance, and compare. As seen in the figure, our
method consistently matches or outperforms the
layer-dropping method. This comparison confirms
that merging is a competitive alternative to strong
pruning-based methods for model compression.

5.2 Choice of merged sublayers

In our merging algorithm, we choose which layers
to merge by computing performance over sliding
windows of k indices. For each of our model/task
pairs, we plot the pre-tuning performance of the
merging algorithm on 1/3 of FF sublayers dropped
across all windows, to observe their differences.
Results are shown in Figure 4. Before tuning, it
appears that the choice of layers seems to be im-
portant, resulting in different performance.

However, these differences reduce once recovery
fine-tuning is performed. To see this, we randomly
select 3 sets of k consecutive layers for each of
our tasks, and apply recovery fine-tuning to these
compressed models. In Table 2, we observe that
all models achieve similar performance after fine-
tuning. Nevertheless, the choice of layers might be
important if non-adjacent merges are allowed; this
is potential future work.

5.3 Choice of anchor layer

In addition to analyzing the subset of layers to
merge, we also wish to understand the sensitivity
of our merging compression method to the choice
of anchor layer for our alignment step. In section
3.3, we choose the first feed-forward sublayer in
the sequence to serve as the reference, and compute
permutations aligning the following sublayers to

$We display loss on Wikitext-103 for visibility.

©
IS
N
=

—e— Permute FF Merge
—e-- Drop baseline m

o]
N

o]
o

~
o]

~
(=)}

ImageNet-1k Accuracy T

~
N

—e— Permute FF Merge
—e-- Drop Baseline

—e— Permute FF Merge
—e-- Drop Baseline

0 5 10 15 20 25 30 35 0 5 10
% Parameter Reduction

(a) ViT

% Parameter Reduction

(b) GPT-2

15 20 25 30 0 5 10 15 20
% Parameter Reduction

(c) OPUS-MT

Figure 3: Results across all three tasks depicting compression versus performance for our method and a strong
layer-dropping baseline method. We perform layer dropping for 1/6 and 1/3 of layers dropped, and fine-tune the
best pre-tuned set of dropped layers for all sliding windows. Across the parameter reduction range shown, our
merging-based compression method outperforms or matches layer-dropping across the three tasks.

[
=}

--e- Vanilla FF Merge
—e— Permute FF Merge

N
=)

S10{ |

N
o

%
\
\
\
» /
H
.
/
/
/
Loss on Wikitext:

Accuracy on ImageNet-1k

= w
o o
*

i

i

i

¢

1

i

i

i

.

¢

o

--»- Vanilla FF Merge
—e— Permute FF Merge

--e- Vanilla FF Merge
20{ —*— Permute FF Merge

-
w

BLEU on Tatoeba

e

FFs Merged

(a) ViT

0 pel P
N 15 v
oW Nl oM
Enc/Dec FFs Merged

(c) OPUS-MT

5
&
29

Figure 4: Performance curves over different ranges of merged feed-forward sublayers representing 1/3 FFs removed.
Across all three tasks, there are clear ranges of merged sublayers that retain more performance when merged.

ViT GPT-2 OPUS-MT
Accuracy(%) 1 PPL] BLEU T
Best pre-tune 79.2 17.3 335
Random 1 79.5 18.3 33.9
Random 2 78.5 17.1 33.8
Random 3 78.9 17.3 33.1

Table 2: Results comparing our compression method @
1/3 of feed-forward sublayers removed with different
sublayer groups. We include three random consecutive
selections of sublayers, excluding the original selection.

this reference. Here, we additionally consider using
either the last of the sequence, or the middle of the
sequence, and report results in our 1/3 feed-forward
merge setting in Table 3.

Given the similar results across settings, our
merging approach is robust to the choice of ref-
erence or anchor layer, enhancing the reliability of
our permutation-based alignment method to find
corresponding features for a useful merge.

5.4 Additional compression via quantization

While our compression method focuses on reduc-
ing model size via parameter sharing, quantization

ViT GPT-2 OPUS-MT
Accuracy(%)1 PPL| BLEU?T
Anchor First 79.2 17.3 33.5
Anchor Middle 79.5 17.4 334
Anchor Last 79.0 17.4 33.5

Table 3: Results comparing our compression method
with 1/3 of feed-forward sublayers removed, but with
different anchor locations.

can also reduce the overall storage needed for a
model via reducing parameter precision. If our
method performs orthogonally to state-of-the-art
quantization, both methods may be used together
for additional storage savings. We experiment with
the LLM.int8() quantization method due to its effec-
tiveness and widespread adoption (Dettmers et al.,
2022). We quantize our models after removing 1/3
of FF sublayers, and report results in Table 4.

Combining our method with quantization pro-
vides even smaller compression ratios, while retain-
ing high performance. Coupling quantization with
additional compression, like our method, helps to
realize compression ratios like 20% when consid-
ering total model storage complexity.

Our Method +LLM.int8()
Model Metric Compression Performance Compression Performance
ViT Accuracy(%) T 78% 79.2 20% 79.2
GPT-2 PPL | 80% 17.3 22% 17.3
OPUS-MT BLEU 1 89% 33.5 51% 335

Table 4: Compression results across three tasks, before and after additional compression via quantization. In this
case, compression is measured in terms of total model storage complexity (disk space) instead of parameter count.

o
oo

o
o
CKA Score

o
Sy
Feed-Forward Layer j

Feed-Forward Layer j
o

i

o
o
N

o 1.0
2 .
4
8

0 2 4 6 8 10

Feed-Forward Layer i

(a) ViT

Feed-Forward Layer i

(b) GPT2

N o
o
=]

»

CKA Score
e]
o o
- o
CKA Score

Feed-Forward Layer j
o

un

o
o
N

E ilo
0 2 4 6 8 10

Feed-Forward Layer i

(c) OPUS-MT

Figure 5: CKA plots of feed-forward sublayer hidden states across three different models. In all three settings, we
see clear regions of high similarity between different FF layers. We do not compare between encoder and decoder
feed-forward sublayers in the Translation model due the differences in token inputs.

5.5 Similarity trends across feed-forward
sublayers

Given the success of simply aligning and merging
adjacent feed-forward sublayers for compression,
we look further into possible signs of redundancy
in their representations, as alluded to in previous
work (Pires et al., 2023; Kobayashi et al., 2024).

To this end, we compare outputs between FF sub-
layers within the same models. Across our three
tasks, we use 10k tokens or patches from task vali-
dation sets to compute a set of output states from
all feed-forward sublayers. Then, we use Centered
Kernel Alignment (CKA) to compute their similar-
ity. CKA is a state-of-the-art method for comparing
the similarity between neural network activations
(Kornblith et al., 2019). We plot similarity values
for all pairwise interactions between FF sublayers
in all three of our model types, shown in Figure 5.

We notice that across all three model/task pairs,
clear regions of high similarity between FF out-
puts can be observed, despite FF sublayers being
interleaved with multi-headed attention sublayers.
We note that similar behavior is not seen in atten-
tion sublayers, as seen in Appendix D. While prior
work has shown similarities between the outputs of
adjacent full Transformer layers, this similarity can

be explained in part to the residual computations
that add the prior sublayer output to the current
sublayer output (Kornblith et al., 2019; Dalvi et al.,
2020). However, here we isolate the FF outputs
from the stream of residual computations, before
this output is added back to its input, making the ob-
served similarity more surprising due to the greater
independence between FF computations.

6 Conclusion

In this work, we propose a novel compression
method that applies to Transformer models via
merging and tying adjacent sets of FF sublayers.
Our method serves as an alternative to existing
compression approaches, and opens possibilities of
future methods that examine the use of parameter
merging and weight tying as a post-training com-
pression technique. We demonstrate our method’s
extensibility across diverse tasks, and show that it
helps retain high performance even after removing
1/2 of FF sublayers, and outperforms a strong layer
pruning baseline. Finally, we find that several FF
sublayers activate very similarly despite being sep-
arated by attention sublayers, which may be related
to their surprising mergeability.

7 Limitations

This merging-based compression method sits be-
tween many unstructured pruning methods and
structured pruning methods, where the former gen-
erally does not result in speed-up or easily real-
ized compression, but the latter can more easily
lead to both speed-up and easily realized compres-
sion. Given that this work does lead to easily real-
ized compression, but does not create an inference
speed-up, this is a main limitation of our work.

Additionally, our method is designed and tested
on models that use a Transformer-based architec-
ture. While weight-tying and neuron alignment
may apply straightforwardly to other architectures,
we do not test this, which constitutes another limi-
tation of this work.

References

Samuel Ainsworth, Jonathan Hayase, and Siddhartha
Srinivasa. 2023. Git re-basin: Merging models mod-
ulo permutation symmetries. In The Eleventh Inter-
national Conference on Learning Representations.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari
do Nascimento, Torsten Hoefler, and James Hensman.
2024. Slicegpt: Compress large language models by
deleting rows and columns. In The Twelfth Interna-
tional Conference on Learning Representations.

David F. Crouse. 2016. On implementing 2d rectan-
gular assignment algorithms. /IEEE Transactions on
Aerospace and Electronic Systems, 52(4):1679-1696.

Fahim Dalvi, Hassan Sajjad, Nadir Durrani, and
Yonatan Belinkov. 2020. Analyzing redundancy in
pretrained transformer models. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4908—4926,
Online. Association for Computational Linguistics.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Lukasz Kaiser. 2019. Universal
transformers. In International Conference on Learn-
ing Representations.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. Gllm.int8 (): 8-bit matrix mul-
tiplication for transformers at scale. Advances in
Neural Information Processing Systems, 35:30318-
30332.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.
An image is worth 16x16 words: Transformers
for image recognition at scale. In International
Conference on Learning Representations.

Rahim Entezari, Hanie Sedghi, Olga Saukh, and
Behnam Neyshabur. 2022. The role of permutation
invariance in linear mode connectivity of neural net-
works. In International Conference on Learning Rep-
resentations.

Emile Fiesler, Amar Choudry, and H John Caulfield.
1990. Weight discretization paradigm for optical
neural networks. In Optical interconnections and
networks, volume 1281, pages 164—173. SPIE.

Charles Goddard, Shamane Siriwardhana, Malikeh
Ehghaghi, Luke Meyers, Vlad Karpukhin, Brian
Benedict, Mark McQuade, and Jacob Solawetz. 2024.
Arcee’s mergekit: A toolkit for merging large lan-
guage models. arXiv preprint arXiv:2403.13257.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian,
Paolo Glorioso, and Daniel A Roberts. 2024. The un-
reasonable ineffectiveness of the deeper layers. arXiv
preprint arXiv:2403.17887.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. stat,
1050:9.

Hakan Inan, Khashayar Khosravi, and Richard Socher.
2017. Tying word vectors and word classifiers: A
loss framework for language modeling. In Interna-
tional Conference on Learning Representations.

Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and
Kentaro Inui. 2024. Analyzing feed-forward blocks
in transformers through the lens of attention maps.
In The Twelfth International Conference on Learning
Representations.

Simon Kornblith, Mohammad Norouzi, Honglak Lee,
and Geoffrey Hinton. 2019. Similarity of neural
network representations revisited. In International
conference on machine learning, pages 3519-3529.
PMLR.

Francois Lagunas, Ella Charlaix, Victor Sanh, and
Alexander M Rush. 2021. Block pruning for faster
transformers. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 10619-10629.

Yann LeCun, John Denker, and Sara Solla. 1989. Opti-
mal brain damage. Advances in neural information
processing systems, 2.

Pingzhi Li, Zhenyu Zhang, Prateek Yadav, Yi-Lin Sung,
Yu Cheng, Mohit Bansal, and Tianlong Chen. 2024.
Merge, then compress: Demystify efficient smoe
with hints from its routing policy. In The Twelfth In-
ternational Conference on Learning Representations.

Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and
John Hopcroft. 2015. Convergent learning: Do differ-
ent neural networks learn the same representations?
In Proceedings of the Ist International Workshop
on Feature Extraction: Modern Questions and Chal-
lenges at NIPS 2015, volume 44 of Proceedings of
Machine Learning Research, pages 196-212, Mon-
treal, Canada. PMLR.

https://doi.org/10.1109/TAES.2016.140952
https://doi.org/10.1109/TAES.2016.140952
https://doi.org/10.1109/TAES.2016.140952
https://doi.org/10.18653/v1/2020.emnlp-main.398
https://doi.org/10.18653/v1/2020.emnlp-main.398
https://doi.org/10.18653/v1/2020.emnlp-main.398
https://proceedings.mlr.press/v44/li15convergent.html
https://proceedings.mlr.press/v44/li15convergent.html
https://proceedings.mlr.press/v44/li15convergent.html

Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang
Li, Ankit Singh Rawat, Sashank J Reddi, Ke Ye, Fe-
lix Chern, Felix Yu, Ruiqi Guo, et al. 2023. The lazy
neuron phenomenon: On emergence of activation
sparsity in transformers. In The Eleventh Interna-
tional Conference on Learning Representations.

Zechun Liu, Changsheng Zhao, Forrest Iandola, Chen
Lai, Yuandong Tian, Igor Fedorov, Yunyang Xiong,
Ernie Chang, Yangyang Shi, Raghuraman Krish-
namoorthi, et al. 2024. Mobilellm: Optimizing sub-
billion parameter language models for on-device use
cases. In Forty-first International Conference on Ma-
chine Learning.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang,
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng
Chen. 2024. Shortgpt: Layers in large language mod-
els are more redundant than you expect. Preprint,
arXiv:2403.03853.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In International Conference on Learning Repre-
sentations.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Telmo Pires, Anténio Vilarinho Lopes, Yannick As-
sogba, and Hendra Setiawan. 2023. One wide feed-
forward is all you need. In Proceedings of the Eighth
Conference on Machine Translation, pages 1031—
1044, Singapore. Association for Computational Lin-
guistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186—
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Ofir Press and Lior Wolf. 2017. Using the output embed-
ding to improve language models. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
2, Short Papers, pages 157-163.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Machel Reid, Edison Marrese-Taylor, and Yutaka Mat-
suo. 2021. Subformer: Exploring weight sharing
for parameter efficiency in generative transformers.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 4081-4090, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

10

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. 2015. ImageNet Large
Scale Visual Recognition Challenge. International
Journal of Computer Vision (IJCV), 115(3):211-252.

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav
Nakov. 2023. On the effect of dropping layers of
pre-trained transformer models. Computer Speech &
Language, 77:101429.

Sho Takase and Shun Kiyono. 2023. Lessons on pa-
rameter sharing across layers in transformers. In
Proceedings of The Fourth Workshop on Simple and
Efficient Natural Language Processing (SustaiNLP),
pages 78-90, Toronto, Canada (Hybrid). Association
for Computational Linguistics.

Norman Tatro, Pin-Yu Chen, Payel Das, Igor Melnyk,
Prasanna Sattigeri, and Rongjie Lai. 2020. Optimiz-
ing mode connectivity via neuron alignment. Ad-
vances in Neural Information Processing Systems,
33:15300-15311.

Jorg Tiedemann. 2012. Parallel data, tools and inter-
faces in OPUS. In Proceedings of the Eighth In-
ternational Conference on Language Resources and
Evaluation (LREC’12), pages 22142218, Istanbul,
Turkey. European Language Resources Association
(ELRA).

Jorg Tiedemann. 2020. The Tatoeba Translation Chal-
lenge — Realistic data sets for low resource and mul-
tilingual MT. In Proceedings of the Fifth Conference
on Machine Translation, pages 1174—1182, Online.
Association for Computational Linguistics.

Jorg Tiedemann and Santhosh Thottingal. 2020. OPUS-
MT - building open translation services for the world.
In Proceedings of the 22nd Annual Conference of
the European Association for Machine Translation,
pages 479-480, Lisboa, Portugal. European Associa-
tion for Machine Translation.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Neural Information Processing Systems.

Neha Verma and Maha Elbayad. 2024. Merging text
transformer models from different initializations.
Preprint, arXiv:2403.00986.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 5797-5808, Florence, Italy.
Association for Computational Linguistics.

Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang,
Xiaochun Cao, Jie Zhang, and Dacheng Tao. 2024a.
Model merging in llms, mllms, and beyond: Methods,
theories, applications and opportunities. Preprint,
arXiv:2408.07666.

https://arxiv.org/abs/2403.03853
https://arxiv.org/abs/2403.03853
https://arxiv.org/abs/2403.03853
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2023.wmt-1.98
https://doi.org/10.18653/v1/2023.wmt-1.98
https://doi.org/10.18653/v1/2023.wmt-1.98
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/2021.findings-emnlp.344
https://doi.org/10.18653/v1/2021.findings-emnlp.344
https://doi.org/10.18653/v1/2021.findings-emnlp.344
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.18653/v1/2023.sustainlp-1.5
https://doi.org/10.18653/v1/2023.sustainlp-1.5
https://doi.org/10.18653/v1/2023.sustainlp-1.5
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
https://www.aclweb.org/anthology/2020.wmt-1.139
https://www.aclweb.org/anthology/2020.wmt-1.139
https://www.aclweb.org/anthology/2020.wmt-1.139
https://www.aclweb.org/anthology/2020.wmt-1.139
https://www.aclweb.org/anthology/2020.wmt-1.139
https://aclanthology.org/2020.eamt-1.61
https://aclanthology.org/2020.eamt-1.61
https://aclanthology.org/2020.eamt-1.61
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:13756489
https://arxiv.org/abs/2403.00986
https://arxiv.org/abs/2403.00986
https://arxiv.org/abs/2403.00986
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://arxiv.org/abs/2408.07666
https://arxiv.org/abs/2408.07666
https://arxiv.org/abs/2408.07666

Yifei Yang, Zouying Cao, and Hai Zhao. 2024b. Laco:

Large language model pruning via layer collapse.
arXiv preprint arXiv:2402.11187.

11

A Fine-tuning details

Al GPT-2
Hyperparameter Value
Start LR Se-5
LR Schedule inv_sqrt
fpl6 True
batch size 2
n_steps 100K

Table 5: Hyperparameters used for GPT-2 fine-tuning

A2 VIiT

Hyperparameter Value

Start LR Se-5

LR Schedule lin_decay with min
decay_steps 20K

Min LR le-6

fpl6 True

batch size 128

n_steps 50K

Table 6: Hyperparameters used for ViT fine-tuning

A3

Machine Translation

We select our best model using validation BLEU,
computed on a 2000 instance subset of the full

Tatoeba validation set.

Hyperparameter Value
Start LR Se-5
LR Schedule inv_sqrt
fpl6 True
batch size 64
n_steps 100K

Table 7: Hyperparameters used for OPUS-MT fine-

tuning

B Dataset details

We report the dataset statistics for our evaluations
and training data used in this work in Table 8. For
fine-tuning data, we note that updates reported in
Appendix A give a better idea of data usage rather
than the training counts provided here.

Dataset Train Validation Test

ImageNet-1k 12,281,167 50,000

Wikitext-103 1,801,350 3,760 4,358
OPUS/Tatoeba 41,649,946 43,074 10,389

Table 8: The number of instances used in each fine-
tuning and evaluation datasets. Instances are image for
ImageNet, lines of text for Wikitext-103, and bitext
pairs for OPUS/Tatoeba.

C Full Results at varying compression
ratios

We report our full results across compression ratios
in Table 9.

D Attention Layer Similarity

We compute CKA similarity between all atten-
tion sublayer pairs, using the same 10k tokens or
patches from our CKA results on FF sublayers. The
features are from the output of the linear layer just
after the dot-product attention computation. Re-
sults appear in Figure 6.

12

Model Metric Merged Indices FFs Removed Vanilla Permute
- 0/12 80.3 80.3
. 3-7 4/12 77.8 79.2
Vit Accuracy (B) Ty 1 6/12 75.3 76.3
0-11 11/12 39.0 58.1
- 0/36 16.16 16.16
22-34 12/36 17.39 17.27
GPT-2 PPL ¢ 16-34 18/36 19.01 18.66
0-35 35/36 23.02 21.31
- 0/12 35.8 35.8
2-4/2-4 4/12 33.3 335
OPUS-MT BLEU?T 0-3/0-3 6/12 32.8 33.2
0-5/0-5 11/12 29.3 30.1

Table 9: Full numerical results on compression results at 1/3 FF sublayers removed, 1/2 FF sublayers removed, and
(n — 1)/n FF sublayers removed. Original, uncompressed models are included in the first row of results for each
model, indicated by 0 FFs removed and no merged indices.

0 1.0
_ 2 0.8 _
]]
=z 4 Y
= 0.6 8 =
c (7] <
o o
g0 g 2
g 049 8

s £
< <

10 0.2

0.0 2.5 5.0 7.5 10.0
Attention Layer i

(a) ViT

1.0 o 1.0
0.8 2 08
[E [
065 =& 4 06 5
O O
=]
043 % 048
£
Z 8
02 02
10

0.0 2.5 5.0 7.5 10.0
Attention Layer i

(c) OPUS-MT

Attention Layer i

(b) GPT2

Figure 6: CKA plots of multi-headed self-attention sublayer activations across three different trained models.
Attention activations are largely dissimilar from each other across model types. We do not compare between encoder
and decoder attention sublayers in the translation model due the differences in token inputs.

13

	Introduction
	Related Work
	Weight tying for smaller models
	Pruning and redundancy

	Merging Feed-Forward Sublayers
	Targeting feed-forward sublayers
	Background on permutation-based neuron alignment
	Combining feed-forward sublayers
	Selecting sublayers to merge

	Experimental Setup
	Language modeling
	Image classification with ViT
	Machine translation
	Layer pruning baseline

	Results
	Merging feed-forward sublayers across compression ratios
	Choice of merged sublayers
	Choice of anchor layer
	Additional compression via quantization
	Similarity trends across feed-forward sublayers

	Conclusion
	Limitations
	Fine-tuning details
	GPT-2
	ViT
	Machine Translation

	Dataset details
	Full Results at varying compression ratios
	Attention Layer Similarity

