
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SKETCHING FASTER THAN DIMENSION TIMES UPDATE
TIME

Anonymous authors
Paper under double-blind review

ABSTRACT

In situations such as distributed computation, where one is interested in applying a
sketch to a fixed vector, it is often possible to apply the sketch with a runtime that is
faster than simulating the corresponding streaming algorithm. For the settings we
consider, this avoids an ω(1) update time lower bound by [Larsen, Nelson, Nguyen
’15] when the sketching algorithm has access to the entire vector. We consider a
variety of problems.

• For the ℓ2 heavy-hitters problem, we give a space-optimal sketch which can
be applied in linear time (with no logarithmic overhead). We also combine
with the ExpanderSketch of [Larsen, Nelson, Nguyen, Thorup’16] to achieve
fast decoding time, as well as with a tensor sketch.

• For ℓp estimation with p ≥ 2 we apply our heavy-hitters scheme to give a
linear-time sketch with dimension Õ(d1−2/p), which is nearly optimal.

• Using ideas similar to our ℓ2-heavy-hitters sketch, we also address linear
regression and low-rank approximation, and give sketches that are linear-time
in natural regimes.

• Finally we introduce a reshaping trick and apply fast matrix multiplication
algorithms to speed up ℓp approxiamtion for 1 ≤ p ≤ 2.

We discuss applications of these techniques to distributed algorithms.

1 INTRODUCTION

As data becomes larger, it becomes increasingly important to develop algorithms that scale to massive
datasets. One approach for dealing with such big data is to compress it into some smaller data
structure from which useful statistics can still be calculated. This is the central idea of sketching.
Formally, a (linear) sketch takes as input a data vector v ∈ Rd, and compresses it via a linear map
S ∈ Rm×d, to produce a vector Sv ∈ Rm. Typically the goal is for m to be dramatically smaller
than d, so that storing Sv is much more efficient than storing v itself.

Historically, sketching was developed as a technique in the streaming setting where the goal is to
process a huge number of updates. Here the model is that there is an underlying vector v ∈ Rd that is
updated coordinate-wise. That is, one receives updates ui each with a single non-zero entry which
modifies v by v ← v + ui. When the updates ui are unrestricted, this is typically referred to as
turnstile streaming, in contrast with streams that only allow for non-negative updates.

In the streaming setting one is usually most interested in the space requirements, but other features
such as the time to process updates are also interesting. To maintain a linear sketch Sv of v, one
needs to compute Sui for each update. Since the updates may be numerous, it is often important
to design S so that Sui can be efficiently calculated, while maintaining low storage requirements
Alman & Yu (2020); Kane et al. (2011); Chou et al. (2019).

Sketches have also found important applications outside of streaming algorithms. For example a
fast sketch can be applied as a preprocessing step to the reduce the size of a large scale optimization
or machine learning problem so that the resulting problem can be solved more quickly Woodruff
et al. (2014). More relevant to our setting, sketches have also found applications in improving the
communication complexity of various problems Kannan et al. (2014); Woodruff & Zhang (2013);
Huang et al. (2021). The typical setup is when one’s data is partitioned among two or more servers

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

and the goal is to compute some quantity related to the underlying data, while minimizing the total
communication among the servers Roughgarden et al. (2016). Sketches are useful here as the servers
may first compress their data before sending it over the network, thus reducing the number of bits that
need to be sent. As long as the sketches are linear, the sketches can then be aggregated and decoded
by a “coordinator" who receives all the sketches.

While the sketches used for streaming algorithms and communication are often similar, the specific
features that we want are different in these settings. For example, suppose one wants to apply a
sketch S, which has been optimized for a streaming algorithm, now in a communication setting. If
v ∈ Rd is the vector to be sketched by one of the servers, then the server could just feed the streaming
updates one coordinate of v at a time into the sketch, resulting in a runtime of d · (update time).
Sometimes this is optimal. For instance if S is a CountSketch Charikar et al. (2002), then each update
requires O(1) time, resulting in O(d) time to form the sketch. This is not always the case though. For
example, if one is interested in an ℓ2 heavy-hitters sketch with the optimal O(log(d)/ϵ2) dimension
and high O(1/polyd) failure probability, then all known sketches require ω(1) update time. The
same is true for related problems, such as ℓp estimation. In fact, Larsen et al. (2015) even shows that
such problems require ω(1) worst-case update time for turnstile streaming algorithms1!

In our setting, we have access to v directly, and so there is no reason that we need to use the streaming
updates to compute the sketch of v. In this situation, we ask whether it possible to sketch v in truly
linear time. A natural question is, when given full access to a vector, is it possible to apply a sketch in
truly linear time without log factors, while simultaneously achieving an optimal sketch size and very
high success probability? Also, are there other situations where sketches can be applied faster than
simulating the execution of a turnstile streaming algorithm?

We will show that such sketches are possible in a variety of situations. We will start by addressing the
fundamental heavy-hitters problem, where we give a sketch that can be applied quickly, and for which
the heavy hitters can be recovered quickly. We use these algorithms as a stepping stone towards ℓp
estimation for p ≥ 2, as well as for solving least-squares regression and low-rank approximation. As
a consequence of our heavy-hitters algorithm, we also observe that one can perform ℓp sampling with
similar guarantees.

2 PRELIMINARIES

We first recall the basic setup for the problem types that we consider, as well as some of the standard
results that we will apply.

ℓp estimation. For the ℓp estimation problem (also referred to as the Fp-moment estimation problem
in the streaming literature), the goal is to construct a sketch S that can be applied to a vector x ∈ Rd,
from which the ℓp-norm of x can be approximated.

Problem 2.1. ((ϵ, δ, ℓp)-norm estimation) Construct a sketch S, from which observing Sx allows
one to recover ∥x∥p to within 1± ϵ multiplicative error. That is, with probability at least 1− δ, a
recovery algorithm should output an M with (1− ϵ) ∥x∥p ≤M ≤ (1 + ϵ) ∥x∥p .

We will be interested in optimizing the runtime of applying the sketch S. We consider this problem
for p = 2, p ∈ (1, 2) and p > 2.

Heavy-hitters The ℓ2-heavy-hitters problems seeks to identify the outlying coordinates of a vector
x. Again, we are interested in sketches that can be applied to solve this problem quickly.

Problem 2.2. ((ϵ, δ, ℓp)-heavy-hitters) Construct a sketch S so that observing Sx allows one to
recover recover a set of indicesH such thatH contains all i with xi ≥ ϵ ∥x∥p . MoreoverH should
contain at most O(1/ϵp) elements, and the recovery should succeed with probability at least 1− δ.

Johnson-Lindenstrauss An (ϵ, δ) Johnson-Lindenstrauss (JL) embedding S : Rd → Rm preserves
the ℓ2 norm of a given vector x ∈ Rd to within (1 ± ϵ) distortion with failure probability at most

1under the assumption that the sketch is non-adaptive, and in the so-called “cell probe model" (see Larsen
et al. (2015))

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

δ. In other words, with failure probability at most δ, (1− ϵ) ∥x∥2 ≤ ∥Sx∥2 ≤ (1 + ϵ) ∥x∥2. Many
Johnson-Lindenstrauss constructions are known. For example, a matrix of i.i.d. random signs allows
for the optimal embedding dimension of 1

ϵ2 log
1
δ Freksen (2021).

CountSketch A CountSketch as introduced by Charikar et al. (2002), works by hashing the entries
of a vector x ∈ Rd into buckets, where each entry receives a random sign. Specifically we choose a
hash function family h : [d]→ [m] which is 2-universal (i.e., pairwise independent with h(i) uniform
for all i). We also choose random signs σi which are generally taken to be 4-wise independent. Then
the value of the CountSketch Sx ∈ Rm is given by (Sx)i =

∑
j:h(j)=i σjxj . It is well-known that a

CountSketch with m = O(1
ϵ2δ) preserves the ℓ2 norm up to (1± ϵ) distortion, with failure probability

at most δ Freksen (2021). Importantly for us, CountSketch can be applied in O(nnz(x)) time2.

Tensors. We will use tensors a few times below. If v1, . . . , vq are in Rd, then we use v1⊗· · ·⊗vq ∈
R⊗q to denote their tensor product. We use the same notation A ⊗ B to represent the Kronecker
product of matrices. Importantly we have the identity (A ⊗ B)(v ⊗ w) = (Av ⊗ Bw). We index
into a q mode tensor with a multi-index i = (i1, . . . , iq). For the rank one tensor v = v1 ⊗ · · · ⊗ vq
we have vi = (v1)i1 . . . (vq)iq and this definition extends linearly to tensors of higher rank.

Regression. Given a matrix A ∈ Rn×d and a vector b ∈ Rn the approximate regression problem
asks for a vector x satisfying ∥Ax− b∥22 ≤ (1 + ϵ) ∥Ax∗ − b∥22 , where x∗ is the least-squares
solution. We will be interested in designing sketches S that can can applied to A and b on the left,
and admit recovery of an approximate regression solution x. Note that we are typically interested in
the case when n is much larger than d.

Low-rank approximation. Given A ∈ Rd×n, the goal of the rank-k approximation problem
is to output an orthogonal projection Π ∈ Rd×d of rank at most k satisfying ∥ΠA−A∥2F ≤
(1 + ϵ) ∥A−Ak∥2F , where Ak is the optimal rank k approximation of A. Here we are interested
in sketches that can be applied to A on the left, and from which a low-rank approximation can be
recovered. We are typically interested in the situation where n is larger than d.

Communication model. The main motivation for our sketches comes from distributed compu-
tation. While a variety of models could be considered, our work is primarily suited to one-way
communication in the coordinator model. In this model, we imagine a collection of s servers, each
holding a vector (or matrix) X1, . . . , Xs. The coordinator’s goal is to compute some quantity that
depends on

∑
Xi. For example, the Xi’s could be vectors, with the goal to approximate ∥

∑
Xi∥p .

In the one-way model, each of the servers performs some computation, and sends the result of that
computation to the coordinator, who must then output a result. This is closely connected to sketching.
Given a linear sketch S which is drawn from some distribution of sketching matrices, the servers can
compute SXi, and send them to the coordinator who then computes S

∑
Xi. Note that we assume

shared randomness throughout, so that the servers can agree on a sketching matrix.

3 OUR RESULTS

We introduce a framework for boosting sketch performance, with our detailed results as follows.

3.1 HEAVY-HITTERS AND APPLICATIONS

For solving the ℓ2 heavy-hitters problem, we show the following:

Theorem 3.1. For ϵ ≥ d−0.5+c, there is an ℓ2 heavy hitters sketch with sketching dimension
O(log d/ϵ2) that can be applied to x ∈ Rd in O(d) time and such that recovery succeeds with at
least 1− d−c2 probability.

2We work in word-RAM model where arithmetic operations on words of size log(d) bits can be carried out
in constant time. This allows hash functions to be evaluated in linear time, if implement CountSketch using a
linear hash function family for example.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

One drawback of this sketch is that it has slow decoding time, but by combining with Larsen et al.
(2019) we can obtain both fast sketching and fast decoding time. We note that the overall combination
is non-trivial, and our solution involves using appropriate hash functions for solving systems of linear
equations, as detailed below.

We point out that this immediately gives an O(d) time sketch that can be applied for solving the
distributed heavy-hitters problem. One simply applies the sketch on each server, and sends them to the
coordinator who can then aggregate and decode. This distributed version of the heavy-hitters problem
has been considered before Cormode et al. (2011); Woodruff & Zhang (2012); Huang et al. (2012);
however our novelty is in allowing for truly linear-time sketching by the servers, while retaining
O(1/polyd) failure probability as well as the fast decoding time of ExpanderSketch. We also show
how to apply these ideas to recover heavy hitters via tensor sketching with low failure probability.

By applying similar ideas, but combining with a tensor sketch, we also show to recover the heavy-
hitters from a tensor, via a sketch that can be applied to rank one tensors in linear time.
Theorem 3.2. For ϵ ≥ d−0.25 with c > 0 a constant, there is an ϵ distortion ℓ2 estimation sketch
with sketching dimension O(1

ϵ2 log d), that can be applied to a vector x1⊗· · ·⊗xq ∈ Rd⊗q

in O(dq)
time. Moreover the failure probability can be set to be 1/poly(d) for an arbitrary fixed polynomial.

Additionally, the same sketch allows for point queries. Given a multi-index i1, ..., iq of v, we may
output an estimate of vi1,...iq accurate to ϵ ∥v∥ additive error.

Finally, since ℓ2 sampling may be carried out by using heavy-hitters as a black box, we show in the
appendix that an ℓ2 sampling sketch can be applied in our framework.

3.2 Fp MOMENT ESTIMATION FOR p > 2

For p ≥ 2, we apply our heavy-hitters sketch, along with known Fp-moment estimation sketches, to
construct an Fp moment estimation sketch that can be applied in linear time, and that succeeds with
high probability:
Theorem 3.3. For p ≥ 2, there is an Fp estimation sketch that can applied in time O(d), and that
succeeds with probability at least 1 − d−c for an arbitrary constant c. Moreover, the sketch uses
space O(d1−2/ppoly(log(d)/ϵ)) provided that ϵ1+2/p > d−1/p+c2 .

As a consequence, there is a one-way communication scheme for Fp moment estimation in the coor-
dinator model that uses O(d1−2/ppoly(log(d)/ϵ)) communication per server, only O(d) processing
time by each server, and fails with probability at most d−c for an arbitrary constant c.

We note that this sketch retains the Õ(d1−2/p) dependence on dimension, which is tight up to log
factors. While the space can be improved in by poly(log d/ϵ) factors Ganguly (2011), as far as we
know, our result that (1 + ϵ)-approximate Fp moment sketches can be applied in truly linear time and
achieve failure probability 1/poly(d) is the first of its kind.

Much prior work on distributed ℓp estimation has focused on non-negative vectors (see for example
Esfandiari et al. (2024) and references therein). Since we construct linear sketches, our results can all
applied in the distributed setting without a non-negativity assumption.

3.3 LINEAR ALGEBRAIC PROBLEMS

Using similar ideas to ℓ2 estimation, we give a way of boosting sketches for linear regression and
low-rank approximation, so that they can be applied in linear time, with arbitrary 1/poly(d) failure
probability.
Theorem 3.4. There is a sketch that gives a (1± ϵ) approximate solution for least squares regression
with probability at least 1− 1

dc1
and with sketching dimension O(dϵ log d), that can be applied to a

matrix A ∈ Rn×d in O(nnz(A)) time, provided that we have nnz(A) ≥ 1
ϵd

2+c2 . Here, c1, c2 > 0
can be taken to be arbitrary constants.
Theorem 3.5. Let A ∈ Rd×n with n≫ d. There is an (oblivous) sketching matrix S such that given
AS one can recover a rank k orthogonal projection Π such that ∥ΠA−A∥2F ≤ (1+ ϵ) ∥Ak −A∥2F ,
where Ak is the optimal rank k approximation to A. Moreover S can be applied in nnz(A) as long as
nnz(A) ≥ k2

ϵ2 d
1+c1 , S succeeds with probability 1− dc and S has sketching dimension O(kdϵ2 log d).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We note that the truly linear-time sketching only applies for certain parameter regimes – when A is
highly overdetermined for regression, and when A is very wide for low-rank approximation. This
is not too restrictive, however. For example, when sketching regression problems, one is typically
interested in the highly over-determined case.

3.4 RESHAPING APPLICATIONS

In the appendix, we also show how to use a reshaping trick along with a fast matrix multiplication
algorithm due to Coppersmith Coppersmith (1982) to speed up the application of an ℓp estimation
sketch.

Theorem 3.6. For any 1 < p ≤ 2, there is an ℓp norm estimation sketch down to dimension

O(log 1
δ /ϵ

2) that can be applied to x ∈ Rd in time O
(
d(poly log log d

ϵ + poly log log 1
δ)
)
,

as long as n ≥
(

log d log 1
δ

ϵ

)C
, for an absolute constant C. This sketch gives a (1± ϵ)-approximation

with probability at least 1− δ.

While previous work has given fast update times for ℓp estimation sketches Kacham et al. (2023);
Kane et al. (2011), as far as we are aware, this dependence on the failure probability within the
runtime is new.

Communication protocols. A natural application of our results is in a communication setting,
where each of several worker serves communicates one-way with a central coordinator who then
aggregates their data. In this setting, one might be interested in minimizing the amount of data that
the servers must transmit, as well as minimizing the amount of computation done by each server.
Our results show that for some natural problems, we can design protocols where the servers can
perform truly linear amounts of computation, without asymptotically increasing the communication
cost. Given a linear sketch our protocol is always to perform the sketch on each server, and send the
sketch to the coordinates, who then uses linearity to aggregate them. For brevity, we often do not
state the communication result explicitly, but such a protocol follows from each of our results.

3.5 ADDITIONAL RELATED WORK

Ivkin et al. (2019) previously considered using a heavy-hitters sketch to compress gradients, lower
the communication cost of SGD. This type of application is well-suited to our results – indeed their
theory requires a sketch with lower failure probability. Moreover the partial are available on each
server (not just via a stream), and so our sketches can be carried out in such a context. Another such
scenario is the kernel classification setting studied by Mahankali & Woodruff (2021), where in the
polynomial kernel setting one sees tensor-structured vectors, which can each be sketched using our
techniques.

For the heavy-hitters problem, we build off of the ExpanderSketch of Larsen et al. (2019), which was
the first to give nearly optimal query time. However, the heavy hitters problem has a long history,
going back to Charikar et al. (2002).

Several prior works have also used related techniques when studying the distributed functional
monitoring problem, where the goal is to maintain an estimate of some distributed statistic at all
times Huang et al. (2012); Cormode et al. (2011); Woodruff & Zhang (2012). Note that this includes
the usual communication setting, in which the statistic of interest must be estimated only once. In
particular, Woodruff & Zhang (2012) studies the distributed heavy hitters problem in the functional
monitoring setting.

For the heavy-hitters problem, we note that the famous Misra-Gries heavy-hitters algorithm Misra
& Gries (1982) provides an alternative to our approach, but only when the vectors involved are
guaranteed to be non-negative. Importantly, we allow for negative entries, and so other techniques
are required.

Speeding up sketches by matrix multiplication has previously been done by Alman & Yu (2020) to
obtain fast update time, by batching updates. Our matrix-multiplication techniques follow a similar
principle, and are in fact somewhat simpler because we have full access to the entire vector that we

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

wish to sketch. In contrast Alman & Yu (2020) only sees updates over the stream, but chooses to
batch updates in order to allow for a matrix multiplication speedup.

Finally, we remark that Kacham et al. (2023) gives another way to slightly speed up the sketch of
Kane et al. (2011), by using their pseudorandom generator to improve the update time by a log log 1

ϵ
factor.

4 HEAVY-HITTERS AND APPLICATIONS

Warm-up: ℓ2-estimation. Our main goal of this section is a heavy-hitters sketch that can be
applied in linear time, and that admits fast recovery of the heavy-hitters. We first describe a simple
algorithm for heavy-hitters that allows for fast sketching, but not fast recovery. Our main novelty of
this section is to show how to combine this simple heavy-hitters approach with ExpanderSketch, so
that our sketch admits fast recovery.

We first describe a simple algorithm that admits a fast sketch for ℓ2 estimation. Our main application
of this sketch is recovery of the heavy-hitters. On its own, this sketch allows fast sketching, but not
fast recovery. Our main heavy-hitters result will show that we can obtain fast recovery as well by
combining ExpanderSketch with our procedure, and choosing the relevant hash functions carefully.

Let C be a parameter to be chosen later, and let δ1 and ϵ1 be the failure probability and distortion
parameters of a Count Sketch. Also let δ2 and ϵ2 be the parameters for a dense JL sketch. Assume
that ϵ1 and ϵ2 are at most 1, and that we are interested in sketching a vector x ∈ Rd.

A simple observation is that a CountSketch can first be applied to x to slightly reduce the dimension
slightly so that the dense JL sketch can be applied in O(d) time.

Take S1, . . . , SC to be independent Count Sketches each with O(ϵ−2
1 δ−1

1) rows. Also take T1, . . . , TC

to be independent JL matrices with O(ϵ−2
2 log(1/δ2)) rows.

For a fixed x of appropriate dimension, consider TiSix. By combining the guarantees for Si and Ti,
we have ∥TiSix∥ = (1± 2(ϵ1 + ϵ2)) ∥x∥ with failure probability at most δ1 + δ2. Now let α be the
median of ∥T1S1x∥ , . . . , ∥TCSCx∥ . The probability that the above guarantee fails on at least half
the sketches is at most (

C

C/2

)
(δ1 + δ2)

C/2 ≤ (16(δ1 + δ2))
C/2,

so α = (1± 2(ϵ1 + ϵ2)) with failure probability at most (16(δ1 + δ2))
C/2.

Each CountSketch Si takes O(nnz(x)) time to apply. Each Ti is sketching a vector of dimension
O(ϵ−2

1 δ−1
1) and hence can be applied in time O(ϵ−2

1 δ−1
1 ϵ−2

2 log(1/δ2)). In fact by using a fast JL
sketch, it can be applied in time O(ϵ−2

1 δ−1
1 log(ϵ−2

1 δ−1
1)) so the total time to apply the C sketches is

O(Cd+ Cϵ−2
1 δ−1

1 log(ϵ−2
1 δ−1

1)).

Taking ϵ1 = ϵ2 = ϵ ≥ d−0.2, δ1 = δ2 = d−(0.5−c) for c > 0 a constant, and C = Θ(p) gives an
(O(ϵ), d−p)-ℓ2 estimation sketch with sketching dimension O(pϵ−2 log 1

δ), which can be applied in
O(pd) time.

In the course of the above discussion, we have proven the following result.
Theorem 4.1. For ϵ ≥ d−0.5+c with c > 0 a constant, there is an ϵ distortion ℓ2 estimation sketch
with sketching dimension O(1

ϵ2 log d), that can be applied to a vector x ∈ Rd in O(d) time. Moreover
the failure probability can be set to be 1/poly(d) for an arbitrary fixed polynomial.

More generally, we can achieve an ϵ distortion sketch with failure probability δ using a sketch of
dimension O(1

ϵ2 log
1
δ) and time O(C nnz(x) + ϵ−2δ−1/C log 1

δ), where C is a parameter that can
be chosen.

Heavy Hitters. By a standard argument, this approach immediately yields a heavy-hitters sketch in
linear time.
Theorem 4.2. For ϵ ≥ d−0.5+c, there is an ℓ2 heavy hitters sketch with sketching dimension
O(log d/ϵ2) that can be applied to x ∈ Rd in O(d) time and such that recovery succeeds with at
least 1− d−c2 probability.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Proof. We first apply the ℓ2 estimation sketch S from above with poly(1/d) failure probability. Using
this sketch allows us to estimate the norms x and x− ei to 1± ϵ multiplicative error for each standard
basis vector ei. We have the relation

⟨x, ei⟩ =
1

2
(∥x+ ei∥22 − ∥x∥

2
2 − ∥ei∥

2
2).

Each norm in this expression can be approximated to within (1 ± ϵ) multiplicative error. To
approximate ∥x+ ei∥2 , note that we first compute Sx + Sei which we can do since S and Sx
are both known. All of these estimates are correct with probability O(d/poly(d)) = O(1/poly(d))
by taking a union bound over coordinates.

This directly gives an additive ϵ(∥x∥2 + 1) additive approximation to each entry of x. To obtain an
ϵ ∥x∥2 approximation, we would like to first normalize x, which we can do via our ℓ2 approximation
sketch. In parallel, we apply the ℓ2 sketch to compute Z with Z2 = (1± 1

2) ∥x∥
2
2 . Now we plug 1

Zx

into argument of the above paragraph, obtaining an additive ϵ(1
Z2 ∥x∥22 + 1) = O(ϵ) approximation

to each entry of 1
Zx. Rescaling by Z and adjusting ϵ by a constant factor yields an ϵ ∥x∥2 additive

approximation to each entry of x.

By replacing ϵ with ϵ/4, this is sufficient to solve the heavy-hitters problem – one simply returns the
i’s such that xi is estimated to be large than ϵ/2. Note that there can be at most O(1/ϵ2) such values
if the estimates for all i are correct.

Corollary 4.3. For p ≥ 2 and ϵ ≥ d−1/p+c, there is an ℓp heavy hitters sketch with sketching
dimension O(1

ϵ2 d
1−2/p log d) that can be applied to x ∈ Rd in O(d) time and such that recovery

succeeds with at least 1− dc2 probability. Moreover this sketch recovers all coordinates to additive
error ϵ ∥v∥p .

Proof. Recall the bound ∥v∥p ≥ d
1
p−

1
2 ∥v∥2 . This implies that an (ϵ, ℓp)-heavy-hitter is an

(ϵd
1
p−

1
2 , ℓ2)-heavy-hitter. So the claim immediately follows from the ℓ2 heavy-hitters.

We next show how one can combine with ExpanderSketch to get fast recovery.

Theorem 4.4. For ϵ ≥ d−0.2 there is an (ϵ, δ, ℓ2)-heavy-hitters sketch that can applied to a vector
v ∈ Rd in O(d) time, uses O(1

ϵ2 log d) space has failure probability at most 1/poly(d) (where poly(d)
can be dc for any constant c). The time to decode the sketch is O(poly(log d/ϵ)). More specifically,
to obtain O(d−p) failure probability, the time to decode is O(poly(log d)(1/ϵ)O(p)).

Proof. See appendix.

While we defer the full proof, we discuss the main idea here. As in the case of ℓ2 estimation,
the main idea is to first apply a CountSketch to reduce the dimension slightly. The observation
is that a CountSketch preserves heavy hitter coordinates with good probability. In fact, by setting
the sketching dimension to be d0.8 for example, we can ensure that each individual heavy hitter
coordinate is preserved with some 1/poly(d) failure probability. Now applying the ExpanderSketch
of Larsen et al. (2019) will recover these heavy elements with high probability. Note that, as with ℓ2
estimation, the CountSketch reduces the dimension slightly below d in linear time, so that the extra
overhead from applying the ExpanderSketch is o(d).

As stated, this scheme only succeeds with a fixed 1/poly(d) failure probability. However by running
this scheme multiple times in parallel, we ensure that all heavy hitters are found with arbitrarily small
1/poly(d) failure probability.

There is another problem when it comes to finding the heavy hitters though. The issue is that we are
applying the ExpanderSketch to the CountSketch, so we are able to recover the heavy indices from
the CountSketch, but we still need to recover the heavy indices from our original vector x. The idea
is that heavy coordinates of x map into heavy buckets of the CountSketch. So if we can identify the
heavy buckets, then we obtain a collection of “candidates" from x – namely all the entries of x that
hash into one of those buckets. If we only ran the scheme once, then the number of candidates would
be much larger than 1/ϵ2 which would be undesirable. However, as we are repeating the scheme a

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

large constant number of times, we can take the elements of x that show up as candidates, at least
half the time say. For an arbitrary hash function, this would be inconvenient as we would have to
produce a list of poly(d) candidates for each heavy hitter. So we instead choose a hash function with
linear structure so that the hash functions are easy to invert. Given such a hash function, we can then
apply a brute-force approach of looping over all subsets of half the CountSketches, and identifying
coordinates of x that are candidates for each sketch. Since each CountSketch only has poly(1/ϵ)
heavy coordinates, we only need to loop over

(
C

C/2

)
poly(1/ϵ)C subsets of coordinates, for a constant

C. Identifying common candidates then amounts to inverting a linear system (over F2), which can be
carried out efficiently.

Extension to Tensors. The same argument as above gives a JL sketch for tensors. To apply this,
we just need the fact that a tensor product of CountSketch preserves norms. This is standard.

Proposition 4.5. Let S1 ⊗ · · · ⊗ Sq be a tensor product of q CountSketches, each down to dimension
q

ϵ2δ . For v ∈ Rd⊗q

, we have ∥S1 ⊗ · · · ⊗ Sqv∥22 = (1± ϵ) ∥v∥22 with probability at least 1− δ.

Proof. Each of our CountSketches has the (ϵ, δ, 2)-JL-moment property. (See Woodruff et al. (2014)
for example). Additionally Ahle et al. (2020) shows that the tensor product of q sketches each with
the (ϵ, δ, 2)-JL moment property has the (

√
qϵ, δ, 2)-JL moment property. So it is sufficient for each

of our sketches to have the (ϵ/
√
q, δ, 2)-JL moment property.

Now the same argument from above applies to give the following.

Theorem 4.6. For ϵ ≥ d−0.25 with c > 0 a constant, there is an ϵ distortion ℓ2 estimation sketch
with sketching dimension O(1

ϵ2 log d), that can be applied to a vector x1⊗· · ·⊗xq ∈ Rd⊗q

in O(dq)
time. Moreover the failure probability can be set to be 1/poly(d) for an arbitrary fixed polynomial.

Additionally, the same sketch allows for point queries. Given a multi-index i1, ..., iq of v, we may
output an estimate of vi1,...iq accurate to ϵ ∥v∥ additive error.

Proof. As above, sample C independent tensor products of CountSketch Q1, . . . , QC , with δ set to
d−0.25. Each of these sketches can be applied in O(nq), and the sketching dimension is d0.25q/ϵ2.
Now the resulting sketch can be composed with a TensorSketch of Ahle et al. (2020), which now
takes o(dq) time.

The failure probability is d−0.25, so repeating C times and taking the median boosts the failure
probability to 1/dc for any choice of c. (Note that C depends on c.)

Finally, exactly the same argument that we used above for heavy-hitters shows that our sketch supports
point queries.

The same ideas also allow us to construct fast tensor sketches with low failure probability and fast
recovery.

Theorem 4.7. There is a sketch that solves the ℓ2-heavy-hitters problem with O(q/ϵ2 log(d)) space
and failure probability d−c for any fixed constant c. Moreover this sketch can be applied to rank one
tensors in linear time, and the heavy-hitters can be decoded in O(ϵ−2q) time.

4.1 APPLICATION TO COMMUNICATION

One can apply this result in a distributed setting. Suppose that server could form their sketch in
linear time, send it to the coordinator using O((1/ϵ2) log d) communication, who can then merge
the sketches and decode in poly(log d/ϵ) time, with failure probability 1/d3 say. Forming the
ExpanderSketches directly would have required d log d time on the servers’ sides, but with our
approach, linear time is possible.

Corollary 4.8. Suppose that Alice and Bob hold vectors vA and vB in Rd. Then there is a communi-
cation protocol that allows Alice to output a setH of indices, such that |H| is O(1/ϵ2).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

The protocol is one-way with Bob sending his message to Alice, and uses O(log d/ϵ2) words3 of
communication. Moreover the total time required for Bob to compute his message is O(d), and the
time required for Alice to generateH is O(poly(log d/ϵ)).

Proof. Bob simply computes the heavy-hitters sketch discussed above, and sends the sketched vector
SvB to Alice, who can then compute S(vA + vB), and decode as above.

We remark that one could equally well consider an s-player communication game, where each player
communicates with a central coordinator. The protocol is precisely the same. We just state the
two-player version for simplicity.

5 Fp MOMENT ESTIMATION.

In this section, we construct fast sketches for Fp estimation. The following lemma is simply an
application of Bernstein’s inequality, which shows that the Fp moment of a flat vector is approximately
preserved with high probability, when we subsample at a high enough rate.

Lemma 5.1. Let v ∈ Rd be an arbitrary vector. Let S be a random subset of [d] where each
coordinate is included independently with probability q. Also suppose that ∥v∥∞ ≤M. Then with
probability at least δ we have 1

q ∥vS∥
p
p = (1± ϵ) ∥v∥pp provided that Mp ≤ qϵ2

4 log 1
δ

∥v∥pp .

Proof. See appendix

Using this, we show the following result for Fp moment estimation.

Theorem 5.2. For p ≥ 2, there is an Fp estimation sketch that can applied in time O(d), and that
succeeds with probability at least 1 − d−c for an arbitrary constant c. Moreover, the sketch uses
space O(d1−2/ppoly(log(d)/ϵ)) provided that ϵ1+2/p > d−1/p+c2 .

As a consequence, there is a one-way communication scheme for Fp moment estimation in the coor-
dinator model that uses O(d1−2/ppoly(log(d)/ϵ)) communication per server, only O(d) processing
time by each server, and fails with probability at most d−c for an arbitrary constant c.

We defer the proof to the appendix, but describe the approach here. The typical approach for Fp

moment estimation of v ∈Rd

, introduced by Indyk & Woodruff (2005), is to partition the coordinates
of v into approximate level sets, and then to approximate the size of each level set. Estimating the
level set sizes can be done by subsampling at geometric rates, and then extracting the ℓp heavy-hitters
for each sample. This gives a sketch that can be applied in O(dpoly(log d/ϵ)) time, with 9/10 success
probability. Our goal is to boost this to d−c failure probability, and linear sketching time without
increasing the space too much.

The key intuition is that the highest sampling levels contribute the bulk of the runtime of Fp estimation
sketches. These top sampling levels are needed to catch any heavy-hitters of v. However, we can
recover the heavy-hitters directly, using our ℓp-heavy-hitters sketch which achieves high success
probability and linear time. With the heavy-hitters gone, the Fp estimation sketch on the remaining
coordinates of v can be carried out in say O(d/ log d) time. Thus we repeat this sketch O(log d)
times to boost to 1/poly(d) failure probability, without exceeding linear time overall

REFERENCES

Thomas D Ahle, Michael Kapralov, Jakob BT Knudsen, Rasmus Pagh, Ameya Velingker, David P
Woodruff, and Amir Zandieh. Oblivious sketching of high-degree polynomial kernels. In Pro-
ceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 141–160.
SIAM, 2020.

3In our context, a word of communication is O(log d+ b) bits where b is the maximum bit complexity of an
entry in Alice’s and Bob’s vectors.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Josh Alman and Huacheng Yu. Faster update time for turnstile streaming algorithms. In Proceedings
of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1803–1813. SIAM,
2020.

Jean Bourgain, Sjoerd Dirksen, and Jelani Nelson. Toward a unified theory of sparse dimensionality
reduction in euclidean space. In Proceedings of the forty-seventh annual ACM symposium on
Theory of Computing, pp. 499–508, 2015.

Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data streams. In
International Colloquium on Automata, Languages, and Programming, pp. 693–703. Springer,
2002.

Chi-Ning Chou, Zhixian Lei, and Preetum Nakkiran. Tracking the ℓ2 norm with constant update time.
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
2019.

Michael B Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina Persu. Dimen-
sionality reduction for k-means clustering and low rank approximation. In Proceedings of the
forty-seventh annual ACM symposium on Theory of computing, pp. 163–172, 2015.

Don Coppersmith. Rapid multiplication of rectangular matrices. SIAM Journal on Computing, 11(3):
467–471, 1982.

Graham Cormode, Shanmugavelayutham Muthukrishnan, and Ke Yi. Algorithms for distributed
functional monitoring. ACM Transactions on Algorithms (TALG), 7(2):1–20, 2011.

Hossein Esfandiari, Praneeth Kacham, Vahab Mirrokni, David P Woodruff, and Peilin Zhong.
Optimal communication for classic functions in the coordinator model and beyond. arXiv preprint
arXiv:2403.20307, 2024.

Casper Benjamin Freksen. An introduction to johnson-lindenstrauss transforms. arXiv preprint
arXiv:2103.00564, 2021.

Casper Benjamin Freksen and Kasper Green Larsen. On using toeplitz and circulant matrices for
johnson–lindenstrauss transforms. Algorithmica, 82(2):338–354, 2020.

Sumit Ganguly. Polynomial estimators for high frequency moments. arXiv preprint arXiv:1104.4552,
2011.

Zengfeng Huang, Ke Yi, and Qin Zhang. Randomized algorithms for tracking distributed count,
frequencies, and ranks. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI symposium on
Principles of Database Systems, pp. 295–306, 2012.

Zengfeng Huang, Xuemin Lin, Wenjie Zhang, and Ying Zhang. Communication-efficient distributed
covariance sketch, with application to distributed pca. The Journal of Machine Learning Research,
22(1):3643–3680, 2021.

Piotr Indyk and David Woodruff. Optimal approximations of the frequency moments of data streams.
In Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pp. 202–208,
2005.

Nikita Ivkin, Daniel Rothchild, Enayat Ullah, Ion Stoica, Raman Arora, et al. Communication-
efficient distributed sgd with sketching. Advances in Neural Information Processing Systems, 32,
2019.

Praneeth Kacham, Rasmus Pagh, Mikkel Thorup, and David P Woodruff. Pseudorandom hashing
for space-bounded computation with applications in streaming. arXiv preprint arXiv:2304.06853,
2023.

Thomas Kailath and Ali H Sayed. Fast reliable algorithms for matrices with structure. SIAM, 1999.

Daniel M Kane, Jelani Nelson, Ely Porat, and David P Woodruff. Fast moment estimation in data
streams in optimal space. In Proceedings of the forty-third annual ACM symposium on Theory of
computing, pp. 745–754, 2011.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ravi Kannan, Santosh Vempala, and David Woodruff. Principal component analysis and higher
correlations for distributed data. In Conference on Learning Theory, pp. 1040–1057. PMLR, 2014.

Kasper Green Larsen, Jelani Nelson, and Huy L Nguyên. Time lower bounds for nonadaptive turnstile
streaming algorithms. In Proceedings of the forty-seventh annual ACM symposium on Theory of
computing, pp. 803–812, 2015.

Kasper Green Larsen, Jelani Nelson, Huy L Nguyn, and Mikkel Thorup. Heavy hitters via cluster-
preserving clustering. Communications of the ACM, 62(8):95–100, 2019.

Yi Li, Honghao Lin, and David Woodruff. lp-regression in the arbitrary partition model of commu-
nication. In The Thirty Sixth Annual Conference on Learning Theory, pp. 4902–4928. PMLR,
2023.

Arvind Mahankali and David Woodruff. Linear and kernel classification in the streaming model:
Improved bounds for heavy hitters. Advances in Neural Information Processing Systems, 34:
14407–14420, 2021.

Jayadev Misra and David Gries. Finding repeated elements. Science of computer programming, 2(2):
143–152, 1982.

Cameron Musco and Christopher Musco. Projection-cost-preserving sketches: Proof strategies and
constructions. arXiv preprint arXiv:2004.08434, 2020.

Tim Roughgarden et al. Communication complexity (for algorithm designers). Foundations and
Trends® in Theoretical Computer Science, 11(3–4):217–404, 2016.

Bengt von Bahr and Carl-Gustav Esseen. Inequalities for the rth absolute moment of a sum of random
variables, 1 r 2. The Annals of Mathematical Statistics, pp. 299–303, 1965.

Ryan Williams. personal communication.

Ryan Williams. Nonuniform acc circuit lower bounds. Journal of the ACM (JACM), 61(1):1–32,
2014.

David Woodruff and Qin Zhang. Subspace embeddings and\ell_p-regression using exponential
random variables. In Conference on Learning Theory, pp. 546–567. PMLR, 2013.

David P Woodruff and Qin Zhang. Tight bounds for distributed functional monitoring. In Proceedings
of the forty-fourth annual ACM symposium on Theory of computing, pp. 941–960, 2012.

David P Woodruff et al. Sketching as a tool for numerical linear algebra. Foundations and Trends®
in Theoretical Computer Science, 10(1–2):1–157, 2014.

A ADDITIONAL TECHNICAL OVERVIEW

We outline several main ideas behind our results.

ℓ2-heavy-hitters We obtain our ℓ2-heavy-hitters sketch as a consequence of norm estimation. One
approach to sketch the ℓ2 norm for a vector v ∈ Rd with 1/poly(d) failure probability is to apply a
dense JL sketch – for example a matrix S ∈ Rm×d with i.i.d. random signs where m = O(1

ϵ2 log d).
However this matrix-vector product takes O(d log d/ϵ2) time. This can be improved by choosing a
structured matrix for the JL embedding. For example, if one chooses a random-sign Toeplitz matrix,
with O(log

2 d
ϵ2) rows (which is known to be a JL embedding Freksen & Larsen (2020)), then the

matrix-vector multiplication can be carried out in O(d log d) time Kailath & Sayed (1999). 4

We aim to give an ℓ2 estimation sketch which runs in O(d) time, with no additional logarithmic
factors. Our approach is simple, but appears to be new and is a starting point for our later results.

4In fact, one can do slightly better. By decomposing S into d/m blocks of size m×m, each of which is
Toeplitz, multiplication by S can be carried out in O((d/m)m logm) = O(d logm) time Freksen (2021). For
m = O(log d/ϵ2), this would give a runtime of O(d(log log d+ log 1

ϵ
)).

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Roughly, we would like to first apply a CountSketch to reduce the dimension of v slightly. The issue
is a CountSketch with distortion ϵ and failure probability δ, needs O(1

ϵ2δ) rows. This means that it
is not possible to achieve arbitrary 1/poly(d) failure probability initially. For instance, to achieve
a failure probability of 1/d2, we would need to take m = d2, which is useless. However it is easy
to achieve some 1/poly(d) failure probability from a CountSketch, while getting some dimension
reduction. For example, if we are willing to sketch down to dimension n0.8, then we could achieve,
say δ = n−0.5 failure probability, as long as 1/ϵ is not too large. Such a sketching dimension is
unacceptably large, but now that the dimension has been reduced slightly, we are free to compose with
a dense JL sketch, and pay no additional asymptotic cost (since in our example n0.8 log n = o(n)). To
achieve arbitrary 1/poly(n) failure probability, we can then boost this failure probability by repeating
this scheme a constant number of times and use the median as our ℓ2 estimate.

As a consequence of having an ℓ2 estimation sketch, we obtain an ℓ2 heavy hitters sketch almost for
free, using a standard approach. To compute the ϵ-heavy-hitters of v it suffices to be able to estimate
the values of ⟨ei, v⟩ to within O(ϵ ∥v∥) additive error, simultaneously for all i. This inner product can
be expressed as a sum and difference of ℓ2 norms, each of which can be approximated using the ℓ2
estimation sketch. Since each relevant ℓ2 estimation problem can be solved accurately with arbitrary
1/poly(d) failure probability, the same is true for the heavy-hitters problem after union bounding
over d events. A black-box ℓ2 heavy-hitters algorithm suffices to solve ℓp-hitters by standard results.
So we in fact obtain an optimal linear-time, high-probability sketch for all p ≥ 1.

Linear regression and low-rank approximation. Our algorithms for linear regression and low-
rank approximate follow a similar template as for ℓ2 approximation. For approximately solving
the linear regression problem minx ∥Ax− b∥2, we recall that a CountSketch with d2

ϵδ rows is a
(1± ϵ) distortion subspace embedding with probability at least 1− δ by ideas of Woodruff & Zhang
(2013), which is sufficient to solve regression. This sketch has the advantage of running in nnz(A)
time, but the resulting sketching dimension is suboptimal, both in terms of d and δ. We therefore
compose this sketch with a fast JL sketch that runs in slightly super-linear time, but achieves the
optimal O(d

ϵ2) dimension. Since this sketch is applied to the CountSketch of A, which has fewer
rows then A, we maintain linear runtime, at least when A has many rows. The failure probability
is dominated by the CountSketch, and we would ideally like to boost this by running the above
procedure a constant C number of times and choosing the best regression solution among our
candidates x1, . . . xC . In other words, we would like an ℓ2 estimation sketch S that allows us to
estimate ∥Axi − b∥22 ≈ ∥S(Axi − b)∥22 with high probability. To accomplish this, we reuse use our
ℓ2 estimation procedure discussed above. Then S can be applied to A and b in parallel with the
subspace embedding, and we can select the xi for which the sketched estimate for the mean-squared
error is smallest.

Our approach for low-rank approximation follows a very similar template for regression. The main
difference is that low-rank approximation requires a sketching primitive which is slightly stronger
than a subspace embedding (we use the notion of a projection-cost preserving sketch Musco &
Musco (2020), although various combinations of sketching primitives would work here). Fortunately,
the composition of a CountSketch with a fast JL sketch has the required properties for low-rank
approximation, and so the same approach as for regression applies. We use the same idea of
applying our ℓ2 approximation sketch on the left to estimate the Frobenius error of candidate low-rank
approximations. This allows us to (approximately) select the best solution obtained from a constant
number of independent trials.

Speeding up sketches by reshaping. We consider the problem of computing an ℓp-norm estimation
sketch for a vector x, where p ∈ (1, 2] with high probability. One could take S to be an ℓp estimation
sketch of Kane et al. (2011) for example, and then repeat log 1

δ times. However this would give a
sketch whose application time has a multiplicative log 1

δ dependence. We aim for something faster.

To see the main idea, suppose that we have an embedding sketch T : ℓp → ℓr (note that the sketch
of Kane et al. (2011) is not an embedding). Then we could compute Tx directly. However, we
are also free to reshape x into a matrix X , and then adjust the dimensions of T appropriately. The
advantage is that we are now computing a matrix product TX , and so we can apply a known fast
matrix multiplication algorithm. Indeed, if the ratio of columns to rows for T is sufficiently large (i.e.,
larger than some dc for some c), then multiplication by T may be carried out in roughly linear time

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

using an algorithm of Coppersmith (1982). Combining this reshaping idea with known embeddings
ℓp → ℓr allows us to reduce the number of rows of X , while preserving its entrywise ℓp norm. Once
we have reduced the dimensionality, the ℓp norm estimation sketch of Kane et al. (2011) now runs
faster, and so we can apply it directly.

B Fp ESTIMATION PROOFS

Proof of Lemma 5.1 .

Proof. Let

X =

d∑
i=1

σiv
p
i

where σi ∼ 1
qBernoulli(q). Note that E(X) = ∥v∥pp . Set Xi = σiv

p
i , and note that

E(|Xi − vpi |
2
) ≤ E(X2

i) =
1

q
v2pi .

By Bernstein’s inequality,

Pr
(∣∣∣∥v∥pp −X

∣∣∣ ≥ t
)
≤ exp

(
−

1
2 t

2∑d
i=1 E(|Xi − vpi |

2
) + 1

3
1
qM

pt

)

≤ exp

(
−

1
2 t

2

1
q ∥v∥

2p
2p +

1
3
Mp

q t

)

≤ exp

(
−

1
2 t

2q

Mp ∥v∥pp +
1
3M

pt

)

Setting t = ϵ ∥v∥pp with ϵ < 1 gives

Pr
(∣∣∣∥v∥pp −X

∣∣∣ ≥ ϵ ∥v∥pp
)
≤ exp

(
−1

4

ϵ2 ∥v∥2pp q

Mp ∥v∥pp

)
= exp

(
−1

4

ϵ2 ∥v∥pp q
Mp

)
.

This rearranges to the stated claim.

We will use the following simple, technical fact below.

Proposition B.1. Suppose that v1 and v2 have disjoint supports with v1 + v2 = v. Also suppose that∣∣∣αi − ∥vi∥p
∣∣∣ ≤ ϵ ∥v∥p for i = 1, 2. Then

∥v∥p = (αp
1 + αp

2)
1/p ± 21/pϵ ∥v∥p .

Proof. First note that

∥v∥p = (∥v1∥pp + ∥v2∥
p
p)

1/p =
∥∥∥[∥v1∥p , ∥v2∥p]∥∥∥

p

This later two-dimensional vector differs coordinate-wise from [α1, α2] by at most ϵ ∥v∥p . Hence∣∣∣∣∥∥∥[∥v1∥p , ∥v2∥p]∥∥∥
p
− ∥[α1, α2]∥p

∣∣∣∣ ≤ 21/pϵ ∥v∥p ,

which implies the claim.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Proof of Theorem 5.2.

Proof. Write v = vH + vL where H is the coordinates of v larger than M and L is the remaining
coordinates of v. Let v′ be a random vector where v′i is (v)i with probability q and 0 otherwise.
Define v′L and v′H similarly.

As in the previous lemma, we choose M so that

Mp =
qϵ2

4 log 1
δ

∥v∥pp := α ∥v∥pp .

Then by the previous lemma, we have

1

q
∥v′L∥

p
p = (1± ϵ) ∥vL∥pp ,

with probability at least 1− δ.

Note that each element of vH is an (α, ℓp)-heavy-hitter. With this decomposition, we show how to
estimate the Fp moments for vH and vL.

Estimating vH . Our ℓp-heavy-hitters sketch (see Corollary 4.3), allows us to estimate all coordinates
of v to within β ∥v∥p additive error and failure probability 1/poly(d) using space O(1

β2 d
1−2/p log d),

and O(d) sketching time, provided that β ≥ d−1/p+c.

Note that vH has at most 1/α nonzero coordinates. Let v̂H be the recovered heavy-hitter coordinates.
Then

∥v̂H − vH∥p ≤ β ∥v∥p
1

α1/p
.

Therefore, by the triangle inequality,

∥v̂H∥p = ∥vH∥p ±
β

α1/p
∥v∥p .

Setting β = ϵα1/p then gives
∥v̂H∥p = ∥vH∥p ± ϵ ∥v∥p .

Estimating ∥v′∥pp. To handle v′ we use a standard Fp-moment estimation sketch applied to v′. For
concreteness, we can apply the sketch of Indyk & Woodruff (2005) which can be applied in time
T (d, ϵ, p) := dpoly(log d/ϵ) to a vector of length d, and succeeds with 9/10 probability. We will
apply this sketch to v′ which has O(qd) entries with high probability, and hence the time to apply it
is T (qd, ϵ, p).

This gives a (1± ϵ) multiplicative approximation to ∥v′∥p . In the case that the support of v′ intersects
the support of vH we may use our additive approximations to the coordinates of vH as above to
approximate ∥v′H∥p to within additive ϵ ∥v∥p error. Since v′ = v′H + v′L, this yields an additive
ϵ ∥v∥p + ϵ ∥v′∥p ≤ 2ϵ ∥v∥p approximation to ∥v′L∥p .

Now recall that
1

q
∥v′L∥

p
p = (1± ϵ) ∥vL∥pp .

We now have an additive 2ϵ
q1/p
∥v∥p approximation to 1

q1/p
∥v′L∥p, which for constant p is an

O(ϵ ∥vL∥p) additive approximation to ∥vL∥p by the equation above. So we may approximation
∥vL∥p to additive error O(ϵ ∥vL∥p +

2ϵ
q1/p
∥v∥p) = O(ϵ

q1/p
∥v∥p).

Combining the bounds, we have a (1±O(ϵ
q1/p

)) multiplicative approximation to ∥v∥p with constant
probability. By running this algorithm O(log 1

δ) times in parallel and taking the median answer, we
boost the failure probability to δ.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Space and runtime. We set δ = dc. The total runtime for applying our sketch is

O(T (qd, ϵ, p) log d+ d).

since we apply the heavy-hitter sketch in O(d) time and then Fp estimation sketches. To make this
run in linear time, we set q = O(poly(log d, ϵ))

We set δ = dc. After unwinding all the variables, our total space is

O

(
d1−2/ppoly(log d/ϵ)) +

1

ϵ2+4/p
d1−2/p(log d)1+2/pq−2/p

)
.

Plugging in our value for q and replacing ϵ with ϵq1/p gives the desired bound.

C SPEEDING UP SKETCHES BY RESHAPING

We first recall a result due to Coppersmith on fast rectangular matrix multiplication, which implies
that one can multiply a d × d and d × dα matrix using O(d2 log2 d) multiplications for α ≤ 0.17
Coppersmith (1982). We use a small variant of this result by Williams (2014); Williams which states
that a d×d times d×dα matrix multiplication can be carried out in O(d2poly log d) time. The subtle
difference between these results is that it could a priori be the case that the arithmetic circuit implicit
in Coppersmith’s algorithm takes a lot of time to construct. One would not expect this to be the case
however, and indeed it is not. We state this fact precisely for use below.
Theorem C.1. There is an algorithm for multiplying a d× d and a d× dα matrix in O(dpoly log d)
time, under the assumption that field operations can be carried out in O(1) time.

We can use reshaping, along with this fact, to speed up sketches for ℓp embeddings.

We first recall a result for constructing embeddings ℓp → ℓr which follows from the proof Lemma 18
contained in Li et al. (2023).
Lemma C.2. Suppose that p > r > 1, and let r′ ∈ (r, p) be arbitrary. There is a distribution over
sketching matrices T ∈ Rm×n with m = O(log(1/δ)/ϵC(ϵ,r)), such that for any v ∈ Rn, ∥Tv∥r ≥

(1−ϵ) ∥v∥p with 1−δ probability, and we have a moment bound of the form E
∣∣∣∥Ty∥rr − ∥y∥rp∣∣∣r′/r ≤

C ∥y∥r
′

p /m(r′/r)−1, where E ∥Ty∥rr = ∥y∥rp .

Using this, we show the following result.
Theorem C.3. For any 1 < p ≤ 2, there is an ℓp norm estimation sketch down to dimension

O(log 1
δ /ϵ

2) that can be applied to x ∈ Rd in time O
(
d(poly log log d

ϵ + poly log log 1
δ)
)
,

as long as n ≥
(

log d log 1
δ

ϵ

)C
, for an absolute constant C. This sketch gives a (1± ϵ)-approximation

with probability at least 1− δ.

Proof. Pick an arbitrary r with 1 < r < p. The first step is to construct an embedding ℓp → ℓr that
reduces the dimension slightly and that can be applied quickly.

Let T to be a randomized embedding ℓp → ℓr. By Lemma C.2 there is such a T with m =

O(log n/ϵC(ϵ,r)) rows, such that the stated guarantees in the lemma hold, and so that the lower bound
on ∥Tv∥r holds with failure probability at most 0.9.

We take k independent copies of this sketch, T (1), . . . , T (k) in parallel, so that our total sketching
dimension is now mk. Call this matrix gotten by stacking the T (i)’s S.

Next we reshape x into a matrix X with dimensions (mk)c × (d/(mk)c), where c > 1/0.17 so that
the fast matrix multiplication algorithm discussed above can be applied. (If the dimensions of X are
not evenly divisible by (mk)c, then we first pad with an appropriate number of zeroes, which does
not affect the norm.) Note that our sketching matrix now has dimension mk × (mk)c. Note that for
this step to work, we require d ≥ (mk)2c.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

To compute SX , we can partition X into d/(mk)2c matrices each of dimension (mk)c × (mk)c.
Multiplying each submatrix by S takes O((mk)2cpoly log((mk)2c)) time by Theorem C.1, and there
are O(d/(mk)2c) such sub-matrices. So the total time to compute SX is O(dpoly log(mk)).

Next we observe that Lemma C.2 shows that each T (i) gives an embedding of X into ℓr. To see that
X does not contract much, note that we can take δ to be O(1/d) so that all columns xj of X satisfy∥∥T (i)xj

∥∥
r
≥ (1− ϵ) ∥xj∥p with 0.9 probability. Since p ≥ r, this implies the desired lower bound.

To bound dilation of X , note that the moment bound for each column given in Lemma C.2, extends
to give the same moment bound for ∥X∥rr up to constants (see Lemma 27 of Li et al. (2023) or von
Bahr & Esseen (1965)). Combining with a Markov bound, this shows that ∥TX∥r ≤ (1 + ϵ) ∥X∥p
with 0.9 probability.

At this point we have constructed k independent embeddings of x into ℓr, each correct with 0.9
probability. Note that m = O(log n/poly(ϵ)), and so our runtime so far is

O(dpoly log(log(d)k/poly(ϵ)))
Note that the dimension of SX is (mk)(d/(mk)c) = (mk)1−cd, and that the dimension of each
T (i)X is 1

k (mk)1−cn.

Since we have k embeddings into ℓr, we can now compose each of them with an ℓr estimation sketch
of Kane et al. (2011). This sketch has an update time of log2 1

ϵ log log
1
ϵ and hence can be applied to

T (i)X in

O

(
1

k
(mk)1−cdpoly log

1

ϵ

)
time, so the total time to sketch all of the T (i)x’s is

O

(
(mk)1−cdpoly log

1

ϵ

)
.

Finally, we have constructed a sketch down to dimension O(k/ϵ2), and which yields a (1 ± ϵ)
multiplicative approximation to v with at 0.8 least probability. By taking the median estimator over k
trials, this gives an overall failure probability of 1− δ by choosing some k = O(log 1

δ).

Our overall sketching dimension was O(log 1
δ /ϵ

2). The time to apply S was

O(npoly log(mk)) = O(dpoly log
log d log 1

δ

ϵ
),

and the time to apply the ℓr estimation sketch was

O

(
(mk)1−cdpoly log

1

ϵ

)
.

Note that the time to apply S dominates as long as mk > 1/ϵ say (since 1− c < −4 by our choice
of c), which we are free to assume.

The rough idea is to first pick an arbitrary r with 1 < r < p. We first construct an embedding ℓp → ℓr
that reduces the dimension slightly and that can be applied quickly. We let T be a randomized
embedding ℓp → ℓr and then take k independent copies of this sketch, T (1), . . . , T (k) in parallel, so
that our total sketching dimension is now mk. Call this matrix obtained by stacking the T (i)’s S. We
then reshape x into a matrix X with dimensions (mk)c × (d/(mk)c), where c > 1/0.17 so that the
fast matrix multiplication algorithm discussed above can be applied.

D REGRESSION AND LOW RANK APPROXIMATION

D.1 REGRESSION

In this section, we observe that the same idea we used for speeding up heavy-hitters sketches can be
used to speed up sketches for linear regression. The idea is to run several CountSketches in parallel.
Each CountSketch is a subspace embedding with probability 1/n and

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

We first recall a well-known fact, essentially due to Woodruff & Zhang (2013), that CountSketch is a
subspace embedding for A ∈ Rn×d when S has d2/(ϵδ) rows.

Lemma D.1. For A ∈ Rn×d and b ∈ Rn, and let S be a CountSketch matrix with O(d
2

ϵδ) rows. Then
S is an oblivious subspace embedding with distortion (1 ±

√
ϵ) for d-dimension subspaces, with

probability at least 1− δ.

Also, suppose that x̂ minimize ∥S(Ax− b)∥22 then with probability at least 1− δ,

min
x
∥Ax̂− b∥22 ≤ (1± ϵ)min

x
∥Ax− b∥22 .

Proof. Theorem 9 of Woodruff et al. (2014) states that a CountSketch with O(d
ϵδ) rows is an O(1± ϵ)

distortion subspace embedding for the column span of A with probability at least 1− δ. It is known
that this (1 ±

√
ϵ) distortion subspace embedding suffices for obtaining a (1 ± ϵ) approximate

regression solution (see Bourgain et al. (2015)), giving the lemma.

By applying this lemma for a constant number of repetitions, and applying a JL sketch on each
repetition, we can keep the sketching time at truly nnz(A) (with no log factors), while obtaining an
arbitrary 1/poly(d) failure probability, at least provided that A is quite tall.

Theorem D.2. There is a sketch that gives a (1± ϵ) approximate solution for least squares regression
with probability at least 1− 1

dc1
and with sketching dimension O(dϵ log d), that can be applied to a

matrix A ∈ Rn×d in O(nnz(A)) time, provided that we have nnz(A) ≥ 1
ϵd

2+c2 . Here, c1, c2 > 0
can be taken to be arbitrary constants.

Remark D.3. Here we state conditions under which we obtain truly linear sketching time. The proof
of the theorem still gives a (more complicated) time complexity bound even when this condition does
not hold.

Proof. For fixed δ1 and ϵ we first apply T sketching matrices S1, S2, . . . , ST in parallel.

Each Si is gotten by first taking a CountSketch down to dimension O(d2

ϵδ1
) followed by fast JL sketch

down to dimension O(dϵ log
d
δ1
). Since we sketch all columns of A (as well as b), the final sketching

dimension is O(d
2

ϵ log d
δ1
) for each Si. Each of these gives a 1± ϵ approximate regression solution

with probability at least 1− δ1.

Let the resulting solutions to the sketched regression problem be x1, . . . , xT , so that we have

∥Axi − b∥22 ≤ (1± ϵ)min
x
∥Ax− b∥22 ,

with probability at least 1− δ1 for i ∈ [T]. Say that a regression solution is good if the above bound
holds. Note that at least one of the regression solutions is good with probability at least 1− δT1 . We
set δ1 = δ1/T , so that at least one of the regression solutions is good with probability 1− δ.

We would like to have an accurate estimate of ∥Axi − b∥22 for all i so that we can pick the best
solution. To do this, we run our ℓ2 estimation sketch from above in parallel with failure probability
δ/T (note that we sketch A on the left, as well as b, so our sketching dimension and runtime are
scaled by d). This takes O(d

ϵ2 log
T
δ) space and requires only O(C nnz(A) + d

ϵ2 (δ/T)
−1/C log T

δ)
time, where C is a parameter that we can choose.

All ℓ2 estimates are accurate to within 1±ϵ multiplicative error with probability all but δ. Conditioned
on these ℓ2 approximations all being correct, we then have (1± ϵ) approximations to all ∥Axi − b∥22,
so we may simply return the xi with the smallest such value. If at least one of the xi’s is good, then
this is guaranteed to give a (1± ϵ)2 = (1±O(ϵ)) approximate regression solution.

Our overall failure probability comes from having one of the ℓ2 sketches fail, or all of the regression
sketches Si fail. By a union bound, the total failure probability is at most

T
δ

T
+ δT1 = O(δ).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Our overall sketching dimension is

O(
d

ϵ2
log

T

δ
+

Td2

ϵ
log

d

δ1
) = O(

d

ϵ2
log

T

δ
+

Td2

ϵ
log d+

d2

ϵ
log

1

δ
).

Finally the time to apply5 all the Si’s is

O(T (nnz(A) + d
d2

ϵδ1/T
log

d2

ϵδ1/T
)),

and the time to apply the ℓ2 estimation sketch is

O(C nnz(A) +
d

ϵ2
(δ/T)−1/C log

T

δ
).

For δ = d−c, T and C can be taken to be constants. For the parameter regime given in the theorem
statement, this is O(nnz(A)) time as desired.

D.2 LOW RANK APPROXIMATION

In this appendix section, we observe that ideas similar to those used to speed up our heavy-hitters
sketch, can also be applied to linear algebraic problems. We first recall a few preliminary definitions
and results that will be helpful here.
Definition D.4. Let S ∈ Rm×d be a sketching matrix. S is said to satisfy the (ϵ, δ, 2)-JL moment
property if for all unit vectors x ∈ Rd,

E
∣∣∣∥Sx∥22 − 1

∣∣∣2 ≤ ϵ2δ.

The following fact is standard. See Woodruff et al. (2014) for example.

Lemma D.5. The (ϵ, δ, 2)-JL-moment property is satisfied by a CountSketch with O(1
ϵ2δ) rows, as

well as a fast JL sketch with O(1
ϵ2 log

1
δ) rows.

We also recall the notion of a projection-cost-preserving (PCP) sketch Musco & Musco (2020);
Cohen et al. (2015), which is well-suited to low-rank approximation problems. (One could use other
combinations of sketching primitives here, but the explicit conditions given in Musco & Musco (2020)
are convenient to check.) We simplify the standard definition slightly for our context. In what follows,
we will think of A as having a large number columns representing feature vectors for example. So A
should be thought of as very wide.

Definition D.6. Let A ∈ Rd×n. The sketching matrix S ∈ Rn×m is an (ϵ, k) projection-cost-
preserving sketch for A if

(1− ϵ) ∥A− PA∥2F ∥AS − PAS∥2F ≤ (1 + ϵ) ∥A− PA∥2F ,

for all orthogonal projection matrices P ∈ Rd×d of rank at most k.

Next we check that the composition of a CountSketch and a JL sketch have the PCP property, so that
we can apply the same trick as for regression to get truly linear sketching times.

Lemma D.7. Let S = S1S2 where S1 is a CountSketch with small dimension O(k2

ϵ2δ), and S2 is a
fast JL transform with small dimension P (k

ϵ2 log
1
δ). Then with probability at least 1−O(δ), S is an

(ϵ, k)-PCP sketch for a fixed matrix A.

Proof. From the definition, the composition of (ϵ, k)-PCP sketches is an (O(ϵ), k)-PCP sketch when
ϵ < 0.5. So by Theorem 2 of Musco & Musco (2020), it suffices to check for i = 1, 2 that

1. Si is an 1 ± O(ϵ) distortion oblivious subspace embedding for k-dimensional subspaces
with probability 1− δ

5Recall that a fast JL sketch can be applied to a vector in Rn in time O(n logn).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

2. Si has the O(ϵ√
k
) approximate matrix multiplication property with probability 1− δ

3. Si preserves Frobenius norm to 1±O(ϵ) multiplicative error with probability 1− δ

These are all standard facts. For the CountSketch S1, the first property is from Lemma D.1. The
second property follows from Lemma 45 of Woodruff et al. (2014), and the third property follows
from the JL moment property (see Musco & Musco (2020) for example). The sketching matrix S2

satisfies the (ϵ/3, δ/9k, 2)-JL-moment property for the stated size Woodruff et al. (2014), and is
immediately a PCP sketch by Musco & Musco (2020).

Next we give a version of Theorem 4.1 for estimating Frobenius norm.

Lemma D.8. For any constant C ≥ 1 is a 1 ± ϵ distortion sketch Frobenius estimation sketch
S with failure probability δ where S has small dimension O(1

ϵ2 log
1
δ) and time O(C nnz(x) +

dϵ−2δ−1/C log 1
δ).

Proof. We use precisely the same sketching matrices as in Theorem 4.1 and almost exactly the same
proof.

The minor difference is that sketches need to preserve Frobenius norm for matrices, rather than just ℓ2
for a single vector. However, as discussed above, the composition of a CountSketch and a JL sketch
yields a sketch satisfying the (ϵ, δ, 2)-JL-moment property for the dimensions that we choose. The JL
moment property is sufficient for Frobenius estimation to (1± ϵ) multiplicative error with probability
1− δ 6, so precisely the same proof applies.

Theorem D.9. Let A ∈ Rd×n with n≫ d. There is an (oblivous) sketching matrix S such that given
AS one can recover a rank k orthogonal projection Π such that ∥ΠA−A∥2F ≤ (1+ ϵ) ∥Ak −A∥2F ,
where Ak is the optimal rank k approximation to A. Moreover S can be applied in nnz(A) as long as
nnz(A) ≥ k2

ϵ2 d
1+c1 , S succeeds with probability 1− dc and S has sketching dimension O(kdϵ2 log d).

Proof. Let R1, . . . , RT all be distributed as the PCP sketch from Lemma D.7 for failure probability
δ1. Note that each Ri can be applied in time O(nnz(A) + dk2

ϵ2δ1
log(dk2

ϵ2δ1
)).

Each Ri is an (ϵ, k)-PCP sketch for A with probability at least 1 − δ1, so with probability at least
1 − δT1 at least one of them is. We set δ1 = δ1/T so that at least one of the Ri’s is correct with
probability at least 1− δ. An (ϵ, k)-PCP sketch for A allows one to output a projection matrix Π such
that ∥ΠA−A∥2F ≤ (1 + ϵ) ∥Ak −A∥2F . (See Musco & Musco (2020) for details.) Let Π1, . . . ,ΠT

be the projections recovered from each of our T sketches.

As with regression, we would like to pick the highest quality sketch, so we estimate their errors in
parallel (keeping in mind that some PCP sketches might have failed). To do this, we sketch A on the
right, using the sketch from Lemma D.8 with distortion parameter ϵ and failure probability δ/T, so
that we can estimate ∥ΠA−A∥2F ≈ ∥ΠAZi −AZi∥2F . By Lemma D.8, this sketch can be chosen so
the sketched matrix has O(d

ϵ2
T
δ) entries, and can be applied in time O(C nnz(A)+dϵ−2δ−1/C log 1

δ)
for a C that we can choose.

Now we tally the total space and time that we require. The total space for the PCP sketches is
O(T · kdϵ2 log 1

δ). All the PCP sketches can be applied in time

O(T nnz(A) + T
dk2

ϵ2δ1
log(

dk2

ϵ2δ1
)) = O(T nnz(A) +

dk2

ϵ2δ1/T
log(

dk2

ϵ2δ
)).

The total space required for the Frobenius estimation sketch was O(d
ϵ2

T
δ) and the time required to

apply it was

O(C nnz(A) + dϵ−2δ−1/C log
1

δ
).

6For example one way to see this is to note that the JL moment property is preserved under direct sum, as
was done in Ahle et al. (2020).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

The time to apply the PCP sketches dominates. For δ = d−c we can choose C to be a constant, so
that the total application time is O(nnz(A)) in the parameter regime of the theorem statement.

E HEAVY-HITTERS RESULTS

Faster recovery via ExpanderSketch. Instead of taking T1, . . . , TC to be arbitrary JL sketches,
we can let each Ti be an ExpanderSketch from Larsen et al. (2019). We make a small modification
for convenience.
Proposition E.1. There exists a turnstile sketch T with on Rd with update time O(log d) using space
O(ϵ−2 log d) along with a recovery algorithm that runs in time O(ϵ−2poly log d) and produces a
setH containing the indices of all the ϵ-heavy-hitters and containing only (ϵ/3)-heavy-hitters. The
recovery succeeds with probability at least 1− 1/poly(d).

Proof. In parallel, run the ExpanderSketch of Larsen et al. (2019) and an ensemble of CountSketches.
The recovery algorithm for ExpanderSketch returns a setH′ of size O(1/ϵ2) containing the coordi-
nates of all the ϵ-heavy hitters of x. Using the CountSketches we can simultaneously estimate the
values of these coordinates to within (ϵ/2) ∥x∥2 additive error, along with ∥x∥ to within 1 ± 0.1
multiplicative error and with failure probability 1/poly(d). Then the coordinates with estimated size
less than (ϵ/2) ∥x∥ may be discarded.

As before, we form the sketches TiSix. We will then apply the recovery algorithm for the Ti’s to
obtain the heavy coordinates of (Six). Since we know the hash functions used the construct the Si’s,
we can then deduce the heavy coordinates of x.

We would like to construct our CountSketch distribution S on Rd×n using hash functions that are
easy to invert. For this, assume without loss of generality that d and n are powers of two. We define
the hash function family hA,b : [d] → [m] where b ∈ Flogm

2 and A ∈ Flog d×logm
2 and A and b are

chosen uniformly from the respective spaces. We define

h = hA,b(N) = im(AN⃗ + b)

where N⃗ is the F2 vector corresponding to the binary expansion of N , and where im(x) gives the
number in [m] whose binary expansion is given by x. For the CountSketch distribution take S such
that Sek = σ(k)eh(k) where σ : [d]→ {−1, 1} is drawn from any 4-wise independent hash function
family.

For completeness, we sketch an argument that this hash function family is indeed pairwise indepen-
dent.
Proposition E.2. Let h′

A,b(N) = AN⃗ + b as above, where A and b have iid entries over F2, with
the image of h′

A,b RM . Then h′
A,b(x) is uniform over RM and h′

A,b(x) and h′
A,b(y) are uniform and

independent for x ̸= y.

Proof. Let v1 ̸= vn in Fd
2 be arbitrary. We must show that Av1 + b and Av2 + b are uniform over

pairs of vectors in RM . Let f(v) = Av+ b and note that f(v1)− f(v2) = (Av1 + b)− (Av2 + b) =
A(v1 − v2) is uniform over all vectors, since the entries of A are iid. Now note that f(v1)− f(v2)
is independent of b, which is also iid. So conditional on f(v1) − f(v2), the quantity f(v2) is also
uniform, and the proposition follows.

We recall a standard expected value computation for the buckets of CountSketch.
Proposition E.3. Let x ∈ Rd and let h be sampled from a pairwise independently family of hash
functions [d]→ [m]. Let σ ∈ {+1,−1}d with 4-wise independence among the entries. Let

bk =
∑

i:h(i)=k

σixi

be the value in bucket k. Then E(b2k) =
1
k ∥x∥

2
2

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Proof. Fix, k and let χi be indicator function for the event h(i) = k. Then

bk =
∑
i

χixiσi.

Expanding and applying linearity of expectation gives

E(b2k) =
∑
i

E(χ2
ix

2
iσ

2
i) =

1

k
∥x∥22 ,

since E(σiσj) = 0 for i ̸= j.

We also use the fairly standard observation that CountSketch preserves heavy coordinates.

Proposition E.4. (CountSketch maps heavy coordinates to heavy coordinates.) Let S be a CountS-
ketch as detailed above with sketching dimension m = Ω(ϵ−2δ−1). Let x ∈ Rd and suppose that
|xk| ≥ ϵ ∥xk∥2 . Then ∣∣(Sx)h(k)∣∣ ≥ (ϵ/4) ∥Sx∥2
holds with probability at least 1− δ.

Proof. Assume without loss of generality that ∥x∥ = 1. With probability at least 1 − δ we have
∥Sx∥2 ≤ 1 + ϵ.

Now conditioned on the value of h(k), the values of h(i) for i ̸= k uniform over [m] since our
original hash functions were pairwise independent. Let x−k denote x with coordinate k zeroed out.
Then we use Markov’s inequality to bound the additional mass in bucket k. Note that

E((Sx−k)
2) =

1

m
∥x∥2−k ≤

1

m
≤ O(ϵ2δ).

Thus by Markov’s inequality, we have that

Pr(|Sx−k| ≥ ϵ/2) = Pr((Sx−k)
2 ≥ ϵ2

4
)

≤ 4

ϵ2
E((Sx−k)

2)

=
4

ϵ2
1

m
≤ δ,

as long as we choose m ≥ 1
4ϵ2δ .

Given this, it follows that
∣∣(Sx)h(k)∣∣ ≥ ϵ/2, so combining with bound on ∥Sx∥2 gives∣∣(Sx)h(k)∣∣ / ∥Sx∥2 ≥ (ϵ/2)/(1 + ϵ) ≥ ϵ/4,

with failure probability at most 2δ. The desired bound follows by replacing δ with δ/2.

Our approach is to take sketches of the form TSx where S and T are as above. We run the
recovery algorithm for T to obtain a setH containing the heavy hitters of Sx. We then let C be the
corresponding set of candidate heavy hitter indices gotten by inverting the hash function h. In other
words, C = h−1(H).
Lemma E.5. (i) Suppose that |xk| ≥ ϵ ∥x∥ . Then with probability at least 1 − (δ + 1/poly(d)),
k ∈ C.
(ii) Suppose that |xk| ≤ (ϵ/10) ∥x∥ . Then with probability at least 1− (δ + 1/poly(d)), k /∈ C.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Proof. For (i) we have that
∣∣(Sx)h(k)∣∣ ≥ (ϵ/4) ∥Sx∥2 with probability at least 1− δ by the previous

claim. The recovery guarantee for T now implies that h(k) occurs in the recovered set H with
probability 1− 1/poly(d) and hence k ∈ C.

For (ii) the probability that
∣∣(Sx)h(k)∣∣ ≥ ϵ/3 is at most δ by the same Markov bound used above. So

the probability that h(k) ∈ H is at most O(δ + 1
poly(d)).

Proof of Theorem 4.4

Proof. Take δ = d−0.1 so that the failure probabilities in the above claim can be taken to be d−0.05.
As long as ϵ ≥ d−0.2, then the sketching dimension for a CountSketch S is at most d0.5.

Take C CountSketches S1, . . . , SC in parallel with Ci defined as above. Suppose that k satisfies
|xk| ≤ ϵ ∥x∥ . By the claim above, the probability that k is in half of the Ci’s is at least

1−
(

C

C/2

)
d0.05C/2 ≥ 1− (2d−0.025C),

which is at least 1− 1/poly(d) when C is a sufficiently large constant.

If |xk| ≤ (ϵ/10) ∥x∥ then the probability that k is in at least half of the Ci’s is at most(
C

C/2

)
d−0.05C/2 ≤ (2d−0.025)C ,

which is bounded by an arbitrary inverse polynomial in d by taking C to be a sufficiently large
constant.

Hence with all but 1/poly(d) probability, none of coordinates k with |xk| ≤ (ϵ/10) ∥x∥ occur in at
least half of the Ci’s. There are only O(1/ϵ2) coordinates where this doesn’t hold, so at most O(1/ϵ2)
coordinates k that are in at least half of the Ci’s.

Thus it suffices to find all k that occur in at least half of the Ci’s. To do this we simply take a
brute-force approach. There are

(
C

C/2

)
ways to choose a subset L ⊆ [C] indexing half of the Ci’s.

For each i ∈ L there are then O((1/ϵ2)C/2) = poly(1/ϵ) ways to choose elements k1, . . . kC/2 from
each set in {Hi : i ∈ L}, since each setHi has O(1/ϵ2) elements. We would like to check if these
elements have a common preimage under their respective hash functions. By the construction of our
hash functions, this amounts to solving a linear system of dimensions (C/2 log d) × logm. Since
the sketching dimension m for CountSketch is O(d), this runs in poly(log d) time. Repeating for all
subsets and choices of k1, . . . , kC/2 gives a runtime of O(

(
C

C/2

)
poly(log(d)/ϵ)).

E.1 EXTENSION TO TENSOR SKETCHING.

Proposition E.6. Consider a sketch S = S1 ⊗ · · · ⊗ Sq where each Si is a CountSketch with hash
function hi down to dimension m = c

q/(ϵ2δ) . Let x be a q-mode tensor indexed by a multi-index in
[d]q, and let the sketch Sx be indexed by a multi-index [m]q. (i) Suppose i = (i1, . . . , iq) is an ϵ-heavy
index. Then with probability at least 1− δ, (h1(i1), . . . , hq(iq)) is ϵ/2-heavy for Sx. (ii) Suppose
that ik is not the kth coordinate of any ϵ-heavy index. Then with probability at least 1−O(1/(mϵ2)),
hk(ik) is not the first coordinate of any ϵ/10-heavy index of Sx.

Proof. The first claim follows from the fact that S1 ⊗ · · · ⊗ Sq has the (ϵ, δ, 2)-JL-moment property
(as we used above). This property implies that point queries estimates ⟨Sei, Sx⟩ approximate xi to
within ϵ ∥x∥2 additive error with failure probability at most δ. Note that Sei = eh(i1),...,h(iq). We
also have that ∥Sx∥2 = (1± ϵ) ∥x∥2 , and so heavy coordinates remain heavy as desired.

For the second part of the claim, it suffices to prove the claim for the first coordinate. The probability
that h1(i1) is the h1 hash of the first coordinate of some ϵ/5-heavy-hitter is at most O(1/(mϵ2)). So
suppose that this does not occur. Then let x̃ be x where all ϵ/10-heavy items are replaced by 0. It
suffices to see that Sx̃ has no heavy items which follows by the point query bound above.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Proof of Theorem 4.7.

Proof. We take our sketch to be of the form S1⊗S2⊗ · · · ⊗Sq where each Si is a CountSketch with
hash function of the form AN⃗ + b. We also repeat this sketch C times independently.

We then compose each of these sketches with the heavy-hitters sketch of Mahankali & Woodruff
(2021), which allows us to recover 1/ϵ2 heavy-hitter indices of S1 ⊗ · · · ⊗ Sq. We now need to
recover the heavy-hitter indices of the original tensor v.

We index into v with a multi-index (i1, . . . , iq). To recover the heavy-hitter multi-indices, we first
find the indices i1 that correspond to a heavy item. Suppose that (j1k, . . . , jqk) are the multi-indices
recovered by the kth heavy-hitter sketch. The candidate first indices for the heavy hitters are given
by
⋃

k∈[C] h
−1
1 (j1k). With high 1/poly(n) probability, every first coordinate corresponding to some

heavy hitter occurs in at least half of the sets in this union. So we may iterate over all
(

C
C/2

)
subsets,

and solve the corresponding linear system (it is a linear system due to our choice of hash functions)
to find all first coordinates that occur in at least C/2 subsets. By the previous proposition there are at
most O(1/ϵ2) such elements, with high probability as long as C is chosen to be a sufficiently large
constant. The same approach applies all other coordinate positions.

Now for each coordinate position, we have a set of O(1/ϵ2) candidate heavy-hitter indices. This
gives a total of 1/ϵq candidate multi-indices. Each of these may be checked directly by applying our
point-query sketch from Theorem 4.6.

F ℓp SAMPLING

The core algorithm for ℓp-sampling reduces the ℓp-sampling problem into a heavy-hitter problem,
allowing us to apply our heavy-hitters algorithm as a black box. We first recall the basic setup of the
ℓp sampling algorithms.

Fact F.1 (Sampling via Exponential Rescaling). Let v ∈ Rd. Let {Ei}di=1 be i.i.d. random variables
from Exp(1) (an exponential distribution with mean 1). Define a randomly transformed vector z ∈ Rd

where zi = vi/
√
Ei. The index of the maximum magnitude entry of z is a perfect ℓ2-sample of v:

Pr

[
i∗ = argmax

j∈[d]

{|zj |}

]
=

v2i

∥v∥22
The analysis of [JST11]CITE shows that finding the heavy-hitters of this vector z (for some parame-
ters) provides an approximate ℓp-sample of v. Moreover the maximizer i∗ is, with good probability,
an (Ω(1/ log n), ℓ2)-heavy-hitter of z.

This naturally frames the problem of sampling (and frequency estimation) as a single heavy-hitter
problem. The required subroutine is an ℓ2-heavy-hitter algorithm that returns both the indices
of the heavy items and their estimated values. The fast-application, fast-decode ℓ2-HH sketch of
Theorem 4.4 does exactly this.

Theorem F.2 (Linear-Time Sketch for Approximate ℓ2-Sampling and Frequency Estimation). Let
ν, δ, ϵ > 0 be approximation parameters. There exists a composite linear sketch S such that for any
fixed vector v ∈ Rd:

1. The sketch S · v can be computed in O(d) time.

2. From the sketch S · v, one can compute, in O(poly(log(d, 1/ν, 1/ϵ))) time, a set of index-
value pairs H = {(i, ṽi)}. This set constitutes:

• An approximate ℓ2-sample of v (i.e., the set H contains all indices i such that v2i ≥
ν ∥v∥22).

• A (1± ϵ) relative error frequency estimate ṽi for every i ∈ H .

This O(d) application time is asymptotically faster than the O(d · polylog(d)) time required to
simulate the corresponding streaming algorithm.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Proof. The algorithm follows the standard sketching procedure for ℓ2 sampling.

Let R = diag(r1, . . . , rd) be a diagonal matrix of random variables, where ri = 1/
√
Ei and {Ei}

are i.i.d. draws from Exp(1). Let SHH be the linear-time, fast-decode ℓ2-heavy-hitter sketch. Our
composite linear sketch is S = SHH ◦R.

2. Proof of Correctness (Recovery): The coordinator receives the sketch Afull = SV = SHH(RV)

where V =
∑

k v
(k) is the aggregate vector. Let Z = RV . The decoder for SHH is applied to Afull

and returns the set H of (index, value) pairs {(i, z̃i)} for the heavy-hitters of Z.

• Sampling: By Fact F.1 and the analysis in P2, the heavy-hitters of the transformed vector Z
correspond to the approximate ℓ2-sample of V . Thus, the set H is the desired approximate
sample.

• Frequency Estimation: The same sketch SHH used to find the sample set H also provides
the necessary frequency estimates. The decoder for SHH (e.g., ExpanderSketch) returns the
estimated value z̃i for each i ∈ H . This value satisfies z̃i = (1± ϵ)zi with high probability.

The coordinator, having the shared seed for R, can compute the scaling factor ri = 1/
√
Ei

for any i ∈ H . The final frequency estimate is computed by reversing the transform:

ṽi = z̃i/ri = (1± ϵ)zi ·
√
Ei = (1± ϵ)(vi/

√
Ei) ·

√
Ei = (1± ϵ)vi.

This provides the required relative error frequency estimate.

Finally the linear runtime of our sketch follows from the linear runtime of our heavy-hitters sketch.

G LLM USE DISCLOSURE

LLMs were used for editing purposes and to expand proof outlines.

24

	Introduction
	Preliminaries
	Our Results
	Heavy-hitters and applications
	Fp moment estimation for p > 2
	Linear algebraic problems
	Reshaping applications
	Additional Related Work

	Heavy-hitters and Applications
	Application to Communication

	Fp moment estimation.
	Additional Technical Overview
	Fp estimation proofs
	Speeding up sketches by reshaping
	Regression and Low Rank Approximation
	Regression
	Low Rank Approximation

	Heavy-hitters results
	Extension to tensor sketching.

	p Sampling
	LLM Use Disclosure

