

000 001 002 003 004 005 SUBZEROCORE: A SUBMODULAR APPROACH WITH 006 ZERO TRAINING FOR CORESET SELECTION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024

ABSTRACT

025 The goal of coreset selection is to identify representative subsets of datasets for
026 efficient model training. Yet, existing approaches paradoxically require expensive
027 training-based signals, e.g., gradients, decision boundary estimates or forgetting
028 counts, computed over the entire dataset prior to pruning, which undermines their
029 very purpose by requiring training on samples they aim to avoid. We introduce Sub-
030 ZeroCore, a novel, training-free coresset selection method that integrates submodular
031 coverage and density into a single, unified objective. To achieve this, we introduce a
032 sampling strategy based on a closed-form solution to optimally balance these objec-
033 tives, guided by a single hyperparameter that explicitly controls the desired cover-
034 age for local density measures. Despite no training, extensive evaluations show that
035 SubZeroCore matches training-based baselines and significantly outperforms them
036 at high pruning rates, while dramatically reducing computational overhead. SubZe-
037 roCore also demonstrates superior robustness to label noise, highlighting its practi-
038 cal effectiveness and scalability for real-world scenarios. Our code is publicly avail-
039 able at <https://github.com/WILL-BE-IN-FINAL/subzerocore>.
040
041

1 INTRODUCTION

042 Deep learning breakthroughs often stem from training ever-larger models on ever-larger datasets, a
043 trend that is both resource-heavy and environmentally costly Wang et al. (2018); Csiba & Richtárik
044 (2018); Zheng et al. (2022); Katharopoulos & Fleuret (2018). In many applications, however,
045 collecting or storing vast amounts of data poses significant challenges Ganguli et al. (2022); Yang &
046 Su (2024). Coreset selection seeks to address these problems by identifying a subset that contains a
047 sufficient yet representative data summary of the original dataset Moser et al. (2025); Sorscher et al.
048 (2022); Guo et al. (2022). In principle, such a coresset, once found, allows one to train models more
049 efficiently on a fraction of the data without sacrificing much training quality Katharopoulos & Fleuret
050 (2018); Bhalerao (2024). Sometimes, they even lead to better training performance by mitigating the
051 risk of injecting poisoned data into training, i.e., data with noisy annotations or outliers Katharopoulos
052 & Fleuret (2018); Bengio et al. (2019); Marion et al. (2023); Ren et al. (2018). Examples of such
053 positive effects can be found in various deep learning fields like neural architecture search Na et al.
054 (2021); Moser et al. (2022); Yao et al. (2023), image enhancement Moser et al. (2024a); Ding et al.
055 (2023); Laribi et al. (2024), dataset distillation Moser et al. (2024b); Chen et al. (2024); Khandel
056 et al. (2024), imbalanced datasets Sivasubramanian et al. (2024); Luo et al. (2024), continual learning
057 Nguyen et al. (2017); Borsos et al. (2020); Yoon et al. (2021), and even quantum machine learning
058 Qu et al. (2022); Huang et al. (2024); Xue et al. (2023).
059

060 An ideal coresset selection method must balance two competing goals: **coverage**, which measures how
061 well a selected subset represents the overall diversity and distribution of the full dataset, and **density**,
062 which identifies highly concentrated regions in the data space containing informative, but potentially
063 redundant samples Zheng et al. (2022); Sener & Savarese (2017); Koh & Liang (2017). Despite recent
064 progress, state-of-the-art methods often incur heavy computational overhead because they rely on
065 training-based signals such as gradients Paul et al. (2021); Mirzasoleiman et al. (2020); Killamsetty
066 et al. (2021a), forgetting scores Toneva et al. (2018); Paul et al. (2021), or decision boundary estimates
067 Ducoffe & Precioso (2018); Margatina et al. (2021). While these signals can help to identify impactful
068 samples, they require partial or complete model training and also subject to exhaustive hyperparameter
069 search Guo et al. (2022). Paradoxically, this means current coresset selection methods, intended to
070 reduce training burdens, often require extensive training and evaluations themselves.
071
072

In this work, we propose **SubZeroCore**, a novel coresnet selection method grounded in submodular optimization Bérczi et al. (2019) that requires *zero model training*. Unlike existing gradient-based or loss-dynamic methods, SubZeroCore uniquely integrates both coverage and density into a single, submodular objective. As such, SubZeroCore positions itself among geometry-based methods like k-center greedy but with an objective for optimizing density as well as coverage. By leveraging a closed-form coverage estimate to compute a hyperparameter-efficient local density, our method systematically picks a suitable neighborhood size with no reliance on gradients or iterative training. The result is a coresnet selection method that (i) avoids expensive model-specific signals, (ii) maintains high coverage but still focuses on dense regions, (iii) offers theoretical optimality guarantees through submodularity, and (iv) relies on a single, controllable hyperparameter.

Concretely, we demonstrate that our submodular objective captures both coverage and density to improve the quality of coresnet. Our experiments on CIFAR-10 Krizhevsky et al. (2009) as well as ImageNet-1K Deng et al. (2009) show that SubZeroCore consistently performs comparable to training-based baselines for low pruning rates and outperforms them under high pruning rates, while being substantially faster than most training-based approaches. Moreover, as emphasizing dense regions naturally de-emphasizes outliers, SubZeroCore remains robust to label noise.

Taken together, our findings frame SubZeroCore as a practical tool for scalable coresnet selection. We believe this approach offers a practical avenue for advancing coresnet-based strategies in domains where data curation or resource constraints predominate Lee et al. (2021); Abbas et al. (2024).

2 PRELIMINARIES

2.1 CORESET SELECTION

We begin with a classical discriminative task, where the training dataset $\mathcal{T} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$ consists of N i.i.d. samples drawn from an underlying data distribution P . Each input $\mathbf{x}_i \in \mathcal{X}$ is paired with a ground-truth label $y_i \in \mathcal{Y}$.

Definition 1 (Coreset Selection). *The goal of coresnet selection is to derive a small subset $\mathcal{S} \subset \mathcal{T}$ ($|\mathcal{S}| \ll |\mathcal{T}|$) such that training a model $\theta^{\mathcal{S}}$ on \mathcal{S} yields generalization performance on par with $\theta^{\mathcal{T}}$ trained on the entire dataset \mathcal{T} :*

$$\mathcal{S}^* = \arg \min_{\mathcal{S} \subset \mathcal{T}: \frac{|\mathcal{S}|}{|\mathcal{T}|} \approx 1-\alpha} \mathbb{E}_{\mathbf{x}, y \sim P} [\mathcal{L}(\mathbf{x}, y; \theta^{\mathcal{S}}) - \mathcal{L}(\mathbf{x}, y; \theta^{\mathcal{T}})], \quad (1)$$

where $\alpha \in (0, 1)$ is the pruning ratio (fraction of samples removed) and \mathcal{L} is a loss function.

While this objective is conceptually straightforward, it can be difficult to realize in practice Agarwal et al. (2005); Feldman (2020); Bachem et al. (2017). One must decide how best to measure ‘importance’ or ‘representativeness’ for each sample \mathbf{x}_i , so that the selection algorithm can prioritize those samples that most benefit the training Nogueira et al. (2018); Song et al. (2022); Xiao et al. (2025); Swayamdipta et al. (2020). For the remainder of this work, we focus on class-wise selection algorithms. Accordingly, we adopt the simplified notation $\mathbf{x} \sim P$ instead of $(\mathbf{x}, y) \sim P$. Thus, we also denote datasets using the simplified notation $\mathcal{T} = \{\mathbf{x}_i\}_{i=1}^N$ and selected coresets as $\mathcal{S} = \{\mathbf{x}_i\}_{i=1}^{(1-\alpha) \cdot N}$.

2.2 SUBMODULAR FUNCTIONS

Submodularity is a fundamental property of set functions that captures the principle of diminishing returns. Since we are interested in selecting the most informative samples first, the submodularity property is especially attractive for coresnet selection Iyer & Bilmes (2013); Kothawade et al. (2021); Karanam et al. (2022); Wei et al. (2015); Dou et al. (2023).

Definition 2 (Submodularity). *A function $f : 2^V \rightarrow \mathbb{R}$ defined over a ground set V is called submodular if, for any subsets $A \subseteq B \subseteq V$ and any element $j \in V \setminus B$, it holds that*

$$f(A \cup \{j\}) - f(A) \geq f(B \cup \{j\}) - f(B). \quad (2)$$

This diminishing-returns condition intuitively says that adding an element to a smaller set provides a larger marginal gain than adding it to a bigger set Iyer et al. (2021).

108 Formally, coresets selection can be posed as maximizing
 109 a submodular function under a budget constraint:
 110

$$\mathcal{S}^* = \arg \max_{\mathcal{S} \subset \mathcal{T}: |\mathcal{S}| \approx 1-\alpha} f(\mathcal{S}), \quad (3)$$

113 where f is submodular, \mathcal{T} indexes all data samples,
 114 and α is the pruning factor. A common submodular
 115 example is facility location.

116 **Definition 3** (Facility Location). *Facility location*
 117 Bérczi et al. (2019); Wei et al. (2014) defines a sub-
 118 modular function $f_{FL} : 2^{\mathcal{T}} \rightarrow \mathbb{R}$:

$$f_{FL}(\mathcal{S}) = \sum_{\mathbf{x} \in \mathcal{T}} \max_{\mathbf{x}_S \in \mathcal{S}} \text{sim}(\mathbf{x}, \mathbf{x}_S), \quad (4)$$

121 where sim is typically a similarity function (e.g., cosine) Iyer & Bilmes (2013). The facility location
 122 function inherently favors coverage because it evaluates coverage by taking the maximum similarity to any sample in the selected subset.

123 Although finding the exact optimal subset \mathcal{S}^* under a submodular objective f is generally NP-hard
 124 Svitkina & Fleischer (2011); Iyer et al. (2013), submodular functions enjoy a crucial advantage: they
 125 can be approximately maximized via a simple greedy algorithm. For the cardinality-constrained
 126 case (i.e., limited subset size), the classical result by Nemhauser et al. Nemhauser et al. (1978)
 127 guarantees that greedy selection achieves a $(1 - 1/e) \approx 63\%$ approximation ratio: $f(\mathcal{S}_{\text{greedy}}) \geq$
 128 $(1 - 1/e) f(\mathcal{S}^*)$. This tells us that (i) greedy selection obtains a strong approximation without
 129 exhaustive search, (ii) the greedy algorithm guarantees to achieve at least about 63% of the maximum
 130 possible score of the chosen submodular function (such as facility location), and (iii) lazy-greedy
 131 optimizations Lim et al. (2014); Lundberg & Lee (2017) can reduce computational cost significantly.
 132 While one might ask “Why not 100%?”, the answer is that each greedy step picks the locally best
 133 option at that moment, without accounting for future interactions among samples. Yet, *greedy*
 134 *suboptimality* has been a well-understood limitation in submodular maximization since 1978, but in
 135 practice, the $(1 - 1/e)$ bound on the submodular metric score is often considered both strong and
 136 acceptable Bérczi et al. (2019); Nemhauser et al. (1978); Lim et al. (2014).

139 3 METHODOLOGY

140 The goal of coresets selection is to select data samples that (i) collectively achieve sufficient coverage
 141 of the underlying data distribution and (ii) lie in high-density regions. Since both objectives usually
 142 counteract each other, existing methods generally choose just one objective: However, for high
 143 pruning ratios, one desires a high-density driven coresets selection method, while a coverage-based
 144 method is more favorable for low pruning ratios Zheng et al. (2022); Sener & Savarese (2017).

145 Thus, balancing both density and coverage within a unified framework remains a significant yet chal-
 146 lenging objective. We propose SubZeroCore, a new method that combines submodular optimization,
 147 i.e, facility location-based coverage maximization, with density-driven importance weighting, as
 148 illustrated in Figure 1. The complete algorithm can be found in the appendix.

149 3.1 CONCERNING DENSITY

150 **Definition 4** (Density). For a data sample \mathbf{x} , we define its density by finding the size of the neighbor-
 151 hood needed to capture K nearest neighbors in \mathcal{T} . If we define the radius by $r = \text{NND}_K(\mathbf{x})$, where
 152 $\text{NND}_K(\mathbf{x})$ denotes the distance of \mathbf{x} to its K -th nearest-neighbor, then a common way to express
 153 density $\rho_K : \mathcal{T} \rightarrow [0, \infty]$ is via

$$\rho_K(\mathbf{x}) = \frac{|B(\mathbf{x}, r) \cap \mathcal{T}|}{\text{Vol}(B(\mathbf{x}, r))}, \quad (5)$$

154 where $B(\mathbf{x}, r)$ is a ball around \mathbf{x} with radius r , Vol is the volume Morgan (2016), and $|B(\mathbf{x}, r) \cap \mathcal{T}|$
 155 are the amount of elements in \mathcal{T} within that ball. Note that $|B(\mathbf{x}, r) \cap \mathcal{T}| > K$ can occur when there
 156 are multiple neighbors with exactly $\text{NND}_K(\mathbf{x})$ distance to \mathbf{x} (also exemplified later in Figure 2).

162 Informally, density measures how crowded or populated the local region is, thus high for samples
 163 with strong support in the real dataset. For further simplifications, we introduce the following lemma:
 164

165 **Lemma 1.** *For a given K and any two samples $\mathbf{x}_i, \mathbf{x}_j \in \mathcal{T}$ it holds that $\text{NND}_K(\mathbf{x}_i) < \text{NND}_K(\mathbf{x}_j) \Leftrightarrow \rho_K(\mathbf{x}_i) > \rho_K(\mathbf{x}_j)$. In other words, a sample that requires a smaller radius to
 166 capture K neighbors is in a denser region.*

167 *Proof.* Consider $r_{\mathbf{x}_i} = \text{NND}_K(\mathbf{x}_i)$ and $r_{\mathbf{x}_j} = \text{NND}_K(\mathbf{x}_j)$ such that $r_{\mathbf{x}_i} < r_{\mathbf{x}_j}$. Since the volume
 168 Morgan (2016) of a ball in a d -dimensional metric space

$$171 \quad \text{Vol}(B(\mathbf{x}, r)) = \frac{\pi^{\frac{d}{2}}}{\Gamma\left(\frac{d}{2} + 1\right)} r^d$$

173 is strictly increasing with respect to its radius, it trivially follows that
 174 $\text{Vol}(B(\mathbf{x}_i, r_{\mathbf{x}_i})) < \text{Vol}(B(\mathbf{x}_j, r_{\mathbf{x}_j})) \Leftrightarrow \rho_K(\mathbf{x}_i) > \rho_K(\mathbf{x}_j)$. \blacksquare
 175

176 Consequently, the ordering of density for each individual sample \mathbf{x}_i depends by how large or small its
 177 ball radius $\text{NND}_K(\mathbf{x}_i) = r_i$ is compared to other samples : (1) If the radius r_i is small, the sample
 178 \mathbf{x}_i lies in a densely populated region because its closest neighbors are spatially closer to it. (2) If the
 179 radius r_i is large, the sample \mathbf{x}_i lies in a sparsely populated region, implying fewer samples within
 180 close proximity.

182 3.2 SUBZEROCORE

184 By integrating the density measure for a single sample as a weighting to the facility location, which
 185 maximizes coverage, we straightforwardly derive a submodular function dubbed **SubZeroCore** that
 186 encourages both aspects, namely coverage and density.

187 **Definition 5** (SubZeroCore). *Given a data sample $\mathbf{x} \in \mathcal{T}$, we define its density based on Equation 5
 188 by comparing its radius to the overall distribution of neighborhood radii. Simply put, a smaller
 189 radius implies higher density (see Lemma 1). More formally, let $\{r_i\}_{i=1}^{|\mathcal{T}|}$ be the radii derived from a
 190 fixed K via $r_i = \text{NND}_K(\mathbf{x}_i)$. We compute a sample density score by its relation to the empirical
 191 mean $\mu = \frac{1}{|\mathcal{T}|} \sum_{i=1}^{|\mathcal{T}|} r_i$ and standard deviation σ of the radii distribution. We then define a density
 192 score*

$$193 \quad s_i = \exp\left(-\frac{(r_i - \mu)^2}{2\sigma^2}\right). \quad (6)$$

195 *By using this normalization, we ensure that density scores are smoothly and consistently assigned,
 196 with the highest scores centered around samples whose radii are close to the average density μ ,
 197 clearly highlighting average dense regions and systematically down-weighting sparse outliers or
 198 overly dense inliers. We then feed these density scores into a weighted facility location function
 199 $f_{\text{SubZeroCore}} : 2^{\mathcal{T}} \rightarrow \mathbb{R}$:*

$$200 \quad f_{\text{SubZeroCore}}(\mathcal{S}) = \sum_{\mathbf{x}_i \in \mathcal{S}} \max_{\mathbf{x}_j \in \mathcal{T}} (s_j \cdot \text{sim}(\mathbf{x}_i, \mathbf{x}_j)), \quad (7)$$

202 where \mathcal{T} indexes the entire set of samples in a class, $\mathcal{S} \subseteq \mathcal{T}$ denotes a candidate coresset, and
 203 $\text{sim}(\mathbf{x}_i, \mathbf{x}_j)$ is, for instance, a cosine similarity defined on the embeddings of \mathbf{x}_i and \mathbf{x}_j . The term s_j
 204 acts as a density-based weight emphasizing samples in averagely crowded regions.

205 **Corollary 1.** *The SubZeroCore function $f_{\text{SubZeroCore}}$ is submodular.*

207 *Proof.* This directly follows from Berczi et al. Bérczi et al. (2019) and can be found in the appendix. \blacksquare
 208

210 3.3 IMPACT OF THE RADIUS AND ITS COVERAGE

212 **Radius.** The notion of density in dataset pruning heavily relies on the selection of K , which sets the
 213 scale at which we measure local density, as shown in Figure 2. This is due to the fact that the volume
 214 is monotonically increasing with increasing K and from $B(\mathbf{x}, \text{NND}_K(\mathbf{x})) \subseteq B(\mathbf{x}, \text{NND}_{K+1}(\mathbf{x}))$.
 215 Consequently, if K is small, density estimates become overly sensitive to isolated samples (overfitting
 outliers). Conversely, too large K smooths density differences.

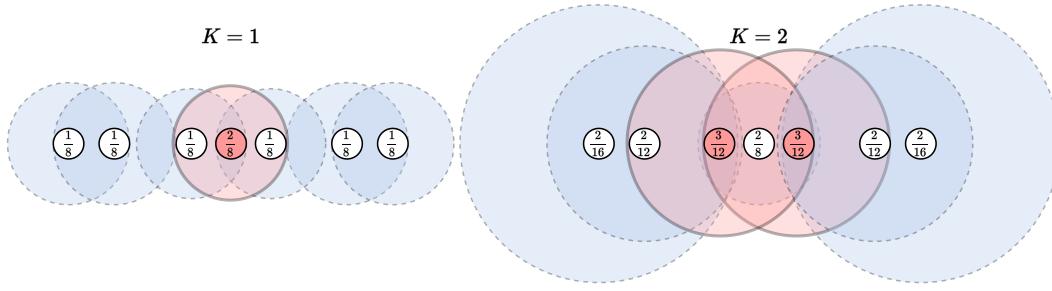


Figure 2: Visualization of how the notion of sample density, defined as the number of neighbors divided by the volume (see numbers in circles), varies depending on the chosen hyperparameter K . Red indicates the densest samples for each setting of K . As K increases, the density changes and, more importantly, so does the ordering.

Unfortunately, a balanced selection of K depends on the size of the underlying dataset \mathcal{T} and the pruning ratio α . To address this, we directly tie K to an interpretable, desired coverage target γ between 0% and 100% for the density calculation, thereby systematically guiding the scale at which our method optimally balances coverage with density.

Coverage. Inspired by the image synthesis domain and Naeem *et al.* (2020), we define:

Definition 6 (Coverage). *Coverage is a measure for what fraction of \mathcal{T} -neighborhoods contain a sample of the coresset \mathcal{S} . More formally,*

$$\text{coverage}_K(\mathcal{S}, \mathcal{T}) := \frac{1}{|\mathcal{T}|} \sum_{\mathbf{x} \in \mathcal{T}} \mathbf{1}_{\exists \mathbf{x}_S \in \mathcal{S} \text{ s.t. } \mathbf{x}_S \in B(\mathbf{x}, \text{NND}_K(\mathbf{x}))}. \quad (8)$$

where $B(\mathbf{x}, \text{NND}_K(\mathbf{x}))$ is again a ball around \mathbf{x} with radius $\text{NND}_K(\mathbf{x})$, which is defined by its distance to its K -th nearest-neighbor.

Lemma 2. *The expected coverage of a coresset of size $s \leq |\mathcal{T}| - K$ and a given K is*

$$\mathbb{E}_{\mathcal{S} \sim \mathcal{U}(2^{\mathcal{T}})} [\text{coverage}_K(\mathcal{S}, \mathcal{T}) \mid |\mathcal{S}| = s] = 1 - \prod_{k=0}^K \frac{(|\mathcal{T}| - s - k)}{(|\mathcal{T}| - k)}. \quad (9)$$

Proof.

$$\begin{aligned} \mathbb{E}_{\mathcal{S} \sim \mathcal{U}(2^{\mathcal{T}})} [\text{coverage}_K(\mathcal{S}, \mathcal{T}) \mid |\mathcal{S}| = s] &= \frac{1}{|\mathcal{T}|} \sum_{\mathbf{x} \in \mathcal{T}} \mathbb{P} [\exists \mathbf{x}_S \in \mathcal{S} \text{ s.t. } \mathbf{x}_S \in B(\mathbf{x}, \text{NND}_K(\mathbf{x}))] \\ &\stackrel{(i)}{=} 1 - \mathbb{P} [\forall \mathbf{x}_S \in \mathcal{S}, \mathbf{x}_S \notin B(\mathbf{x}_1, \text{NND}_K(\mathbf{x}_1))] \\ &= 1 - \mathbb{P} [S \cap B(\mathbf{x}_1, \text{NND}_K(\mathbf{x}_1)) = \emptyset] \end{aligned}$$

Since by the uniform nature of \mathcal{S} all samples $\mathbf{x} \in \mathcal{T}$ are treated equally, we can fix a particular test sample $\mathbf{x}_1 \in \mathcal{T}$ in step (i). The notation \mathbf{x}_1 emphasizes that this sample is now held fixed when we compute $\mathbb{P}[\forall \mathbf{x}_S \in \mathcal{S} : \dots]$. It plays the same role as any other \mathbf{x} in \mathcal{T} . We can reformulate the probability as follows:

Let $Z = (z_1, \dots, z_{|\mathcal{T}|})$ be $|\mathcal{T}|$ non-negative real numbers distributed i.i.d. according to \mathbb{P}_Z . Select $|\mathcal{S}| = s$ many of them uniformly at random, i.e., the expected value is over $\mathcal{S} \sim \mathcal{U}(2^{\mathcal{T}})$. What is the probability that the K smallest entries among Z are not in \mathcal{S} ?

Since the selection is equally likely, we can calculate the probability by counting the ratio of possible selections where the K smallest elements are not selected, which for $|\mathcal{S}| < |\mathcal{T}| - K$ boils down to:

$$\mathbb{P} [\forall \mathbf{x}_S \in \mathcal{S}, \mathbf{x}_S \notin B(\mathbf{x}_1, \text{NND}_K(\mathbf{x}_1))] = \frac{\binom{|\mathcal{T}| - K}{s}}{\binom{|\mathcal{T}|}{s}} = \prod_{k=0}^K \frac{(|\mathcal{T}| - s - k)}{(|\mathcal{T}| - k)}.$$

For $|\mathcal{S}| \geq |\mathcal{T}| - K$ (not interesting for coresset selection), the probability becomes 1. ■

270 3.4 DETERMINING THE RADIUS
271

272 Figure 3 illustrates how the expected coverage (Equation 9) evolves as K increases under varying
273 pruning levels. We see that the expected coverage tends to rise concavely, indicating diminishing
274 returns once a sufficiently large neighborhood is considered. Higher pruning ratios accentuate this
275 effect, as removing more samples reduces the coverage for a given radius-defining K .

276 Following this analysis, we repurpose the closed-
277 form expectation in Equation 9 to estimate a
278 suitable value of K for our density calculation
279 under a target coverage. Concretely, for a given
280 coverage goal $\gamma \in (0, 1)$, one can (numerically)
281 invert the expression for assigning K to

$$284 \min \left\{ K \in \mathbb{N} \mid 1 - \gamma \leq \prod_{k=0}^K \frac{(|\mathcal{T}| - |\mathcal{S}| - k)}{(|\mathcal{T}| - k)} \right\} \\ 285$$

287 which finds a suitable K that achieves
288 coverage $_{\mathcal{K}}(\mathcal{S}, \mathcal{T}) \approx \gamma$ under the given con-
289 ditions. Once this K is determined, we can sub-
290 stitute it back into the density formula in Equa-
291 tion 7 to assign an importance weight to each
292 sample. More details in the appendix.

293 Notably, the expected coverage in Equation 9 is agnostic to the underlying data and coresset distribution,
294 which means we can calculate it without requiring any training or knowledge about the dataset except
295 its magnitude. In other words, the distance-based counting of neighbors in the set \mathcal{S} (scaled by the
296 chosen K) provides a straightforward training-free importance weighting scheme. This ensures that
297 samples that are more densely surrounded receive greater importance in subsequent pruning.

298 In summary, by estimating and settling on such a K , we unify coverage and density into a single
299 selection procedure. Specifically, once K is determined from our coverage objective (Equation 9),
300 we compute the K -nearest-neighbor radii for each data sample \mathbf{x}_i . We then greedily select from \mathcal{T}
301 the subset \mathcal{S} of the required size $|\mathcal{S}| = (1 - \alpha) \cdot |\mathcal{T}|$ that maximizes $f_{\text{SubZeroCore}}(\mathcal{S})$ in Equation 7.
302 Owing to the submodularity and monotonicity of the facility location objective, this greedy selection
303 achieves the $(1 - 1/e)$ approximation guarantee (see Nemhauser *et al.* Nemhauser *et al.* (1978)).

305 Overall, SubZeroCore systematically and effectively reconciles the often competing demands of
306 coverage and density within a single submodular optimization target. By deriving the single hyperpa-
307 rameter K from a closed-form solution, our method achieves a robust and efficient coresset selection
308 without any training overhead, making it practically attractive for scalable deep-learning applications.

310 3.5 IMPLICATIONS FOR SUBMODULARITY AND GLOBAL COVERAGE
311

312 Since the density scores s_j are smaller
313 in sparse regions (where r_j is large)
314 and close to 1 in averagely denser
315 regions (where r_j is small), the
316 weighted objective penalizes the
317 contribution of samples in sparse areas
318 even if they might improve global cov-
319 erage. Thus, for lower pruning ratios
320 and smaller K , our approach tends to
321 lead to better coresset coverage due to its focus on averagely dense regions, while for higher pruning
322 ratios and higher K , it tends to lead to lower coresset coverage. As a consequence, its focus on data
323 density over data coverage is more profound for high pruning ratios, a property generally favorable
for coresset selection Sener & Savarese (2017). Empirical validation is provided in Table 1.

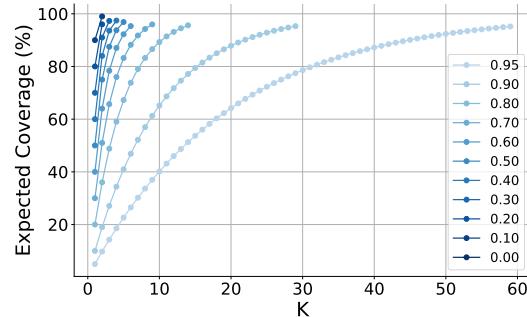


Figure 3: Expected coverage as a function of K across varying pruning ratios. As K increases, the expected coverage follows a nonlinear trajectory, aligning with the expectation of diminishing returns of additional samples under pruning.

Table 1: Coverage on CIFAR-10 calculated with respect to the corresponding K -value: Equation 9 with target coverage $\gamma = 0.6$ delivered the K -values 84, 18, 9, 3 for pruning factors 99%, 95%, 90%, 70%, respectively.

Pruning Factor (α)	99%	95%	90%	70%
Facility Location	56.16	60.36	60.97	65.38
SubZeroCore (ours)	46.77	73.73	80.49	89.03

324 Table 2: Coreset performances on CIFAR-10 with five randomly initialized ResNet-18 He et al.
325 (2016) models. Without pruning ($\alpha = 0\%$), the model reaches 95.6 ± 0.1 .
326

Pruning Factor (α)	99.9%	99.5%	99%	95%	90%	80%	70%	60%	50%	40%	30%	20%	10%	Train Signals
Random	21.0 \pm 0.3	30.8 \pm 0.6	36.7 \pm 1.7	62.5 \pm 1.1	75.7 \pm 2.0	87.1 \pm 0.5	90.2 \pm 0.3	92.1 \pm 0.1	93.3 \pm 0.2	94.0 \pm 0.2	95.2 \pm 0.1			\times
Hherding Welling (2009)	19.8 \pm 2.7	29.2 \pm 2.4	31.1 \pm 2.9	50.7 \pm 1.6	63.1 \pm 3.4	75.2 \pm 1.0	80.8 \pm 1.5	85.4 \pm 1.2	88.4 \pm 0.6	90.9 \pm 0.4	94.4 \pm 0.1			\times
k-Center Greedy Sener & Savarese (2017)	19.9 \pm 0.9	25.3 \pm 0.9	32.6 \pm 1.6	55.6 \pm 2.8	74.6 \pm 0.9	87.3 \pm 0.2	91.0 \pm 0.3	92.6 \pm 0.2	93.5 \pm 0.5	94.3 \pm 0.2	95.5 \pm 0.2			\times
Forgetting Toneva et al. (2018)	21.3 \pm 1.2	29.7 \pm 0.3	35.6 \pm 1.0	51.1 \pm 2.0	66.9 \pm 2.0	86.6 \pm 1.0	91.7 \pm 0.3	93.0 \pm 0.2	94.1 \pm 0.2	94.6 \pm 0.2	95.4 \pm 0.1			\checkmark
GraNd Paul et al. (2021)	14.6 \pm 0.8	17.2 \pm 0.8	18.6 \pm 0.8	28.9 \pm 0.5	41.3 \pm 1.3	71.1 \pm 1.3	88.3 \pm 1.0	93.0 \pm 0.4	94.8 \pm 0.1	95.2 \pm 0.1	95.5 \pm 0.1			\checkmark
CCS (Gradient) Zheng et al. (2022)	19.1 \pm 2.2	29.2 \pm 2.0	36.5 \pm 1.1	62.8 \pm 2.6	73.1 \pm 0.8	86.3 \pm 0.2	89.9 \pm 0.2	90.0 \pm 0.1	90.9 \pm 0.2	90.0 \pm 0.2	90.0 \pm 0.2			\checkmark
ELFS Zheng et al. (2025)	13.7 \pm 0.7	20.9 \pm 1.0	25.3 \pm 1.1	39.7 \pm 1.1	52.7 \pm 1.9	76.8 \pm 2.5	89.2 \pm 0.4	91.7 \pm 0.3	91.9 \pm 0.1	92.3 \pm 0.2	92.6 \pm 0.1			\checkmark
CAL Margatina et al. (2021)	23.1 \pm 1.8	31.7 \pm 0.9	39.7 \pm 3.8	60.8 \pm 1.4	69.7 \pm 0.8	79.4 \pm 0.9	85.1 \pm 0.7	87.6 \pm 0.3	89.6 \pm 0.4	90.9 \pm 0.4	94.7 \pm 0.2			\checkmark
DeepPool Ducoffe & Precioso (2018)	18.7 \pm 0.9	26.4 \pm 1.1	28.3 \pm 0.6	47.7 \pm 3.5	61.2 \pm 2.8	82.7 \pm 0.5	90.8 \pm 0.5	92.9 \pm 0.2	94.4 \pm 0.1	94.8 \pm 0.1	95.6 \pm 0.1			\checkmark
Craig Mirzasoleiman et al. (2020)	19.3 \pm 0.3	29.1 \pm 1.6	32.8 \pm 1.8	42.5 \pm 1.7	59.9 \pm 2.1	78.1 \pm 2.5	90.0 \pm 0.5	92.8 \pm 0.2	94.3 \pm 0.2	94.8 \pm 0.1	95.5 \pm 0.1			\checkmark
GradMatch Killamsetty et al. (2021a)	17.4 \pm 1.6	27.1 \pm 1.1	27.7 \pm 2.0	41.8 \pm 2.4	55.5 \pm 2.3	78.1 \pm 2.0	89.6 \pm 0.7	92.7 \pm 0.5	94.1 \pm 0.2	94.7 \pm 0.3	95.4 \pm 0.1			\checkmark
Glister Killamsetty et al. (2021b)	18.4 \pm 1.3	26.5 \pm 0.7	29.4 \pm 1.9	42.1 \pm 1.0	56.8 \pm 1.8	77.2 \pm 2.4	88.8 \pm 0.6	92.7 \pm 0.4	94.2 \pm 0.1	94.8 \pm 0.2	95.5 \pm 0.1			\checkmark
TDDS Zhang et al. (2024)	18.3 \pm 1.0	32.4 \pm 0.9	39.1 \pm 1.1	63.7 \pm 1.1	76.8 \pm 1.7	87.1 \pm 0.3	90.6 \pm 0.4	92.5 \pm 0.1	93.3 \pm 0.0	94.0 \pm 0.2	95.3 \pm 0.1			\checkmark
Facility Location	21.0 \pm 1.3	30.3 \pm 1.2	38.1 \pm 1.3	58.8 \pm 2.3	70.9 \pm 1.9	86.6 \pm 0.9	91.2 \pm 0.4	92.9 \pm 0.2	94.3 \pm 0.1	94.7 \pm 0.1	95.5 \pm 0.1			\times
SubZeroCore (ours)	24.0 \pm 1.9	32.9 \pm 1.5	39.8 \pm 1.1	63.9 \pm 2.0	77.4 \pm 0.8	87.3 \pm 0.5	90.8 \pm 0.3	92.5 \pm 0.1	93.2 \pm 0.1	94.1 \pm 0.1	95.3 \pm 0.1			\times

332 Table 3: Comparison against InfoMax Tan et al. (2025), an extension of D2Pruning Maharana et al.
333 (2024), with Forgetting, EL2N, and Entropy scoring on CIFAR-10 with five randomly initialized
334 ResNet-18 He et al. (2016) models. Without pruning ($\alpha = 0\%$), the model reaches 95.6 ± 0.1 .
335

Pruning Factor (α)	99.9%	99.5%	99%	95%	90%	80%	70%	60%	50%	40%	30%	20%	10%	Train Signals
Random	21.0 \pm 0.3	30.8 \pm 0.6	36.7 \pm 1.7	62.5 \pm 1.1	75.7 \pm 2.0	87.1 \pm 0.5	90.2 \pm 0.3	92.1 \pm 0.1	93.3 \pm 0.2	94.0 \pm 0.2	95.2 \pm 0.1			\times
Forgetting Toneva et al. (2018)	12.4 \pm 0.4	15.6 \pm 0.3	19.9 \pm 0.8	33.8 \pm 0.8	57.1 \pm 2.7	84.0 \pm 0.7	87.8 \pm 0.2	91.3 \pm 0.2	92.5 \pm 0.4	94.9 \pm 0.1				\checkmark
EL2N Paul et al. (2021)	11.0 \pm 0.2	10.7 \pm 0.4	12.5 \pm 0.5	23.5 \pm 0.3	55.6 \pm 4.9	86.5 \pm 0.6	88.9 \pm 0.3	90.5 \pm 0.2	91.5 \pm 0.3	92.4 \pm 0.1	95.0 \pm 0.2			\checkmark
Entropy	18.1 \pm 0.5	25.6 \pm 0.8	33.1 \pm 0.5	55.8 \pm 3.7	71.8 \pm 0.2	86.7 \pm 0.4	89.0 \pm 0.5	90.7 \pm 0.3	91.6 \pm 0.2	92.6 \pm 0.1	95.1 \pm 0.1			\checkmark
SubZeroCore (ours)	24.0 \pm 1.9	32.9 \pm 1.5	39.8 \pm 1.1	63.9 \pm 2.0	77.4 \pm 0.8	87.3 \pm 0.5	90.8 \pm 0.3	92.5 \pm 0.1	93.2 \pm 0.1	94.1 \pm 0.1	95.3 \pm 0.1			\times

367 3.6 CLASS-WISE PARTITIONING AND LABEL USAGE

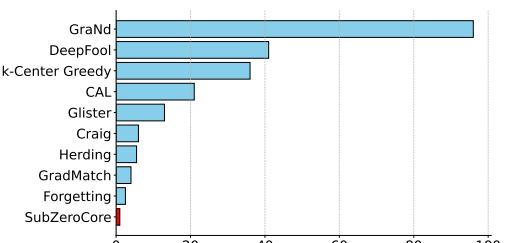
368 SubZeroCore does not use class labels when computing density scores, similarities, or the submodular
369 objective. All scoring and selection steps operate purely on the embedding geometry. However, for
370 efficiency, the dataset is partitioned class-wise, and the selection procedure is applied independently
371 within each class. Because SubZeroCore selects independent and fixed quotas within each class,
372 minority classes are not overshadowed by majority classes during scoring or selection. This makes
373 the method naturally robust to class imbalance, in contrast to training-signal-based methods whose
374 behavior can shift with changes in class frequency.

375 4 EXPERIMENTS

376 This section provides our experiments on CIFAR-10 Krizhevsky et al. (2009) and ImageNet-1K Deng
377 et al. (2009), which evaluates our method SubZeroCore under various aspects, such as overall coresset
378 quality, runtime, and robustness.

379 4.1 CIFAR-10 RESULTS

380 **Setup.** For CIFAR-10, we follow the training
381 protocols of DeepCore Guo et al. (2022). Concretely, we use five ResNet-18 He et al. (2016)
382 models trained with stochastic gradient descent (SGD) on coressets for 200 epochs, using a batch
383 size of 128, an initial learning rate of 0.1 with
384 cosine annealing, momentum 0.9, and weight
385 decay 5×10^{-4} and evaluate the trained model
386 on the standard CIFAR-10 test set. We subse-
387 lect multiple fractions from the full training set,
388 whose performance we treat as an approximate
389 upper bound. Data augmentation includes a ran-
390 dom 4-pixel padding followed by cropping to
391 32×32 , and random horizontal flips.



392 Figure 4: Time-Measurement on CIFAR-10. The
393 bar chart compares the selection times (in minutes)
394 of various methods ($\alpha = 0.99$). SubZeroCore
395 (red) significantly outperforms all other methods,
396 requiring only 1 minute, while other techniques
397 take substantially longer due to the prior training
398 phase before pruning.

378 Table 4: Coreset selection performances on ImageNet-1K. We train randomly initialized ResNet-18
 379 on the pruned subsets produced by various methods and test on the real ImageNet test set. DeepFool
 380 and GraNd were omitted due to their significant memory requirements and runtime.

Pruning Factor (α)	90%	80%	70%	60%	50%	0%	Train Signals
Herding Welling (2009)	29.17 \pm 0.23	41.26 \pm 0.43	48.71 \pm 0.23	54.65 \pm 0.07	58.92 \pm 0.19	69.52 \pm 0.45	\times
k-Center Greedy Sener & Savarese (2017)	48.11 \pm 0.29	59.06 \pm 0.22	62.91 \pm 0.22	64.93 \pm 0.22	66.04 \pm 0.05	69.52 \pm 0.45	\times
Forgetting Toneva et al. (2018)	55.31\pm0.07	60.36 \pm 0.12	62.45 \pm 0.11	63.97 \pm 0.01	65.06 \pm 0.02	69.52 \pm 0.45	\checkmark
CALMargatina et al. (2021)	46.08 \pm 0.10	53.71 \pm 0.19	58.11 \pm 0.13	61.17 \pm 0.06	63.67 \pm 0.28	69.52 \pm 0.45	\checkmark
Craig Mirzoleiman et al. (2020)	51.39 \pm 0.13	59.33 \pm 0.22	62.72 \pm 0.13	64.96 \pm 0.00	66.29 \pm 0.00	69.52 \pm 0.45	\checkmark
GradMatch Killamsetty et al. (2021a)	47.57 \pm 0.32	56.29 \pm 0.31	60.62 \pm 0.28	64.40 \pm 0.33	65.02 \pm 0.50	69.52 \pm 0.45	\checkmark
Glister Killamsetty et al. (2021b)	47.02 \pm 0.29	55.93 \pm 0.17	60.38 \pm 0.17	62.86 \pm 0.07	65.07 \pm 0.08	69.52 \pm 0.45	\checkmark
Facility Location	52.49 \pm 0.19	60.06 \pm 0.11	63.05 \pm 0.06	65.24 \pm 0.04	66.05 \pm 0.07	69.52 \pm 0.45	\times
SubZeroCore (ours)	54.01 \pm 0.14	60.78 \pm 0.05	63.35 \pm 0.11	65.32 \pm 0.04	66.14 \pm 0.07	69.52 \pm 0.45	\times

389
 390 **Main Results.** In Table 2, we show how Sub-
 391 ZeroCore compares against existing coresnet selection methods on CIFAR-10 under various pruning
 392 ratios (from 10% up to 99.9%). Notably, our approach closely matches all baselines for lower pruning
 393 rates (70% and below), or consistently outperforms for pruning ratios above 70%, especially for
 394 ultra-scarce settings. More details on complexity and additional cross-architecture evaluations (VGG-
 395 16 Simonyan & Zisserman (2014), InceptionNetV3 Szegedy et al. (2016), WRN-16-8 Zagoruyko
 396 & Komodakis (2016), and ResNet-50 He et al. (2016)) can found in the appendix. Moreover, we
 397 achieve all results while being notably faster due to our training-free setup, as shown in Figure 4.
 398

399 **Comparison to InfoMax.** We also compare SubZeroCore to InfoMax Tan et al. (2025), which
 400 extends D2Pruning Maharana et al. (2024) by combining difficulty-based scoring with intermediate
 401 convolutional features in an information-maximization objective. Because InfoMax adopts a slightly
 402 different post-pruning training protocol than our DeepCore setup, their reported numbers are not
 403 directly interchangeable. However, reporting them side by side gives a clearer picture of how
 404 geometric, training-free selection compares to a training-dependent alternative. As shown in Table 3,
 405 SubZeroCore achieves better performance across all pruning levels, with pronounced gains at extreme
 406 pruning ratios (e.g., $\alpha \geq 0.95$), while requiring none of the training-time signals or message-passing
 407 used by InfoMax.

408 **Robustness.** To assess the stability of our coresnet selection method under label noise or malicious
 409 relabeling, we follow a poisoning protocol similar to that in Zhang et al. Zhang et al. (2021).
 410 Specifically, we randomly relabel 10% of CIFAR-10 training examples to incorrect classes, thereby
 411 introducing a form of data poisoning. We then run each coresnet selection method on this poisoned
 412 dataset, subsampling different fractions. The relative accuracy change (compared to no poisoning)
 413 is shown in Figure 5. We observe that our method SubZeroCore demonstrates profound robustness
 414 among all baselines, effectively mitigating the detrimental effects of relabeling noise (i.e., mislabeled
 415 data). Notably, its performance remains superior to the standard facility location method. In fact, by
 416 incorporating the density-weighted mechanism, our method downweights outlier samples (where
 417 mislabeled or corrupted data often lie), yielding a stable coresnet even under harsh poisoning scenarios.
 418 Such improvements highlight that the density weighting scheme is not only beneficial for standard
 419 data selection but also enhances resilience to adversarial or noisy training conditions. Additional
 420 evaluations with random relabeling of 20% and 30% can be found in the appendix, where the relative
 421 ordering of methods remains largely unchanged.

422 4.2 IMAGENET-1K RESULTS

424 **Setup.** For our ImageNet-1K experiments, we train three ResNet-18 models on the selected coresnets
 425 using a batch size of 256 for 200 epochs. Training images are randomly cropped and resized to
 426 224×224 , and horizontal flipping is applied with a probability of 50%. All other experimental
 427 settings and training hyperparameters are identical to those used in our CIFAR-10 experiments.

428
 429 **Main Results.** As shown in Table 4, SubZeroCore consistently ranks among the top-performing
 430 methods across all pruning levels, outperforming nearly all training-based approaches. In particular,
 431 it matches or slightly exceeds Forgetting at higher pruning ratios and outperforms Craig, GradMatch,
 432 and CAL most of the time. Notably, SubZeroCore achieves this performance without any training.

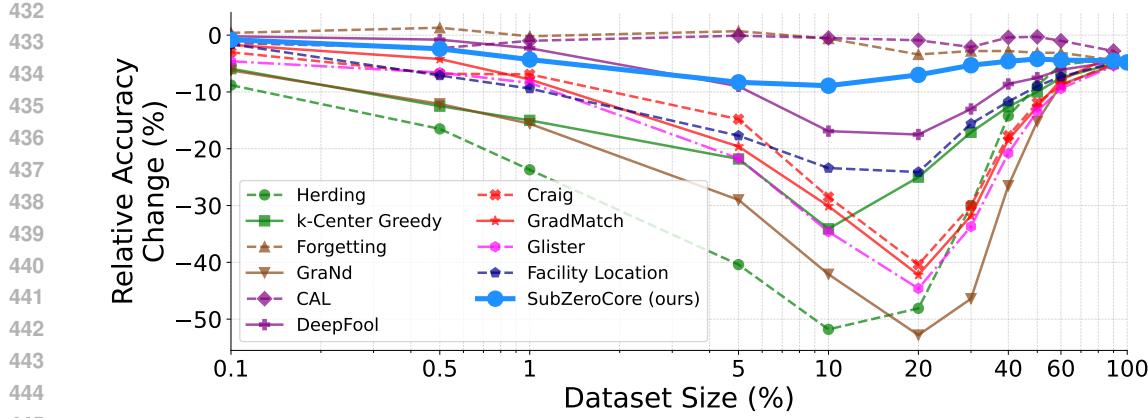


Figure 5: Relative robustness of coreset selection methods on CIFAR-10 with 10% corrupted labels. SubZeroCore demonstrates strong robustness (among top-3 methods with CAL and Forgetting), even outperforming facility location, the method it builds upon.

4.3 IMPACT OF TARGET COVERAGE

Recall that SubZeroCore has only one hyperparameter, namely the desired coverage level $\gamma \in (0, 1)$ for Equation 9. We conduct an ablation study (see Figure 6) by varying γ and then measuring the final test accuracy under different pruning ratios. We observe that, for moderate or low pruning rates, SubZeroCore remains relatively insensitive to the exact choice of γ . However, at high pruning rates, different γ -values lead to significant gaps in final accuracy. Through this exploration, we find that a target coverage of $\gamma \approx 0.60$ offers the best trade-off between robust performance and insensitivity to pruning levels. Consequently, we adopted $\gamma = 0.60$ in our reported CIFAR-10 and ImageNet-1K experiments.

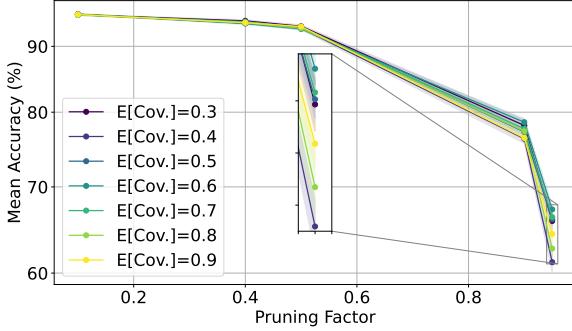


Figure 6: Expected coverage (γ) ablation on CIFAR-10. While for lower pruning ratios, the setting of γ does not have a notable impact, it significantly influences the outcome for higher pruning ratios. We identify a target coverage of 0.6 as the best option.

5 LIMITATIONS

SubZeroCore may yield less meaningful estimates in the regime where $|\mathcal{T}|$ is small, although our coverage derivation in Equation 9 cleanly holds for sufficiently large datasets. Mathematically, the closed-form expression hinges on selecting $|\mathcal{S}|$ subsets from a larger pool $|\mathcal{T}|$. When $|\mathcal{T}|$ is only marginally bigger than $|\mathcal{S}|$, the binomial coefficients $\binom{|\mathcal{T}|-K}{|\mathcal{S}|}$ and $\binom{|\mathcal{T}|}{|\mathcal{S}|}$ can be extremely sensitive to small changes in $|\mathcal{S}|$ or K . Consequently, small-sample effects can inflate (or deflate) the predicted coverage in ways that do not generalize outside the combinatorial assumptions underlying the derivation. Thus, if the dataset itself is tiny (e.g., tens or hundreds of samples), then the notion of “expected coverage” over all possible subsets becomes so discretized that it no longer provides a stable yardstick for coverage-driven coresset selection. We recommend a direct check of coverage in such low-data scenarios (though it remains questionable whether coresset selection is even necessary in extremely small datasets), rather than relying on the asymptotic-style expression in Equation 9.

While our experiments focus on image classification with moderate-scale architectures, SubZeroCore is not tied to vision-specific inductive biases. The method only requires a fixed embedding space and does not rely on model-dependent training signals. In principle, this makes the approach compatible with other modalities (e.g., text or multimodal data) by operating on embeddings from large pretrained

486 encoders (e.g., self-supervised vision models or large language models). Exploring these broader
 487 settings is an interesting direction for future work, and we include this note here to clarify that
 488 SubZeroCore’s formulation is inherently domain-agnostic, even though our empirical evaluation is
 489 constrained to standard vision benchmarks.

491 6 RELATED WORK

494 Coreset selection has been explored from multiple angles. On the training-based front, various
 495 importance-scoring heuristics like the forgetting score Toneva et al. (2018), AUM Pleiss et al. (2020),
 496 and EL2N Paul et al. (2021) estimate how much a training example influences model parameters or
 497 loss dynamics, then keep only those deemed most essential. Other methods like GraNd Paul et al.
 498 (2021) or GradMatch Killamsetty et al. (2021a) exploit the gradients during training, while DeepFool
 499 Ducoffe & Precioso (2018) or CAL Margatina et al. (2021) leverage an approximation of the decision
 500 boundary during training. However, computing these metrics usually demands full or partial training
 501 rounds and can be computationally heavy. Regarding training-free methods, k-means clustering
 502 or greedy k-center have been proposed to directly achieve good coverage in feature space Sener &
 503 Savarese (2017); Sorscher et al. (2022), but usually underperform if the embedded feature space is
 504 not trained on the full dataset like in our experiments. Also, their sole focus is pure coverage, making
 505 it highly effective at covering the entire data space but also sensitive to outliers, as it will prioritize
 506 isolated points to reduce the worst-case distance.

507 Beyond coresset selection specifically, data subsets or proxy selection also appears in active learning,
 508 where approaches like BADGE Ash et al. (2019) or BatchBALD Kirsch et al. (2019) repeatedly
 509 query diverse, high-uncertainty examples to improve a model at each round. Although active learning
 510 shares the goal of sampling efficiently, it typically relies on sequential label querying and repeated
 511 model updates, which differ from our training-free, model-agnostic setting. Another relevant line of
 512 research pertains to coresset constructions for *classical clustering* problems (e.g., k-means), where
 513 theoretical guarantees can be derived through importance sampling or similar randomization strategies
 514 Feldman (2020); Cohen-Addad et al. (2025); Bahmani et al. (2012); Caron et al. (2018). These
 515 techniques, however, leverage the geometry of clustering objectives rather than classification or
 516 representation-learning signals, making them less adaptable to broad deep-learning tasks.

517 7 CONCLUSION & FUTURE WORK

518 In this paper, we introduced SubZeroCore, a novel coresset selection method that elegantly unifies
 519 density and coverage into a single submodular optimization objective without requiring any training
 520 signals. Unlike existing training-based methods, SubZeroCore operates sufficiently in a purely
 521 geometric-based setting and significantly reduces computational overhead. Moreover, we reduced the
 522 number of hyperparameters for the corset selection to one, whereas existing methods rely on good
 523 model-specific choices. Our theoretical analysis, supported by extensive experiments on CIFAR-10
 524 and ImageNet-1K, demonstrates that SubZeroCore not only maintains competitive accuracy at lower
 525 pruning rates but also outperforms state-of-the-art results at high pruning rates. Moreover, we have
 526 shown that our density-based weighting scheme naturally provides robustness against label noise,
 527 making it suitable for real-world scenarios with potentially corrupted or noisy data.

528 In conclusion, SubZeroCore presents a meaningful step forward in making large-scale coresset
 529 selection more resource-efficient and environmentally sustainable. Future work includes extending
 530 the framework to dynamic data streams, further broadening its applicability. Moreover, one could
 531 introduce a additional power on the weights to explicitly control between density and coverage.

533 REFERENCES

535 Amro Abbas, Evgenia Rusak, Kushal Tirumala, Wieland Brendel, Kamalika Chaudhuri, and Ari S
 536 Morcos. Effective pruning of web-scale datasets based on complexity of concept clusters. *arXiv*
 537 *preprint arXiv:2401.04578*, 2024.

538 Pankaj K Agarwal, Sariel Har-Peled, Kasturi R Varadarajan, et al. Geometric approximation via
 539 coressets. *Combinatorial and computational geometry*, 52(1):1–30, 2005.

540 Jordan T Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal. Deep
 541 batch active learning by diverse, uncertain gradient lower bounds. *arXiv preprint arXiv:1906.03671*,
 542 2019.

543 Olivier Bachem, Mario Lucic, and Andreas Krause. Practical coresets constructions for machine
 544 learning. *arXiv preprint arXiv:1703.06476*, 2017.

545 Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, and Sergei Vassilvitskii. Scalable
 546 k-means++. *arXiv preprint arXiv:1203.6402*, 2012.

547 Samy Bengio, Krzysztof Dembczynski, Thorsten Joachims, Marius Kloft, and Manik Varma. Extreme
 548 classification (dagstuhl seminar 18291). In *Dagstuhl Reports*, volume 8. Schloss Dagstuhl-Leibniz-
 549 Zentrum fuer Informatik, 2019.

550 Kristóf Bérczi, Erika R Bérczi-Kovács, András Lorincz, and Zoltán Milacskai. Facility location
 551 functions are deep submodular functions. 2019.

552 Megh Manoj Bhalerao. On fine-tuning submodular functions for data subset selection. Master’s
 553 thesis, University of Washington, 2024.

554 Zalán Borsos, Mojmir Mutny, and Andreas Krause. Coresets via bilevel optimization for continual
 555 learning and streaming. *NeurIPS*, 33:14879–14890, 2020.

556 Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for unsuper-
 557 vised learning of visual features. In *ECCV*, pp. 132–149, 2018.

558 Yongyong Chen, Yaowei Wang, Jingyong Su, et al. Unified framework for coreset selection and
 559 dataset distillation by distribution matching. Available at SSRN, 8 2024. URL https://ssrn.com/abstract_id=4935536.

560 Vincent Cohen-Addad, Andrew Draganov, Matteo Russo, David Saulpic, and Chris Schwiegelshohn.
 561 A tight vc-dimension analysis of clustering coresets with applications. In *Proceedings of the 2025
 562 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pp. 4783–4808. SIAM, 2025.

563 Dominik Csiba and Peter Richtárik. Importance sampling for minibatches. *The Journal of Machine
 564 Learning Research*, 19(1):962–982, 2018.

565 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
 566 hierarchical image database. In *CVPR*, pp. 248–255. Ieee, 2009.

567 Qingtang Ding, Zhengyu Liang, Longguang Wang, Yingqian Wang, and Jungang Yang. Not all
 568 patches are equal: Hierarchical dataset condensation for single image super-resolution. *IEEE
 569 Signal Processing Letters*, 2023.

570 Jason Dou, Calvin Yu, Yuang Jiang, Zhenkun Wang, Qingwen Fu, and Yuxuan Han. Coreset
 571 optimization by memory constraints, for memory constraints, 10 2023.

572 Melanie Ducoffe and Frederic Precioso. Adversarial active learning for deep networks: a margin
 573 based approach. *arXiv preprint arXiv:1802.09841*, 2018.

574 Dan Feldman. Core-sets: Updated survey. *Sampling techniques for supervised or unsupervised tasks*,
 575 pp. 23–44, 2020.

576 Deep Ganguli, Danny Hernandez, Liane Lovitt, Amanda Askell, Yuntao Bai, Anna Chen, Tom
 577 Conerly, Nova Dassarma, Dawn Drain, Nelson Elhage, et al. Predictability and surprise in large
 578 generative models. In *2022 ACM Conference on Fairness, Accountability, and Transparency*, 2022.

579 Chengcheng Guo, Bo Zhao, and Yanbing Bai. Deepcore: A comprehensive library for coresset selec-
 580 tion in deep learning. In *International Conference on Database and Expert Systems Applications*,
 581 pp. 181–195. Springer, 2022.

582 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 583 recognition. In *CVPR*, pp. 770–778, 2016.

594 Yiming Huang, Xiao Yuan, Huiyuan Wang, and Yuxuan Du. Coreset selection can accelerate quantum
 595 machine learning models with provable generalization. *Physical Review Applied*, 22(1):014074,
 596 2024.

597 Rishabh Iyer, Stefanie Jegelka, and Jeff Bilmes. Fast semidifferential-based submodular function
 598 optimization. In *ICML*, pp. 855–863. PMLR, 2013.

600 Rishabh Iyer, Ninad Khargoankar, Jeff Bilmes, and Himanshu Asanani. Submodular combinatorial
 601 information measures with applications in machine learning. In *Algorithmic Learning Theory*, pp.
 602 722–754. PMLR, 2021.

603 Rishabh K Iyer and Jeff A Bilmes. Submodular optimization with submodular cover and submodular
 604 knapsack constraints. *NeurIPS*, 26, 2013.

605 Athresh Karanam, Krishnateja Killamsetty, Harsha Kokel, and Rishabh Iyer. Orient: Submodular
 606 mutual information measures for data subset selection under distribution shift. *NeurIPS*, 35:
 607 31796–31808, 2022.

609 Angelos Katharopoulos and François Fleuret. Not all samples are created equal: Deep learning with
 610 importance sampling. In *ICML*, pp. 2525–2534. PMLR, 2018.

612 Pooya Khandel, Andrew Yates, Ana-Lucia Varbanescu, Maarten De Rijke, and Andy Pimentel.
 613 Distillation vs. sampling for efficient training of learning to rank models. In *Proceedings of the
 614 2024 ACM SIGIR International Conference on Theory of Information Retrieval*, pp. 51–60, 2024.

615 Krishnateja Killamsetty, Sivasubramanian Durga, Ganesh Ramakrishnan, Abir De, and Rishabh Iyer.
 616 Grad-match: Gradient matching based data subset selection for efficient deep model training. In
 617 *ICML*, pp. 5464–5474. PMLR, 2021a.

618 Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and Rishabh Iyer. Glister:
 619 Generalization based data subset selection for efficient and robust learning. In *AAAI*, volume 35,
 620 pp. 8110–8118, 2021b.

622 Andreas Kirsch, Joost Van Amersfoort, and Yarin Gal. Batchbald: Efficient and diverse batch
 623 acquisition for deep bayesian active learning. *NeurIPS*, 32, 2019.

624 Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
 625 *ICML*, pp. 1885–1894. PMLR, 2017.

627 Suraj Kothawade, Vishal Kaushal, Ganesh Ramakrishnan, Jeff Bilmes, and Rishabh Iyer. Submodular
 628 mutual information for targeted data subset selection. *arXiv preprint arXiv:2105.00043*, 2021.

629 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

631 Norelhouda Laribi, Djamel Gaceb, Fayçal Touazi, and Abdellah Rezoug. Application of dataset
 632 pruning and dynamic transfer learning on vision transformers for mgmt prediction on brain
 633 mri images. In *2024 1st International Conference on Innovative and Intelligent Information
 634 Technologies (IC3IT)*, pp. 1–6. IEEE, 2024.

635 Sangho Lee, Jiwan Chung, Youngjae Yu, Gunhee Kim, Thomas Breuel, Gal Chechik, and Yale
 636 Song. Acav100m: Automatic curation of large-scale datasets for audio-visual video representation
 637 learning. In *CVPR*, pp. 10274–10284, 2021.

638 Ching Lih Lim, Alistair Moffat, and Anthony Wirth. Lazy and eager approaches for the set cover
 639 problem. In *Proceedings of the Thirty-Seventh Australasian Computer Science Conference-Volume
 640 147*, pp. 19–27, 2014.

642 Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. *NeurIPS*, 30,
 643 2017.

644 Yutian Luo, Shiqi Zhao, Haoran Wu, and Zhiwu Lu. Dual-enhanced coresset selection with class-wise
 645 collaboration for online blurry class incremental learning. In *CVPR*, pp. 23995–24004, 2024.

647 Adyasha Maharana, Prateek Yadav, and Mohit Bansal. D2 pruning: Message passing for balancing
 648 diversity and difficulty in data pruning. *ICLR*, 2024.

648 Katerina Margatina, Giorgos Vernikos, Loïc Barrault, and Nikolaos Aletras. Active learning by
 649 acquiring contrastive examples. *arXiv preprint arXiv:2109.03764*, 2021.
 650

651 Max Marion, Ahmet Üstün, Luiza Pozzobon, Alex Wang, Marzieh Fadaee, and Sara Hooker.
 652 When less is more: Investigating data pruning for pretraining llms at scale. *arXiv preprint*
 653 *arXiv:2309.04564*, 2023.

654 Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of
 655 machine learning models. In *ICML*, pp. 6950–6960. PMLR, 2020.
 656

657 Frank Morgan. *Geometric measure theory: a beginner’s guide*. Academic press, 2016.
 658

659 Brian Moser, Federico Raue, Jörn Hees, and Andreas Dengel. Less is more: Proxy datasets in nas
 660 approaches. In *CVPR*, pp. 1953–1961, 2022.

661 Brian B Moser, Federico Raue, and Andreas Dengel. A study in dataset pruning for image super-
 662 resolution. In *International Conference on Artificial Neural Networks*, pp. 351–363. Springer,
 663 2024a.

664 Brian B Moser, Federico Raue, Tobias C Nauen, Stanislav Frolov, and Andreas Dengel. Distill the
 665 best, ignore the rest: Improving dataset distillation with loss-value-based pruning. *arXiv preprint*
 666 *arXiv:2411.12115*, 2024b.

667 Brian B Moser, Arundhati S Shanbhag, Stanislav Frolov, Federico Raue, Joachim Folz, and Andreas
 668 Dengel. A coreset selection of coreset selection literature: Introduction and recent advances. *arXiv*
 669 *preprint arXiv:2505.17799*, 2025.

670 Byunggook Na, Jisoo Mok, Hyeokjun Choe, and Sungroh Yoon. Accelerating neural architecture
 671 search via proxy data. *arXiv preprint arXiv:2106.04784*, 2021.

672 Muhammad Ferjad Naeem, Seong Joon Oh, Youngjung Uh, Yunjey Choi, and Jaejun Yoo. Reliable
 673 fidelity and diversity metrics for generative models. In *ICML*, pp. 7176–7185. PMLR, 2020.

674 George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations for
 675 maximizing submodular set functions—i. *Mathematical programming*, 14:265–294, 1978.

676 Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational continual learning.
 677 *arXiv preprint arXiv:1710.10628*, 2017.

678 Sarah Nogueira, Konstantinos Sechidis, and Gavin Brown. On the stability of feature selection
 679 algorithms. *Journal of Machine Learning Research*, 18(174):1–54, 2018.

680 Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding
 681 important examples early in training. *NeurIPS*, 34:20596–20607, 2021.

682 Geoff Pleiss, Tianyi Zhang, Ethan Elenberg, and Kilian Q Weinberger. Identifying mislabeled data
 683 using the area under the margin ranking. *NeurIPS*, 33:17044–17056, 2020.

684 Fanzhe Qu, Sarah M Erfani, and Muhammad Usman. Performance analysis of coreset selection for
 685 quantum implementation of k-means clustering algorithm. *arXiv preprint arXiv:2206.07852*, 2022.

686 Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples for
 687 robust deep learning. In *ICML*, pp. 4334–4343. PMLR, 2018.

688 Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
 689 approach. *arXiv preprint arXiv:1708.00489*, 2017.

690 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 691 recognition. *arXiv preprint arXiv:1409.1556*, 2014.

692 Durga Sivasubramanian, Lokesh Nagalapatti, Rishabh Iyer, and Ganesh Ramakrishnan. Gradient
 693 coresset for federated learning. In *CVPR*, pp. 2648–2657, 2024.

702 Linxin Song, Jieyu Zhang, Tianxiang Yang, and Masayuki Goto. Adaptive ranking-based sample selec-
 703 tion for weakly supervised class-imbalanced text classification. *arXiv preprint arXiv:2210.03092*,
 704 2022.

705 Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari Morcos. Beyond neural
 706 scaling laws: beating power law scaling via data pruning. *NeurIPS*, 35:19523–19536, 2022.

708 Zoya Svitkina and Lisa Fleischer. Submodular approximation: Sampling-based algorithms and lower
 709 bounds. *SIAM Journal on Computing*, 40(6):1715–1737, 2011.

710 Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie, Yizhong Wang, Hannaneh Hajishirzi, Noah A
 711 Smith, and Yejin Choi. Dataset cartography: Mapping and diagnosing datasets with training
 712 dynamics. *arXiv preprint arXiv:2009.10795*, 2020.

714 Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
 715 the inception architecture for computer vision. In *CVPR*, pp. 2818–2826, 2016.

716 Haoru Tan, Sitong Wu, Wei Huang, Shizhen Zhao, and Xiaojuan Qi. Data pruning by information
 717 maximization. *arXiv preprint arXiv:2506.01701*, 2025.

719 Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and
 720 Geoffrey J Gordon. An empirical study of example forgetting during deep neural network learning.
 721 *arXiv preprint arXiv:1812.05159*, 2018.

722 Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. *arXiv
 723 preprint arXiv:1811.10959*, 2018.

724 Kai Wei, Yuzong Liu, Katrin Kirchhoff, Chris Bartels, and Jeff Bilmes. Submodular subset selection
 725 for large-scale speech training data. In *2014 IEEE International Conference on Acoustics, Speech
 726 and Signal Processing (ICASSP)*, pp. 3311–3315. IEEE, 2014.

728 Kai Wei, Rishabh Iyer, and Jeff Bilmes. Submodularity in data subset selection and active learning.
 729 In *ICML*. PMLR, 2015.

730 Max Welling. Herding dynamical weights to learn. In *ICML*, pp. 1121–1128, 2009.

732 Lingao Xiao, Songhua Liu, Yang He, and Xinchao Wang. Rethinking large-scale dataset compression:
 733 Shifting focus from labels to images. *arXiv preprint arXiv:2502.06434*, 2025.

734 Yecheng Xue, Xiaoyu Chen, Tongyang Li, and Shaofeng H-C Jiang. Near-optimal quantum coresets
 735 construction algorithms for clustering. In *ICML*, pp. 38881–38912. PMLR, 2023.

737 Ruining Yang and Lili Su. Data-efficient trajectory prediction via coresnet selection. *arXiv preprint
 738 arXiv:2409.17385*, 2024.

739 Peng Yao, Chao Liao, Jiyuan Jia, Jianchao Tan, Bin Chen, Chengru Song, and Di Zhang. Asp:
 740 Automatic selection of proxy dataset for efficient automl. *arXiv preprint arXiv:2310.11478*, 2023.

742 Jaehong Yoon, Divyam Madaan, Eunho Yang, and Sung Ju Hwang. Online coresnet selection for
 743 rehearsal-based continual learning. *arXiv preprint arXiv:2106.01085*, 2021.

744 Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. *arXiv preprint arXiv:1605.07146*,
 745 2016.

746 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
 747 learning (still) requires rethinking generalization. *Communications of the ACM*, 64(3):107–115,
 748 2021.

750 Xin Zhang, Jiawei Du, Yunsong Li, Weiying Xie, and Joey Tianyi Zhou. Spanning training progress:
 751 Temporal dual-depth scoring (tdds) for enhanced dataset pruning. In *CVPR*, 2024.

752 Haizhong Zheng, Rui Liu, Fan Lai, and Atul Prakash. Coverage-centric coresnet selection for high
 753 pruning rates. *ICLR*, 2022.

755 Haizhong Zheng, Elisa Tsai, Yifu Lu, Jiachen Sun, Brian R Bartoldson, Bhavya Kailkhura, and Atul
 Prakash. Elfs: Label-free coresnet selection with proxy training dynamics. *ICLR*, 2025.