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Abstract

Learning holistic computational representations in physical, chemical or biological
systems requires the ability to process information from different distributions and
modalities within the same model. While there are many available multimodal
fusion and alignment approaches, most of them require end-to-end training, scale
quadratically with the number of modalities, cannot handle cases of high modality
imbalance in the training set, or are highly topology-specific, making them too
restrictive for many biomedical learning tasks. This paper presents Multimodal
Lego (MM-Lego), a general-purpose fusion framework to turn any set of encoders
into a competitive multimodal model with no or minimal fine-tuning. We achieve
this by introducing a wrapper for any unimodal encoders that enforces shape
consistency between modality representations and harmonises these representations
by learning features in the frequency domain to enable model merging with little
signal interference. We show that MM-Lego 1) can be used as a model merging
method which achieves competitive performance with end-to-end fusion models
without any fine-tuning, 2) can operate on any unimodal encoder, and 3) is a model
fusion method that, with minimal fine-tuning, achieves state-of-the-art results on
six benchmarked multimodal biomedical tasks.

1 Introduction

The utility and demand for multimodal machine learning approaches has sharply risen due to their po-
tential to derive holistic representations in various systems, including physics [1], chemistry [2], neu-
roscience [3], or biology [4]. Multimodal models in the vision & language domains leverage the same
data distributions, which are represented across different modalities [5, 6, 7], such as vision-text pairs
of the same concepts. However, in many biomedical domains, modalities represent data at different
scales (e.g., cellular, genomic, transcriptomic, etc.), cardinalities that are not paired (e.g., many single-
cell reads for a single tissue slide per patient), and follow separate distributions. While large founda-
tion models have excelled in tasks confined to individual modalities [8, 9, 10], training these models
across modalities is an expensive end-to-end process, that requires paired modalities. One recently
emergent solution to these challenges is presented through model merging [11] (also referred to as
knowledge fusion [12]), an approach commonly used in the context of multi-task settings and language
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Figure 1: The Multimodal Lego workflow to turn a set of encoders into a performant multimodal
model. LegoBlock (1) makes unimodal encoders compatible with model merging techniques by
learning a latent representation in the frequency-domain to prevent signal interference effects upon
aggregation. Any set of LegoBlocks can be merged into a multimodal model without any fine-tuning
(LegoMerge (2a)) or with minimal fine-tuning to achieve state-of-the-art performance (LegoFuse (2b)).

modelling, which capitalises on combining well-performing unimodal models trained in isolation.
Model merging methods attempt to combine two architecturally identical models trained on different
distributions through interpolation, arithmetic manipulation and aggregation of their weights [13, 14,
15], or stacking their layers [16], often without additional training/fine-tuning. While model merging
has been extended to some multimodal vision and language tasks [17], its crucial challenges in a multi-
modal setting are that: a) the merged components are still trained in isolation, and b) we cannot assume
topological equivalence between two models for separate modalities due to their separate input shapes.

In this paper, we present Multimodal Lego (MM-Lego) – a flexible framework for combining various
unimodal models into a multimodal model with no or minimal fine-tuning (Figure 1). We introduce
two approaches within our framework – LegoFuse and LegoMerge, enabling performant multimodal
models given a set of unimodal encoders with either little (LegoFuse) or no (LegoMerge) fine-tuning.
We show that MM-Lego satisfies multiple desirable properties in a range of real-world multimodal
applications combining imaging, tabular, and time series modalities. We demonstrate the utility
of MM-Lego on seven medical datasets across three separate downstream tasks, showing that it
is: 1) performant without end-to-end training, 2) topology agnostic, 3) is scalable, and 4) handles
modality imbalance and non-overlapping sets.

2 Multimodal Lego

Preliminaries. Let X(M) =
⋃

m∈Mm be a multimodal dataset where M = {A,B, . . . , Z}
represents the set of modalities m such as images (A), tabular data (B), time series (C), etc. Let
X

(A)
i,j,k correspond to the element in the dataset for modality A at sample i, column j, and channel k,

assuming A ∈ RI×J×K where 1 ≤ i ≤ N , 1 ≤ j ≤ J , 1 ≤ k ≤ K. Each sample in X has a set of
discriminative task labels y(T ) =

⋃
t∈T y(t), where T = {T1, T2 . . . , Tc} is the set of possible tasks

such that y(T1) = {yT1
1 , yT1

2 , ..., yT1

N } are the scalar target values for task T1 for N samples.

Architecture. Rather than learning a single fusion operator ψ(H) that applies to all latent representa-
tions at once, we learn a set of latent update functions for each modality, in the form of

B = {ψm : (gm(X(m)), L(m)
s ) → L

(m)
s+1 | s ∈ S,m ∈ M}, (1)

where L(m)
t ∈ L is our target latent representation for each modality that we will later use in the

merge and fusion, and S is the number of update steps.

LegoBlocks. Each element in B represents a LegoBlock, which learns the latent update function
ψm for any given encoder gm. Acknowledging that different data modalities and structures require
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different inductive biases to effectively encode each modality’s information (gm), LegoBlock acts as
a wrapper to accurately encode hm into L(m). The benefit of training each modality update function
separately instead of end-to-end is that we can train on entirely separate samples for the same tasks.
For example, in many medical domains, we may have single-cell data for one subset of patients and
bulk sequencing data for a different subset, while having the same task labels for the entire set. To
address this, we use a latent representations L that effectively encode signal across modalities, and
are robust or invariant to transformations (shifts, rotations, etc.), noise and signal interference.

This motivated us to design MM-Lego for learning latent representations in the frequency domain,
taking advantage of a number of desirable properties for multimodal merging and fusion. In particular,
frequency-domain representations are: 1) signal-preserving as frequency features are less prone to
signal interference upon aggregation (see Appendix F); 2) distance-preserving, as the Euclidean
distance between two signals remains unchanged after the Fourier Transform (following from
Parseval’s Theorem [18]), making them suitable for distance-based loss functions; 3) invertible as the
spatial/temporal domain can be reconstructed, allowing for the iterative updates outlined in Equation 1;
and 4) efficient, as the Fast Fourier Transform (FFT) has a time complexity of O(n log(n)), making
it scalable to very large datasets [19].

Starting with the latent representation in the spatial domain, we first apply a discrete FFT
F(·) [20] along each dimension of the 2D Tensor to yield a frequency domain representation.
LF
t (u, v) =

∑c−1
i=0

∑d−1
j=0 Lt(i, j)e

−2πi(ux
c + vy

d ), where i, j denote the spatial-domain indices, and
u, v denote the frequency-domain indices. This results in a complex frequency-domain representation
from which we separate the real (symmetrical) and imaginary (asymmetrical) components of the FFT
((LF

t )
r and (LF

t )
i) [21]. We update the real component using a standard cross-attention layer [22],

where we aim to learn the weight matrices W q
m for the update query (LF

t )
r, and W k

m, W v
m for the

keys and values (h(A)) resulting in the latent update:

(LF
t+1)

r = softmax
(
(LF

t )
rW q

m · (h(A)W k
m)⊤√

dk

)
· (h(A)W v

m). (2)

In contrast to other Fourier-based architectures [19], which only use the real component of the
transform, we keep track of the imaginary component (LF

t )
i as well. This allows us to reconstruct

the complex representation, and subsequently apply the inverse transform. We found this to be critical
for our iterative architecture, as otherwise the signal gets distorted and we lose phase information
(encoded in the imaginary component) at each update pass. Once we reconstruct the complex
representation, we apply the inverse transform to recover the spatial representation in preparation
of the next pass Lt+1 = F−1((LF

t+1)
r + i(LF

t )
i). Finally, the last task-specific heads of each block

are a fully-connected layer after applying layer normalisation. We omit the inverse transform after
the last update such that each head is trained in the frequency domain. This ensures that we can
apply aggregations with low signal interference on L during LegoMerge.

LegoMerge. LegoMerge constructs a performant multimodal model without any additional training.
With the architectural assumptions imposed on each modality encoder in G through LegoBlocks
B, we can apply model merging techniques in a multimodal setting. With L ⊆ Rc×d and each
element in L being in the frequency domain, we can use aggregation functions ψ(·), which are less
prone to cancelling out signal. For example, let L(A) and L(B) be the final frequency domain latent
representations for modalities A and B, then we can calculate a merged multimodal representation as:

ψ(L(A), L(B)) = (
2|L(A)| · |L(B)|
|L(B)|+ |L(A)|

) · ei·
∠L(A)+∠L(B)

2 , (3)

where the real component is the harmonic mean of the magnitudes (| · |), and the imaginary
component is the arithmetic mean of the phases (∠) of L(A) and L(B). We take the harmonic
mean since it is less prone to outliers [21], that is, the merged representation is less likely to be
strongly skewed towards either modality by very large frequency components. With the cross-modal
combined representation L(M), we need to combine the task heads of each block, where we apply
spherical linear interpolation (SLERP) [23] for the set of task heads Y from each element in B.

LegoFuse. LegoFuse overcomes the limitations of LegoMerge of training each element in B in
isolation, thus allowing for modalities to mutually contextualise each other. As such it requires a
minimal amount of fine-tuning. To avoid fine-tuning a potentially noised signal emerging from the
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Table 1: Comparison of desirable requirements of multimodal systems in medical domains.
✓: meets requirement, (✓): some approaches meet requirement, ✗: fails requirement.

Criteria/Method Late Intermediate Early Multi-task merge LegoMerge LegoFuse
Performant without end-to-end training ✗ ✗ ✗ ✓ ✓ ✓

Learns cross-modal interactions ✗ ✓ (✓) ✗ ✗ ✓

Architecture agnostic ✓ (✓) ✓ ✗ ✓ ✓

Handles strong modality imbalance ✗ (✓) ✗ ✓ ✓ ✓

Add modalities without re-training ✗ ✗ ✗ ✗ ✓ (✓)

Table 2: Mean and std. dev. of task performance, showing the concordance Index (survival) and AUC
(classification) on 5 random sub-sampling folds with the best and second-best models highlighted.

BLCA BRCA KIRP UCEC ICD9 MORT ISIC
Samples n=436 N=1021 n=284 n=538 n=32616 n=32616 n=2875
Modalities tab, img tab, img tab, img tab, img tab, ts tab, ts tab, img
Metric c-Index c-Index c-Index c-Index AUC Macro AUC AUC
UniModal (Tabular)
SNN [27] 0.689±0.012 0.544±0.020 0.798±0.035 0.589±0.057 0.731±0.023 0.634±0.020 0.507±0.005

MultiModN [28] 0.500±0.000 0.500±0.000 0.525±0.140 0.500±0.000 0.500±0.000 0.500±0.000 0.500±0.000

Perceiver [29] 0.686±0.009 0.557±0.016 0.836±0.053 0.615±0.035 0.629±0.023 0.658±0.000 0.840±0.084
UniModal (Image/T.Series)
ABMIL [30] 0.591±0.057 0.610±0.093 0.741±0.080 0.558±0.040 0.614±0.025 0.691±0.014 0.500±0.000

MultiModN [30] 0.520±0.022 0.527±0.150 0.570±0.156 0.564±0.097 0.500±0.000 0.544±0.033 0.500±0.000

Perceiver [29] 0.532±0.027 0.604±0.064 0.716±0.063 0.534±0.106 0.700±0.013 0.715±0.016 0.719±0.050

MultiModal
SNN + ABMIL (CC, Late) 0.561±0.000 0.541±0.104 0.841±0.128 0.601±0.018 0.628±0.020 0.617±0.015 0.661±0.196

SNN + ABMIL (BL, Late) 0.622±0.054 0.557±0.089 0.811±0.108 0.666±0.031 0.500±0.000 0.500±0.001 0.501±0.002

Perceiver (CC, Early) 0.547±0.060 0.561±0.105 0.692±0.000 0.548±0.000 0.733±0.028 0.723±0.015 0.721±0.198
MultiModN (Inter.) 0.524±0.018 0.500±0.000 0.602±0.076 0.512±0.008 0.500±0.000 0.500±0.000 0.500±0.000

MCAT (Inter.) [31] 0.702±0.032 0.564±0.000 0.823±0.076 0.633±0.068 0.500±0.000 0.500±0.000 0.627±0.059

HEALNet (Inter.) [31] 0.714±0.025 0.618±0.063 0.842±0.063 0.594±0.023 0.767±0.022 0.748±0.009 0.639±0.09

LegoMerge 0.701±0.021 0.601±0.025 0.825±0.114 0.625±0.080 0.684±0.015 0.751±0.027 0.721±0.143
LegoFuse, w/ 2 epochs 0.734±0.032 0.626±0.046 0.863±0.112 0.634±0.010 0.771±0.020 0.759±0.041 0.701±0.023

merged latent L(M), LegoFuse operates at the layer level (by sequentially passing through all layers in
B), rather than directly fine-tuning the merged model (at the parameter-level). Specifically, the shape
consistency introduced by L ⊆ Rc×d allows the stacked model to pass the Fourier-transformed latent
states either between blocks (stacking) or different layers between blocks (weaving), as illustrated in
Figure 1. We then fine-tune the stacked/weaved model for a few epochs with all (paired) modalities,
such that the state updates are conditioned on all modalities’ updates. This, in turn, becomes the
query for the cross-attention layer. Note that, both the stacked and weaved variants of LegoFuse allow
for fine-tuning all model parameters, including the ones of the initial modality-specific encoders.

3 Results & Discussion

Experiments. We evaluate MM-Lego (LegoMerge and LegoFuse) and its components (LegoBlock)
on seven multimodal medical datasets covering three separate modalities (images, tabular, time series)
from three separate sources: histopathology (The Cancer Genome Atlas (TCGA)) [24], intensive care
data (Medical Information Mart for Intensive Care (MIMIC)) [25], and skin imaging (International
Skin Imaging Collaboration (ISIC)) [26]. The seven tasks shown in our results correspond to survival
analysis tasks on four TCGA sites (BLCA, BRCA, KIRP, UCEC), classification tasks on two variants
of MIMIC (disease classification (ICD9) and patient mortality (MORT), and predicting melanoma
for the ISIC patients. Further details on datasets and task setup can be found in Appendices C and D.

Discussion. With the increasing volume, complexity and diversity of collected biomedical data,
(re)training multimodal models from scratch becomes more expensive, unsustainable, and even
infeasible. Going beyond computational constraints, further desired properties that guided the design
of MM-Lego are outlined in Table 1. Our results in Table 2 provide strong evidence that MM-Lego
meets these requirements, efficiently achieving competitive performance.
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LegoMerge matches end-to-end trained multimodal baselines in most tasks without any additional
training, while LegoFuse outperforms strong baselines with as little as 2 epochs of fine-tuning.
Notably, LegoMerge does not require a single paired modality training sample whilst still being
useful for multimodal inference, outperforming ensemble models (Appendix B). Our results also
show that MM-Lego addresses a key limitation in model merging literature which assumes topology
equivalence. While this is a feasible assumption for model merging in multi-task learning, different
data shapes across modalities limit the application of these methods in multimodal settings. There-
fore, the design of LegoBlock is sufficiently permissive to use any unimodal encoder as part of this
framework, whilst enforcing the necessary architectural assumptions required for model merging.
Our findings (in Figure 2, Appendix 3) support this, showing that any unimodal encoder (such
as SNNs and AMIL) can be wrapped in a LegoBlock without any practical loss in performance.

To the best of our knowledge, MM-Lego is the first general-purpose model merging framework for
multimodal data outside of the vision & language domains.
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A Notation

Objects.

• X(A): matrix corresponding to modality A

• x(A): a vector in X(A) (e.g., a sample of modality A)

• X
(A)
i,j,k: elements of matrix X(A) at row i, column j, channel k, assuming X(A) ∈ RI×J×K

where 1 ≤ i ≤ I , 1 ≤ j ≤ J , 1 ≤ k ≤ K

• X(M) =
⋃

m∈MX(m): multimodal dataset

• y ∈ Y =
⋃

t∈T y(t): set of task labels for all available tasks T

• y(T1): task labels for task T1

Sets.

• M: set of modalities
• T : set of tasks
• Y: set of task-specific heads

• G = {gm : m→ h(m) | m ∈ M}: set of modality-specific encoders
• Hy = {gm(m,y)|m ∈ M}: set of task- and modality-specific embeddings

• B = {ψm : (gm(X(m)), L
(m)
s ) → L

(m)
s+1 | s ∈ S,m ∈ M}: set of LegoBlocks

Functions and Operators.

• gm(·): modality-specific encoder
• ψ(·): fusion operator (monolithic)
• ψm(·): modality-specific latent update
• F : Fourier transform
• F−1: Inverse Fourier transform
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B Full Results

BLCA BRCA KIRP UCEC ICD9 MORT ISIC

Samples n=436 N=1021 n=284 n=538 n=32616 n=32616 n=2875

Modalities tab, img tab, img tab, img tab, img tab, ts tab, ts tab, img

Metric c-Index c-Index c-Index c-Index AUC Macro AUC AUC

Tabular

SNN 0.689±0.012 0.544±0.020 0.798±0.035 0.589±0.057 0.731±0.023 0.634±0.020 0.507±0.005

MultiModN 0.500±0.000 0.500±0.000 0.525±0.140 0.500±0.000 0.500±0.000 0.500±0.000 0.500±0.000

Perceiver 0.686±0.009 0.557±0.016 0.836±0.053 0.615±0.035 0.629±0.023 0.658±0.000 0.840±0.084

LegoBlock 0.681±0.015 0.591±0.021 0.840±0.135 0.615±0.031 0.645±0.017 0.619±0.028 0.668±0.141

Image/Time Series

ABMIL 0.591±0.057 0.610±0.093 0.741±0.080 0.558±0.040 0.614±0.025 0.691±0.014 0.500±0.000

MultiModN 0.520±0.022 0.527±0.150 0.570±0.156 0.564±0.097 0.500±0.000 0.544±0.033 0.500±0.000

Perceiver 0.532±0.027 0.604±0.064 0.716±0.063 0.534±0.106 0.700±0.013 0.715±0.016 0.719±0.050

LegoBlock 0.568±0.029 0.533±0.000 0.630±0.182 0.565±0.069 0.643±0.013 0.711±0.008 0.706±0.147

MultiModal

LegoMerge (Ours) 0.701±0.021 0.601±0.025 0.825±0.114 0.625±0.080 0.684±0.015 0.751±0.027 0.721±0.143

Merge Uplift vs. best block 2.9% 1.7% -1.8% 1.6% 5.7% 5.3% 2.1%

SNN + ABMIL (CC, Late) 0.561±0.000 0.541±0.104 0.841±0.128 0.601±0.018 0.628±0.020 0.617±0.015 0.661±0.196

SNN + ABMIL (LR, Late) 0.622±0.054 0.557±0.089 0.811±0.108 0.666±0.031 0.500±0.000 0.500±0.001 0.501±0.002

Perceiver (CC, Early) 0.547±0.060 0.561±0.105 0.692±0.000 0.548±0.000 0.733±0.028 0.723±0.015 0.721±0.198

MultiModN (Inter) 0.524±0.018 0.500±0.000 0.602±0.076 0.512±0.008 0.500±0.000 0.500±0.000 0.500±0.000

MCAT (Inter) 0.702±0.032 0.564±0.000 0.823±0.076 0.633±0.068 0.500±0.000 0.500±0.000 0.627±0.059

HEALNet (Inter) 0.714±0.025 0.618±0.063 0.842±0.063 0.594±0.023 0.767±0.022 0.748±0.009 0.639±0.099

LegoFuse (Ours) , 2 Epochs 0.734±0.032 0.626±0.046 0.863±0.112 0.634±0.010 0.771±0.020 0.759±0.041 0.701±0.023

Table 3: Task performance of uni- and multimodal models across 7 medical datasets – for each task
target metric, we highlight the best and second-best models.

Figure 2: AUC performance on the MIMIC dataset when merging existing encoders (SNN for tabular,
AMIL for Time Series) using LegoMerge and LegoFuse. Our multimodal model merge shows much
better performance than using an ensemble, exhibiting the performance gains, at no additional costs,
through the merge even prior to fine-tuning in LegoFuse.
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Figure 3: Mean task performance (concordance Index/AUC) of LegoBlock (Tabular), LegoBlock
(Image/Time Series) and LegoMerge, showing the increase in task performance by applying a
multimodal model merge without any fine-tuning. Our proposed multimodal model merge shows a
positive performance improvement on 6 out of 7 datasets.
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C Datasets

We evaluate MM-Lego (LegoMerge and LegoFuse) and its components (LegoBlock) on seven multi-
modal medical datasets covering three separate modalities (images, tabular, time series) from three
separate sources: histopathology (The Cancer Genome Atlas (TCGA)) [24], intensive care data
(Medical Information Mart for Intensive Care (MIMIC)) [25], and skin imaging (Society for Imaging
Informatics in Medicine & International Skin Imaging Collaboration (SIIM-ISIC)) [26].

TCGA: Some of the results shown in this paper here are based upon data generated by the TCGA
Research Network: https://www.cancer.gov/tcga. The Cancer Genome Atlas (TCGA) is an
open-source genomics program run by the United State National Cancer Institute (NCI) and National
Human Genome Research Institute, containing a total of 2.5 petabyts of genomic, epigenomic,
transcriptomic, and proteomic data. We predict survival of right-censored patients based on the high-
resolution histopathology slides (∼80, 000× 80, 000 pixels) and multi-omic data (gene expressions,
copy number variations and gene mutations) captured from bulk sequencing in a tabular format. We
train on four separate cancer cohorts with multimodal data available: Urorethelial Bladder Carcinoma
(BLCA, n = 436), Breast Invasive Carcinoma (BRCA, n = 1021), Kidney Renal Papillary Cell
Carcinoma (KIRP, n = 284), and Uterine Corpus Endometrical Carcinoma (UCEC, n = 538).

MIMIC-III: We train models on two separate tasks: patient mortality (multi-class classification) and
disease classification (ICD-9 codes), which we formulate as a binary classification task. We use both
clinical variables and small time series data on various vital signs measured at 24 time steps. Both
tasks have n = 32616 and the same feature set for different task labels.

SIIM-ISIC: Stems from the Society for Imaging Informatics in Medicine & International Skin
Imaging Collaboration (SIIM-ISIC) melanoma classification Kaggle challenge [26], which contains
both tabular data and images of skin leisures to be classified for melanoma patients. To account
for class imbalance, we randomly downsampled the majority class to a 5:1 ratio for the class of
interest (melanoma) to a sample size of n = 2875. All images were patched and encoded using the
resnet50-kather100k for TCGA (ResNet pre-trained on a large histopathology patch collection) [32]
and a regular ImageNet v2 pre-trained ResNet for the pictures of skin leisures. Both images (patch
encodings) and times series were represented as 2D tensors, and the tabular clinical and multi-omic
data as 1D tensors to pass into the modality-specific encoders g(·).

D Losses and Metrics

The results report the (unseen) test set performance, by evaluating the concordance Index (c-Index) in
the case of TCGA, AUC in the case of MIMIC-III-ICD9 and ISIC, and Macro-AUC (“one-vs-rest”)
for MIMIC-III-ICD9. As indicated in Figure 1 the output of each task head in Y are the logits with
predictions for each class given the final Fourier-transformed latent state yl = f(LF

T ). Since TCGA
is a survival prediction task with right-censored data, we have divided the survival period into four
non-overlapping bins and use the logits of these bins to calculate the hazard (yh = 1

1e−yl
) and survival

(ys =
∏k

1 1− yh) respectively for k bins. Given the hazards, censorship, and ground truth bins, we
can calculate the negative log-likelihood loss from a proportional hazards model [33] which is used
as the survival loss. We evaluate the performance using the Concordance Index (c-Index), for which
we determine the fraction of paired samples in which the prediction outcomes are concordant with the
ground truth. As MIMIC and ISIC relate to classification tasks, we employ categorical cross-entropy
loss for training. Note that both AUC and the c-Index have similar interpretations, therefore the
values range between [0.5− 1].

E Implementation Details

Baselines. For all experiments, we compare LegoMerge and LegoFuse to several uni- and multimodal
baselines to evaluate their performance. For all tabular modalities, we use a self-normalising network
[27] due to its performance and regularisation mechanisms suitable for high-dimensional tabular
data. For the image and time series modalities, we use an attention-based Multiple Instance Learning
(AMIL) [30]. Across all modalities, we benchmark two related iterative-learning architectures:
MultiModN [28] and Perceiver [34] which generally shows strong performance across a wide range
of unimodal tasks. In terms of specific multimodal baselines, we use two late fusion combinations of
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SNN+AMIL, namely concatenation of their final latent representation and bi-linear fusion [35]. For
the Perceiver, we use the same multimodal setup as suggested in the original paper, i.e., concatenation
of modalities before passing them into the model. We use two additional domain-specific multimodal
baselines: the Hybrid Early-Fusion Attention Learning Network (HEALNet) [36] which is using an
end-to-end trained iterative cross-attention architecture and the Multimodal Co-Attention Transformer
(MCAT) [31] which is using the tabular (1D) modality as context for the imaging (2D) modality.

Validation & Compute. For each experiment and dataset, we perform a 5-fold repeated random
sub-sampling with a 70-15-15 train-test-validation split. We re-ran all of the baseline models in
this paper using their open-source code to ensure that no performance differences are caused by
different task setups, losses, or training splits. We ran a brief Bayesian Hyperparameter search [37]
for key parameters of each model (learning rate, decay, schedulers, dropout, layer dimensions). The
experiments were run on a single Nvidia A100 80GB GPU on a Ubuntu 22.04 virtual machine. Both
the complete MM-Lego experimental code as well as its “lightweight” PyTorch package (installable
via the Python Package Index (PyPI)) will be published on GitHub.
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F Signal Interference on Latent Variables

Figure 4: Example of signal interference on a random normal latent variable and its additive inverse
variable with some added noise, showcasing a severe case of signal interference where nearly all
signal cancels out. We can see that the fourier-transformed data does not suffer this problem when
we apply the harmonic mean. This is a key reason for the choice of model merging architecture.

14



Figure 5: The argument against Fig. 4 would be to use absolute or only positive values. This example
shows that this logic can also be flawed. We demonstrate this using a squarewave function with a
frequency offset beteen ModA and ModB and a scaled amplitude by a normal distribution. We can
see that the mean of the regular and the absolute values suffers some signal interference while the
FFT aggregation does not.
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G Training on unpaired data

Figure 6: Test performance of LegoMerge (SNN+AMIL) compared to the SNN-AMIL ensemble when
training on different levels of overlapping samples between the modalities. A symmetric difference
of 1 means no overlap between the samples, 0 being perfect overlap. We selected N=10,000 MIMIC
examples for this experiment.
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