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ABSTRACT

To augment language models with the ability to reason, researchers usually prompt
or finetune them to produce chain of thought reasoning steps before producing the
final answer. However, although people use natural language to reason effectively,
it may be that LMs could reason more effectively with some intermediate compu-
tation that is not in natural language. In this work, we explore an alternative rea-
soning approach: instead of explicitly producing the chain of thought reasoning
steps, we use the language model’s internal hidden states to perform implicit rea-
soning. The implicit reasoning steps are distilled from a teacher model trained on
explicit chain-of-thought reasoning, and instead of doing reasoning “horizontally”
by producing intermediate words one-by-one, we distill it such that the reasoning
happens “vertically” among the hidden states in different layers. We conduct ex-
periments on a multi-digit multiplication task and a grade school math problem
dataset and find that this approach is able to outperform baselines that directly
produce the answer by a large margin.

1 INTRODUCTION

Large language models have demonstrated significant capabilities in tasks that demand both lan-
guage understanding and reasoning, such as multi-hop question answering (Yang et al., 2018; Yao
et al., 2023b) and solving math problems (Hendrycks et al., 2021; Cobbe et al., 2021; Welleck et al.,
2022; Wei et al., 2022b; Kojima et al., 2022; Chen et al., 2022; Yue et al., 2023; Chern et al., 2023).
To elicit their reasoning abilities, a prevalent paradigm has been the chain-of-thought reasoning ap-
proach (Nye et al., 2021; Wei et al., 2022b; Kojima et al., 2022). Under this paradigm, models are
trained or prompted to articulate intermediate steps before producing the final answer.

Although this approach aligns with human problem-solving strategies, it might not fully leverage the
computational potential of these language models. Consider the transformer architecture (Vaswani
et al., 2017), which can manifest computation both “horizontally” by generating words in sequence
and “vertically” by processing through its many layers of internal hidden states. With models like
GPT-4 having as many as 120 layers (OpenAI, 2023), one might wonder: Why not let these mod-
els reason internally, “vertically” through their layers, and present the solution without necessarily
articulating every intermediate step? Such an approach would not only save the significant time
cost of autoregressively generating the chain-of-thought: it may also allow models to develop more
efficient, if less human-interpretable, methods of reasoning, unconstrained by human conventions.

While chain-of-thought (CoT) methods have achieved impressive successes, generating the CoT
itself delays the production of the desired ultimate answer, and it is worth investigating whether
insights from CoT methods can be exploited in models that directly produce the answer. Drawing
inspiration from how the human brain compiles (Anderson, 2005) explicit, conscious, deliberate
reasoning (System 2) to more implicit, automatic, intuitive thinking (System 1) (Kahneman, 2011),
we seek a method to compile explicit CoT reasoning into a model that directly produces the final
answer. We call this the implicit chain-of-thought approach. We take the internal states across
transformer layers produced when generating the CoT in a model trained to do so, and train a model
to predict a compressed encoding of this vertical sequence of states: the predicted sequence is then
used as additional information at inference time for another model that directly generates only the
final answer. In this sense, we compile the internal states that would be autoregressively generated
horizontally in an explicit CoT model into the predicted vertical sequence of internal states which
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is used to generate the answer directly. This replaces (horizontal) reasoning across an explicit CoT
with implicit (vertical) reasoning from layer to layer.

Standard CoT training uses ‘teacher forcing’ to require the model to explicitly generate the CoT, but
the new method uses a teacher model (which explicitly generates the CoT) to train another model to
predict the teacher’s internal states when generating the CoT: ‘teacher teaching’ rather than teacher
forcing.

With this as our base, we propose a three-step strategy:

1. Mind-Reading the Teacher: We train a student model to “read” the teacher’s “thought process”
— the continuous hidden states during intermediate reasoning step generation. The student model,
rather than replicating these steps, uses some of the teacher’s hidden states to produce the answer.
2. Thought Emulation: We then employ knowledge distillation (Hinton et al., 2015; Kim & Rush,
2016) to train an emulator that predicts the teacher’s hidden states from the input “vertically”, across
layers, eliminating the need for “horizontal” explicit reasoning steps.
3. Couple and Optimize: Finally, we combine the emulator, which predicts the teacher’s thought
process, with the mind-reading student, which produces the final answer from the emulated teacher’s
thought process. This combined system is then optimized end-to-end, allowing the student model to
develop its own reasoning methods that might differ from the teacher’s approach.

Our experiments show the potential of implicit chain-of-thought reasoning. On a synthetic multi-
digit multiplication task, we found that while standard training cannot yield the final answer without
explicit reasoning (even GPT-4 struggles with five-digit by five-digit multiplication), our method,
applied to a GPT-2 Medium model, is able to provide direct answers for up to five-digit by five-digit
multiplications. Moreover, when dealing with real-world tasks like grade school math problems,
our method achieves a 22% accuracy on GSM8k (Cobbe et al., 2021) without the need for explicitly
generating the intermediate steps.

The contributions of our work are as follows: First, we show the benefits of shifting from teacher-
forcing to teacher-teaching by enabling faster generation. Second, we show the effectiveness of
distilling explicit reasoning in a teacher to implicit reasoning in a student. Third, we demonstrate the
improved performance on directly generating responses to math problems that results from chaining
together the first two contributions. Our code, data, and pretrained models are available at https:
//anonymous.4open.science/r/implicit_chain_of_thought/.

2 EXPLICIT, IMPLICIT, AND NO CHAIN-OF-THOUGHT REASONING

Consider a task that requires multi-step reasoning. Let x be the input, z the intermediate reasoning
steps, and y the output. As an example, for the multiplication problem 12 × 3 =?, x is 12 × 3, z
might be 6 + 30 (making explicit the intermediate partial products), and y is 36. The objective of a
model trained for this task is to determine the conditional distribution P (y|x). We distinguish three
approaches for solving this task: no chain-of-thought reasoning, explicit chain-of-thought reasoning,
and implicit chain-of-thought reasoning.

2.1 NO CHAIN-OF-THOUGHT REASONING

In this approach, models are trained to generate the final output y using the input x, with the inter-
mediate steps z left out. Mathematically, we directly parameterize the mapping from input to output
using a model Pθ(y|x) and train it with input-output pairs (x, y). Using the 12 × 3 multiplication
example, the model directly infers the answer 36, as illustrated in the “No CoT” column of Table 1.
This method can work well for simple tasks, but expecting models to deduce answers for more
complex tasks without intermediary guidance can be daunting, analogous to teaching multi-digit
multiplication to students without showing the intermediate calculations.

2.2 EXPLICIT CHAIN-OF-THOUGHT REASONING

In explicit chain-of-thought reasoning (Nye et al., 2021; Wei et al., 2022b), models are trained to
produce the intermediate steps z before the final output y. Instead of only modeling P (y|x), the
model looks at the joint distribution P (y, z|x) and breaks it down to Pθ(z|x)Pθ(y|x, z). During
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Table 1: Comparison between three methods of reasoning: no chain-of-thought (No CoT), explicit
chain-of-thought (Explicit CoT), and implicit chain-of-thought (Implicit CoT). The reasoning pro-
cess is illustrated using a multi-digit multiplication example: 12×3 = 6+30 = 36. Here, x denotes
the input ‘12× 3 =’, y denotes the output 36, and z denotes the intermediate steps 6 + 30. For the
model Pθ, observed variables are shaded. In No CoT, the model is trained to predict the output
directly from the input. Explicit CoT predicts the intermediate steps before the final output. Implicit
CoT is trained to reason internally using its hidden states and subsequently predict the output.

No CoT Explicit CoT Implicit CoT

Model Pθ x y x z y x

ẑ

y

z

Training not using z using z using z

Inference not verbalizing z verbalizing z not verbalizing z

Diagram

12 × 3 =

36

12 × 3 = 6 + 30 =

6 + 30 = 36

Same as No CoT

training, both components Pθ(z|x) and Pθ(y|x, z) are trained in a supervised way. At test time, the
model first predicts the reasoning steps from the input, then the final output. For the multiplication
12×3, the model predicts 6+30 first and then 36, as shown in the “Explicit CoT” column of Table 1.
While this method breaks down the task into simpler steps, it can be verbose; as we’ll see in later
experiments, even a five-digit multiplication needs to generate seventy intermediate tokens.

2.3 IMPLICIT CHAIN-OF-THOUGHT REASONING

Implicit chain-of-thought reasoning is a middle ground between the two methods above. During
training, the model sees intermediate steps z, but during testing, it doesn’t explicitly produce them.
Instead, it processes these steps in its internal states, labeled as ẑ, to produce the final output y.
Formally, P (y|x) ≈

∫
ẑ
Pθ(ẑ|x)Pθ(y|x, ẑ). This mirrors how humans, once they’ve internalized a

concept thoroughly, often bypass explicit reasoning, directly leaping to conclusions. Referring back
to our multiplication example, the model directly predicts 36 for x = 12 × 3, having computed the
steps internally. The inference diagram for this is the same as the no chain-of-thought reasoning, as
seen in Table 1 under “Implicit CoT”.

3 APPROACH TO IMPLICIT CHAIN OF THOUGHT REASONING

As a first step toward achieving implicit chain-of-thought reasoning, we outline a three-step strategy
based on a teacher model trained for horizontal explicit chain-of-thought reasoning. First, we train
a student model to generate the answer using the hidden states of the teacher model, which hold
information about the intermediate reasoning steps. This allows the student to produce the final
answer directly from the input and teacher states without needing the explicit reasoning steps. We
call this “Mind-Reading the Teacher”. Next, we apply knowledge distillation to train an emulator
that can predict the teacher’s hidden states from the input by reasoning vertically, a step we term
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12 × 3 = 6 + 30 = 12 × 3 =

36

predicts

substitutes

substitutes

substitutes

Teacher: Fixed Student: Trained

(a) Mind-Reading the Teacher

12 × 3 = 12 × 3 = 6 + 30 =

predicts

predicts

predicts

Emulator: Trained Teacher: Fixed

(b) Thought Emulation

12 × 3 = 12 × 3 =

36

predicts

substitutes

substitutes

substitutes

Emulator: Trained Student: Trained

(c) Couple and Optimize

Figure 1: The three-step strategy for implicit chain-of-thought reasoning.. (a) Mind-Reading the
Teacher: A student model “reads” the teacher’s continuous hidden states (internal reasoning pro-
cess) and uses them to produce the final solution. (b) Thought Emulation: An emulator is trained to
predict the teacher’s hidden states based on the given input, thus mimicking the internal reasoning
process of the teacher without generating explicit horizontal reasoning steps. (c) Couple and Op-
timize: Integration of the emulator and the mind-reading student forms a combined system. This
system is then finetuned end-to-end, enabling the student model’s development of its own reasoning
trajectories, possibly deviating from the teacher’s method.
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“Thought Emulation”. Finally, we combine the student and emulator. Here, the student uses the
teacher states predicted by the thought emulator to give the final output from the input. We then
fine-tune this combined model end-to-end to improve the internal reasoning process, a step we name
“Couple and Optimize”. All these phases are illustrated in Figure 1.

Having outlined the general methodology, we now delve into the implementation specifics when
employing the transformer architecture (Vaswani et al., 2017) for our teacher, student, and emula-
tor models. Transformer’s layer-wise processing offers a natural platform to leverage the vertical
reasoning concept.

3.1 MIND-READING THE TEACHER

As the teacher processes the input, its intermediate reasoning steps, and the output, its hidden states
capture token-related information. Specifically, for a transformer model with L layers running on T
intermediate tokens, the hidden states can be expressed in a 2D matrix z of dimensions L× T , with
each element zlt representing the hidden state at layer l for intermediate token t.

Information Extraction While the matrix holds L×T vectors, we only select L vectors, allowing
an emulator with an equal number of layers to predict just one vector per layer. Through experimen-
tation, we found that simply taking the matrix’s diagonal elements was effective. Assuming that the
teacher model is autoregressive, the intuition is that predicting z11 is easy for the emulator since only
one intermediate token is introduced1. Progressing diagonally, from z11 to zLL, we gradually add
more intermediate tokens and layers, ensuring a gradient of increasing difficulty for the emulator,
until zLL, which ideally has enough information to let the teacher start producing the output2.

Variable Length Chain-of-Thought Real-world scenarios may present variable number of in-
termediate tokens, resulting in a variable number of columns T . To handle this, we introduce a
hyper-parameter ∆ and take evenly-spaced columns while still selecting one vector per row. The
selected l-th vector is zl,tl , determined by:

tl = min(⌊1.5 + ∆(l − 1)⌋, T ).

In our experiments, we search over both fixed ∆ values, and also a dynamic ∆ value T−1
L−1 which

adapts to the number of intermediate tokens T in each example, based on validation performance.

Student Training We use a student with the same number of layers as the teacher. Following the
extraction of L vectors, these vectors substitute the corresponding hidden states of the student right
after input. Refer to Figure 1a for a visual illustration. The student model is then trained to predict
the final answer, with the teacher model fixed.

3.2 THOUGHT EMULATION

At test time, the student cannot rely on the L selected vectors z1, z2, . . . , zL (we abuse notation and
omit the second index in z) from the teacher, so we need to train an emulator to predict those L
vectors directly from the input. We use an emulator with the same number of layers as the teacher,
such that after the input it only needs to predict one vector ẑl per layer, as shown in Figure 1b. We
train this emulator by minimizing mean squared loss:

min
ẑl

L∑
l=1

∥zl − ẑl∥22. (1)

Multiple Reasoning Pathways When there exist multiple possible reasoning pathways, directly
predicting the teacher’s state using a mean squared loss would result in poor predictions, similar to
using a single Gaussian distribution to fit a mixture-of-Gaussians distribution and only capturing the

1In our experiments the first intermediate token is always a special token separating input and reasoning.
2For predicting the first answer token, only the top teacher state is used; lower-layer states are only acces-

sible to the second answer token and onward via attention. This is not an issue because in our experiments
answers always start with a special token separating reasoning and output.
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center. As an example, consider a grade school math problem: Asumi has 30 books on history, 25
books on literature. How many books does Asumi have in total?. The intermediate steps could be
either (1) 30 + 25 or (2) 25 + 30, corresponding to two possible hidden states z

(1)
l and z

(2)
l . The

optimal solution using Equation (1) would be ẑl = (z
(1)
l + z

(2)
l )/2, which does not correspond to

any valid reasoning path3.

To account for multiple reasoning pathways, instead of predicting one ẑl per layer, we predict a
mixture of components P (ẑl) =

∑
cl
P (ẑcll |cl)P (cl), such that each mixture component cl captures

a different mode of the distribution of teacher states.

To parameterize this distribution, at layer l, assume the hidden state of the emulator is hl, we pa-
rameterize P (ẑcll |cl) as a Gaussian N (f(hl, cl); 1) and the distribution over mixture components as
P (cl) = g(hl, cl).

Empirically, we found that directly fitting this mixture is prone to mode collapsing (He et al., 2019),
where only a few mixture components get used. To alleviate this issue, we leverage the intermediate
token ztl

4 at position tl and supervise cl to be the same as this token. The final objective is

min
hl

L∑
l=1

∥zl − f(hl, cl)∥22
2

− logP (cl = ztl). (2)

Taking the above example, at the first layer (l = 1 and tl = 1), in case (1) we would supervise the
mixture component c1 to be “30” and fit ẑ30 to z

(1)
l ; in case (2) we would supervise c1 to be “25”

and fit ẑ25 to z
(2)
l , hence the two cases are fit with different mixture components.

3.3 COUPLE AND OPTIMIZE

We can now feed the emulator’s predicted teacher states ẑl to the mind-reading student and optimize
the entire system end-to-end by maximizing the probability of the final output. Importantly, as the
combined system learns, the internal reasoning process might diverge from the teacher’s approach.
Note also that this step doesn’t require training data that contains the intermediate reasoning steps.

For the mixture model, ideally we want to take the argmax of the reasoning pathway, but that oper-
ation is not fully differentiable. Instead, we approximate argmax using a softmax with low temper-
ature, which is fully differentiable. See Appendix C for more details.

4 EXPERIMENTAL SETUP

4.1 DATA

We conduct experiments on two tasks: we first consider the multi-digit multiplication task from the
BIG-bench benchmark (bench authors, 2023; Suzgun et al., 2023), which is the most challenging
among arithmetic tasks (Yang et al., 2023). In particular, we use the four-digit (4× 4) and five-digit
(5×5) multiplication problems, since these two tasks prove very challenging to solve under no CoT.
The second task we use is grade school math problems, which requires both language understanding
and mathematical reasoning. In particular, we use the GSM8K dataset (Cobbe et al., 2021).

Intermediate Steps For the multiplication task, we break down the problem by multiplying the
multiplicand by each digit of the multiplier and keep track of partial products and partial sums.
On GSM8K, following Wei et al. (2022b) we use the natural language intermediate steps for ex-
plicit CoT. For training the teacher of implicit CoT, to minimize the gap between the number of
transformer layers and the number of intermediate steps, we only keep the equations.

Data Augmentation In our preliminary experiments, we found that our proposed approach to
implicit CoT requires a large training set, potentially due to its different mode of training compared
to the pretrained language models we base on. Therefore, we generate synthetic data for both tasks.

3The emulator cannot distinguish the two cases because it only gets access to the input.
4we use unbolded z to represent the intermediate tokens.
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Table 2: Dataset Statistics. Sizes refer to the training set. The number of input, output, and interme-
diate tokens are median values on the validation set. The number of tokens are based on the GPT-2
tokenizer, and a special ending symbol is counted for both intermediate tokens and output tokens.

Dataset Orig Size Aug Size #Input Tokens #Intermediate Tokens #Output tokens

4× 4 Mult 0 808k 9 47 9
5× 5 Mult 0 808k 11 75 11
GSM8K-Aug 7k 378k 51 59 2

For the multi-digit multiplication tasks, we randomly sample equations that do not overlap with
the BIG-bench dataset. For GSM8K, we used GPT-4 (OpenAI, 2023) to generate 400k additional
mathematical problems with the same format as GSM8K. We then clean the dataset and name it
GSM8K-Aug. Note that for both tasks we do not change the original test sets. The statistics of
the augmented datasets are shown in Table 2, which show that with explicit CoT the number of
generated tokens rise by 5- to 30-fold. More data details can be found at Appendix A.

4.2 BASELINES

We compare our approach to both no CoT and explicit CoT. We compare to GPT-2 Small, GPT-2
Medium, GPT-2 Large, ChatGPT, and GPT-4. For smaller models from the GPT-2 family, we fine-
tune them on the augmented training datasets. For ChatGPT and GPT-4, we use few-shot prompting
to adapt them to the given task, whose details can be found at Appendix B.

4.3 MODELS

For implicit CoT, we finetune GPT-2 Small and GPT-2 Medium. For the diagonal teacher states,
we normalize them to be zero-mean and standard deviation 1 to stabilize emulator training5. For
the “Mind-Reading the Teacher” step, we add a trainable one-layer MLP on top of the teacher
states before copying. For the “Thought Emulation” step, we add an LSTM network (Hochreiter
& Schmidhuber, 1997) with self-attention to process the vertical hidden states before predicting the
teacher states. For the mixture model, we add a linear projection on top of the emulator hidden states
to predict the distribution over mixture components, and to compute f(hl, cl), we concatenate hl

with the embedding of the mixture component cl, and then process them with a one-layer MLP.

We used the mixture approach for GSM8K-Aug but not for multiplication, because the multiplica-
tion intermediate steps are unique given any input by construction. For the mixture approach we use
a temperature of 0.05 during “Couple and Optimize”. See Appendix C for full model details.

5 RESULTS

Table 3 presents the main results. Compared to no CoT, our approach enables solving tasks previ-
ously not solvable without explicit CoT: for example, GPT-2 Medium only got 1.9% accuracy on
5 × 5 multiplication under the no CoT setting, whereas GPT-2 Medium got 96.4% accuracy under
the implicit CoT setting. Interestingly, GPT-2 Small performed well on 4×4 multiplication, achiev-
ing 96.6%, while precipitously falling to 9.5% on 5×5, which might be due to the lack of sufficient
layers to perform the necessary intermediate steps.

On GSM8K-Aug, implicit CoT enables directly producing the final answer with over 20% accuracy,
whereas the best GPT-2 model with no CoT only achieves 17.0% accuracy. Surprisingly, GPT-4 with
no CoT performs on par with GPT-2 Large finetuned with explicit CoT, which we suspect might be
either due to data contamination or due to emergent capabilities at scale (Wei et al., 2022a).

Compared to explicit CoT, implicit CoT lags behind by a large margin, possibly due to two reasons:
first, the base language models we used were all pretrained for horizontal reasoning; second, the
number of layers we used in our experiments (24 for GPT-2 Medium) might not be sufficient for

5We found that higher layers tend to have hidden states of higher norms. We applied this normalization to
each hidden vector, same as applying layer normalization (Ba et al., 2016) without trainable parameters.
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Table 3: Main results. Accuracy measures exact match accuracy. Speed measures the number of
examples per second during inference using a batch size of 1. †: few-shot prompting instead of
finetuning, and Speed is measured based on API calls with a large variability across runs.

Model #Layers 4× 4 Mult 5× 5 Mult GSM8K-Aug

Accuracy Speed Accuracy Speed Accuracy Speed

No CoT
GPT-2 Small 12 28.7% 13.2 1.2% 11.1 13.3% 24.7
GPT-2 Medium 24 76.2% 7.0 1.9% 5.9 17.0% 13.2
GPT-2 Large 36 33.6% 4.8 0.9% 4.0 12.7% 9.1
ChatGPT† 96 2.2% 1.0 0.0% 1.4 28.1% 1.8
GPT-4† - 4.0% 0.7 0.0% 0.8 43.8% 0.9

Implicit CoT
GPT-2 Small 12 96.6% 8.9 9.5% 7.9 20.0% 16.4
GPT-2 Medium 24 96.1% 4.8 96.4% 4.3 22.0% 8.7

Explicit CoT
GPT-2 Small 12 100.0% 2.3 100.0% 1.5 40.7% 2.0
GPT-2 Medium 24 100.0% 1.2 100.0% 0.8 43.9% 1.1
GPT-2 Large 36 100.0% 0.8 99.3% 0.6 44.8% 0.7
ChatGPT† 96 42.8% 0.1 4.5% 0.1 61.5% 0.2
GPT-4† - 77.0% 0.1 44.3% 0.1 90.9% 0.1

the number of reasoning steps needed. That being said, implicit CoT has a higher inference speed,
especially for tasks with many intermediate steps such as GSM8K-Aug and 5 × 5 multiplication,
since it’s directly producing the final answer, with the only overhead being the emulator, which can
also be parallelized in theory (although not in our experiments).

6 ANALYSIS

Taking Different Subsets as Teacher’s Thought Process In our main experiments, we took the
diagonal elements from the matrix of teacher hidden states. Several other methods of extracting a
compressed encoding of these hidden states did not perform as well. On the 4×4 multiplication task
using GPT-2 Small, when we use diagonal, the validation accuracy is 100.0%; using first column
gets 29.9%; using top row gets 84.4%; using bottom row gets 57.6%; using last column gets 58.7%.

Mixture Due to the existence of multiple possible reasoning pathways, the mixture approach
is crucial for GSM8K. Without the mixture approach, we achieve 11.2% validation accuracy on
GSM8K-Aug (GPT-2 Small, ∆ = 2). With a mixture, this rises to 20.2%.

Coupling & Optimization The “Optimize” part is important as well. On GSM8K-Aug with
GPT-2 Medium and ∆ = 1, coupling the emulator and the mind-reading student without further
optimization only results in a validation accuracy of 9.4%, compared to 22.0% after further opti-
mization. Allowing the student to develop its own reasoning pathway is also important: if we fix the
emulator and only optimize the student, accuracy drops to 13.0%.

For the mixture approach, since we supervised mixture components to be the same as the current
intermediate token, we can map back the predicted mixture components to a string of words. Before
the “optimize” step, these mapped words look similar to the intermediate reasoning steps produced
by the teacher when ∆ = 1, and if we directly use them for prediction, we can get an accuracy of
9.4%. However, after the “optimize” step, the predicted mixture components are no longer inter-
pretable, as shown in Table 4 in Appendix E,

7 RELATED WORK

Emergent Capabilities Research has shown that, under sufficient optimization, language models
can solve basic arithmetic tasks (Power et al., 2022). Even for tasks that require multi-step reasoning,
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increasing both model and data size improves the model’s direct performance. For example, Wei
et al. (2022a) observed that test accuracy on the GSM8K dataset (no CoT) rises from below 5% to
about 7% as the training FLOPs increase from 1021 to 1024. Concurrent to our work, Yang et al.
(2023) trained a 2B language model to solve 5×5 multiplication with an accuracy of 89.9% through
curriculum learning on 50M training examples. These findings demonstrate that sufficiently scaled
models can internally reason over multiple steps. Our approach differs in its use of the teacher
model’s thought process to more efficiently attain these models.

Knowledge Distillation Our “Thought Emulation” step is a type of knowledge distillation, where
the teacher model transfers its knowledge to a student model (Hinton et al., 2015). Traditionally, this
technique is used for model compression (Kim & Rush, 2016) or for non-autoregressive machine
translation (Gu et al., 2018). In our approach, it’s used to distill the teacher model’s horizontal
reasoning process into a vertical reasoning process in the emulator and the student model.

8 LIMITATIONS

Lack of Transparency and Interpretability One of the main advantages of explicit CoT is its
inherent transparency: the intermediate steps allow for easy interpretation of the model’s reasoning
process. In contrast, implicit CoT, by virtue of its internal processing within hidden states, lacks
this transparency. While it achieves compactness and efficiency in generation, it sacrifices human
interpretability, making it challenging to understand how the model arrives at its conclusions.

Reliance on the Teacher’s Thought Process Our current three-step strategy is, at a high level,
trying to distill the teacher model’s horizontal reasoning process into the vertical reasoning process
of the student and the emulator. While the ultimate goal of implicit reasoning is to allow models
to develop their own unique trajectories of reasoning, our initial approach still relies heavily on the
teacher’s thought processes for a starting point.

Performance Discrepancies Our current results of implicit CoT still lag behind the performance
of explicit CoT. However, this work is just a first step towards building implicit CoT, and there exists
ample room for further optimization.

9 CONCLUSION AND FUTURE WORK

In this work, we proposed the concept of implicit chain of thought reasoning for transformer-based
language models, where reasoning is performed “vertically” among the transformer hidden states,
instead of being performed “horizontally” in the form of generating intermediate tokens. This con-
cept potentially enables the model to break away from the human-like reasoning process and develop
its own internal reasoning process.

To operationalize this concept, we proposed a three-step approach—mind-reading the teacher,
thought emulation, and coupling and optimization, where the high-level idea is to distill the knowl-
edge of a teacher trained for horizontal reasoning into a student and an emulator trained for verti-
cal reasoning. Experiments on an arithmetic multiplication task and a grade school math problem
dataset show that, for the task of directly producing an answer, the proposed approach substan-
tially improves the performance of transformer language models — although the task of explicitly
producing a chain-of-thought improves the accuracy of final answers further, by a large margin.

We see many exciting future directions that can be built on top of this work. For example, instead
of the three-step strategy, one might explore a fully end-to-end joint training strategy using a vari-
ational auto encoder (Kingma & Welling, 2022) by treating the model’s internal reasoning process
as an unobserved variable. Another direction would be using image modeling techniques such as
diffusion (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) to train the thought emu-
lator. One might also explore incorporating this approach into the pretraining process, such that a
pretrained language model can both do horizontal explicit chain-of-thought reasoning, and also do
vertical implicit chain-of-thought reasoning, as opposed to existing models whose performance gets
much worse when not allowed to use explicit reasoning steps.
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A DATA AUGMENTATION AND PROCESSING

A.1 MULTI-DIGIT MULTIPLICATION

For each multi-digit multiplication task, we randomly sample two numbers and compute their prod-
uct. We collected 808k training equations and 1k validation equations after removing duplicates. We
use the BIG-bench data as test set. To generate the intermediate steps, we break down the problem
by multiplying the multiplicand by each digit of the multiplier, and we keep track of both partial
products and partial sums. To make the task easier, we reverse the order of the digits such that lower
digits come first. For example, for 917× 412, the intermediate steps are

4 3 8 1 + 0 7 1 9 0 ( 4 0 0 1 1 ) + 0 0 8 6 6 3,

where we break down 917 × 412 into 917 ∗ 2 + 917 ∗ 10 + 917 ∗ 400 = 1834 + 09170︸ ︷︷ ︸
11004

+366800.

Note that the partial sum 11004 is reversed and written in the parentheses as 4 0 0 1 1.

A.2 GRADE SCHOOL MATH PROBLEMS

We use the training set of GSM8K (Cobbe et al., 2021) as a seed dataset and generate similar
examples by prompting GPT-4. We used the below prompt template and a temperature of 1 for
diversity of the generated dataset:

Create 5 new math word problems following the JSON format of the given exam-
ples.
Example math word problems:
1): {"question": "Meena bakes 5 dozen cookies for the school’s bake sale. She
sells 2 dozen cookies to her biology teacher, Mr. Stone. Her friend Brock
buys 7 cookies, and her friend Katy buys twice as many as Brock. How many
cookies does Meena have left?", "answer": "Meena bakes a total of 5 x 12 =
〈〈5*12=60〉〉60 cookies. Mr. Stone buys 2 x 12 = 〈〈2*12=24〉〉24 cookies. Brock
buys 7 cookies, so Katy buys 2 x 7 = 〈〈7*2=14〉5〉14 cookies. Meena sells a total
of 24 + 7 + 14 = 〈〈24+7+14=45〉〉45 cookies. She has 60 - 45 = 〈〈60-45=15〉〉15
cookies left. #### 15"}
2): [...]
3): [...]
4): [...]
5): [...]
Similar examples:
6):

Each time we prompt GPT-4, we take 5 random examples uniformly sampled from the training set of
GSM8K. We prompted GPT-4 80k times, resulting in 400k generated examples. We then filter out
examples with invalid JSON format, or examples whose intermediate steps don’t lead to the same
final answer (for example, in the above example, the last equation is 〈〈60-45=15〉〉, which matches
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the final answer 15, so it is valid). After applying this filtering, we got a dataset of 379k examples,
where we leave 1k for validation. We use the same test set from GSM8K.

For training explicit CoT, we used the natural language intermediate steps, which was shown in Wei
et al. (2022b) to perform better than using equations. For example, for the input Tom bought his
games for $200. They tripled in value and he then sold 40% of them. How much did he sell the
games for?, the intermediate steps are The value of the games increased to 200*3=$600 So he sold
600*.4=$240 worth of games. For training the implicit CoT teacher, we only use the equations as
intermediate steps based on our finding that more intermediate steps generally need more layers for
the implicit chain-of-thought approach. For the same input, the intermediate steps are 200*3=600
600*.4=240.

B FEW-SHOT PROMPTING BASELINES

In Table 3, we used ChatGPT and GPT-4 as baselines. For these baselines, we use few-shot prompt-
ing with five examples and a temperature of 0 (greedy decoding). Each time we randomly sample
five example demonstrations from the training set. For the arithmetic multiplication datasets, we
used the original numbers instead of using the reversed digits, and removed the whitespaces be-
tween digits.

For the no CoT setting, below shows an example prompt for 4× 4 multiplication:

Answer the final question following the exact format of the given examples. Do
not break the problem down, directly produce the answer.
Example problems:
Q: 5646 * 1576
A: #### 08898096
[...]
Q: 7560 * 3228
A: #### 24403680
Question to answer:
Q: 1668 * 4380

For explicit CoT, an example prompt for 4× 4 multiplication is:

Answer the final question following the exact format of the given examples. Do
not output anything else.
Example problems:
Q: 5646 * 1576 A: 1): 6 * 5646 = 33876 (partial sum 0 + 33876 = 33876) 2): 70 *
5646 = 395220 (partial sum 33876 + 395220 = 429096) 3): 500 * 5646 = 2823000
(partial sum 429096 + 2823000 = 3252096) 4): 1000 * 5646 = 5646000 (partial
sum 3252096 + 5646000 = 8898096) #### 8898096
[...]
Question to answer:
Q: 1668 * 4380

C MODEL DETAILS

C.1 MIND-READING THE TEACHER

In this step, for each layer, we add a trainable one-layer MLP on top of the teacher state before
using it to substitute the corresponding student state. This MLP first uses a linear layer to project
the teacher state of size H to a vector of size 4H , and then we apply ReLU before projecting it back
with another linear layer to project it back to size H .

In experiments, we search over ∆ values from {1, 2, 3}, and also the dynamic ∆ value T−1
L−1 . We

found that the dynamic ∆ value performs the best for the arithmetic tasks. For GSM8K, we found
∆ = 2 works the best for GPT-2 Small and ∆ = 1 works the best for GPT-2 Medium.
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C.2 THOUGHT EMULATION

We discuss the more general mixture approach first. At each layer l, we first compute the corre-
sponding column in the intermediate steps tl based on ∆. Denote the emulator hidden state at this
layer as hl, then we parameterize the mixture distribution P (cl) using a linear projection to the size
of the vocabulary (since we supervised cl to be the same as the corresponding word ztl in the inter-
mediate steps), and then we use a softmax to get a valid probability distribution. Then in order to
parameterize f(hl, cl), we embed cl = ztl into a vector of size H (H is the same as the transformer’s
hidden size), and concatenate this vector with hl, and pass through a one-layer MLP. This MLP has
the same architecture as the MLP described in “Mind-Reading the Teacher” but uses a separate set
of parameters.

In the original transformer architecture (Vaswani et al., 2017), the hidden state at the current layer
is directly used as input to the next layer. Here we cannot follow that formulation, as then it cannot
account for which mixture component is being used (since hl doesn’t contain information about cl.
Therefore, we take f(hl, cl), which contains information about cl, and use an LSTM (Hochreiter
& Schmidhuber, 1997) with self-attention to process it, and take the output to feed to the next
transformer layer. The LSTM with self-attention is implemented similar to Luong et al. (2015),
where we first project f(h1:l, c1:l) into keys and queries, and then we use f(hl, cl) as query to
attend to f(h1:l−1, c1:l−1) using dot attention, and compute a weighted sum of previous keys using
attention weights. We then concatenate the resulting vector (typically termed the context vector)
with the output of the RNN and use a linear projection to project it back to size H as the output of
the LSTM. This context vector is also added to f(hl+1, cl+1) as the input to the next step of LSTM.
Finally, we feed in the output of the LSTM to the next transformer layer l + 1.

When not using the mixture approach, we simply set cl to 1 in the above process.

C.3 COUPLE AND OPTIMIZE

The couple and optimize step is straightforward, with the exception of using the mixture approach.
Ideally we want to take the argmax of the predicted mixture component at each layer, corresponding
to committing to the most likely token at each reasoning step, but argmax is not fully differentiable.
To make the computation fully differentiable, inspired by Gumbel-Softmax (Jang et al., 2017; Mad-
dison et al., 2017) we use softmax with temperature to temper the distribution over mixture compo-
nents cl:

P (cl; temperature) ∝ P (cl)
1/temperature.

With this tempered distribution, we compute a weighted sum c̄l over the one-hot representation
of cl, and compute f(hl, c̄l), where when this function computes embeddings of cl, it computes a
weighted sum of all embeddings in the vocabulary using P (cl)

1/temperature as weights. This process is
fully differentiable, and when the temperature goes to zero, we recover taking the argmax of P (cl).
In our experiments, we fix the temperature to a small value 0.05.

For the arithmetic tasks, we finetune both the emulator and the student after coupling. But for
GSM8K, we found the coupled model tends to overfit even with the augmented dataset, and fixing
the student alleviates overfitting.

D OPTIMIZATION DETAILS

We use AdamW to optimize all our models (Kingma & Ba, 2017; Loshchilov & Hutter, 2019) with
a batch size of 32 and a learning rate of 5e-5. For 4× 4 multiplication, we trained the baselines for
30 epochs and the student model in implicit CoT for 15 epochs. For 5× 5 multiplication, we trained
both the baselines and the student model in implicit CoT for 40 epochs. For GSM8K, we trained
both the baselines and the student model in implicit CoT for 15 epochs. For thought emulation,
we trained for 30 epochs. For couple and optimize, we trained for 10 epochs on 4 × 4 and 5 × 5
multiplication and 20 epochs for GSM8K.
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Table 4: Visualizing the predicted mixture components. We use GPT-2 Medium with ∆ = 1, such
that layer l’s mixture component was supervised to be the l-th token of the intermediate steps in the
Thought Emulation step. Before couple and optimize, the task accuracy is 11.2% on the validation
set and afterwards it rises to 22.0%. If we use the mapped mixture components to derive the final
answer, before couple and optimization we get 9.4% and after it we get 0%.

Ground Truth z Predicted Before Couple & Opt Predicted After Couple & Opt

4*2=8 8*4=32 40-32=8 4*2=8 4*8=32 32- initiated=14 rewrite HELPonialrunnerGreek 6
inscribedidget Store diversion –
Speedileen grasped victimized648
setup official delinqu "# lawful
HELPatin

10*2=20 10+20=30 10*2=20 10+20=30 rewrite HELPonialrunnerGreek
6 inscribedidget Store opens –
solderileen graspedAccording648
PharaohPosarry HELP untneath
floors

320+430=750
400+300=700
750+430+400+700=2280

320+230=550 340+440=780
300+310=780
384+960=RPG40

rewrite HELPonialrunnerGreek
Thankfully inscribedidget Store
diversion – victimizedileen MO-
TAccordinglectedileenPos delinqu
creat Tamil Rai conceptual

4/2=2 16/2=8 8*2=16
4*16=64

16/2=8 8*2=16 16/4=4 rewrite HELPonialrunnerGreek
Thankfully inscribedidget Store
diversion calib solderileen grasped
RakousseAcc victimized valu-
ableper565 HELP/

E VISUALIZING THE INTERNAL REASONING PROCESS

Since we supervised the mixture components cl using the intermediate tokens ztl , when ∆ = 1 we
can map back the mixture components with highest probability into words in the vocabulary and
visualize the reasoning process. As shown in Table 4, right after the Thought Emulation step but
before the Couple and Optimize step, the mixture components look quite similar to the intermediate
steps in data (which is not surprising given that’s how we trained them). However, after further op-
timization of the coupled system, the mixture components no longer align with human-interpretable
reasoning steps, indicating that the model’s internal reasoning process might differ from that of
human’s.

F MORE RELATED WORK

Chain-of-Thought Reasoning To enable language models to handle tasks that require multi-step
reasoning, researchers have advocated training these models to explicitly generate intermediate com-
putation steps (Nye et al., 2021; Sakenis & Shieber, 2022). With the rise of large pretrained models,
methods that do not require training these models have emerged. For instance, Wei et al. (2022b)
introduced chain-of-thought prompting using few-shot examples with intermediate steps. Similarly,
Kojima et al. (2022) guided models to “think step-by-step” in a zero-shot setting. Further research
has explored alternative prompting data structures (Yao et al., 2023a; Long, 2023; Besta et al., 2023),
optimal CoT prompting techniques (Wang et al., 2023; Fu et al., 2023a), applying CoT to generate
programs (Chen et al., 2022), use APIs (Yao et al., 2023b; Schick et al., 2023), and even in vision
domains (Gupta & Kembhavi, 2023). Yet, these methods all require explicit intermediate steps,
while our work directly generates the final answer.

Reinforcement Learning for NLP In our work, continuous hidden states of the model are uti-
lized for reasoning. Since this system is entirely differentiable, gradient descent is employed for
optimization. Another avenue could involve letting models form their own symbolic reasoning path-
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ways, potentially distinct from human reasoning, and fine-tuning the system through reinforcement
learning (Schulman et al., 2017; Stiennon et al., 2020; Caccia et al., 2020; Ramamurthy et al., 2023;
Ouyang et al., 2022). One could design a reward system based on the accuracy of the final answer
and the efficiency of the reasoning pathway, akin to auto-prompting approaches (Zhou et al., 2023b;
Singh et al., 2023; Deng et al., 2022; Zou et al., 2023).

Mathematical Reasoning using LMs Large LMs, when properly prompted or fine-tuned, can
perform multi-step mathematical reasoning with high accuracy. For instance, Cobbe et al. (2021)
and Hendrycks et al. (2021) evaluated LMs on various math datasets, showing their capabilities
in solving problems ranging from basic arithmetic to advanced calculus and differential equations.
Recent progress includes innovative approaches like problem decomposition (Zhou et al., 2023a),
complexity-based prompting (Fu et al., 2023a), program-of-thoughts methods (Gao et al., 2023;
Chen et al., 2023b), and reranking solutions with verifiers (Ni et al., 2023; Li et al., 2023). Ad-
ditionally, the development and utilization of new datasets, such as those constructed in Yue et al.
(2023), have further improved the mathematical reasoning capabilities of LMs through fine-tuning.

Efficient Inference of Transformer LMs The transformer architecture, despite its effectiveness
in various NLP tasks, poses challenges in terms of computational efficiency, particularly during
inference. To address this, researchers have explored several approaches. Quantization, as demon-
strated by Xiao et al. (2023), offers improved inference speed albeit with some trade-off in precision.
Knowledge distillation, another strategy, involves training a smaller, more efficient student LM to
emulate the performance of a larger teacher LM, as explored by Kim & Rush (2016). Speculative
decoding, a technique employed by Leviathan et al. (2023) and Chen et al. (2023a), leverages a
smaller LM to predict future tokens, which are then corrected in parallel using the larger LM. A
novel approach, lookahead decoding, proposed by Fu et al. (2023b), integrates the Jacobi iteration
method to predict and verify future n-grams, improving the throughput of transformer LMs during
inference.
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