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Abstract

Turn-based sports, such as badminton and tennis,
present challenges for imitating human player be-
haviors from offline datasets in sports analytics.
We propose RallyNet, a novel hierarchical offli-
ne imitation learning model for turn-based player
behaviors. RallyNet captures players’ decision
dependencies by modeling decision-making pro-
cesses in turn-based sports as a contextual Markov
decision process (CMDP). It leverages experience
to generate contexts that aid decision-making,
reducing errors. Additionally, RallyNet models
player interactions using a latent geometric Brow-
nian motion, enhancing realism and introducing
helpful inductive bias. Experimental results on
a real-world badminton game dataset demonstra-
te the effectiveness of RallyNet, outperforming
prior offline imitation learning approaches and a
state-of-the-art turn-based supervised method.

1. Introduction
Collecting historical data and simulating agents’ behaviors
have been widely explored to study and replicate specific
scenarios in various domains, e.g., autonomous driving. In
sports analytics, one of the major goals is to understand
and investigate the tactics of teams and individuals. Given
the rapid development of information technology, massive
amounts of behavioral records in various sports domains
can be collected to train models for analysis (Wang et al.,
2021; Won et al., 2021; Wang et al., 2022c). If we could
create a agent who could recover the player’s behavior, these
functions would help coaches develop winning strategies,
and open up many new applications in players training and
sports broadcasting. However, an online environment is
unrealistic since it would be impossible to find an opponent
to improve the agent’s strategies.
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Behavior cloning (BC) is one of the offline imitation lear-
ning (IL) methods used to recover a player’s behavior. The
effectiveness of offline IL has recently been illustrated, in-
cluding hierarchical imitation learning (HIL) models (Wang
et al., 2022a; Jing et al., 2021). Although HIL approaches
enrich imitated expressivity in the long-horizontal task, none
of them were designed for turn-based sports, which consist
of multiple players taking actions alternatively to form a
rally, meaning that the decision of each player directly af-
fects the decisions of other players. Therefore, there are two
challenges to applying existing HIL methods directly for
turn-based sports: 1) Leveraging experience. When players
encounter situations that have appeared in their experience,
they usually take corresponding actions for returning shots.
It is challenging to leverage experience to provide the hel-
pful information of the action for the agent. 2) Alternative
decision-making. In a turn-based sport, the state of each
player is determined by the actions of not only themselves
but also other players. Thus, the errors of an agent’s decisi-
on impact the decisions of other agents, resulting in more
serious compounding errors.

To address these challenges, we propose a hierarchical off-
line imitation learning model via experiential context and
geometric Brownian motion (RallyNet) to capture long-
term decision dependencies by modeling decision-making
processes in turn-based sports as contextual Markov deci-
sion processes (CMDP) (Hallak et al., 2015). Based on the
CMDP setting, the Experiential Context Selector (ECS)
was designed by establishing the context space from expe-
riences and selecting a context in the space as the agent’s
intent to mimic the decision-making of the agents following
their intents in the rally. This enables the agent’s behavior
throughout the rally to not be influenced by partially incor-
rect decisions. Inspired by seeing the interactions between
players as being similar to those between particles, we in-
troduce Latent Geometric Brownian Motion (LGBM) to
capture the interactions between players. We make players
alternately complete geometric Brownian motion (Revuz
& Yor, 2013) in latent space, which enables the agent’s
decision-making to jointly consider the opponent’s behavior.
This generates more realistic behavior in turn-based sports.
We highlight our contributions as follows:

• We propose a novel HIL model named RallyNet to
mimic player’s behavior in turn-based sports.
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• We validate RallyNet’s performance in real-world bad-
minton, demonstrating its superior final performance.

2. Problem Formulation
To illustrate our approach, we choose badminton as a re-
presentative turn-based sport and focus on singles mat-
ches involving two players. We denote PA as the star-
ting player and PB as the other player for each ral-
ly. Let R = {Tr}|R|

r=1 denote historical rallies of bad-
minton matches, where the rally is composed of a se-
quence of state-action pairs. The r-th rally is denoted as
Tr = {(sPA

1 , aPA
1 ), (sPB

1 , aPB
1 ), . . . , (sp|Tr|, a

p
|Tr|)}. At the

t-th step, spt and apt represent the state and action of the
player who takes action, respectively, where p ∈ {PA, PB}
represents that the step is related to either PA or PB . p = PA

when t = 2i − 1 and p = PB when t = 2i, where
i = 1, 2, . . . , |Tr|. The action consists of the landing po-
sitions, shot type, and moving positions represented by
apt = ⟨lpt , t

p
t ,m

p
t ⟩. The imitation learning task for turn-based

sports is to learn a policy that can recover demonstrations
from a set of historical rallies R. Formally, for each demons-
tration rally in R, given initial state sa1 of the r-th rally Tr,
our goal is to recover the rally Tr.

We formulate the decision-making process in badminton
games as Contextual Markov Decision Process (CMDP),
represented by a tuple (C, S,A,M). Here, C denotes a
context space, and M maps each context c ∈ C with the di-
mension K to Markov Decision Process (MDP) (Puterman,
2014) parameters1. At the beginning of each rally, the agent
chooses a context c ∈ C, where c represents the agent’s
desired intent for the rally. Subsequently, the chosen MDP
corresponding to context c is applied throughout the rally
until termination. Moreover, we define the experience of
player p with a current state spt as follows: For a rally that
has experienced current states spt , the experience is the acti-
on sequence of rallies {apt|p}, where t|p represents the step
that is player p taking action. To speed up the extracting
experience, we establish an experience extracting function
EXP to output the experience from the historical rallies
corresponding to the current state; the details can be found
in Appendix C.

3. Methodology
Figure 1 illustrates the proposed RallyNet framework, which
consists of the following two integral components:

Experiential Context Selector (Section 3.1). We substan-
tiate the idea of leveraging experience via a three-step ap-
proach: (i) ECS first extracts experiences by the experience
extracting function; and (ii) ECS leverages experiences to

1A MDP is defined by a tuple (S,A, T,R, γ)

construct a latent context space; (iii) ECS selects a context
as the agent’s selected intent of the rally.

Latent Geometric Brownian Motion (Section 3.2). LGBM
effectively brings the inductive bias of Geometric Brownian
Motion into the player’s decisions and allows the model to
consider the behavior of both players jointly instead of se-
parately. Subsequently, the action projection layer (Section
3.3) utilizes the latent position to predict both the landing
and moving positions and the shot type for the next step.

Notably, we designed two processes, namely the target pro-
cess and the player process. The target process aims to learn
to take actions that conform to the context by giving the
correct actions as a target context for training. The player
process utilizes experiences to learn how to select a con-
text that approaches the output of target processes from the
context space. Both processes share most of the modules,
and only the player process is used during inferencing. We
proceed to present the proposed modules. In this paper, for
a player p, we use xp

t to denote the state embedding for the
t-th step of the rally. More details about the state embedding
layer (cf. Figure 1) can be found in Appendix B.

3.1. Experiential Context Selector (ECS)

To enable HIL in turn-based sports, we propose the ECS
to leverage the experience and provide prior information to
the agent, e.g., what context the rally will have in a current
state. ECS leverages experience to construct a context space
in which the agent can select the most relevant context as
the intent of the rally, thereby ensuring that the agent’s beha-
vior during the rally is not influenced by partially incorrect
decisions. We first extract experiences of the current state
spt from historical rallies by the extracting function EXP :

{τ̃p
t , {τ

p
n,t}} ← EXP (spt ,R), (1)

where τ̃pt denotes the correct action sequence {apt|p}, and
{τpn,t} denotes the extracted experiences. For ease of nota-
tion, we let τpt = {τ̃pt , {τ

p
n,t}}. We employ the variational

autoencoders (Kingma & Welling, 2013; Rezende et al.,
2014) architecture as the context encoder and context deco-
der for learning context representations from experiences.
For the t-th step in a rally, the context encoder q encodes
experiences {τpn,t} into contexts. The context encoder q
encodes the n-th experience τpn,t into context zn:

zn ∼ q(•|τp
n,t). (2)

ECS iteratively encodes every experience into a context and
collects them as Zctx for building a context space. Follo-
wing existing work (Garnelo et al., 2018) producing latent
representations, we average the collected contexts Zctx to
get the centroid of the context space z̄ctx:

z̄ctx = mean(Zctx). (3)
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Figure 1. The framework of RallyNet.

We concatenate the centroid of the context space z̄ctx and
state embedding xp

t and use a linear layer as the context
selector CTX to select the player context zctx as intent:

zctx = CTX(concat(z̄ctx, x
p
t )). (4)

Since the player process aims to make outputs that are close
to the target process, the context selector’s goal is to select a
player context zctx that are close to the target context. The
target process utilizes the same context encoder q to encode
the correct action sequence τ̃pt to obtain the target context
z̃ctx:

z̃ctx ∼ q(•|τ̃p
t ). (5)

3.2. Latent Geometric Brownian Motion (LGBM)

In turn-based sports, players often consider their opponent’s
intent and determine their actions; for example, in badmin-
ton games, players consider their opponent’s intent and next
action to determine their defensive position to better receive
the shuttlecock. Thus, a player’s behavior changes depen-
ding on the opponent’s intent. To capture player interactions
and enhance realism, we propose LGBM. It models players
as particles alternately performing geometric Brownian mo-
tion in latent space, enabling the agent to jointly, rather than
independently, consider the opponent’s behavior. Specifical-
ly, we first concatenate the agent’s state and selected context
as the agent’s position in the latent space:

z̃′t = concat(xp
t , z̃ctx), z′t = concat(xp

t , zctx), (6)

where z̃′t is the target latent position for the target process
and z′t is the player latent position for the player process.
Secondly, we follow the setting in (Li et al., 2020) to simu-
late the geometric Brownian motion in the latent space. A
Brownian motion is a random process and is described by
the following stochastic differential equation (SDE):

dXt = σ(x, t)dWt, (7)

where Wt is Brownian motion and σ is the diffusion functi-
on. ∆Wt ∼

√
∆tN (0, 1) is used to simulating the Browni-

an motion, where N (0, 1) is a normal distribution with zero
mean and unit variance. The geometric Brownian motion
can be generalized from Eq. (7) with a drift function h(x, t):

dXt = h(x, t)dt+ σ(x, t)dWt. (8)

We describe the discrete-time SDE of the geometric Brow-
nian motion for two processes, ∆z̃t and ∆zt as follows:

∆z̃t = hθ(z̃
′
t, t)∆t+ σ(z̃′t, t)∆Wt,

∆zt = hϕ(z
′
t, t)∆t+ σ(z′t, t)∆Wt,

(9)

where hθ and hϕ are the target drift function and the player
drift function, respectively. Both processes share the same
function σ. Finally, we add the displacement to the previous
latent position to compute the new latent position:

zt = zt−1 +∆z̃t (training), zt = zt−1 +∆zt (inference).
(10)

LGBM incorporates opponent decisions by considering the
displacement, which represents the agent’s decision, added
to the previous latent position.

3.3. Action Projection Layer

The action projection layer is designed to project the latent
position to the action that can interact with the opponent. To
predict the shot type, we apply a linear layer to the latent
position zt to predict the shot type t̂pt at the t-th step:

t̂pt = softmax(WT zt), (11)

where WT ∈ RNt×d is a learnable matrix, and Nt is the
number of shot types. To predict the landing positions l̂pt and
the moving positions m̂p

t , we assume the landing distributi-
on and moving distribution are weighted bivariate normal
distributions which contain the mean {µt} = {⟨µx, µy⟩t},
standard deviation {σt} = {⟨σx, σy⟩t}, and weight {wt}
of Ng bivariate normal distributions. We apply two line-
ar layers to predict the parameterized distributions for the
landing and moving positions:

⟨{µ(L,M)
t }, {σ(L,M)

t }, {w(L,M)
t }⟩ = W (L,M)zt, (12)
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Table 1. Quantitative results. The best is in boldface and the se-
cond best is underlined. Since ShuttleNet predicts based on past
information, the symbol − denotes that the result is unavailable.

Task 1 Task 2

Model Land Shot Move Land Shot Move

Random agent 1.30 104.3 0.85 1.25 79.25 0.87
Rule-based agent 0.86 61.50 0.56 1.05 58.43 0.63

BC 0.86 55.90 0.44 1.03 54.87 0.57
HBC 0.74 35.53 0.40 0.96 35.00 0.55

ShuttleNet - - - 0.90 34.04 0.50

RallyNet (Ours) 0.59 18.86 0.34 0.79 19.51 0.49

where WL ∈ R5×Ng×d and WM ∈ R5×Ng×d are two
learnable matrices for landing and moving, respectively.
Finally, we concatenate the shot types and both landing and
moving positions to get the action of agent âpt = ⟨t̂pt , l̂

p
t , m̂

p
t ⟩

and decide the next state of the opponent.

3.4. Loss Function

To mimic the player’s action, we minimize the loss2:

L = w1 · Lpred + w2 · Lctx + w3 · Lsde, (13)

where w1, w2, w3 ∈ [0, 1] are hyper-parameters to balance
the weights of the corresponding losses3. We minimize the
first loss term Lpred, which encompasses cross-entropy loss
for shot type prediction and negative log-likelihood losses
for landing and moving position prediction. The context en-
coder encodes each experience and generates the mean and
standard deviation for each context. These values are used to
sample the context embedding, which is passed to the con-
text decoder for experience reconstruction. Therefore, the
second loss term Lctx consists of the latent loss Llatent and
the reconstruction loss Lrecon. Llatent is the KL divergence
between the context distribution and the standard Gaussian
distribution N (0, 1). Lrecon is the same as Lpred, where we
minimize the losses for reconstructed actions. Finally, The
player process output needs to be close to the target process
as only the player process is used during inferencing. We
follow (Li et al., 2020) to minimize the last loss term Lsde

between two SDEs in Eq. (9) of LGBM:

Lsde =
∑

Tr∈{R}

T∑
t=1

1

2
|(hϕ(z̃

′
t, t)− hθ(z̃

′
t, t))/σ(z̃

′
t, t)|2. (14)

4. Experiments
4.1. Experimental Setup

Dataset and Baselines. As there is only one public dataset
of turn-based sports, we evaluated RallyNet on the badmin-

2The calculation of Eq. 13 are described in Appendix D.2.
3The effects of different hyper-parameters and the training and

implementation details are described in Appendix D.

ton singles dataset (Wang et al., 2022c). We compare Rally-
Net against several baselines, including: 1) Random agent,
which samples actions uniformly randomly; 2) Rule-based
agent, which samples actions from the extracted experience;
3) Behavior Cloning (BC) (Pomerleau, 1988); 4) Hierarchi-
cal Behavioral Cloning (HBC) (Zhang & Paschalidis, 2021),
which learns an options-type hierarchical policy from de-
monstrations; and 5) ShuttleNet (Wang et al., 2022c), which
is the state-of-the-art turn-based supervised method that fu-
ses the contexts of rally progress and player styles to predict
behavior based on past information. It is noted that Shutt-
leNet requires at least two steps to encode contexts of the
players; therefore, it can’t be tested only on the initial state.

Evaluation Metrics. We present two tasks: Task 1 involves
predicting from the initial state only, while Task 2 requi-
res predicting from the states of the first two steps. Since
there is no existing work for imitation of turn-based player
behaviors, we propose 3 metrics to measure the similarity
between generated rallies and true player rallies, even when
their sequence lengths differ. To evaluate the results of shot
type prediction, we use Connectionist Temporal Classificati-
on (CTC) loss (Graves et al., 2006) for uncertainty measure-
ment, which is defined as the negative log-likelihood of the
labels given input sequences. To evaluate the predicted lan-
ding and moving positions, we use Dynamic Time Warping
(DTW) (Berndt & Clifford, 1994) to calculate the distance
between generated sequence and correct sequence.

4.2. Quantitative Results

Table 1 presents the performance of RallyNet and the base-
lines. We summarize the observations as follows: Superior
Performance of RallyNet. RallyNet surpasses all the base-
lines in terms of all metrics, whether given only the initial
state, or the state of the first two steps. Note that since
players usually have similar positions and shot types for
serving and receiving (i.e., the first two steps), the predicti-
on after two steps is more difficult to predict. These results
demonstrate that RallyNet addresses the compounding er-
ror in offline imitation learning for turn-based sports well.
Hierarchy Advantage. We can observe that HBC achieves
better prediction than BC, and manifests the importance of
using HIL in the turn-based setting. The importance of
leveraging experience. ShuttleNet performs well compa-
red to other baselines when given the states of the first two
steps, as it is specifically designed for turn-based sequences
in badminton games. Nonetheless, the comparison of Ral-
lyNet and ShuttleNet reveals the importance of leveraging
experience in turn-based sports.

4.3. Ablation Studies

As RallyNet can be seen as an extension of BC with the
addition of ECS and LGBM, an ablation study was conduc-
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ted by developing two variants to investigate the relative
contributions of two components: 1) BC w/ ECS, which is
RallyNet without the LGBM, 2) Indiv. RallyNet, which is
RallyNet with the proposed LGBM replaced by the indi-
vidual LGBMs (i.e., two independent stochastic processes,
one for each player). The result is shown in Table 2.

Table 2. Ablation study of our model.
Task 1 Task 2

Model Land Shot Move Land Shot Move

BC 0.86 55.90 0.44 1.03 54.87 0.57

BC w/ ECS 0.68 27.01 0.45 0.92 29.40 0.57
Indiv. RallyNet 0.60 19.06 0.37 0.81 21.37 0.53

RallyNet 0.59 18.86 0.34 0.79 19.51 0.49

The Effect of ECS. Recall that ECS is designed to capture
the agent’s intent through experience, enabling the agent’s
behavior throughout the rally to not be influenced by par-
tially incorrect decisions. The agent can already achieve a
moderately low prediction error by adding ECS to BC, espe-
cially when predicting the shot type and the landing position.
However, without the help of LGBM, the agent suffers from
a large error in moving position since it disregards the oppo-
nent’s behavior. The Effect of LGBM. Recall that LGBM is
meant to jointly capture the interaction of players to help the
agent generate more realistic behavior. RallyNet (i.e., BC
w/ ECS w/ LGBM) demonstrates a significant improvement
in performance, particularly in the prediction of moving
positions, compared to the model BC+ECS. Furthermore,
we investigated the effect of replacing the proposed LGBM
with individual LGBMs (i.e., Indiv. RallyNet). The results
showed that without the shared inductive bias introduced
by proposed LGBM, the agent ignored players’ interaction,
resulting in a degradation of the predicted moving position
performance. Overall, the results further support the effec-
tiveness of LGBM in RallyNet and provide evidence that
RallyNet captures the alternative decision-making nature of
the turn-based sports.

5. Case Study: Sports Analytics for Badminton
Simulation of Player Behavior. We describe a use case
of the RallyNet in sports analytics for characterizing the
player’s style by simulating the behavior of the player (e.g.,
the landing and the subsequent moving position upon a shot)
against different opponent players in different scenarios. Fi-
gure 2 shows the simulated distributions of the landing and
moving position of a player after a defensive shot. In this
example: (i) This player tends to have a landing position
mostly on both sides of the backcourt and only occasionally
on the midcourt. (ii) This player tends to move to the mid-
court after a defensive shot to prepare for the next stroke.
Such characterization can help the coach better understand
the player’s style and thereby devise tactical plans.

Figure 2. The landing distributions and the moving distributions of
a player when using a defensive shot.

Tactical Interpretation of Player Behavior. RallyNet se-
lects a context as the agent’s intent, making the agent take
action based on the intent, where the intent can be interpre-
ted to obtain the expected action sequence of the agent by
the context decoder of ECS. Figure 3 illustrates an example
to investigate the underlying intent behind a shot based on
the previous shot (long serve in the green grid) and the cur-
rent shot (net shot in the yellow grid). Player A first chooses
the action clear with a landing position to the backcourt,
and then player A moves to the midcourt. By looking at the
decoded intent, we can see the intent behind this action is
to plan for a subsequent smash by first letting the opponent
move far to the backcourt. This example shows that Ral-
lyNet can also provide tactical meaning for investigation,
which benefits badminton coaches and players.

Figure 3. An example of interpreting the intent behind a player’s
action. Player A’s clear stroke is meant to plan for a smash.

6. Conclusion
In this work, we present RallyNet, a novel offline imitati-
on learning model for learning player strategic behavior in
turn-based sports. By modeling players’ decision-making
processes as CMDP, the ECS component reduces impact of
partially incorrect decisions, while LGBM captures player
interactions to generate more realistic behaviors. Our evalua-
tion of a real-world badminton dataset shows that RallyNet
outperforms existing offline IL and the state-of-the-art turn-
based supervised method.
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A. RallyNet in a badminton rally
Figure 4 illustrates how RallyNet is applied to a turn-based sport, and uses a badminton singles match as an example. An
initial state of the rally including two players’ positions and score information is provided to recover the content of the rally.
A rally would terminate when any of the following termination conditions are satisfied: (i) The agent misses the shot; (ii)
The shuttlecock does not come over the net; (iii) The shuttlecock falls out of the scoring area.

Figure 4. An illustration of RallyNet in a badminton rally.

Limitations Currently, RallyNet focuses on reproducing players’ behaviors while does not simulate goal-conditioned
behaviors (e.g., provide receipts for winning a game), which will be explored in the future work. Moreover, we plan to
extend the framework to badminton doubles with more complex players’ behaviors.

B. State Embedding Layer
To capture the long-term decision dependency, we concatenate the current state spt and historical states of the player who
currently takes action sp1:t−1|p and employ a transformer encoder to compute the embedding of the rally rpt . To integrate
the state with the corresponding player, a linear layer is adopted to compute the embedding of the player who hits the ball
ep ∈ RNp and concatenate with rally embedding rpt ∈ Rds , where ds denotes the dimension of states and Np is the total
number of players in the dataset. Formally, the output of state embedding layer at t-th step xp

t ∈ Rds×Np is calculated as
follows:

rpt = TRE(concat(spt , s
p
1:t−1|p)),

xp
t = concat(W pep, rpt ),

(15)

where TRE denotes the transformer encoder and W p ∈ RNp is a learnable matrix.

C. Experience Extracting Function
The experience extracting function is designed to find historical rallies that are similar to a given input state and to output the
corresponding action sequence from those rallies. We create a dictionary before training, where the keys are combinations of
discrete values for player positions, opponent positions, ball positions (by discretizing the court into a 10x10 grid), and
shot types, and the values are the action sequences of rallies that have experienced combinations of these discrete states.
By discretizing the continuous variables and using them as keys in the dictionary, we can efficiently retrieve rallies with
matching states.

When a new state is an input into the experience extracting function, we extract the player positions, opponent positions, ball
positions, and shot types from the state and retrieve the corresponding rallies from the dictionary. We take the intersection
of these rallies to obtain the rallies that have experienced combinations of these discrete states. We then output the action
sequences from these rallies, which are used to construct the context space.

Figure 5 illustrates an example of how the experience extracting function works: Assume that the current shuttlecock is at
position 25, the player is at position 27, the opponent is at position 35, and the shot type is clear (abbreviated as C). First of
all, according to different conditions, find out the experience that meets the conditions. The intersection of all experiences is
the experience we want. Since the position-related conditions are strict, if the conditions cannot be met, the condition range
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can be expanded. For example: if the opponent is in position 35, but cannot find the experience that meets the conditions, we
will expand the range of conditions including 24, 25, 26, 34, 36, 44, 45, 46. If we still can’t find the experience that meets
the conditions, we continue to expand the scope until we find it.

Figure 5. Illustration of experience Extracting function

The use of dictionary retrieval for experience extracting in our approach may introduce some errors, as the selection criterion
is relaxed until a proper experience is found. However, the purpose of finding experiences is to establish context spaces for
the agent to learn from, and to select the appropriate context. The trade-off between ërroränd ”generalization ability”needs
to be considered when determining the similarity criterion for experience selection. A stricter similarity criterion can result
in finding more similar experiences, and therefore collected contexts can be closer to the target context, reducing the error.
However, it is not guaranteed that such similar experiences can always be found during testing, especially in the later stages
of a turn-based setting when states become sparse. Therefore, during training, the agent needs to learn how to generalize
from experiences to decisions, even when the experiences may not be very similar to the current state. If the similarity
criterion is too strict during training, the agent may not be able to learn how to generalize effectively.

D. Experimental Details
In this section, we provide essential experimental details of RallyNet and baselines for reproducibility. All training and
evaluation experiments were performed on a machine equipped with an Intel i7-8700 3.2GHz CPU, Nvidia GTX 3060
12GB GPU, and 32GB RAM.

D.1. Dataset

The badminton singles dataset (Wang et al., 2022c) consists of 75 singles matches played by 31 players from 2018 to 2021
and has 180 sets, 4,325 rallies, and 43,191 strokes in total. To construct the action space, we used the 12 shot types defined
by (Wang et al., 2022b), namely receiving, short service, long service, net shot, clear, push/rush, smash, defensive shot,
drive, lob, drop, and can’t reach.

The range of each dimension of the badminton court was rescaled to [-1,1] to ensure that the model would not be affected by
different ranges. We trained our model on the first 80% of the rallies, and the remaining 20% of the rallies were used to
evaluate the performance of our model as well as the 5-fold cross-validation for tuning the hyper-parameters.

D.2. RallyNet

Loss function. To mimic the player’s action at each step, we minimize the loss:

L = w1 · Lpred + w2 · Lctx + w3 · Lsde, (16)
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where w1, w2, w3 ∈ [0, 1] are hyper-parameters to balance the weights of the corresponding losses.

Lpred = Ltype + Lland + Lmove + Lreg, Ltype = −
∑

Tr∈{R}

T∑
t=1

tpt log t̂
p
t , (17)

where Ltype is the cross-entropy loss for the predicted shot types. Lland and Lmove are the negative log-likelihood losses
for the prediction of both landing and moving positions. To simplify the expression, we use L(land, move) to represent Lland

or Lmove:

L(land, move) = −
∑

Tr∈{R}

T∑
t=1

log(P(x(L, M)
t , y

(L, M)
t |{µ(L, M)

t }, {σ(L, M)
t }, {w(L, M)

t })). (18)

The regularization loss Lreg is also introduced to prevent the model from degenerating into a simple strategy by ensuring
the avoidance of overlapping bivariate normal distributions, computed as the average negative distance between their means.

The context encoder encodes each experience and generates the mean and standard deviation for each context. These values
are used to sample the context embedding, which is then passed to the context decoder for experience reconstruction.
Therefore, Lctx consists of the latent loss Llatent and the reconstruction loss Lrecon. The latent loss Llatent is the KL
divergence between the context space distribution and the standard Gaussian distribution N (0, 1) (with zero mean and unit
variance). Specifically, Llatent can be expressed as:

Llatent = DKL(N (µc, σc)||N (0, 1)), (19)

where µc and σc are the mean and standard deviation output by the context encoder, respectively. The objective of context
decoders is to reconstruct intent, which are action sequences of rallies, from selected contexts. Therefore, the reconstruction
loss Lrecon is the same as Lpred, where we minimize the cross-entropy loss for the reconstructed shot types, the negative
log-likelihood losses for the reconstructed landing and moving positions, and the average negative distance between the
means of bivariate normal distributions.

The player process output needs to be close to the target process as only the player process is used during inferencing. We
follow (Li et al., 2020) to minimize the KL divergence Lsde between two SDEs in Eq. (9) of LGBM:

Lsde =
∑

Tr∈{R}

T∑
t=1

1

2
|(hϕ(z̃

′
t, t)− hθ(z̃

′
t, t))/σ(z̃

′
t, t)|2. (20)

We summarize the hyper-parameters used in the evaluation as follows.

Loss weights. Recall that the loss that we are minimizing is:

L = w1 · Lpred + w2 · Lctx + w3 · Lsde, (21)

where w1, w2, w3 ∈ [0, 1] are hyper-parameters to balance the weights of the corresponding losses. We have set the loss
weights w1, w2, w3 to 1. Considering the significant scale difference between Lland, Lmove, and Lreg compared to Ltype,
we scale down Lland, Lmove, and Lreg by a factor of 0.01. The purpose of Lreg is to add a regularization loss that prevents
overlap between the predicted landing distributions and moving distributions, ensuring that the model does not degenerate
into a simple policy. This regularization loss is defined as the average distance between bivariate normal distributions. The
relationship between Lland, Lmove, and Lreg is given by:

L(land,move) = (1− α) · L(land,move) + α · Lsde, (22)

where the regularization loss weight α is set to 0.05 for all experiments. To investigate the influence of varying loss weights
on the model’s performance, we conducted a parameter analysis by examining different values for w1, w2, and w3.

To facilitate comparison and evaluation, we further provide an overall comparison of the algorithms by introducing a metric
termed Rule-based agent Normalized Score (RNS) defined as RNS = (Randomscore−Agentscore)

(Randomscore−Rulescore)
, where the subscript score

indicates the metric used and can be either DTW distance or CTC loss, and Agentscore is the performance of the agent.
Randomscore and Rulescore are the performance of the random agent and the rule-based agent, respectively. To provide an
overall comparison of the algorithms, we also present the Mean RNS (MRNS), which is defined as the average over the
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Figure 6. MRNS Performance of RallyNet w.r.t different value of loss weights.

Figure 7. MRNS Performance of RallyNet w.r.t different value
of context dimensions.

Figure 8. MRNS Performance of RallyNet w.r.t different num-
ber of distributions

RNS values under the three base metrics. Therefore, we evaluated the model’s MRNS using weights of 0.25, 0.50, and 0.75
for each loss term. The results of these experiments are presented in Figure 6.

The results indicate that increasing the weights of Lpred and Lctx improves performance by enhancing the accuracy of
target process outputs and context representation learning. This enables the player process used for inference to closely
approximate the precise target process. We observed that the influence of Lsde on overall performance is stable. This
suggests that when the target process is effectively learned, the player process effortlessly approximates the target process,
resulting in consistent performance that is minimally affected by Lsde.

Conetext dimension. In all experiments, we set the context embedding dimension to 128. The dimension of the context
embedding plays a crucial role in determining the continuity of the context space and influencing the specificity of the
selected context (i.e., player’s intention). As shown in Figure 7, increasing the dimension of the context embedding results
in improved overall performance.

The number of bivariate Gaussian distributions. We conducted experiments with three different numbers of bivariate
Gaussian distributions: 2, 5, and 8. Figure 8 reveals that insufficient or excessive distributions were unable to adequately
capture the intricate distributions of landing positions and movement locations.

Implementation details of predicted positions. To avoid the predictions for landing positions and movement positions
encompassing the entire court and degenerating the strategy, we imposed a constraint on the standard deviation of the
bivariate Gaussian distributions. The standard deviation was limited to the range of [-0.1, 0.1].



Generating Turn-Based Player Behavior via Experience from Demonstrations

Implementation details of experience extracting function. To improve the model’s generalization capability and mitigate
over-reliance on experiences for decision-making, we utilized an experience extracting function that restricted the number
of experiences for the current state to 5. This was done because a substantial amount of experience cannot be guaranteed
during testing, particularly in the later stages of a turn-based setting when the states become sparse.

The additional hyperparameters are listed in Table 3.

Table 3. Hyperparameters for RallyNet.
Hyperparameter Value

State embedding dimension 80
Batch size 32

Learning rate 0.001
Dropout 0.1

Max epochs 50

D.3. Baselines

We treated the number of options for HBC as a hyperparameter and conducted experiments using various numbers of options
{2, 4, 8}. Among these, the best result was achieved when the number of options was set to 8. Since ShuttleNet originally
predicted only the shot type and landing positions, we extended its capabilities by incorporating a module similar to the
landing position prediction to also enable the prediction of moving positions.

E. Related Work
Inverse Reinforcement Learning. Inverse Reinforcement Learning (IRL) (Ng et al., 2000; Abbeel & Ng, 2004; Fu et al.,
2017) is an imitation learning approach that attempts to learn the underlying rewards that an expert is optimizing from
the expert demonstrations. With the learned reward function, IRL can guide the agent’s behavior toward that of the expert.
However, in turn-based sports, each player’s actions determine the next state for other players. Treating opponents as part of
the environment is equivalent to training in a constantly changing environment, which can make it challenging for IRL to
learn optimal policies.

Offline Imitation Learning via Behavior Cloning. Behavior cloning (BC) provides a form of supervised learning for
training policies by learning direct mapping from states to actions, which can be used in the offline setting (Pomerleau, 1988;
Schaal et al., 2003). Recent works such as DT (Chen et al., 2021), GCSL (Ghosh et al., 2019), and RvS (Emmons et al.,
2021) have shown that not only is supervised learning and bypassing the learning reward function able to attain better results
for offline learning, but it is also easier to use and is more stable than offline inverse reinforcement learning (IRL) (Ng et al.,
2000; Ziebart et al., 2008; Garg et al., 2021). However, these existing approaches focus on the imitation learning task of the
same target, but neglect the characteristics of the mixed sequences, which causes serious compounding errors. Moreover,
previous work (Le et al., 2018; Zhang & Paschalidis, 2021) has extended the BC to hierarchical BC by dividing a task into
several sub-tasks, where the low-level behaviors are controlled by high-level decisions to capture long-term decision-making
processes. However, these existing approaches focus on the complex behavior and the long-term task of the same target, but
neglect the characteristics of the mixed sequences, which causes serious compounding errors.


