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Figure 1. Overview of SoRA framework. Left. SoRA achieves state-of-the-art results across diverse tasks, ranging from domain-
generalized semantic segmentation (DGSS) to object detection (DGOD), and performs well in both synthetic-to-real and real-to-real sce-
narios. Middle. Our method, trained solely on synthetic datasets, demonstrates strong generalization capabilities in complex real-world
scenes. Right. We present SoRA, a method that applies SVD to the pre-trained weights, decomposing them into r minor singular compo-
nents U[:,−r:]Σ[−r:](V

T )[−r:,:] and residuals. SoRA selectively tunes the smallest r components, effectively preserving world knowledge
of foundation models. Since SoRA shares the same forward architecture as LoRA [33], it adds no extra latency during inference phase.

Abstract

Domain generalization (DG) aims to adapt a model us-
ing one or multiple source domains to ensure robust per-
formance in unseen target domains. Recently, Parameter-
Efficient Fine-Tuning (PEFT) of foundation models has
shown promising results in the context of DG problem. Nev-
ertheless, existing PEFT methods still struggle to strike a
balance between preserving generalizable components of
the pre-trained model and learning task-specific features.
To gain insights into the distribution of generalizable com-
ponents, we begin by analyzing the pre-trained weights
through the lens of singular value decomposition. Building
on these insights, we introduce Singular Value Decomposed
Low-Rank Adaptation (SoRA), an approach that selectively
tunes minor singular components while keeping the resid-
ual parts frozen. SoRA effectively retains the generaliza-
tion ability of the pre-trained model while efficiently ac-
quiring task-specific skills. Furthermore, we freeze domain-
generalizable blocks and employ an annealing weight decay
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strategy, thereby achieving an optimal balance in the deli-
cate trade-off between generalizability and discriminabil-
ity. SoRA attains state-of-the-art results on multiple bench-
marks that span both domain generalized semantic segmen-
tation to domain generalized object detection. In addition,
our methods introduce no additional inference overhead or
regularization loss, maintain compatibility with any back-
bone or head, and are designed to be versatile, allowing
easy integration into a wide range of tasks.

1. Introduction
Deep neural networks (DNNs) have recently made signif-
icant strides in dense prediction tasks, including seman-
tic segmentation [13] and object detection [7, 66], both of
which are crucial for safety-critical applications, such as au-
tonomous driving. However, DNNs often fail to maintain
reliable performance under domain shifts, which may result
from diverse lighting conditions, weather changes, or dif-
ferences in location. Likewise, while synthetic data [27, 67,
69] is employed to avoid the labor-intensive and costly pro-
cess of constructing real-world datasets, the resulting per-
formance degradation of DNNs in real-world deployment
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remains a critical issue to be resolved. To tackle these chal-
lenges, Domain Generalization (DG) is introduced to design
models capable of consistent prediction on arbitrary unseen
target domains.

Existing DG methods for dense prediction tasks em-
ploy two main strategies to enhance model robustness.
The first involves diversifying the training process in the
input [10, 62] or feature space [23, 75] using augmen-
tation/perturbation techniques, exposing the model to a
broader range of styles to mitigate overfitting to specific do-
mains. The second strategy focuses on imposing alignment
constraints, such as normalization [63] or regularization
losses [1, 14], to facilitate the learning of domain-invariant
features. However, these methods mostly utilize outdated
backbones (e.g., ResNet [30] or MobileNetV2 [72]) pre-
trained on mid-scale datasets, such as ImageNet [18].

Meanwhile, vision foundation models (VFMs) [2], pre-
trained on vast, curated datasets with enormous parame-
ter counts, have recently shown unprecedented generaliza-
tion capabilities [80]. Given this landscape, we propose a
paradigm shift—from applying the diversify & align ap-
proach to classic backbones, to devising methods that pre-
serve the world knowledge of VFMs while effectively
learning task-specific features. However, naive adaptation
of VFMs via full fine-tuning (FFT), which involves retrain-
ing all model parameters, results in prohibitive costs and a
risk of catastrophic forgetting of the pre-trained knowledge.

In light of these challenges, a commonly adopted ap-
proach is parameter-efficient fine-tuning (PEFT), where
only the injected lightweight adapters [12, 28, 33] or to-
kens [37, 49] are fine-tuned, while the pre-trained weights
remain frozen. Low-Rank Adaptation (LoRA) [33] is one
of the most widely used PEFT methods, which substitutes
the updates with the product of two low-rank matrices. In-
terestingly, we found that LoRA exhibits superior general-
ization ability in DG dense prediction tasks compared to
FFT and other PEFT methods (see Tab. 2), aligning with
recent findings in LoRA-based literature [6, 34]. Neverthe-
less, LoRA adapters are built without considering the distri-
bution of generalizable components within the pre-trained
weights they modify. As a result, there is still room for en-
hancing generalizability by preserving the diverse domain
knowledge of VFMs.

To uncover the structure in which world knowledge is
encoded within the pre-trained weights, we first perform
singular value decomposition (SVD) on the learned weight
matrices and then analyze the behavior of VFMs after selec-
tively removing specific singular components1. Our analy-
sis reveals that singular vectors associated with higher sin-
gular values tend to extract general features spanning multi-
ple classes in ImageNet, while minor singular components

1In this paper, we refer to the combination of a singular value and its
corresponding singular vectors as a singular component.

are primarily responsible for capturing context-specific fea-
tures. Capitalizing on our findings, we introduce Singular
Value Decomposed Low-Rank Adaptation (SoRA), which
starts by performing SVD to decompose the weights into
their singular vectors, i.e., W = UΣV T , then fine-tunes
only the minor singular components. Specifically, we ini-
tialize LoRA adapter using the components with the small-
est r singular values, i.e., U[:,−r:]Σ[−r:](V

T )[−r:,:], and the
remaining residual components are frozen to maintain gen-
eralizability, as illustrated in Fig. 1 right.

By extending our analysis from the weight-level to the
block-level, we observe and empirically demonstrate that
the early blocks of VFMs effectively extract well-localized
semantic features and are less affected by style or input-
level domain shifts (see Fig. 3). Therefore, we freeze these
blocks to preserve generalizable components while reduc-
ing the number of trainable parameters. Although our pro-
posed methods are effective, tuning the less-optimized bot-
tom spectral space and freezing early blocks may lead to
a lack of discriminability. To mitigate this issue, we intro-
duce an annealing weight decay scheme that gradually re-
duces the regularization loss incurred by weight decay over
the course of training. As shown in Fig. 1, comprehen-
sive evaluations on DG benchmarks demonstrate that our
framework outperforms previous state-of-the-art baselines
and FFT, training only 0.58% to 1.6% of the parameters.
Furthermore, SoRA demonstrates impressive scaling per-
formance with both data and model size.
We make the following contributions:
• We underscore the critical importance of preserving pre-

trained knowledge while learning task-specific features in
scenarios that involve the use of VFMs.

• We present SoRA, a novel PEFT method specifically tai-
lored for DG problem, which leverages spectral infor-
mation to retain the generalization capacity of VFMs.
In addition, we identify and freeze domain-generalizable
blocks while employing an annealing weight decay strat-
egy, thereby achieving an optimal balance between gen-
eralizability and discriminability.

• Extensive experiments on various DG for semantic seg-
mentation and object detection tasks reveal that our
framework surpasses existing baselines by a substantial
margin. Notably, SoRA achieves an mIoU of 80.4% on
Cityscapes without accessing real-world datasets, while
training only 0.58% of the parameters. Additionally, un-
der the most challenging daytime-sunny → night-rainy
detection setting, SoRA outperforms the prior SOTA im-
plementation by achieving a +23.5% mAP gain.

2. Related Work
Domain generalization for dense predictions. Domain
Generalization (DG) methods for dense predictions [5, 9,
19, 35, 39, 42, 46, 50, 61, 73, 79, 82, 85] have recently gar-



nered considerable attention due to their practical demands.
These methods can be categorized along two main axes: i)
data augmentation or domain randomization, both of which
diversify the training process, and ii) alignment techniques
to suppress domain-relevant features.

Methods adopting the first approach at the input level
employ various augmentation techniques [10, 41, 62, 91]
or, more recently, leverage advances in generative model-
ing, such as diffusion models [64, 68], to generate data
approximating the target domain [3, 38, 57], thereby ex-
panding domain diversity and enriching learned representa-
tions. To enable more flexible augmentation, several stud-
ies [22, 23, 45, 75, 77] leverage feature stylization to en-
hance model robustness. On the other hand, alignment-
based methods effectively reduce domain-sensitive compo-
nents by employing feature normalization/whitening tech-
niques [60, 63, 74], or by introducing regularization losses
to suppress inconsistencies caused by simulated domain
shifts [1, 14, 17, 40, 43, 47, 53, 83, 84, 89, 90]. How-
ever, most of the aforementioned approaches experimented
with CNN backbones [30] trained on relatively restricted
domains. In contrast, when applying vision foundation
models (VFMs)—trained on massive datasets using trans-
former architectures [20, 76] and sophisticated training
schemes [58]—to the DG problem, a fundamental shift in
approach is imperative.

Following this trend, recent studies leverage vision-
language models as feature extractors [36], employing text
embeddings with domain-invariant semantics as a source
for style augmentation [22, 77] or as object queries in
transformer-based decoders [59]. Rein [80] injects learn-
able adapters and tokens to refine feature maps for each in-
stance while keeping the backbone frozen, significantly ex-
panding the performance frontier. FADA [4] and SET [86]
introduce frequency-adapted methods to effectively utilize
frozen VFM features. In contrast to existing methods that
simply freeze all parameters, we perform singular value de-
composition on the pre-trained weights, freezing the gen-
eralizable principal components and tuning only the minor
singular components responsible for context-specific fea-
tures, thereby achieving superior DG performance.
Vision foundation models (VFMs). Recently, the ad-
vent of VFMs with general perception capabilities has laid
the foundation for a paradigm in which these models are
broadly applicable to numerous downstream tasks. Sem-
inal examples of models advancing this direction include
CLIP [65], which demonstrates strong zero-shot general-
izability through training on web-scale, weakly supervised
image-text pairs; EVA02 [24], which enhances CLIP fea-
tures with masked image modeling [31]; and DINOv2 [58],
which incorporates losses from prior arts like iBoT [92] and
DINO [8], and is trained on massive curated datasets, offer-
ing strong spatial features for dense prediction tasks. Our

SoRA builds on this foundation, harnessing the full poten-
tial of VFMs in the context of DG problem.
Parameter-efficient fine-tuning (PEFT). With the remark-
able success of PEFT methods in efficiently adapting large-
scale foundation models in the realm of natural language
processing, there has been a growing interest in extending
these approaches to the field of computer vision. For exam-
ple, VPT [37] prepends prompt tokens to the input sequence
of several attention layers. AdaptFormer [12] introduces a
lightweight adapter in parallel to the feed-forward network,
whereas SSF [51] incorporates scale and shift parameters to
modulate features for downstream tasks. LoRA [33] models
the incremental updates of pre-trained weights using rank
decomposition matrices, achieving performance compara-
ble to full fine-tuning (FFT). However, there still often ex-
ists a performance gap between LoRA and FFT. DoRA [52]
and PiSSA [55] address this gap by further decomposing the
pre-trained weights, initializing the LoRA adapter with di-
rectional and principal components, respectively, and fine-
tuning accordingly. While these methods aim to match the
performance of FFT, our focus is on the preservation of gen-
eralizable components.

3. Preliminaries
Low-Rank Adaptation (LoRA). LoRA [33] hypothesizes
that the weight changes during fine-tuning exhibit a low-
rank structure. Given a pre-trained weight matrix W0 ∈
Rm×n, LoRA constrains its update ∆W ∈ Rm×n to a low-
rank decomposition ∆W = BA, where B ∈ Rm×r and
A ∈ Rr×n are two low-rank matrices, with an intrinsic rank
of r ≪ min(m,n). For y = W0x, the modified forward
pass is as follows:

y = (W0 +∆W )x = (W0 +BA)x, (1)

where W0 is frozen, and only the underlined low-rank pa-
rameters are fine-tuned, significantly reducing the number
of trainable parameters. LoRA uses a uniform Kaiming dis-
tribution [29] to initialize A, while B is initially set to zero,
ensuring BA = 0 at the beginning of training. As seen
in Eq. 1, the learned matrices BA can be merged with the
frozen weight W0, allowing LoRA-based variants to avoid
adding any additional inference burden.
Singular Value Decomposition (SVD) Analysis. We ob-
serve that LoRA and existing PEFT methods, by train-
ing only a relatively small subset of parameters or by en-
forcing low-rank-ness of weight updates, deliver promis-
ing DG performance without significantly distorting the
pre-trained representations. However, many previous stud-
ies build adapters without considering how the generaliz-
able components are structured within the weight matrices,
potentially interfering with these components in the fine-
tuning process. Building on the Eckart–Young–Mirsky the-
orem [21], which validates that the optimal rank-r approx-



Figure 2. Distribution of generalizable components. Top. Num-
ber of classes exhibiting specific accuracy drops after applying
SVD to DINOv2-large weights and reconstructing by truncating
the smallest r singular components. Bottom. Distinct roles of sin-
gular components across levels. Numbers in parentheses represent
the count of classes with an accuracy drop ratio exceeding 50%.
The average WordNet hierarchy depth of these classes is shown,
with higher values indicating greater context specificity.

imation of a matrix W is represented by the sum of its top
r singular components, we analyze how the world knowl-
edge of VFMs is structured from an SVD perspective. Us-
ing ImageNet-1k [18] as a testbed, our analysis computes
the SVD of pre-trained weights across all layers of the DI-
NOv2 [58] ViT-large model, followed by truncating specific
singular values and their corresponding singular vectors to
investigate the classes that are subsequently misclassified.

As shown in Fig. 2 top, as the number of discarded
smallest singular components increases, the number of
misclassified classes grows exponentially rather than lin-
early, suggesting that components with larger singular
values tend to capture more general features spanning
multiple classes. To further examine whether different
groups of singular components exhibit distinct behaviors,
we consider three groups: the top 8 principal components
U[:,:8]Σ[:8](V

T )[:8,:], the middle 160 singular components
U[:,384:544]Σ[384:544](V

T )[384:544,:], and the bottom 320 mi-
nor components U[:,−320:]Σ[−320:](V

T )[−320:,:]. We then
truncate each group separately and analyze the classes that
the rank-reduced model subsequently fails to classify (see
Fig. 2 bottom).

According to the Eckart–Young–Mirsky theorem and the
heavy-tail distribution of singular values, it is evident that
the top singular components encapsulate the core knowl-
edge of VFM and should be preserved to maintain general-
izability. Conversely, we note that the bottom-component-
truncated model fails to recognize classes that require fine-
grained or texture-biased features (e.g., specific dog breeds,
wildlife with distinctive textures), as well as those that are

context-specific (e.g., cornet, bikini, missile, dock). In con-
trast, we find that removing middle singular components re-
sults in significant performance declines for classes that rely
on coarse-grained or shape-biased recognition (e.g., mortar-
board, pier, altar, necklace, schooner, horizontal bar). In-
terestingly, as suggested by differences in the depth of the
WordNet hierarchy, higher-value singular components do
not function independently but rather interact in a hierar-
chical and composite manner. For instance, classes with no-
table accuracy drops can also be clustered into higher-level
concepts, such as functionality (e.g., wok, hotpot, pitcher,
cauldron, pop bottle, cup/ambulance, minivan, passenger
car, police van, garbage truck, limousine) or co-occurrence
(e.g., desktop computer, keyboard, notebook, desk). Addi-
tionally, almost all of these objects are commonly found in
everyday scenes. Consequently, it can be seen that general-
izable components are hierarchically and compositionally
structured according to the magnitude of singular values.

4. Proposed Method
In this section, we present our parameter-efficient adapta-
tion methods specifically tailored for DG dense prediction
tasks, inspired by the insights from our SVD analysis. Sub-
sequently, we propose a block freeze strategy and an an-
nealing weight decay scheme to strike an optimal trade-off
between generalizability and discriminability.

4.1. Singular Value Decomposed Low-Rank Adaptation

To effectively preserve the integrity of generalizable rep-
resentations in pre-trained weights, we propose Singular
value decomposed Low-Rank Adaptation (SoRA). Firstly,
SoRA performs singular value decomposition (SVD) on the
pre-trained weight matrices, including those from the atten-
tion layers, multi-layer perceptron (MLP) layers, and more.
The weight matrix W ∈ Rm×n is decomposed using SVD
as follows:

W = UΣV T =

R∑
i=1

σiuiv
T
i , (2)

where U = [u1, u2, · · · , um] ∈ Rm×m and V =
[v1, v2, · · · , vn] ∈ Rn×n are the left and right singular vec-
tors, whose columns form an orthonormal basis for Rm and
Rn respectively, Σ ∈ Rm×n is a diagonal matrix whose
entries σi are singular values arranged in descending order,
and R denotes the rank of W , with R ≤ min(m,n).

We then divide the singular components into two
groups according to their singular values: the minor sin-
gular components with the smallest r singular values
U[:,−r:]Σ[−r:](V

T )[−r:,:] and the residual singular compo-
nents U[:,:−r]Σ[:−r](V

T )[:−r,:]. As illustrated in Fig. 1 right,
we employ the QR-type reconstruction of minor singular
components to initialize the adapter for fine-tuning:

B = U[:,−r:]

√
Σ[−r:] ∈ Rm×r, (3)

A =
√
Σ[−r:](V

T )[−r:,:] ∈ Rr×n. (4)



Figure 3. The inherent generalization capabilities of the early
blocks of VFM. Top. We apply PCA on the extracted intermediate
features (8th block of DINOv2-Large) and visualize the top three
leading components. Bottom. Class-wise IoU comparison for rare
classes [32] under the GTAV→Cityscapes setting, focusing on the
impact of freezing the first eight blocks. “NFEB” stands for the
Number of Frozen Early Blocks. A darker shade of blue indicates
enhanced generalization performance relative to the baseline.

In the fine-tuning process, the frozen residual matrix Wres

is defined as W − BA to prevent numerical errors intro-
duced during the SVD step, while maintaining the pre-
trained generalization capability at the beginning of fine-
tuning. After fine-tuning, the learned low-rank matrices B′

and A′ can be merged into Wres, as in LoRA [33], ensuring
no additional computation overhead during inference:

y = (W −BA+B′A′︸ ︷︷ ︸
∆WSoRA

)x = (Wres+B′A′)x = W ′x. (5)

Importantly, SoRA offers several key advantages for
tackling the DG problem: i) SoRA initializes the adapter
using components orthogonal to the principal components,
thus minimizing interference with pre-trained representa-
tions. For the batched version of the forward pass described
in Eq. 1 (with X ∈ Rn×b and Y ∈ Rm×b), the gradients
of B and A are ∂L

∂B = ∂L
∂Y XTAT and ∂L

∂A = BT ∂L
∂Y XT .

Therefore, unlike LoRA, which randomly initializes A,
our approach facilitates convergence along singular direc-
tions that preserve the integrity of the generalizable compo-
nents. ii) Consistent with prior DG methods [14, 43, 45, 91]
that guide models to prioritize shape over texture, thereby
achieving superior out-of-distribution performance, SoRA
effectively preserves the domain generalizable shape-biased
features of VFMs by tuning only the minor singular compo-
nents (see Fig. 2 bottom and Tab. 1).
Discussion. To assess whether the proposed adaptation ma-
trix ∆WSoRA minimally correlates with the top singular di-
rections of the pre-trained weight matrix W0, we project
∆W onto the singular vectors of W0. Specifically, we quan-
tify the extent of interference by ∆W on each i-th singu-
lar direction through a singular modulation ratio (SMR),

SMR Block i ∆WSoRA ∆W ∗
SoRA ∆WLoRA

|u
T
i ∆Wvi

σi
|

12th

0–255 0.075 0.084 (↓ 17%) 0.101
256–511 0.094 0.094 (↓ 43%) 0.166
512–767 0.157 0.165 (↓ 40%) 0.275
768–1023 4.104 6.152 (↑ 21%) 5.095

24th

0–255 0.097 0.095 (↓ 24%) 0.125
256–511 0.105 0.108 (↓ 35%) 0.166
512–767 0.206 0.189 (↓ 41%) 0.323
768–1023 2.781 3.620 (↑ 26%) 2.865

Table 1. Singular modulation ratio comparison. * indicates the
adaptation matrix trained using the annealing weight decay strat-
egy. The weight matrices are taken from the query projection lay-
ers of the 12th and 24th attention blocks in DINOv2-Large [58].

which is formally defined as follows:

SMRi = |u
T
i ∆Wvi
σi

|. (6)

For ease of analysis, we partition the 1024 singular direc-
tions into four equal groups, calculate the average SMR for
each group, and then compare the resulting values between
SoRA and LoRA. As shown in Tab. 1, the SoRA initial-
ization scheme proves more effective than LoRA in mini-
mizing interference with singular components with higher
singular values. In summary, our method effectively pre-
serves the structure of the VFM’s generalizable represen-
tations while adapting to downstream tasks, resulting in
significant improvements on DG benchmarks compared to
SOTA baselines, as confirmed by our experimental results.

4.2. Freezing Early Blocks
In this section, we explore the distribution of generaliz-
able components at the block level. Drawing on recent do-
main adaptation methods [48, 88], which find that the early
blocks of a model primarily engage in domain-specific fea-
ture extraction and should therefore be updated, we con-
jecture that in the context of leveraging VFM for DG, the
early blocks should instead remain unchanged. Intuitively,
these initial blocks of VFMs are adept at projecting low-
level features from diverse domains into domain-invariant
semantic representations. In other words, while adjusting
early blocks may help bridge input-level domain gaps in
domain adaptation, freezing the early blocks of VFMs is
essential for DG to prevent overfitting to the source domain
and to retain the model’s generalization capability.

To validate our hypothesis, we perform PCA analysis on
the features extracted from the early blocks of VFM and
compare the performance on rare classes when these blocks
are frozen, as illustrated in Fig. 3. Despite considerable do-
main shifts in style and content, the principal components
align well with the image layout and maintain consistent
semantic information (e.g., the horses have similar colors).
Furthermore, simply freezing the early blocks yields a no-
table improvement in IoU for rare classes, indicating that
updating these blocks can severely disrupt the learned rep-
resentations of various classes in VFMs. Thus, by default,



we opt to freeze all blocks up to the one that generates the
feature map fed as the highest resolution input to the seg-
mentation/detection head (e.g., the first eight blocks). De-
tailed ablations of varying the number of frozen early blocks
are presented in the Supplemental.

4.3. Annealing Weight Decay

Our methods are specialized in preserving the pre-trained
knowledge of VFMs, but this may come at the cost of di-
minished discriminability. One can remove weight decay
or set its coefficient to a very small value to enhance dis-
criminability. However, doing so risks increased interfer-
ence of the tuned parameters with the principal components
of the pre-trained weights. Therefore, based on the obser-
vation that regularization primarily affects the early phases
of learning by guiding a model towards having good gener-
alization properties [26], we leverage an Annealing Weight
Decay (AWD) scheme. Specifically, AWD starts with a rel-
atively large weight decay coefficient and progressively re-
duces it to zero as training progresses. By default, we use
a cosine schedule for AWD. As shown in Tab. 1 (∆WSoRA

vs. ∆W ∗
SoRA) and Tab. 8, AWD integrates seamlessly with

SoRA, improving discriminability without compromising
SoRA’s ability to preserve pre-trained knowledge.

5. Experiments
We conduct a variety of experiments to showcase the effi-
cacy of SoRA on DG benchmarks including domain gen-
eralized semantic segmentation (DGSS) and domain gener-
alized object detection (DGOD). We then perform an abla-
tion study on SoRA, emphasizing the contribution of each
component to the DG performance. Lastly, we extend our
approach beyond dense predictions to generative modeling.

5.1. Experimental Setup
Datasets. For DGSS, we use three synthetic datasets
(GTAV [67], SYNTHIA [69], UrbanSyn [27]), and four
real-world datasets (Cityscapes [16], BDD100K [87], Map-
illary [56], ACDC [71]). Specifically, GTAV, a large-scale
dataset generated from the game engine, comprises 24,966
images. SYNTHIA consists of 9,400 photo-realistic syn-
thetic images. UrbanSyn provides 7,539 driving scene im-
ages. Cityscapes is an autonomous driving dataset contain-
ing 2,975 training and 500 validation images (2048×1024).
BDD and Mapillary have 1,000 (1280×720) and 2,000
(1920×1080) validation images, respectively. ACDC is a
driving scene dataset under adverse conditions, including
night, snow, fog, and rain. For DGOD, we use the urban
scene detection dataset introduced by [82]. The dataset con-
sists of five different weather conditions: Daytime-Sunny
(DS), Night-Clear (NC), Night-Rainy (NR), Dusk-Rainy
(DR), and Daytime-Foggy (DF). Daytime-Sunny serves as
the source domain, offering 26,518 images, with 8,313

Synthetic-to-Real Generalization Test Domains (mIoU in %)

Methods Backbone Params.∗ →Citys. →BDD →Map. Avg.

Single-source DGSS Trained on GTAV
◦CLOUDS [3] CLIP-CN-L 0.0M 60.20 57.40 67.00 61.50
◦VLTSeg [36] EVA02-L 304.2M 65.30 58.30 66.00 63.20
◦Rein [80] EVA02-L 3.0M 65.30 60.50 64.90 63.60
◦FADA [4] EVA02-L 11.7M 66.70 61.90 66.10 64.90
◦ tqdm [59] EVA02-L 304.2M 68.88 59.18 70.10 66.05
◦SoRA (Ours) EVA02-L 5.1M 68.05 60.81 68.33 65.73
•SoRA (Ours) EVA02-L 5.1M 69.94 62.48 68.33 66.92
◦DoRA [52] DINOv2-L 7.5M 66.12 59.31 67.07 64.17
◦VPT [37] DINOv2-L 3.7M 68.75 58.64 68.32 65.24
◦SET [86] DINOv2-L 6.1M 68.06 61.64 67.68 65.79
◦FADA [4] DINOv2-L 11.7M 68.23 61.94 68.09 66.09
◦AdaptFormer [12] DINOv2-L 6.3M 70.10 59.81 68.77 66.23
◦SSF [51] DINOv2-L 0.5M 68.97 61.30 68.77 66.35
◦LoRA [33] DINOv2-L 7.3M 70.13 60.13 70.42 66.89
•Rein† [80] DINOv2-L 3.0M 70.68 62.51 69.61 67.60
◦SoRA (Ours) DINOv2-L 4.9M 71.82 61.31 71.67 68.27
•SoRA (Ours) DINOv2-L 4.9M 73.63 63.33 70.98 69.31

Multi-source DGSS Trained on GTAV + SYNTHIA

◦Rein† [80] DINOv2-L 3.0M 72.17 61.53 70.69 68.13
◦SoRA (Ours) DINOv2-L 4.9M 73.16 61.90 72.73 69.26
•SoRA (Ours) DINOv2-L 4.9M 74.85 63.59 73.92 70.79

Multi-source DGSS Trained on GTAV + SYNTHIA + UrbanSyn

◦FFT DINOv2-L 304.2M 75.90 60.93 72.80 69.88
◦SoRA (Ours) DINOv2-L 4.9M 77.33 62.78 74.93 71.68
◦FFT‡ DINOv2-L 307.3M 77.06 61.81 75.09 71.32
◦Rein‡ [80] DINOv2-L 3.0M 78.42 62.20 74.49 71.70
◦SoRA‡ (Ours) DINOv2-L 4.9M 79.22 63.84 76.30 73.12
◦Freeze DINOv2-G 0.0M 76.08 61.98 72.23 70.10
◦FFT DINOv2-G 1.1B 76.90 61.69 73.53 70.71
◦SoRA (Ours) DINOv2-G 6.6M 78.39 63.75 75.16 72.43
•SoRA (Ours) DINOv2-G 6.6M 80.37 65.67 76.18 74.07

Table 2. Comparison of the proposed SoRA with existing DGSS
◦ and PEFT ◦methods under various synthetic-to-real settings.

used for in-domain evaluation, while the remaining adverse
weather conditions are employed as unseen target domains.
Implementation details. Since our method focuses on
preserving pre-trained knowledge, we mainly evaluate
its effectiveness using VFMs like EVA02 [24] and DI-
NOv2 [58] as the backbone. To further elevate perfor-
mance, we leverage state-of-the-art decode heads such as
Mask2Former [13] and Co-DETR [93]. Extensive exper-
iments with various backbones and heads are provided in
the Supplemental. By default, SoRA is applied to all linear
layers within the self-attention and MLP, with a rank of 16.
Detailed training settings are presented in the Supplemental.

5.2. Comparison with State-of-the-Arts
We compare SoRA with previous SOTA baselines, achiev-
ing the highest performance across all DG scenarios with-
out adding inference latency or regularization loss. In our
tables, ∗ indicates trainable parameters in the backbones.
Marker • refers to models tested with multi-scale flip aug-
mentation. † represents re-implemented test results using
official checkpoints for a fair comparison, and ‡ denotes



Real-to-Real Generalization Test Domains (mIoU in %)

Methods Backbone Params.∗ →BDD →Map. Avg.

Single-source DGSS Trained on Cityscapes

◦HGFormer [19] Swin-L 196.0M 61.50 72.10 66.80
◦CMFormer [5] Swin-L 196.0M 62.60 73.60 68.10
◦ tqdm [59] EVA02-L 304.2M 64.72 76.15 70.44
◦FADA [4] DINOv2-L 11.7M 65.12 75.86 70.49
◦Rein† [80] DINOv2-L 3.0M 66.53 75.18 70.86
◦SoRA (Ours) DINOv2-L 4.9M 67.02 76.45 71.74
•SoRA (Ours) DINOv2-L 4.9M 68.08 77.87 72.98

Table 3. Real-to-real DGSS comparison.

Clear-to-Adverse Weather ACDC [71] Test Domains (mIoU in %)

Methods →Night →Snow →Fog →Rain All

Single-source DGSS Trained on Cityscapes

◦HGFormer [19] 52.7 68.6 69.9 72.0 67.2
◦SoRA (Ours) 61.7 77.3 74.7 77.8 74.4
◦VLTSeg‡ [36] - - - - 77.9
◦Rein‡ [80] 70.6 79.5 76.4 79.4 77.6
◦FFT‡ 68.9 80.3 76.9 79.7 77.7
◦SoRA‡ (Ours) 73.2 79.8 76.8 80.2 78.8

Table 4. Results on Cityscapes → ACDC test set.

Data Efficiency Test Domains (mIoU in %)

Methods Backbone Params.∗ →Citys. →BDD →Map. Avg.

DGSS Pre-trained on GTAV + SYNTHIA + UrbanSyn → 1
16

of Cityscapes

◦FFT‡ DINOv2-L 307.3M 81.53 65.22 75.73 74.16
◦Rein‡ [80] DINOv2-L 3.0M 82.58 64.76 73.73 73.69
◦SoRA‡ (Ours) DINOv2-L 4.9M 82.50 66.99 77.02 75.50

Table 5. Real-world data efficiency.

training on images cropped to 1024×1024; otherwise, the
default is 512×512. A comprehensive comparison with ear-
lier works can be found in the Supplemental.
Synthetic-to-real DGSS. In Tab. 2, we adopt GTAV →
{Citys., BDD, Map.} as the basic setting, and demonstrate
scalability of SoRA by incorporating additional synthetic
datasets into the training process. We report the mean In-
tersection over Union (mIoU) and benchmark our results
against SOTA methods. SoRA consistently outperforms
VFM-based DGSS methods and PEFT approaches using
both vision-language (EVA02) and vision-only (DINOv2)
VFM backbones. Notably, SoRA achieves superior results
over LoRA by minimally interfering with the hierarchi-
cal structure of VFM’s pre-trained knowledge (see Tab. 1).
Moreover, SoRA exhibits superior scalability across data,
model, and input size, with improvements becoming more
pronounced when test-time augmentation is applied.
Real-to-real DGSS. In Tables 3 and 4, we conduct experi-
ments under the Citys. → {BDD, Map.} / ACDC settings.
When combined with DINOv2-Large backbone, SoRA con-
sistently gains the best results across all settings. This high-
lights the effectiveness of our method as a strong solution
for real-world deployment scenarios, where domain shifts
caused by geographic or weather variations are common.

Clear-to-Adverse Weather S-DGOD [82] Test Domains (mAP@0.5 in %)

Methods Params.∗ DS →NC →DR →NR →DF Avg.

Single-source DGOD Trained on Daytime-Sunny (DS)
Backbone : ResNet101 [30] / Head : Faster R-CNN [66]

S-DGOD [82] 42.3M 56.1 36.6 28.2 16.6 33.5 28.7
CLIP-Gap [77] 42.3M 51.3 36.9 32.3 18.7 38.5 31.6
OA-DG [47] 42.3M 55.8 38.0 33.9 16.8 38.3 31.8
PDOC [50] 42.3M 53.6 38.5 33.7 19.2 39.1 32.6
UFR [53] 42.3M 58.6 40.8 33.2 19.2 39.6 33.2
DivAlign [17] 42.3M 52.8 42.5 38.1 24.1 37.2 35.5
SoRA (Ours) 3.1M 49.3 41.9 37.9 24.5 38.2 35.6

Backbone : DINOv2-L [58] / Head : Co-DETR [93]
Freeze 0.0M 65.0 54.2 55.0 42.8 46.9 49.7
FFT 307.3M 68.2 57.1 56.6 43.1 47.2 51.0
DoRA [52] 5.8M 69.0 58.7 58.0 45.0 48.9 52.7
AdaptFormer [12] 6.3M 68.9 58.8 58.3 44.4 49.8 52.8
LoRA [33] 5.5M 69.6 59.6 58.1 46.1 49.5 53.3
SoRA (Ours) 4.9M 69.4 59.3 59.3 47.6 51.0 54.3

Table 6. Domain generalized object detection.

Efficiency Training (bs = 4) Inference (bs = 1 / 32)

Methods Time (hrs) Memory Throughput (imgs/s) Memory

SET large 9.2 12.5G 20.0 / - 5.5G / OOM
Rein large 9.3 12.2G 33.6 / 64.3 4.7G / 48.2G
SoRA large 9.0 12.7G 56.4 / 79.7 4.4G / 40.9G
FFT giant 27.9 45.3G 21.6 / - 10.6G / OOM
SoRA giant 18.9 25.6G 21.6 / - 10.6G / OOM

Table 7. DGSS model efficiency. Inference statistics are measured
only for the backbone on image crops of 512×512, and are mea-
sured with warmup and averaged over multiple runs. We use an
NVIDIA RTX A6000. “bs” denotes batch size.

Real-world data efficiency. Following [80], we evaluate
models under constrained conditions using a limited set of
real-world images. Specifically, models pre-trained on syn-
thetic datasets GTAV + SYNTHIA + UrbanSyn (marked with
‡ in Tab. 2) are fine-tuned on 1/16 of the Cityscapes training
set. As shown in Tab. 5, SoRA achieves performance on
par with Rein in the source domain, while offering greater
robustness on unseen domains. This underscores SoRA’s
data-efficient adaptability to real-world scenes, while effec-
tively avoiding overfitting to the source domain.
Clear-to-adverse weather DGOD. In Tab. 6, we compare
SoRA with existing DGOD methods for classic backbone-
head setting and with PEFT methods for recent foundation
architectures. As expected, SoRA demonstrates only minor
improvements in the classic setting; however, in the VFM
setting—where there is considerably more knowledge to re-
tain—it shows substantial performance gains. As illustrated
by the visualization results in Fig. 4, SoRA makes robust
predictions even under diverse challenging scenes.
Model efficiency. As detailed in Tab. 7, SoRA exhibits
higher throughput than adapter- and VPT-based methods
like Rein [80] and SET [86], as it incurs no additional la-
tency. This advantage is especially significant in online in-
ference settings, where the batch size is typically as small



Figure 4. DGOD qualitative results.

Methods Params.∗ DGSS Avg. DGOD Avg.

Full fine-tuning (baseline) 304.2M 64.4 51.0
⌞ + Freezing early blocks 201.6M 65.0 (↑ 0.6) 51.4 (↑ 0.4)
⌞ + Tuning principal components 4.9M 66.1 (↑ 1.1) 53.0 (↑ 1.6)
⌞ + Tuning minor components 4.9M 67.7 (↑ 2.7) 53.8 (↑ 2.4)
⌞ + Annealing weight decay 4.9M 68.3 (↑ 0.6) 54.3 (↑ 0.5)

Table 8. Effect of our changes evaluated on DG benchmarks. See
the full ablation study in the Supplemental.

{Wq ,Wk ,Wv ,Wo} {Wup,Wdown} Params.∗ →Citys. →BDD →Map. Avg.

" " 2.7M 68.76 61.50 70.00 66.75
" " 2.2M 70.82 61.36 69.86 67.35
" " 4.9M 71.82 61.31 71.67 68.27

Table 9. DGSS performance after applying SoRA to different
types of modules (Self-attention / MLP) in DINOv2-Large.

Rank r 4 8 16 32 64

DGSS avg. (mIoU in %) 66.91 67.71 68.27 67.76 67.59
Params.∗ 1.3M 2.5M 4.9M 9.6M 19.0M

Table 10. DGSS performance with different rank r.

as one [33]. Furthermore, in scenarios involving DINOv2-
giant exceeding 1B parameters, SoRA can drastically re-
duce training costs compared to FFT. SoRA initialization is
completed within 30 seconds for large-sized models, which
is a negligible cost given the improved performance.

5.3. Ablation Study
Component Analysis. A thorough examination of each
component of SoRA in the DGOD and DGSS basic setting,
as summarized in Tab. 8, demonstrates that all components
of SoRA incrementally improve DG performance without
adding computational costs. Notably, the marked perfor-
mance gap with tuning principal singular components [55]
suggests that SoRA better preserves the integrity of pre-
trained representations while learning task-specific features.
Tuning granularity. Interestingly, as shown in Tables 9
and 10, our method consistently achieves competitive re-
sults compared to SOTA baselines across all tuning gran-
ularities, indicating that SoRA can be flexibly configured
according to the training budget, task difficulty, or domain

Figure 5. Subject Personalization. 1. A dog gracefully leaping
in origami style, 2. A dog in watercolor painting style, and 3. A
dog soaring through a digital landscape in vector illustration style.

gap. The best results are achieved with the default setting.

5.4. Subject Personalization
DreamBooth (DB) [70] introduces subject personalization,
which fine-tunes a pre-trained Text-to-Image (T2I) model
on a few reference images to enable it to generate new vi-
sual concepts. DB updates all parameters within specific
blocks, potentially impairing the pre-trained capability to
generate images across various domains. Therefore, we
explore whether SoRA can be seamlessly integrated into
the DB framework to preserve pre-trained knowledge. For
this task, we utilize Stable Diffusion XL (SDXL) [64] for
the T2I diffusion model. Fig. 5 presents a visual compari-
son between DB and SoRA, using identical hyperparameter
settings and sample seeds. As seen, SoRA, similar to the
original SDXL model, can generate high-quality images of
diverse visual domains (e.g., style, texture, pose) and ex-
hibits superior identity preservation compared to DB with
prior preservation (p.p.) loss [70]. More results with varied
prompts and subjects are provided in the Supplemental.

6. Conclusion
This paper presents a multifaceted exploration of the distri-
bution of generalizable components in VFMs—examining
them at the weight level, block level, and within training
dynamics—and introduces the SoRA framework as an ef-
fective means to preserve generalizable components. Con-
trary to recent approaches that passively refine frozen VFM
features, SoRA is integrated into all linear layers to effec-
tively facilitate task adaptation, while minimizing interfer-
ence with generalizable components by initializing the low-
rank adapter with minor singular components. Through
extensive experiments, we observe that SoRA significantly
outperforms the state-of-the-art methods in DGSS, DGOD,
and even subject-driven image generation tasks.
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A. Implementation Details
We utilize the MMSegmentation [15] and MMDetec-
tion [11] codebase for Domain Generalized Semantic Seg-
mentation (DGSS) and Domain Generalized Object Detec-
tion (DGOD) implementations, respectively, and leverage
the training scripts developed by HuggingFace [78] for sub-
ject personalization experiments.

A.1. DGSS Settings
The experimental settings for all studies conducted in the
main paper are outlined in Tab. 11. Unless otherwise spec-
ified, Mask2Former [13] is utilized as the default decode
head, and following Rein [80], we adopt only the basic data
augmentation used in Mask2Former. Additionally, EMA is
selectively employed to ensure stable training.

A.2. DGOD Settings
The DGOD settings are detailed in the rightmost two
columns of Tab. 11. When applying SoRA to convolution-
based backbones such as ResNet [30], we linearize both
the patch-level convolution and its weights. Specifically,
a single convolution operation can be represented as a lin-
ear layer, y = Wx, where x ∈ R(n×h×w)×1, y ∈ Rm, and
W ∈ Rm×(n×h×w). We then apply SoRA as described in
Eq. 1. For ResNet backbones, which possess a much nar-
rower pre-trained knowledge compared to VFMs, we use

extensive image corruption techniques to simulate domain
shifts, following DivAlign [17]. In contrast, when using
DINOv2 [58] as the backbone, we simply utilize basic data
augmentation used in Co-DETR [93].

A.3. Subject Personalization Settings

We conduct experiments on the DreamBooth dataset [70],
which consists of 30 subjects with 4–6 images per sub-
ject. In all experiments the SoRA weights are trained using
Adam optimizer for 500 iterations with a learning rate of
5e − 5. We set the adapter rank to r = 32 and only use a
center crop for data augmentation. Inspired by recent find-
ings [25] that the first 10 attention layers of up blocks.0
in SDXL [64] are pivotal for preserving image content, we
fine-tune only these layers. Furthermore, to fully leverage
pre-trained image-text joint representations, we freeze the
cross-attention modules and apply SoRA solely to the self-
attention modules.

B. Detailed Ablations

B.1. Component Analysis

In this subsection, we conduct detailed ablation studies
under multiple settings: GTAV → Mapillary DGSS and
Daytime-Sunny → {Dusk-Rainy, Daytime-Foggy} DGOD
scenarios. In Tables 12 and 13, we systematically evalu-
ate the effectiveness of each component within the SoRA
framework based on class-wise IoU/AP (%). All pro-
posed components enhance overall generalization perfor-
mance without adding any additional training or inference
costs.

As illustrated in Tab. 12, freezing early blocks not only
substantially reduces the number of trainable parameters
but also significantly improves performance for classes that
are infrequently observed in the source dataset (e.g., bicy-
cle, motorcycle, train). Additionally, tuning minor singu-
lar components maximizes the retention of VFM’s world
knowledge during task adaptation, leading to superior gen-
eralization performance over tuning principal components
for most classes. Lastly, annealing weight decay proves es-
pecially beneficial for classes requiring fine-detail discrim-
ination (e.g., road vs. sidewalk, traffic light vs. traffic sign,
car vs. truck vs. bus vs. train, motorcycle vs. bicycle). Like-
wise, all components clearly improve recognition for the
majority of classes under adverse weather detection settings
(see Tab. 13).



Hyperparameters DGSS DGOD

Setting G→{C, B, M} G+S→{C, B, M} G+S+U→{C, B, M} C→{B, M}/ACDC 1
16

C→{C, B, M} DS→{NC, DR, NR, DF}

Backbone DINOv2-L/EVA02-L DINOv2-L DINOv2-L DINOv2-G DINOv2-L DINOv2-L DINOv2-L RN101

rank r 16 16 16 8 16 16 16 24
NFEB 8 8 8 12 8 8 8 21
optimizer AdamW
lr scheduler Linear Linear Linear Linear Linear Linear MultiStep MultiStep
AWD scheduler Cosine
learning rate 1e-4 1e-4 1e-4 1e-4 1e-4 1e-5 2e-4 2e-4
backbone lr mult. 0.5
weight decay 5e-2/3e-2 5e-2 5e-2 5e-2 5e-2 5e-2 5e-2 1e-3
batch size 4 4 4 4 8 8 8 4
warmup iters 0 0 0 0 1.5k/10k 0 1.5k 1.5k
iters 40k 40k 40k 40k 40k 4k 40k 40k
EMA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 11. DGSS/DGOD hyperparameter configurations. “NFEB” denotes the number of frozen early blocks.

Methods Params. road side. build. wall fence pole light sign vege. terr. sky pers. rider car truck bus train motor. bicy. mIoU

Full fine-tuning (baseline) 304.2M 92.1 64.5 87.8 49.0 56.4 58.8 66.1 57.3 82.9 53.9 95.0 79.3 63.2 91.8 65.3 75.9 50.9 64.7 54.1 68.9
⌞ + Freezing early blocks 201.6M 91.6 65.0 87.6 46.9 55.0 57.0 66.6 52.9 81.5 52.5 94.5 77.9 56.4 91.6 64.5 75.8 60.1 68.8 57.3 68.6
⌞ + Tuning principal components 4.9M 93.1 69.4 88.3 48.4 53.9 59.0 67.4 57.5 81.9 53.1 94.8 79.9 61.4 90.0 65.6 80.8 44.7 70.7 55.3 69.2
⌞ + Tuning minor components 4.9M 93.4 70.6 88.2 52.4 55.0 59.1 68.3 60.4 81.8 52.3 94.9 79.9 61.0 91.2 69.7 84.5 60.2 70.9 59.3 71.2
⌞ + Annealing weight decay 4.9M 93.6 71.4 88.3 52.3 54.9 59.1 69.4 62.7 81.9 52.8 94.9 79.4 57.7 91.8 72.9 85.3 61.9 71.6 60.1 71.7

Table 12. Effect of the proposed components under GTAV → Mapillary DGSS setting. We highlight the best and second-best
for each column.

Daytime-Sunny→Dusk-Rainy Daytime-Sunny→Daytime-Foggy

Methods Params. bus bike car motor person rider truck mAP bus bike car motor person rider truck mAP

Full fine-tuning (baseline) 307.3M 61.2 44.9 80.7 45.2 56.0 41.0 67.2 56.6 46.4 37.3 65.1 42.9 49.2 48.9 40.9 47.2
⌞ + Freezing early blocks 201.6M 63.0 46.5 81.2 46.0 58.2 39.5 68.0 57.5 47.5 39.5 67.2 45.6 50.3 50.0 40.6 48.7
⌞ + Tuning principal components 4.9M 64.3 49.2 80.5 46.3 57.9 41.6 68.2 58.3 48.5 40.1 67.5 47.5 50.3 51.0 45.3 50.0
⌞ + Tuning minor components 4.9M 65.6 50.6 80.8 46.9 58.4 42.7 69.4 59.2 50.6 39.7 67.7 48.3 50.9 51.6 46.1 50.7
⌞ + Annealing weight decay 4.9M 65.7 50.5 81.1 48.1 59.0 41.0 69.5 59.3 50.3 40.9 67.9 48.6 51.5 52.3 45.7 51.0

Table 13. Effect of the proposed components under Daytime-Sunny → Dusk-Rainy and Daytime-Sunny → Daytime-Foggy
DGOD settings. We highlight the best and second-best for each column.

B.2. Freezing Scheme

While freezing the initial blocks of VFM is effective in
preserving its generalization ability during task adaptation,
freezing too many blocks can lead to a reduction in dis-
criminability. To better understand this trade-off, we ex-
plore the effects of varying the number of frozen blocks.
Tab. 14 shows that freezing up to the first 8 blocks progres-
sively enhances performance, but freezing beyond this point
results in a decline. Considering that feature maps from
multiple blocks (e.g., the 8th, 12th, 16th, and 24th blocks
in large-sized backbones) serve as inputs to the segmenta-
tion/detection head, using more than one frozen VFM fea-
tures as head input significantly undermines task adaptabil-
ity (i.e. discriminability). Furthermore, since the first in-

# frozen early blocks 0 4 8 12 16

Citys. perf. (mIoU in %) 70.62 71.51 71.82 70.71 70.47
Params.∗ 7.3M 6.1M 4.9M 3.7M 2.4M

Table 14. Performance comparison with varying numbers of
frozen early blocks under GTAV → Cityscapes DGSS setting.

put feature map of the decode head is directly incorporated
into the final mask prediction in Mask2Former [13], freez-
ing the blocks that generate this feature map allows the full
utilization of the generalization capacity of the early blocks
in VFMs (see Fig. 3).



Backbone Ablation Test Domains (mIoU in %)

Backbones Methods Params.∗ →Citys. →BDD →Map. Avg.

Single-source DGSS Trained on GTAV

DINOv2-L [58]
FFT 304.2M 66.93 57.34 68.89 64.39
SoRA 4.9M 71.82 61.31 71.67 68.27

DINOv2-B [58]
FFT 86.5M 60.84 52.98 62.12 58.65
SoRA 2.3M 66.71 57.48 67.34 63.84

DINOv2-S [58]
FFT 22.0M 53.71 49.03 58.10 53.61
SoRA 1.0M 57.58 52.95 62.48 57.67

ConvNeXt V2-L [81]
FFT 196.4M 55.93 50.71 60.79 55.81
SoRA 12.1M 60.12 53.36 61.46 58.31

Swin-L [54]
FFT 195.2M 54.40 49.85 60.05 54.77
SoRA 5.4M 56.91 51.98 60.73 56.54

ResNet101 [30]
FFT 42.3M 41.29 44.29 48.79 44.79
SoRA 2.5M 41.23 45.57 49.71 45.50

Table 15. Results across various backbones and model sizes.

SemFPN Results Test Domains (mIoU in %)

Backbones Methods Params.∗ →Citys. →BDD →Map. Avg.

Single-source DGSS Trained on GTAV

DINOv2-L [58]
Rein [80] 2.5M 63.60 59.00 63.70 62.10
SoRA 4.9M 67.81 60.12 68.95 65.63

EVA02-L [24]
Rein [80] 2.5M 61.40 58.50 62.00 60.70
SoRA 5.1M 64.91 57.54 65.33 62.59

Table 16. DGSS evaluation results with SemFPN head [44].

C. Additional Experiments

C.1. Results on Various Backbones

Tab. 15 showcases the versatility of SoRA across a wide
range of backbones, ranging from isotropic Vision Trans-
formers (ViTs) to ConvNets and hierarchical ViT, as well
as models trained under various approaches, such as Im-
ageNet [18] supervision and MAE [31, 81] pre-training.
SoRA consistently outperforms FFT across diverse back-
bone architectures. Notably, the improvements brought by
SoRA become increasingly pronounced with larger model
sizes and more extensive, high-quality data during pre-
training, highlighting the superior ability of our method to
preserve pre-trained knowledge.

C.2. Results on SemFPN Head

While Mask2Former [13] is predominantly used as decode
head in all DGSS experiments, SoRA is compatible with
any decode head. To assess its robustness across differ-
ent heads, we employ the lightweight SemFPN [44] head
to benchmark its performance against Rein [80]. Our ex-
perimental results (Tab. 16) indicate that SoRA integrates

seamlessly with diverse backbones and heads, consistently
surpassing the SOTA baseline.

D. Additional Comparison
In Tables 17, 18, and 19, we present an exhaustive com-
parison with existing methods to illustrate the broader re-
search landscape across multiple DGSS settings. Addition-
ally, Figures 6, 7, and 8 depict DGSS prediction results
on unseen domains for Cityscapes, BDD100k, and Map-
illary, respectively, while Fig. 9 provides detection results
under various adverse conditions. As evident from the vi-
sual comparisons above, SoRA demonstrates remarkable
robustness to domain shifts resulting from diverse attributes
(e.g., translucency, lighting conditions, road features, ge-
ographic variations, weather differences), while also ex-
celling in fine-detail recognition compared to the selected
baselines.

Domain generalized recognition requires consistent pro-
cessing of inputs from diverse domains, whereas domain
generalized generation involves generating outputs across
a range of domains. Although large-scale Text-to-Image
(T2I) models have convincingly demonstrated this ability,
it can be compromised in subject personalization tasks in-
volving fine-tuning. As shown in Figures 10 and 11, in-
tegrating the SoRA framework in this case enables T2I
models to fully leverage their generalization capability to
synthesize target subjects in new domains. In summary,
our proposed methods effectively facilitate domain-
generalizable representation learning by maximally pre-
serving pre-trained knowledge across diverse domains
while learning task-specific features.

E. Discussion and Limitations
Our adaptation approach introduces SVD as an interpretable
tool applied to raw weight matrices, offering a fresh per-
spective on domain generalization. Within this perspective,
we focus on tuning the minor singular components to pre-
serve the integrity of generalizable components with mini-
mal interference. However, achieving further performance
improvements will require a more structured and nuanced
design space. Questions such as whether focusing solely
on the lowest spectral space is optimal, or how to iden-
tify and adjust specific singular components for particular
tasks, remain as avenues for future exploration. Addition-
ally, we plan to investigate design choices such as setting
different ranks for each block or examining whether the
low-rank matrices A and B play distinct roles, analyzing
how these decisions influence generalization performance.
Extending these comprehensive analyses to other domains
where foundation models are primarily employed, such as
LLM benchmarks and audio applications, would also be an
exciting direction for future work.



Synthetic-to-Real Generalization Test Domains (mIoU in %)

Methods Backbone Head →Citys. →BDD →Map. Avg.

Single-source DGSS Trained on GTAV
◦ IBN-Net [60] RN50 DL-V3+ 33.85 32.30 37.75 34.63
◦RobustNet [14] RN50 DL-V3+ 36.58 35.20 40.33 37.37
◦DRPC [89] RN101 FCN 42.53 38.72 38.05 39.77
◦SiamDoGe [83] RN50 DL-V3+ 42.96 37.54 40.64 40.38
◦DIRL [84] RN50 DL-V3+ 41.04 39.15 41.60 40.60
◦GTR [62] RN101 - 43.70 39.60 39.10 40.80
◦AdvStyle [91] RN101 DL-V3+ 43.44 40.32 41.96 41.91
◦PintheMem [42] RN101 DL-V2 44.90 39.71 41.31 41.97
◦MRFP+ [75] RN50 DL-V3+ 42.40 39.55 44.93 42.29
◦SAN-SAW [63] RN101 DL-V3+ 45.33 41.18 40.77 42.43
◦SPC [35] RN50 DL-V3+ 44.10 40.46 45.51 43.36
◦BlindNet [1] RN50 DL-V3+ 45.72 41.32 47.08 44.71
◦WildNet [45] RN101 DL-V3+ 45.79 41.73 47.08 44.87
◦SHADE [90] RN101 DL-V3+ 46.66 43.66 45.50 45.27
◦PASTA [10] RN101 DL-V3+ 45.33 42.32 48.60 45.42
◦SoRA (Ours) RN101 M2F 41.23 45.57 49.71 45.50
◦MoDify [39] RN101 DL-V2 48.80 44.20 47.50 46.80
◦TLDR [43] RN101 DL-V3+ 47.58 44.88 48.80 47.09
◦FAMix [22] CLIP RN101 DL-V3+ 49.47 46.40 51.97 49.28
◦CMFormer [5] Swin-L - 55.31 49.91 60.09 55.10
◦SoRA (Ours) Swin-L M2F 56.91 51.98 60.73 56.54
◦DGInStyle [38] MiT-B5 HRDA 58.63 52.25 62.47 57.78
◦DIDEX [57] MiT-B5 DAFormer 62.00 54.30 63.00 59.70
◦CLOUDS [3] CLIP CN-L M2F 60.20 57.40 67.00 61.50
◦VLTSeg [36] EVA02-L M2F 65.30 58.30 66.00 63.20
◦Rein [80] EVA02-L M2F 65.30 60.50 64.90 63.60
◦FADA [4] EVA02-L M2F 66.70 61.90 66.10 64.90
◦ tqdm [59] EVA02-L M2F 68.88 59.18 70.10 66.05
◦SoRA (Ours) EVA02-L M2F 68.05 60.81 68.33 65.73
•SoRA (Ours) EVA02-L M2F 69.94 62.48 68.33 66.92
◦DoRA [52] DINOv2-L M2F 66.12 59.31 67.07 64.17
◦VPT [37] DINOv2-L M2F 68.75 58.64 68.32 65.24
◦SET [86] DINOv2-L M2F 68.06 61.64 67.68 65.79
◦FADA [4] DINOv2-L M2F 68.23 61.94 68.09 66.09
◦AdaptFormer [12] DINOv2-L M2F 70.10 59.81 68.77 66.23
◦SSF [51] DINOv2-L M2F 68.97 61.30 68.77 66.35
◦LoRA [33] DINOv2-L M2F 70.13 60.13 70.42 66.89
◦Rein† [80] DINOv2-L M2F 69.19 60.01 69.06 66.09
•Rein† [80] DINOv2-L M2F 70.68 62.51 69.61 67.60
◦SoRA (Ours) DINOv2-L M2F 71.82 61.31 71.67 68.27
•SoRA (Ours) DINOv2-L M2F 73.63 63.33 70.98 69.31

Multi-source DGSS Trained on GTAV + SYNTHIA
◦RobustNet [14] RN50 DL-V3+ 37.69 34.09 38.49 36.76
◦AdvStyle [91] RN50 DL-V3+ 39.29 39.26 41.14 39.90
◦DIGA [73] RN101 DL-V2 46.43 33.87 43.51 41.27
◦PintheMem [42] RN50 DL-V3+ 44.51 38.07 42.70 41.76
◦MRFP+ [75] RN50 DL-V3+ 46.18 41.13 45.28 44.24
◦SHADE [90] RN50 DL-V3+ 47.43 40.30 47.60 45.11
◦TLDR [43] RN50 DL-V3+ 48.83 42.58 47.80 46.40
◦SPC [35] RN101 DL-V3+ 47.93 43.62 48.79 46.78
◦FAMix [22] CLIP RN50 DL-V3+ 49.41 45.51 51.61 48.84
◦Rein† [80] DINOv2-L M2F 72.17 61.53 70.69 68.13
◦SoRA (Ours) DINOv2-L M2F 73.16 61.90 72.73 69.26
•SoRA (Ours) DINOv2-L M2F 74.85 63.59 73.92 70.79

Table 17. Comparison of the proposed SoRA with existing DGSS
◦ and PEFT ◦methods under various synthetic-to-real settings.

Real-to-Real Generalization Test Domains (mIoU in %)

Methods Backbone Head →BDD →Map. Avg.

Single-source DGSS Trained on Cityscapes

◦RobustNet [14] RN50 DL-V3+ 50.73 58.64 54.69
◦WildNet [45] RN50 DL-V3+ 50.94 58.79 54.87
◦SiamDoGe [83] RN50 DL-V3+ 51.53 59.00 55.27
◦SHADE [90] RN50 DL-V3+ 50.95 60.67 55.81
◦BlindNet [1] RN50 DL-V3+ 51.84 60.18 56.01
◦FAMix [22] CLIP RN50 DL-V3+ 54.07 58.72 56.40
◦SAN-SAW [63] RN101 DL-V3+ 54.73 61.27 58.00
◦HGFormer [19] Swin-L - 61.50 72.10 66.80
◦CMFormer [5] Swin-L - 62.60 73.60 68.10
◦ tqdm [59] EVA02-L M2F 64.72 76.15 70.44
◦FADA [4] DINOv2-L M2F 65.12 75.86 70.49
◦Rein† [80] DINOv2-L M2F 66.53 75.18 70.86
◦SoRA (Ours) DINOv2-L M2F 67.02 76.45 71.74
•SoRA (Ours) DINOv2-L M2F 68.08 77.87 72.98

Table 18. Real-to-real DGSS comparison.

Clear-to-Adverse Weather ACDC [71] Test Domains (mIoU in %)

Methods →Night →Snow →Fog →Rain Avg.

Single-source DGSS Trained on Cityscapes

◦CMFormer [5] 33.7 64.3 77.8 67.6 60.9
◦SET [86] 57.3 73.7 80.1 74.8 71.5
◦FADA [4] 57.4 73.5 80.2 75.0 71.5
◦SoRA (Ours) 52.4 74.6 84.1 75.5 71.7

Table 19. Results on Cityscapes → ACDC validation set.
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geiton, and Stéphane Lathuilière. Collaborating foundation
models for domain generalized semantic segmentation. In
CVPR, 2024. 3, 6, 12

[4] Qi Bi, Jingjun Yi, Hao Zheng, Haolan Zhan, Yawen Huang,
Wei Ji, Yuexiang Li, and Yefeng Zheng. Learning frequency-
adapted vision foundation model for domain generalized se-
mantic segmentation. In NeurIPS, 2024. 3, 6, 7, 12

[5] Qi Bi, Shaodi You, and Theo Gevers. Learning content-
enhanced mask transformer for domain generalized urban-
scene segmentation. In AAAI, 2024. 2, 7, 12

[6] Dan Biderman, Jose Gonzalez Ortiz, Jacob Portes, Mansheej
Paul, Philip Greengard, Connor Jennings, Daniel King, Sam
Havens, Vitaliy Chiley, Jonathan Frankle, et al. Lora learns
less and forgets less. TMLR, 2024. 2

[7] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas



Figure 6. Segmentation results of SoRA on the Cityscapes. The model is trained on GTAV with DINOv2-L backbone.

Figure 7. Segmentation results of SoRA on the BDD100k. The model is trained on GTAV with DINOv2-L backbone.



Figure 8. Segmentation results of SoRA on the Mapillary. The model is trained on GTAV with DINOv2-L backbone.

Figure 9. Detection results of SoRA on the adverse scene. The model is trained on Daytime-Sunny with DINOv2-L backbone.



Figure 10. Multiple subject-consistent synthesis results with prompts describing various domains. SoRA effectively preserves SDXL’s
ability to generate images across diverse domains while learning new visual concepts. As a result, simply using prompts from multiple
domains allows us to generate an image set of different domains that share the same subject.

Figure 11. Qualitative comparison to DreamBooth [70] with prior preservation (p.p.) loss.

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In ECCV, 2020. 1

[8] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
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