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ABSTRACT

Graph comparison is a fundamental task, which not only relates to graph match-
ing, an NP-hard problem, but also has various applications in graph learning.
We tackle this task by studying optimal graph representation and the entropy-
regularized optimal transport between graphs (ErGOT). First, we analytically de-
rive a family of Gaussian variables that optimally represent graph topology and
node relation. Second, we realize graph comparison by formulating ErGOT, a
framework with low sample complexity, on represented graph information. Third,
we control biases in the solution by defining ErGOT with a 2-Sinkhorn divergence,
whose closed-form expression can be derived on the manifold of Gaussian vari-
ables. As the Gaussian geometry changes with entropy regularization magnitude,
ErGOT defined with 2-Sinkhorn divergence wanders between pure optimal trans-
port and maximum mean discrepancy among graphs. We demonstrate that these
statistically efficient, principally unbiased, and in-between properties ensure the-
oretically faster convergence of our approach to empirically higher performance
than the state-of-art algorithms on graph alignment, sketching, and retrieval tasks.

1 INTRODUCTION

General backgrounds of graph comparison. Graph is a basic type of data structure with exten-
sive applications in engineering Deo (2017), physics Newman (2003), chemistry Trinajstic (2018),
and biology Mheich et al. (2020). Mainstream graph analysis (e.g., alignment) frequently begins
with graph comparison, which deals with similarities and differences between graphs. However,
graph comparison itself is a daunting challenge. On the one hand, researchers frequently lack a pri-
ori knowledge about node alignment relations, making graph matching an NP-hard problem Conte
et al. (2004). On the other hand, a meaningful metric of graph similarity and difference remains
elusive even when nodes are perfectly aligned Petric Maretic et al. (2019); Maretic et al. (2022).

Graph optimal transport for graph comparison. Recently, optimal transport theory Villani
(2009); Peyré et al. (2019) has been introduced to realize graph comparison Garg & Jaakkola
(2019); Petric Maretic et al. (2019); Petric Maretic (2021); Maretic et al. (2022); Dong & Sawin
(2020). Among these existing approaches, the newly proposed GOT Petric Maretic et al. (2019);
Petric Maretic (2021) and fGOT Maretic et al. (2022) benefit from the probabilistic representation
of graph via exploiting graph signals distributed on nodes Ortega et al. (2018); Dong et al. (2016).
The graph representation is discovered to simultaneously ensure an appropriate description of graph
properties (e.g., topology, heterogeneity, and dynamics) and an analytic expression of the objective
of optimal transport (e.g., the 2-Wasserstein distance Villani (2009); Peyré et al. (2019)). These
properties have been demonstrated as computationally favorable Petric Maretic et al. (2019); Pet-
ric Maretic (2021); Maretic et al. (2022). Our research primarily focuses on this promising direction.

Remaining challenges in graph optimal transport. However, there remain numerous challenges
in this emerging direction, among which, two critical problems are listed below:

(I) General principles to choose graph representation remain elusive yet. In exist-
ing graph-signal-based optimal transport frameworks Petric Maretic et al. (2019); Pet-
ric Maretic (2021); Maretic et al. (2022), a graph G (V,E) is represented as a Gaussian vari-
able X ∼ N

(
0,Q2 (L)

)
, where Q (·) denotes a function of graph Laplacian L Biyikoglu
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et al. (2007). In GOT Petric Maretic et al. (2019); Petric Maretic (2021), researchers fol-
low the idea derived by factor analysis and low-rank models Dong et al. (2016); Kalofolias
(2016) to define Q (·). In fGOT Maretic et al. (2022), more definitions of Q (·) are pro-
posed from the perspective of engineering practice. However, although different types of
X have distinct effects in graph comparison Maretic et al. (2022), researchers lack general
principles in defining X to capture target graph properties Ortega et al. (2018).

(II) Graph-signal-based optimal transport is not computationally ideal yet. Pure optimal
transport between graphs requires solving a linear problem, which entails a critical burden
in computation Genevay et al. (2017); Mena et al. (2017); Feydy et al. (2019). Although
Sinkhorn operator has been applied to define an approximation of pure optimal transport
that allows automatic differentiation Genevay et al. (2017) and supports graph optimal
transport solutions Petric Maretic et al. (2019); Petric Maretic (2021); Maretic et al. (2022),
there remains a lot of room for further improvement Cuturi (2013) because the current
graph optimal transport still deals with a non-convex problem with high sample complexity
(see Mallasto et al. (2021); Genevay et al. (2019) for explanations).

Our framework and contributions. In this paper, we attempt to resolve challenges (I-II) by
proposing a new framework named as ErGOT. Our first contribution is to analytically derive a fam-
ily of Gaussian variables that optimally represents graph topology and node relation. Our second
contribution is to generalize the graph-signal-based optimal transport proposed in Petric Maretic
et al. (2019); Petric Maretic (2021); Maretic et al. (2022) to an entropy-regularized optimal trans-
port problem on the Gaussian geometry, which is efficient in sampling. Beyond the original opti-
mization target of entropy-regularized optimal transport, we further derive a closed-form expression
of 2-Sinkhorn divergence to define an optimization objective of ErGOT with low biases. Driven
by 2-Sinkhorn divergence, ErGOT can complement the advantages of pure optimal transport and
maximum mean discrepancy between graphs according to entropy regularization magnitude.

2 RELATED WORKS

Graph matching. Graph matching, such as exact De Santo et al. (2003) and inexact Gao et al.
(2010) matching with and without edge-preserving properties, is a kind of NP-hard quadratic pro-
gramming problem whose solution is constrained as a permutation matrix Conte et al. (2004); Cour
et al. (2006); Jiang et al. (2017). Consequently, numerous relaxation approaches (e.g., continuous
domain Yu et al. (2018), spectral clustering Caelli & Kosinov (2004), and semi-definite program-
ming Schellewald & Schnörr (2005) relaxation) have been proposed to approximate the original
problem. The metric for graph comparison in those works frequently lacks an analytic expression.

Graph kernel. Graph kernel approaches decompose a graph into multiple atomic substructures
(e.g., graphlets Shervashidze et al. (2009), random walks Kashima et al. (2004), shortest paths
Borgwardt & Kriegel (2005), and cycles Horváth et al. (2004)) to define the kernel value among
these substructures (i.e., counting the number of shared substructures) Kriege et al. (2020); Cai et al.
(2018) as a metric of graph comparison. The validity of graph comparison is determined by the
capacity of these handcrafted substructures (i.e., extracted by certain manually defined functions
Narayanan et al. (2017)) to reflect graph properties, which may be limited by the high-dimensional,
sparse, and non-smooth graph representation in kernel spaces Yanardag & Vishwanathan (2015).

Graph optimal transport. Graph optimal transport is a natural idea to define the metric of graph
comparison. Early back to Gu et al. (2015), the p-Wasserstein distance has been calculated on
normalized graph Laplacian spectra. Meanwhile, a regularized Gromov-Wasserstein distance has
been defined for optimal transport between structure data (e.g., irregular polygons) Peyré et al.
(2016). More recently, optimal transport problem has been analyzed based on minimum cost flow
on graphs Garg & Jaakkola (2019), a combination of structure and feature information of graphs
Titouan et al. (2019), and a pair of simultaneous transport processes between nodes and Laplacian
spectra Dong & Sawin (2020). Notably, the graph-signal-based optimal transport frameworks (e.g.,
GOT Petric Maretic et al. (2019); Petric Maretic (2021) and fGOT Maretic et al. (2022)) have been
developed to consider optimal transport between random signals distributed on graphs. With an ideal
definition of these signals, fundamental properties of graphs can be captured in the optimal transport
problem Maretic et al. (2022). However, such a definition remains elusive yet (see challenge (I)).
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Figure 1: Conceptual illustrations of optimal graph representation.

3 FRAMEWORK OF ERGOT

Probabilistic representation of graphs. Why should graphs be represented by certain Gaussian
variables controlled by graph Laplacian as Dong et al. (2016); Kalofolias (2016); Petric Maretic
et al. (2019); Petric Maretic (2021); Maretic et al. (2022) propose? How to enable the probabilistic
representation to capture target graph properties? In this section, we explore a unified answer.

Let us consider a mapping ϕ : V → Ω from the node set V of a graph G (V,E) to a probability
space (Ω,F ,P) with Ω = R, which defines a random variable Xϕ = (Xϕ (1) , . . . , Xϕ (n)), where
Xϕ (i) = ϕ (vi) and n = |V | (Fig. 1). An ideal mapping ϕ should reflect graph topology and node
relation (e.g., homogeneity or heterogeneity) by some of its properties. In our research, we explore
a way to represent graph properties via the smoothness of ϕ and the distribution of Xϕ (Fig. 1).

In graph signal theories, the smoothness index of ϕ on G is determined by the topology information
contained in graph Laplacian L Chung & Graham (1997); Shuman et al. (2013).

S (ϕ) = XϕTLXϕ. (1)
A smaller S (ϕ) corresponds to a higher smoothness of mapping ϕ. Please see Tian et al. (2022) for
further explanations. BecauseXϕ is a random variable, we primarily analyze E (S (ϕ)), the expected
smoothness index of ϕ. Such an expectation is derived in a quadratic form

E (S (ϕ)) = E (Xϕ)T LE (Xϕ) + tr (LΣ (Xϕ)) , (2)

where Σ (Xϕ) ∈ Rn×n denotes the covariance matrix of Xϕ and tr (·) measures the trace. To avoid
that S (ϕ) diverges, we primarily analyze the case where the expectation E (Xϕ) and the covariance
Σ (Xϕ) of Xϕ are finite. For convenience, we further assume that E (Xϕ) = 0.

In a graph where node homogeneity and global structure are important, nodes are similar if they are
connected by edges with higher weights (weights denote similarity). The smoothness of ϕ should be
sufficiently high or invariant to express node homogeneity. In a graph where node heterogeneity and
local structure matter, nodes are distinct if they are connected by edges with higher weights (weights
denote difference). The smoothness of ϕ should be determined by graph topology and edge weights.

In Table 1, we suggest two prototypes of Σ (Xϕ). In general, Σ (Xϕ) = L+ 1
nJ implies an expected

smoothness index completely determined by graph topology, which is more applicable to node het-
erogeneity and local structure description. The nodes connected by an edge with a larger weight
will behave inversely (with strongly negative covariance). In an opposite way, Σ (Xϕ) = L† + 1

nJ
creates an expected smoothness index that is independent of graph topology and fully determined
by graph size n (notion † denotes the Moore–Penrose pseudoinverse Barata & Hussein (2012)). The
nodes connected by an edge with a larger weight are more similar (with strongly positive partial
correlation). In Appendix A, we present detailed proofs of all the results in Table 1.

Then, we analyze the distribution of variable Xϕ. At the first glance, this seems to be an impos-
sible question because Xϕ can have an arbitrary distribution as long as it keeps a zero mean and a

Covariance matrix Expected smoothness index Expressed graph properties
Σ (Xϕ) = L+ 1

nJ E (S (ϕ)) = tr
(
L2
)

Node heterogeneity and local structure
Σ (Xϕ) = L† + 1

nJ E (S (ϕ)) = n− 1 Node homogeneity and global structure

Table 1: Two prototypes of covariance matrix. Notion J denotes an all-one matrix.
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covariance matrix in Table 1. However, no matter what kind of distribution Xϕ follows, what we
face in real applications are its sampled observations. Therefore, we can study the distribution of
an averaged observation ⟨Xϕ⟩ = 1

r

∑r
i=1 X iϕ, where each sample X iϕ is independently and identi-

cally distributed. Applying the multidimensional central limit theorem Van der Vaart (2000), we can
readily derive

√
r⟨Xϕ⟩

d−→ N (0,Σ (Xϕ)) as r →∞. Consequently, one can directly define

Xϕ ∼ N (0,Σ (Xϕ)) (3)

to represent the normal case in application (Fig. 1). Because E (Xϕ) and Σ (Xϕ) are finite, the
Gaussian variable in Eq. (3) is also the random variable in R that has a maximum entropy Cover
(1999) (Fig. 1). Such a property is favorable in representing information (e.g., graph properties).

In sum, we can represent graph G as a Gaussian variable defined by a mapping ϕ whose smoothness
is determined by graph topology and node relation (e.g., homogeneity and heterogeneity). The above
derivations offer theoretical explanations of existing engineering experience Dong et al. (2016);
Kalofolias (2016); Petric Maretic et al. (2019); Petric Maretic (2021); Maretic et al. (2022).

Entropy-regularized optimal transport problem on Gaussian geometry. Given X aϕ ∼
N (0,Σa) and X bϕ ∼ N (0,Σb), the representations of graphs Ga (Va, Ea) and Gb (Vb, Eb), our
task is to compare between Ga and Gb by solving optimal transport problem between X aϕ and X bϕ.

CLASSIC APPROACH In GOT Petric Maretic et al. (2019); Petric Maretic (2021) and fGOT
Maretic et al. (2022), researchers study the pure optimal transport (Fig. 2) between X aϕ and X bϕ,
where the 2-Wasserstein distance in P (Ω), the space of probability measures, is given as

OT2

(
X aϕ ,X bϕ

)
= inf

γ

∫
Ω×Ω

∥x− y∥22dγ (x, y) , s.t. γ ∈ Γab. (4)

Notion Γab is the set of joint probabilities γ such that
∫
γ (x, y) dy = ρa (x) and

∫
γ (x, y) dx =

ρb (y), where ρa (·) and ρb (·) are the probability distributions of X aϕ and X bϕ, respectively. Notion
∥ · ∥2 denotes the L2 norm.

In Petric Maretic et al. (2019); Petric Maretic (2021); Maretic et al. (2022), the solution of this
optimal transport problem is constrained as a permutation matrix M ∈ R|Vb|×|Va| for practicability
(see Appendix B for details). Therefore, the optimization objective is (Fig. 2)

minimize
M∈R|Vb|×|Va|

OT2

(
X aϕ ,M ◦ X bϕ

)
, s.t. M is a permutation matrix, (5)

where M ◦ X bϕ ∼ N
(
0,MTΣbM

)
. Applying the Gaussian properties of X aϕ and X bϕ, the objective

can be analytically derived Takatsu (2011).

OT2

(
X aϕ ,M ◦ X bϕ

)
= tr

(
Σa +MTΣbM − 2

√
Σ

1
2
aMTΣbMΣ

1
2
a

)
. (6)

The non-convex discrete problem in Eqs. (5-6) may have a factorial number of feasible solutions. To
avoid this difficulty, researchers apply ς (·), the Sinkhorn operator Mena et al. (2017), to transform
the discrete problem into a differentiable one (see Appendix B for the definition of ς (·) in detail)

minimize
ς(M/τ)∈R|Vb|×|Va|

OT2

(
X aϕ , ς (M/τ) ◦ X bϕ

)
, s.t. ς (M/τ) is a doubly stochastic matrix, (7)

where τ ∈ (0,∞), the Sinkhorn operator satisfies that limτ→0+ ς (M/τ) is a permutation matrix
(see Appendix B for detailed explanations) Mena et al. (2017); Petric Maretic et al. (2019), and
any ς (M/τ) is a doubly stochastic matrix in the Birkhoff polytope Mena et al. (2017) (Fig. 2).
The problem in Eq. (7) supports automatic differentiation Genevay et al. (2017) and converges to
the original problem in Eq. (6) as τ → 0+. Certainly, the above derivation implicitly requires
that |Va| = |Vb| because any doubly stochastic matrix is a square matrix. This constraint is hold
by GOT Petric Maretic et al. (2019); Petric Maretic (2021) and is relaxed in fGOT Maretic et al.
(2022), where |Va| ≠ |Vb| is allowed to compare between graphs with different sizes. Please note
that although the Sinkhorn operator implicitly creates entropy regularization during computation
Eisenberger et al. (2022), the formal optimization objective defined in Eq. (6) still belongs to pure
optimal transport problem. Please see Appendix B for explanations.
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Figure 2: Conceptual illustrations of classic approach and our approach. Please note that “steps" are
used to describe the progressive relation of mathematical ideas rather than real steps in algorithms.

OUR APPROACH (STEPS 1-2). Our approach differs from the classic one at the very beginning.
We start by explicitly considering the entropy-regularized optimal transport between X aϕ and X bϕ
Cuturi (2013)

EOε
(
X aϕ ,X bϕ

)
= inf

γ

(∫
Ω×Ω

∥x− y∥22dγ (x, y) + εDKL (γ∥ρa ⊗ ρb)
)
, s.t. γ ∈ Γab (8)

where DKL (·∥·) denotes the Kullback-Leibler divergence

DKL (γ∥ρa ⊗ ρb) =
∫
Ω×Ω

log

(
dγ

dρadρb

)
dγ. (9)

Parameter ε ∈ [0,∞) in Eq. (8) is the entropy regularization magnitude.

In our research, we also constrain the solution of our entropy-regularized optimal transport problem
as a permutation matrix M ∈ R|Vb|×|Va| and make it differentiable by using the Sinkhorn operator
(Fig. 2). Applying the properties of Gaussian geometry, we can follow Mallasto et al. (2021) to
derive an closed-form expression of the optimization objective (see Appendix C for derivations)

EOε
(
X aϕ , ς (M/τ) ◦ X bϕ

)
=tr

(
Σa + ς (M/τ)

T
Σbς (M/τ)

)
− ε

2
(tr (Kε

ab)− log det (Kε
ab) + |Va| log 2− 2|Va|) , (10)

where Kε
ab = I +

√
I + 16

ε2Σaς (M/τ)
T
Σbς (M/τ), notion I denotes the unit matrix, and det (·)

denotes the determinant . Such a differentiable problem can be solved by gradient descent, whose
algorithm will be introduced later.

Why should we consider an entropy-regularized optimal transport problem? The main reason lies in
that entropy-regularized optimal transport has lower sample complexity (i.e., the convergence rate
of a metric between a measure and its empirical counterpart as a function of sample size) than the
pure one Weed & Bach (2019); Mallasto et al. (2021); Mena & Niles-Weed (2019) and, therefore,
helps overcome challenge (II). This property is demonstrated as favorable in our experiments.

OUR APPROACH (STEP 3). To this point, we have proposed our entropy-regularized optimal
transport problem between graphs, which is more computationally favorable than the original one
studied by GOT Petric Maretic et al. (2019); Petric Maretic (2021) and fGOT Maretic et al. (2022).
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Figure 3: Conceptual illustrations of the computational implementation of ErGOT.

However, such a problem is not statistically ideal yet because the entropy-regularization implies a
bias in Eq. (10). Specifically, minimizing EOε

(
X aϕ , ς (M/τ) ◦ X bϕ

)
with respect to ς (M/τ) pushes

ς (M/τ) ◦ X bϕ towards a shrunk measure with a smaller support set than X aϕ , the real target Feydy

et al. (2019). This bias arises from the non-vanishing auto-correlation terms EOε
(
X aϕ ,X aϕ

)
and

EOε
(
ς (M/τ) ◦ X bϕ, ς (M/τ) ◦ X bϕ

)
when ε > 0 Feydy et al. (2019). To control this bias, we need

to consider the 2-Sinkhorn divergence Feydy et al. (2019); Mallasto et al. (2021)
SKε

(
X aϕ , ς (M/τ) ◦ X bϕ

)
=EOε

(
X aϕ , ς (M/τ) ◦ X bϕ

)
− 1

2
EOε

(
X aϕ ,X aϕ

)
− 1

2
EOε

(
ς (M/τ) ◦ X bϕ, ς (M/τ) ◦ X bϕ

)
, (11)

which has a closed-form expression on Gaussian geometry Mallasto et al. (2021)

SKε
(
X aϕ , ς (M/τ) ◦ X bϕ

)
=
ε

4

(
tr (Kε

aa − 2Kε
ab +Kε

bb) + log

(
det2 (Kε

ab)

det (Kε
aa) det (K

ε
bb)

))
. (12)

We mark that Kε
aa = I +

√
I + 16

ε2 [Σa]
2 and Kε

bb = I +

√
I + 16

ε2

[
ς (M/τ)

T
Σbς (M/τ)

]2
. One

can see Appendix D for the derivations of Eq. (12). Besides controlling bias Feydy et al. (2019),
the 2-Sinkhorn divergence also enables our entropy-regularized optimal transport to wander between
pure optimal transport (with more favorable geometric properties) and maximum mean discrepancy
(with lower sample complexity) between graphs according to entropy regularization magnitude ε
Feydy et al. (2019); Mallasto et al. (2021). Specifically, we have (see Appendix D for explanations)

OT2

(
X aϕ , ς (M/τ) ◦ X bϕ

) ε→0←−−− SKε
(
X aϕ , ς (M/τ) ◦ X bϕ

) ε→∞−−−→ MMDε
(
X aϕ , ς (M/τ) ◦ X bϕ

)
,

(13)

where MMDε
(
X aϕ , ς (M/τ) ◦ X bϕ

)
= ∥E

(
X aϕ
)
− E

(
ς (M/τ) ◦ X bϕ

)
∥2 denotes the maximum

mean discrepancy Feydy et al. (2019); Mallasto et al. (2021). This property enables the 2-Sinkhorn
divergence to take the advantages of both pure optimal transport and maximum mean discrepancy
Feydy et al. (2019). Therefore, we use the 2-Sinkhorn divergence in Eq. (12) rather than the entropy-
regularized 2-Wasserstein distance in Eq. (11) to define our optimization problem (Fig. 2)

minimize
ς(M/τ)∈R|Vb|×|Va|

SKε
(
X aϕ , ς (M/τ) ◦ X bϕ

)
, s.t. ς (M/τ) is a doubly stochastic matrix. (14)

The algorithm for solving this problem is designed following the Bayesian exploration and re-
parameterization introduced in Petric Maretic et al. (2019). Because gradient descent algorithm
is not our research objective, here we do not elaborate it in the main text. Please see Appendix E for
information of algorithm designs. In Fig. 3, we sketch the general mechanics of ErGOT algorithm.

4 EXPERIMENTS

Experiment objectives. To comprehensively validate our ErGOT framework, we implement it on
graph alignment, sketching, and retrieval tasks (Fig. 4) to compete with corresponding state-of-the-
art approaches. Based on these experiments, we aim at verifying the following arguments:
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Figure 4: Conceptual illustrations of experiment objectives.

(A) ErGOT can robustly and effectively achieve high accuracy across different graph alignment
conditions (e.g., graph sizes, graph types, covariance matrix designs, and sample sizes).

(B) Although ErGOT is proposed for graph alignment, it is also competitive on other tasks
such as graph sketching and retrieval. Certainly, a more specialized algorithm may surpass
ErGOT in a corner case. On average, ErGOT is expected to be optimal in most cases.

Graph alignment. Our graph alignment experiment is implemented on the stochastic block model
(initialized with 2 communities, where edges within communities are removed with a probability of
0.3 and edges across communities are removed with a probability of 0.95) and the Erdős-Rényi
graph (nodes are randomly connected according to a probability of 0.45). Once a graph is generated
under an experiment condition, we randomly permute the order of nodes to obtain a graph to be
aligned. The objective is to find a permutation matrix that best aligns the randomly permuted graph
with the original one (Fig. 4).

We compare ErGOT (ε = 500, τ = 2, and learning rate γ = 0.5) with Gromov-Wasserstein
approach (GW, defined with an entropy regularization magnitude of 10−3 to avoid numerical prob-
lems) Peyré et al. (2016) and classic graph-signal-based optimal transport approaches (i.e., GOT
Petric Maretic et al. (2019) and fGOT Maretic et al. (2022)). Because fGOT can be understood as
a generalized version of GOT (e.g., generalized to more covariance matrices) and essentially solves
the same question as GOT (i.e., the optimal transport defined in Eq. (7)), we uniformly implement
GOT (default settings with τ = 2 and γ = 0.2) with different covariance matrices rather than repeat-
edly deploy GOT and fGOT in our experiment. Specifically, we consider four kinds of covariance
matrix designs, i.e., Σ (Xϕ) = L + 1

nJ (marked as Σ1), Σ (Xϕ) = L† + 1
nJ (marked as Σ2),

Σ (Xϕ) = exp (−rL) (marked as Σ3), and Σ (Xϕ) = L2 (marked as Σ4). Among them, Σ1 and Σ2

are our theoretical results in Table 1 while Σ3 and Σ4 are adopted from fGOT Maretic et al. (2022).

The experiment is conducted in a CPU environment (Intel i7-8750H) with 32GB memory. To ensure
the validity of our results, the experiment under each single condition is repeated for 20 times. Each
time a graph is generated and randomly permuted to define the alignment task for ErGOT (1000
epochs), GW, and GOT (1000 epochs). Because we find that GOT may occasionally meet numerical
problems (e.g., involves with inf or nan), we distinguish between two versions of alignment experi-
ments, where we either apply a numerical trick (i.e., add 0.1I , a scaled unit matrix, to the covariance
matrix Petric Maretic et al. (2019); Maretic et al. (2022)) to resolve these problems (all results in Fig.
5) or simply leave them alone (all results in Appendix F). Please note that the Gromov-Wasserstein
approach is accelerated by C++ Flamary et al. (2021) and, therefore, is much faster than the other
two algorithms programmed by Python.

In Fig. 5a and Fig. 5d, we empirically demonstrate the low sample complexity of ErGOT by
comparing it with GOT on different sample sizes (sample size s ∈ {5, 10, 15, 20, 25, 30, 35, 40}).
After averaging the alignment errors (denoted by the L2 distance between alignment targets and
algorithm outputs) across all covariance matrix designs, we show that ErGOT achieves lower errors
on all sample sizes. In Fig. 5b and Fig. 5e, we show the alignment accuracy of ErGOT (s = 10),
GOT (s = 10), and GW as the graph size increases. Compared with GOT and GW, ErGOT is
observed to maintain higher alignment precision across different graph sizes. In Fig. 5c and Fig. 5f,
we measure the time cost of alignment by GW, ErGOT (s = 10), and GOT (s = 10), respectively,
where ErGOT is shown as faster than GOT with the same epoch number (again, ErGOT and GOT
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Figure 5: The results of graph alignment (with numerical tricks). (a-c) report the experiment on
Erdős-Rényi graphs while (d-f) report the experiment on stochastic block models. (a) and (d) show
the mean performance (averaged across different covariance matrix designs) of ErGOT and GOT as
the sample size increases. (b) and (e) compare ErGOT with GOT and GW on different graph sizes.
(c) and (f) measure the time cost of ErGOT (1000 epochs), GOT (1000 epochs), and GW.

can not be directly compared with GW because GW is accelerated by C++). These findings can be
validated by the experiment without the numerical trick (see Appendix A) as well, where ErGOT
surpasses GOT in a higher degree than our observations in Fig. 5. In sum, our results suggest ErGOT
as a better choice in graph alignment tasks.

Graph sketching. In our graph sketching experiment, ErGOT (ε = 500 and τ = 2) is compared
with several state-of-the-art algorithms, including OTC Garg & Jaakkola (2019), COPT Dong &
Sawin (2020), Algebraic Chen & Safro (2011); Ron et al. (2011), Variation Deo (2017), REC Gu
et al. (2015), Affinity Livne & Brandt (2012), and HeavyE Dhillon et al. (2007) on representative
data sets. In general, graph sketching is a process where we compress a graph Ga to a smaller
graph Gb with a given size. The objective is to search an optimal candidate of Gb such that a certain
distance between Ga and Gb can be minimized Dong & Sawin (2020). In our research, the graph
sketching via ErGOT is realized based on the algorithm proposed by COPT Dong & Sawin (2020).
Specifically, we modify the algorithm by replacing the COPT distance metric between the original
graph and its potential sketching candidate by the 2-Sinkhorn divergence between Ga and Gb.
We first compress all graphs by a give factor, after which we randomly select 70% of the compressed
graphs to define the training set and train a SVM classifier with multi-scale Laplacian graph kernel
Kondor & Pan (2016). Then, we evaluate the classification accuracy of SVM on the rest part of
graphs. One can see a similar experiment in COPT Dong & Sawin (2020). Due to the limited space,
our experiment results are subdivided into two parts, which are reported in Table 2 and Appendix
F, respectively.

For an ideal graph sketching approach, compressed graphs are expected to contain sufficient infor-
mation of the original ones such that a classifier can accurately classify them. On the three data
sets reported in Table 2, ErGOT achieves optimal (being the best) or competitive (being the second
best) performance in 2-fold and 4-fold compression tasks. Although some specialized algorithms
for graph compression can achieve higher performance than ErGOT on other graph data sets (see
Appendix F), ErGOT, an approach that is not initially proposed for graph compression, can keep
the performance gap within a reasonable range. These results are acceptable because it is impossible
for a single algorithm to achieve the best performance in every learning tasks implemented on every
data sets (i.e., none of the considered state-of-the-art methods can do so). Therefore, we suggest that
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2X compression 4X compression
BZR_MD MSRC_9 Proteins BZR_MD MSRC_9 Proteins

OTC 60.7± 4.0 80.9± 4.5 72.8± .8 64.3± 2.7 84.8± 6.7 66.7± 1.8
HeavyE 61.7± 4.8 79.7± 6.3 72.3± 3.3 55.0± 4.7 76.1± 7.9 72.2± 2.7
Variation 60.2± 4.4 75.5± 2.7 72.1± 1.2 59.3± 3.2 78.5± 3.8 72.4± .75
Algebraic 57.4± 5.2 77.0± 8.9 70.1± 2.7 53.4± 2.5 75.2± 6.9 69.1± 1.8
Affinity 58.5± 5.0 80.1± 3.0 71.2± 2.5 53.4± 3.5 75.8± 6.2 70.9± 2.3
REC 60.9± 7.3 82.4± 1.9 71.1± 1.5 54.5± 2.7 77.9± 3.7 71.5± 1.0
COPT 67.6± 4.0 86.3± 1.3 74.0± 1.3 68.4± 5.0 81.2± 4.8 73.7± 1.5
ErGOT 68.6± 4.0 86.9± 7.99 73.1 ± 3.4 70.0± 6.56 86.2± 8.66 75.2± 2.4

Table 2: Graph sketching experiment results on 3 data sets. The best model is marked in bold while
the second best one is marked by the underline.

Algorithm MSRC_9 PROTEINS BZR MUTAG MSRC_21C DHFR COX2_MD
Affinity 14.95 ± 3.87 70.80 ± 5.09 76.0 ± 4.40 56.65 ± 9.42 10.3 ± 3.23 55.5 ± 6.14 41.9± 5.03
Heavy 13.65 ± 2.67 70.30 ± 4.42 78.6 ± 4.55 70.65 ± 7.70 7.25 ± 3.88 53.5 ± 4.6 9 49.25 ± 4.86
Algebraic 11.60 ± 3.27 69.35 ± 4.17 69.7 ± 7.41 66.0 ± 6.50 10.45 ± 3.64 54.0± 5.33 36.5± 6.08
Variation 14.20 ± 4.01 77.6 ± 4.26 75.85 ± 4.97 70.6 ± 4.39 9.85 ± 2.90 55.25 ± 3.59 37.4 ± 5.74
REC 16.75 ± 3.25 71.45 ± 3.58 79.5 ± 3.71 60.2± 5.08 11.3 ± 2.88 51.75 ± 4.97 49.25± 4.86
OTC 9.50 ± 2.71 54.6 ± 4.91 72,35 ± 7.21 68.1 ± 5.74 12.25 ± 3.45 59.5 ± 6.67 49.4 ± 4.71
COPT 13.6 ± 2.86 54.1 ± 3.58 68.25 ± 3.88 54.5 ± 4.65 10.45 ± 3.50 51.4 ± 5.04 50.15± 5.28
ErGOT 15.7 ±2.53 64.5 ± 5.83 74.45 ± 4.26 77.65 ± 4.05 14.35 ± 3.77 57.05 ± 4.75 50.5 ± 5.46

Table 3: Graph retrieval experiment results on 7 data sets. The best model is marked in bold while
the second best one is marked by the underline. Note that two algorithms, Heavy and REC, happen
to achieve the same performance on COX2_MD data set.

ErGOT has the potential to be further explored in terms of graph sketching, yet more specialized
improvements are necessary.

Graph retrieval. Our graph retrieval experiment begins with a graph compression step, where we
compress graphs in every data set to a certain number of nodes (see Appendix F for the settings
of node number on each data set). Similar to our previous experiment, the graph compression
by ErGOT is still realized by a modified COPT algorithm, where distance metric is set as the 2-
Sinkhorn divergence (ε = 500 and τ = 2) between the original graph and the compressed one. In
each sketched data set, we randomly select 100 graphs as keys and use the rest part of graphs as
queries. For every key graph, we search its nearest neighbor (searched according to L2 distance
between graph Laplacian matrices) in query graphs. Then, the label of the nearest neighbor is used
as the predicted label to evaluate prediction accuracy (i.e., if the predicted label is same as the label
of key graph). Our experiment is repeated for 20 times on each data set with different random seeds.

The test accuracy on 7 real-world data sets is reported in Table 3. After counting the number of
times for an algorithm to be optimal on a data set (e.g., being the best or the second best), ErGOT is
observed to be optimal for 5 times while its strongest competitors become optimal for 2 or 3 times
at most. On average, ErGOT is suggested as an optimal choice for graph retrieval tasks though there
do exist some specialized algorithms that are better than ErGOT on specific data sets.

5 CONCLUSION

In this paper, we formalize graph comparison task as an entropy-regularized optimal transport prob-
lem between the optimal representation of graphs. We propose ErGOT, an approach with compre-
hensive theoretical foundation and promising properties (e.g., low sample complexity), to solve the
problem. In general, the ErGOT framework defined with a 2-Sinkhorn divergence is demonstrated
as not only optimal in graph alignment tasks but also efficient in the tasks for which ErGOT is not
initially proposed (e.g., graph sketching and retrieval). Although being optimal on average, ErGOT
may be surpassed by specific specialized algorithms in corner cases. Therefore, a meaningful di-
rection for future studies may be to develop task-specific variants of ErGOT. The source code of
ErGOT will be released once the double blind review finishes.
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