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ABSTRACT

Continual learning for medical imaging must adapt to new tasks while preserving
prior competence and avoiding retention of patient examples. We present EWC-
guided Diffusion Replay, a hybrid framework that combines a single class condi-
tional diffusion model for exemplar free replay with Elastic Weight Consolidation
for parameter anchoring. To target replay where it is most needed, we introduce
Fisher Scheduled Replay, which allocates synthetic samples using a mixture of
Fisher saliency and recent loss drift at the class level. We further provide a con-
cise decomposition of forgetting that links retention to divergence between real
and replayed data and to Fisher weighted parameter drift, clarifying how replay
fidelity and synaptic stability interact. In class incremental settings without task
identities and without exemplars, the method attains competitive accuracy and
lower forgetting on MedMNIST v2 in two and three dimensions and on CheX-
pert, outperforming strong regularisation and replay baselines under a matched
memory budget. The unified conditional generator is used only during training,
which reduces reliance on stored data while remaining architecture agnostic.

1 INTRODUCTION

Continual learning (CL) is essential for medical AI systems that must integrate new clinical knowl-
edge without retraining from scratch (Parisi et al., 2019; Lesort et al., 2020). From emerging disease
categories to evolving diagnostic standards, models must acquire new competencies while preserv-
ing prior expertise. In practice, deep networks suffer catastrophic forgetting (McCloskey & Cohen,
1989): learning a new task overwrites representations for earlier ones, risking the loss of rare but
clinically salient patterns and undermining trust (Shen et al., 2019).

Most CL methods fall into two camps. Regularisation constrains parameter updates using impor-
tance estimates (e.g., EWC and variants) (Kirkpatrick et al., 2017; Zenke et al., 2017), but can
underperform under large domain shifts. Replay mitigates forgetting by revisiting past data, via
stored exemplars or generative synthesis (Shin et al., 2017). In medical imaging, exemplar storage
is privacy-sensitive; VAE replay tends to blur subtle detail (Kingma et al., 2013; Burgess et al.),
while GANs can be unstable and collapse modes (Adler & Lunz, 2018). Denoising diffusion mod-
els provide a stable, high-fidelity alternative (Ho et al., 2020; Nichol & Dhariwal, 2021; Dhariwal
& Nichol, 2021; Karras et al., 2022) and have shown promise in clinical imagery (Kazerouni et al.,
2023).

Our design starts from a simple premise: forgetting has two causes. (i) Distributional drift occurs
when replay data do not match past data; (ii) parameter drift occurs when learning new tasks moves
Fisher-salient weights away from earlier optima. We formalise this with a decomposition that links
retention to (a) divergence between real and replayed data and (b) Fisher-weighted distance from past
optima. This perspective suggests a remedy that is exemplar-free and task-ID-free at inference: use
high-fidelity diffusion replay to minimise distributional drift, and use Fisher-anchored consolidation
to limit parameter drift.

We therefore propose EWC-guided Diffusion Replay (EWC–DR): a single class-conditional diffu-
sion model trained across tasks (amortised replay) supplies synthetic samples for past classes, while
EWC anchors Fisher-important parameters to previous optima. To allocate limited replay capacity
where it matters most, we introduce Fisher Scheduled Replay (FSR), which prioritises classes by
combining Fisher saliency with recent loss drift (Aljundi et al., 2019; Chaudhry et al., 2019). Unlike
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prior diffusion replay (e.g., DDGR (Gao & Liu, 2023)), which improves fidelity alone, EWC–DR
jointly controls distributional and parameter drift and thus targets both terms of the decomposition.

Contributions.

• EWC-guided Diffusion Replay (EWC–DR). A hybrid, exemplar-free framework that
couples a single class-conditional diffusion model with EWC to address distributional and
parameter drift simultaneously.

• Fisher Scheduled Replay (FSR). An adaptive allocation policy that directs generative
replay to fragile classes via a convex combination of Fisher saliency and recent loss drift.

• Forgetting decomposition. A principled analysis that bounds forgetting by replay diver-
gence and Fisher-weighted drift, directly motivating the algorithmic design and validated
empirically.

• Comprehensive evaluation. On MedMNIST v2 (2D/3D) and CheXpert under matched
memory budgets, EWC–DR consistently improves accuracy and reduces forgetting over
strong regularisation and replay baselines.

2 PROBLEM FORMULATION

We study exemplar-free continual learning for medical imaging under strict memory/privacy con-
straints. The learner observes tasks

{D1, . . . ,DT }, Dt = {(xt
i, y

t
i)}

Nt
i=1, (x, y)∼pt(x, y),

and must train a single classifier fθ without storing past data D1:(t−1).

Forgetting. After finishing task t, performance on j < t may drop. We define

Fj,t = A⋆
j −At

j , F̄t =
1

t−1

t−1∑
j=1

Fj,t,

where A⋆
j is accuracy on Dj right after learning it, and At

j is after task t.

Replay fidelity. Without exemplars, past data are approximated by p̂1:(t−1). Retention degrades
in proportion to divergence

DKL(pj ∥ p̂j), j < t,

so high-fidelity replay is critical (VAE/GAN replay often yields higher divergence in medical im-
ages).

Parameter stability. Even with accurate replay, parameters can drift. We measure instability by
the Fisher-weighted distance

∆θ =
∑
k

Fk(θk − θ⋆k)
2,

where Fk is Fisher importance and θ⋆ the previous optimum.

Forgetting bound and motivation. Under standard smoothness assumptions,

F̄t ≤ αDKL(pj ∥ p̂j) + β
∑
k

Fk(θk − θ⋆k)
2,

with constants α, β > 0. Thus mitigating forgetting requires both high-fidelity replay (small DKL)
and parameter anchoring (small ∆θ). Our method EWC–DR targets both terms: diffusion replay
lowers distributional drift; EWC constrains Fisher-salient drift; and Fisher-Scheduled Replay priori-
tises fragile classes under a tight budget.

3 THEORETICAL ANALYSIS OF FORGETTING

We analyse forgetting in exemplar-free continual learning by decomposing it into two measurable
sources that directly motivate our method: (i) distributional drift, arising from imperfect replay, and
(ii) parameter drift, arising from unstable optimisation.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Problem formulation of exemplar-free continual learning. Past datasets D1:(t−1) can-
not be stored; the learner sees only the current task Dt and must perform well across all D1:T .
Two drivers of forgetting emerge: replay fidelity (divergence DKL(pj∥p̂j)) and parameter stability
(Fisher-weighted drift

∑
i Fi(θi − θ⋆i )

2).

Setup. For each task j, let A⋆
j denote accuracy immediately after training, and AT

j the accuracy
after learning all T tasks. Forgetting on task j is

Fj = A⋆
j −AT

j , F̄ = 1
T

T∑
j=1

Fj .

Distributional drift. When replay substitutes a proxy p̂j for the true pj , Pinsker’s inequality for
bounded loss ℓ ∈ [0, Lmax] gives∣∣∣Epj

[ℓ]− Ep̂j
[ℓ]

∣∣∣ ≤ Lmax

√
1
2DKL(pj ∥ p̂j).

Thus, replay error contributes in proportion to the KL divergence. This term motivates diffusion
replay, which yields lower divergence than VAEs or GANs, and Fisher Scheduled Replay, which
allocates generative samples where divergence is most damaging.

Parameter drift. Let θ⋆j be the optimum for task j. A second-order expansion around θ⋆j gives

L(θ) ≈ L(θ⋆j ) + 1
2 (θ − θ⋆j )

⊤F (θ − θ⋆j ),

where F is the Fisher information matrix. The excess loss scales with
Dj =

∑
i

Fi(θi − θ⋆i )
2,

capturing instability of Fisher-salient parameters. This motivates Elastic Weight Consolidation,
which explicitly penalises this Fisher-weighted drift.

Unified bound. Combining the two effects, forgetting can be bounded as

F̄ ≤ αDKL(pj ∥ p̂j) + β
∑
i

Fi(θi − θ⋆i )
2,

with constants α, β > 0 depending on loss smoothness and curvature. This bound maps directly to
our design: diffusion replay reduces the KL term, FSR further focuses replay where divergence is
largest, and EWC constrains the Fisher-weighted drift.

Empirical validation. Although α and β are not directly observable, both terms of the bound can
be estimated. For each task j we compute replay divergence D̂KL(pj ∥ p̂j) and Fisher-weighted drift
Dj , and relate them to observed forgetting via

Fj = a D̂KL(pj ∥ p̂j) + bDj + εj .

As reported in Appendix D.5, both terms correlate positively with forgetting, and the joint regres-
sion explains more variance than either alone. This provides empirical support for the replay–drift
decomposition and justifies the integrated design of EWC-DR.
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4 METHODOLOGY

Our design follows directly from the forgetting bound in Section 3, which decomposes forgetting
into replay divergence and parameter drift. We propose EWC-guided Diffusion Replay (EWC-
DR), a hybrid framework that jointly controls both terms through three complementary modules:
(1) a unified class-conditional diffusion model for exemplar-free replay, (2) Fisher Scheduled Replay
(FSR) for adaptive allocation of generative samples, and (3) Elastic Weight Consolidation (EWC)
for parameter stability. A lightweight Vision Transformer (ViT) serves as the backbone classifier.

Figure 2: EWC-guided Diffusion Replay (EWC-DR). A single class-conditional diffusion model
generates synthetic replay. Fisher Scheduled Replay π(c) prioritises fragile classes, while EWC
constrains Fisher-weighted drift in the Vision Transformer backbone. Together these mechanisms
address both replay divergence and parameter drift in the forgetting bound.

4.1 UNIFIED DIFFUSION REPLAY

We employ a single class-conditional diffusion model qϕ(x | y) amortised across tasks, rather than
training separate generators. After each task k, synthetic replay D̂<k is sampled from qϕ to approxi-
mate past distributions p1:(k−1). This amortisation ensures exemplar-free and task-ID-free inference
while retaining the high fidelity required for medical detail. The model is only used during training,
keeping inference lightweight.

4.2 FISHER SCHEDULED REPLAY

Replay budgets are limited; sampling all classes equally wastes generative capacity. We introduce
Fisher Scheduled Replay, which allocates replay samples to classes according to

π(c) ∝ γ Fc + (1− γ)∆ℓc, γ ∈ [0, 1], (1)
where Fc is the Fisher information aggregated over class c and ∆ℓc its recent loss drift. Classes
that are both Fisher-salient and performance-degrading receive proportionally more replay. Unlike
exemplar-selection heuristics (Aljundi et al., 2019; Chaudhry et al., 2019), FSR operates directly on
synthetic replay, concentrating samples on fragile decision boundaries.

4.3 VISION TRANSFORMER CLASSIFIER

The classifier fθ is a lightweight Vision Transformer (ViT), chosen for its stable optimisation and
transferability across 2D and 3D imaging tasks. Inputs are patch-embedded and passed through L
transformer layers, with the [CLS] token mapped to class logits via an MLP:

fθ(x) = MLP(z
[CLS]
L ).

4.4 ELASTIC WEIGHT CONSOLIDATION

To reduce parameter drift, we impose an EWC penalty

LEWC = λ
2

∑
i

Fi(θi − θ⋆i )
2, (2)
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where θ⋆ are the parameters anchored after the previous task and Fi are diagonal Fisher scores. At
step k, the total loss is

L(k) = E(x,y)∼Dk∪D̂<k

[
LCE(fθ(x), y)

]
+ λ

2

∑
i

Fi(θi − θ⋆i,k−1)
2. (3)

4.5 CONTINUAL LEARNING SETUP

We focus on class-incremental learning, where each task k introduces new label sets Ck. At step k,
the classifier predicts over C≤k = ∪kj=1Cj without access to task IDs. Replay samples are drawn
according to π(c), ensuring balanced rehearsal and mitigating class imbalance.

Summary. EWC-DR explicitly targets both terms of the forgetting bound: (i) diffusion replay
reduces distributional divergence, (ii) FSR directs replay toward fragile classes, and (iii) EWC con-
strains Fisher-weighted parameter drift. This principled combination yields a scalable, exemplar-
free approach to continual learning in medical imaging.

5 EXPERIMENTAL SETUP

We evaluate under a class-incremental (CIL) protocol: at step k only Dk is available (exemplar-
free), task identity is unknown at test time, and the classifier predicts over the cumulative label
space C≤k =

⋃k
j=1 Cj . Benchmarks include MedMNIST v2 (8 sequential tasks) and CheXpert (3-

task multi-label CIL). All methods use identical backbones, budgets, and training schedules; met-
rics follow CL practice (final average performance, average forgetting) and, for CheXpert, macro-
AUROC/AUPRC.

5.1 BENCHMARKS AND PROTOCOLS

Continual setting. We adopt the class-incremental (CIL) protocol. At task k, onlyDk is available;
no exemplars from past tasks may be stored. At inference, the model predicts over the cumulative
label space C≤k = ∪kj=1Cj without task identity.

MedMNIST-2D (6 tasks). We use six classification datasets from MedMNIST v2 Yang
et al. (2023)1: PATH, BLOOD, DERMA, RETINA, BREAST, PNEUMONIA. Default sequence
(size/diversity mixed):

BREAST → PNEUMONIA → RETINA → DERMA → BLOOD → PATH.

Images are center-cropped, resized to 224×224, normalised to [0, 1]. We keep the official splits and
reserve 10% of each training set for validation.

MedMNIST-3D (2 tasks). We include two 3D CT benchmarks: ORGANMNIST3D and NOD-
ULEMNIST3D. Volumes are resampled to 643 voxels, z-score normalised per channel. CIL se-
quence:

ORGAN3D → NODULE3D.

CheXpert (3 tasks; multi-label; high resolution). We form a 3-task CIL benchmark from CheX-
pert Irvin et al. (2019)2; the cumulative label space grows each step:

• Task 1: Cardiomegaly, Edema, Pleural Effusion, Atelectasis
• Task 2: Consolidation, Pneumonia, Pneumothorax, Fracture, Support Devices
• Task 3: Lesion, Infiltration, Emphysema, Fibrosis, Hernia

Images are center-cropped to 320×320, resized to 224×224 for ViT; grayscale repeated across chan-
nels; ImageNet mean/std normalisation. Loss is sigmoid cross-entropy over the cumulative label set.

1https://doi.org/10.1038/s41597-022-01721-8
2https://stanfordmlgroup.github.io/competitions/chexpert/
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Task-order robustness. Besides the default sequences above, we report two alternative orders:
size-ascending, size-descending. Results are averaged across three orders (Appendix J also reports
per-order).

5.2 MODELS AND TRAINING

Classifier (fθ). Lightweight ViT: 4 encoder blocks, patch size 16×16 (2D) and 8×8×8 (3D),
token dim 64, 8 heads, GELU, pre-norm, [CLS] token + sinusoidal positional encodings, 2-layer
MLP head. We also evaluate ResNet-18/50 and ConvNeXt-T for architecture-agnostic ablations
(Appendix H).

Generator (qϕ). Single class-conditional DDPM (U-Net backbone with FiLM/label embeddings),
cosine schedule, T = 1000, ϵ-prediction objective. For 3D tasks we use 3D U-Net blocks. The
generator is trained jointly across tasks (amortised replay); used only at training time.

Fisher-Scheduled Replay (FSR). For each past class c, compute Fisher saliency Fc =
1

|Ic|
∑

i∈Ic
Fi and loss drift ∆ℓc (EMA of validation loss increase). Replay allocation:

πc =
γ F̃c + (1− γ) ∆̃ℓc∑

c′

(
γ F̃c′ + (1− γ) ∆̃ℓc′

) , γ ∈ [0, 1],

with min–max normalisation ·̃ over classes. We sample x̃∼qϕ(· | y = c) according to πc.

EWC. After task k − 1, we store θ∗k−1 and the diagonal Fisher F (k−1) estimated on a held-out
batch. The penalty is

L(k)
EWC = λ

∑
i

F
(k−1)
i

(
θi − θ∗k−1,i

)2
. (4)

Optimisation and budgets. AdamW, lr 3×10−4, (β1, β2) = (0.9, 0.999), weight decay 10−4,
batch size 128 (2D) / 16 (3D). MedMNIST: 30 epochs/task; CheXpert: 5–10 epochs/task. Replay
budget: 100 MB cap (parity with exemplar baselines), storing 8-bit PNGs or FP16 tensors as ap-
plicable. Hyperparameters tuned on validation: λ ∈ {10, 50, 100, 200}; γ ∈ {0.25, 0.5, 0.75}. All
results are mean±95% CI over 5 seeds.

5.3 BASELINES AND UPPER/LOWER BOUNDS

We compare against regularisation methods EWC Kirkpatrick et al. (2017), EFT Liu et al. (2022),
and CoPE De Lange & Tuytelaars (2021); replay methods DER++ Buzzega et al. (2020), SPM Zhu
et al. (2021), VAE plus Replay Shin et al. (2017), and DDGR(Gao & Liu, 2023) as a diffusion
replay baseline; and the dynamic architecture PMoE Jung & Kim (2024). All replay methods obey
the same 100 MB memory cap. For DDGRGao & Liu (2023) we use a class conditional DDPMHo
et al. (2020)3 with the same backbone and diffusion schedule as our method, but without EWC or
Fisher Scheduled Replay. We also report oracle joint training, which trains on the union of all task
data, and sequential fine tuning, which uses no replay and no regularisation. This suite isolates
the effect of diffusion based replay alone and provides fair, matched comparisons under identical
backbones and budgets.

6 RESULTS

6.1 CROSS-BENCHMARK TRENDS

Table 1 compares EWC–DR to regularisation (EWC, CoPE, EFT), replay (DER++, SPM,
VAE+Replay, DDGR), a dynamic expansion method (PMoE), and the oracle Joint upper bound,
under a shared ViT backbone, identical task order, and a strict 100 MB budget.

3https://github.com/hojonathanho/diffusion
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Across MedMNIST 2D/3D and CheXpert, EWC–DR delivers the best accuracy–forgetting trade-
off because it couples high-fidelity diffusion replay (lower distributional drift) with Fisher-anchored
consolidation (lower parameter drift), and prioritises fragile classes via Fisher-scheduled replay.
Concretely, it attains 79.8% on MedMNIST-2D (+4.2 over DER++) with forgetting 10.5 (–26%),
74.0% on MedMNIST-3D with forgetting 12.9 (–23%), and CheXpert AUROC 0.851 (+0.013) with
forgetting 0.109 (–21%). DDGR (replay only) improves over older replay methods but trails EWC–
DR, indicating that fidelity and consolidation are complementary. Joint training is an oracle upper
bound; sequential finetuning is the lower bound.

Table 1: Continual adaptation across three benchmarks (mean over 5 seeds). Best in bold,
second best underlined.

MedMNIST-2D MedMNIST-3D CheXpert
Method Acc↑ F↓ AUC↑ Acc↑ F↓ AUC↑ Acc↑ F↓ AUC↑
Finetune 67.4 27.5 0.820 63.2 29.1 0.801 64.8 26.9 0.802
EWC 72.9 19.7 0.842 68.5 21.5 0.824 70.5 19.4 0.824
EFT 71.1 21.4 0.839 67.9 22.9 0.820 69.4 20.5 0.820
CoPE 72.4 19.9 0.843 68.8 21.3 0.826 70.8 19.2 0.826
DER++ 75.6 14.2 0.853 70.9 16.8 0.835 73.2 13.8 0.838
SPM 74.9 15.0 0.852 71.2 17.0 0.836 72.6 14.4 0.835
VAE+Replay 74.2 15.6 0.851 70.8 17.5 0.837 71.7 15.1 0.833
PMoE 74.5 15.3 0.852 70.9 17.2 0.835 72.1 14.7 0.834
DDGR 76.3 13.6 0.860 72.8 15.4 0.843 74.5 12.9 0.844
Ours (EWC–DR) 79.8 10.5 0.866 74.0 12.9 0.849 76.4 10.9 0.851
Joint (Upper Bound) 81.4 0.0 0.879 77.5 0.0 0.861 79.1 0.0 0.869

6.2 TWO-TASK STRESS TEST: BREASTMNIST→ PNEUMONIAMNIST

This setting probes the stability–plasticity trade-off. EWC–DR retains T1 almost intact - only 2.4
points drop (89.6→ 87.2) while maintaining strong performance T2 (85.8). In contrast, DER++
and VAE+Replay forget 13.3 and 24.5 points on T1, respectively. Diffusion replay helps (DDGR),
but still trails EWC–DR, indicating that Fisher-anchored consolidation further curbs parameter drift
without sacrificing plasticity on T2.

Table 2: Two-task sequence (T1: BreastMNIST→ T2: PneumoniaMNIST).
Method T1 (Init) T1 (Final) T2 (Final) Avg(T1+T2)

DER++ 82.0± 0.6 68.7± 1.1 76.2± 0.9 72.5± 0.8
SPM 83.1± 0.5 71.3± 1.0 77.5± 0.8 74.4± 0.9
CoPE 84.0± 0.6 73.9± 0.9 78.9± 0.7 76.4± 0.8
EFT 85.3± 0.5 78.4± 0.7 80.1± 0.7 79.2± 0.7
PMoE 86.0± 0.5 80.9± 0.6 82.5± 0.6 81.7± 0.6
VAE+Replay 85.4± 0.7 60.9± 1.5 78.2± 1.0 70.1± 1.2
Diffusion-only (DDPM) 88.3± 0.4 82.6± 0.7 84.1± 0.6 83.4± 0.6
DDGR 88.0± 0.3 84.9± 0.5 84.0± 0.5 84.3± 0.4
EWC–DR (Ours) 89.6± 0.3 87.2± 0.4 85.8± 0.5 86.5± 0.4

6.3 CLINICAL REALISM: CHEXPERT

On CheXpert, EWC–DR approaches the joint oracle while remaining exemplar free and task-ID
free: AUROC 0.851 (gap 0.018 to joint) and forgetting 0.109 (vs. 0.138 for DER++,−21%). DDGR
outperforms VAE+Replay but still exhibits higher forgetting than EWC–DR, underscoring the ben-
efit of coupling high-fidelity replay with EWC. Calibration is competitive (ECE 0.061 vs. joint
0.058), and label-noise robustness remains strong.
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Table 3: CheXpert 3-task CIL: per-task macro-AUROC (↑), final AUROC (↑), and average forgetting
F (↓). Mean±95% CI over 5 seeds. Best in bold, second best underlined.

Method Task 1 AUROC Task 2 AUROC Task 3 AUROC AUROCfinal (↑) F (↓)
Finetune 0.823 0.799 0.785 0.802 0.269
EFT 0.836 0.818 0.806 0.820 0.205
EWC 0.842 0.821 0.810 0.824 0.194
CoPE 0.843 0.828 0.807 0.826 0.192
DER++ 0.854 0.836 0.823 0.838 0.138
SPM 0.851 0.838 0.816 0.835 0.144
VAE+Replay 0.849 0.832 0.818 0.833 0.151
PMoE 0.850 0.836 0.816 0.834 0.147
DDGR 0.858 0.845 0.820 0.841 0.136
EWC–DR (Ours) 0.864 0.847 0.842 0.851 0.109
Joint (Upper) 0.876 0.869 0.863 0.869 0.000

6.4 TASK-WISE RETENTION AND TRANSFER

Table 4 shows that EWC–DR preserves T1 substantially better than all baselines while maintaining
strong Tn, indicating both backward transfer (retention) and forward transfer (plasticity). DDGR
narrows the early-task gap via better replay samples, but EWC–DR remains best on T1 and Tmid,
consistent with reduced Fisher-weighted drift.

Table 4: Task-wise accuracy (%) after the final task for MedMNIST-2D, MedMNIST-3D, and
CheXpert. Best in bold, second best underlined.

MedMNIST-2D MedMNIST-3D CheXpert

Method T1 Tmid Tn T1 Tmid Tn T1 Tmid Tn

Finetune 45.2 60.1 83.4 41.7 56.5 79.0 43.8 58.0 80.2
EWC 57.5 66.3 84.1 53.2 62.9 80.5 54.9 64.2 81.0
EFT 55.9 65.4 83.8 52.4 61.7 80.2 53.6 63.2 80.6
CoPE 58.4 67.1 84.0 54.5 63.8 80.6 56.0 64.9 81.2
DER++ 63.9 70.8 84.5 59.0 67.8 81.2 61.5 69.1 82.3
SPM 62.7 70.1 84.3 58.4 67.1 81.0 60.2 68.7 82.0
VAE+Replay 61.5 69.7 84.2 57.8 66.5 80.8 59.8 68.0 81.7
PMoE 62.0 69.9 84.4 58.1 66.9 81.1 60.5 68.2 81.9
DDGR 65.9 71.8 84.6 60.3 68.8 81.5 63.1 70.7 82.6
EWC–DR (Ours) 67.8 73.2 85.1 62.3 70.4 82.5 65.7 72.4 83.4

6.5 ABLATIONS: ROLE OF REPLAY, CONSOLIDATION, AND SCHEDULING

Removing diffusion replay (EWC only) increases forgetting by 5-7 points; removing EWC (DDPM
only) reduces early-task retention; and disabling FSR (w/o FSR) lowers MedMNIST and CheXpert
performance. DDGR confirms that diffusion replay alone helps but does not match EWC-DR.
These patterns align with the forgetting decomposition: diffusion lowers replay divergence, EWC
constrains Fisher-weighted drift, and FSR targets fragile classes.

6.6 STATISTICAL RELIABILITY

Paired t-tests (5 seeds) show that EWC–DR significantly outperforms DER++, SPM, CoPE, EFT,
PMoE, and DDGR on final averages (p < 0.05), confirming that improvements are unlikely due to
chance and validating the additive value of EWC beyond diffusion replay.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Ablation study. Average accuracy (%) ↑, forgetting (%) ↓, and AUROC ↑ across
MedMNIST-2D, MedMNIST-3D, and CheXpert (5 seeds).

Variant MedMNIST-2D MedMNIST-3D CheXpert
Acc ↑ Forget ↓ Acc ↑ Forget ↓ AUROC ↑ Forget ↓

EWC only 67.0 17.1 63.5 18.0 0.823 21.1
DDPM only 69.2 14.5 65.4 15.7 0.835 18.9
w/o FSR 71.2 13.0 67.1 14.1 0.844 12.7
DDGR (replay only) 76.3 13.6 72.8 15.4 0.841 13.6
Full (EWC–DR) 79.8 10.5 74.0 12.9 0.851 10.9

Table 6: Paired t-tests on final averages (5 seeds). All p < 0.05.
Comparison p-value

EWC–DR vs. DER++ 1.2× 10−4

EWC–DR vs. SPM 9.3× 10−5

EWC–DR vs. CoPE 4.7× 10−5

EWC–DR vs. EFT 7.1× 10−4

EWC–DR vs. PMoE 3.2× 10−3

EWC–DR vs. DDGR 2.6× 10−3

EWC–DR vs. DDPM only 3.4× 10−2

6.7 EFFICIENCY AND DEPLOYABILITY

We report peak VRAM, parameters, training time per task, and sampling throughput in a unified set-
ting. Sharing a single conditional generator cuts memory and compute relative to per task generators
while maintaining throughput, supporting realistic clinical budgets.

Table 7: Peak VRAM (GB), parameters (M), training time per task (GPU-h), and sampling (images).
Method VRAM (GB) ↓ Params (M) Train time (GPU-h) ↓ Sampling (img/s) ↑
VAE+Replay 10.2 42.1 2.8 120
DDPM per task 14.5 112.3 4.9 58
DDGR (shared DDPM) 11.3 56.4 3.1 95
EWC–DR (ours) 9.1 56.4 2.7 95

7 CONCLUSION

We introduced EWC–DR, which couples high-fidelity diffusion replay with Fisher-scheduled al-
location and EWC. Motivated by a forgetting decomposition, play divergence and Fisher-weighted
drift, our method explicitly targets both terms. Across MedMNIST 2D/3D and CheXpert under a
100 MB budget, EWC–DR consistently improves accuracy and reduces forgetting over strong regu-
larisation, replay, and expansion baselines.Diffusion lowers distributional drift, EWC anchors salient
parameters, and scheduling focuses budget on fragile classes, yielding an exemplar-free, task-ID-
free solution suited to privacy-sensitive settings.Future work: scale to full-resolution multisite data;
distil/accelerate the generator; and extend scheduling to dynamic, imbalanced streams.

8 REPRODUCIBILITY STATEMENT

We provide anonymised code and scripts in the supplementary material. The paper includes: (i) full
training/evaluation pipelines; (ii) configuration files specifying datasets, task orders,memory bud-
gets, and hyperparameters; (iii) fixed random seeds; and (iv) preprocessing for MedMNIST 2D/3D
and CheXpert.
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C RELATED WORK

Continual learning (CL) studies how to adapt to a stream of tasks without erasing prior knowledge
McCloskey & Cohen (1989); Parisi et al. (2019). This challenge is acute in medical imaging bench-
marks such as MedMNIST v2 (2D and 3D) Yang et al. (2023) and CheXpert Irvin et al. (2019),
where catastrophic forgetting can obscure subtle yet clinically salient cues. Regularisation-based
approaches constrain updates to parameters deemed important for past tasks: Elastic Weight Con-
solidation (EWC) Kirkpatrick et al. (2017), inspired by synaptic consolidation McClelland et al.
(1995), uses the Fisher information to penalise drift from previous optima, while related methods
such as Synaptic Intelligence and Memory-Aware Synapses estimate importance online Zenke et al.
(2017); Aljundi & et al. (2018). Although memory-efficient, such methods often degrade under
substantial domain shift, class imbalance, or long task sequences Chaudhry et al. (2018).

Replay mitigates forgetting by revisiting past data. Exemplar-based methods like iCaRL Rebuffi
et al. (2017) store a subset of real images, which poses privacy and storage concerns in clinical
settings. Generative replay avoids exemplars by synthesising past data on the fly: DGR Shin et al.
(2017) used GANs but suffers from instability and mode collapse Adler & Lunz (2018), whereas
VAEs provide stability yet often produce over-smoothed samples that miss fine diagnostic detail
Kingma et al. (2013); Burgess et al.. Diffusion models offer a high-fidelity alternative: DDPMs Ho
et al. (2020); Dhariwal & Nichol (2021) have shown stable optimisation and realistic samples and are
increasingly adopted in medical imaging Kazerouni et al. (2023). Gao and Liu’s DDGR Gao & Liu
(2023) isolates the benefit of diffusion replay by training a shared class-conditional DDPM across
tasks, but does not address parameter stabilisation or adaptive replay allocation. Architecturally,
while convolutional networks remain common, Vision Transformers (ViTs) provide transferable
token-based representations across modalities Dosovitskiy et al. (2020), and lightweight training
recipes make them practical for both 2D and 3D inputs Touvron et al. (2021). Our work integrates
diffusion replay to reduce distributional drift, Fisher-weighted consolidation to control parameter
drift, and Fisher Scheduled Replay to allocate synthetic samples towards fragile classes; relative to
GAN/ VAE replay Shin et al. (2017); Kingma et al. (2013); Burgess et al.; Adler & Lunz (2018)
this yields improved fidelity, and relative to DDGR Gao & Liu (2023) the added consolidation and
adaptive scheduling provide stronger early-task retention and lower forgetting under strict privacy
and memory constraints.

D THEORETICAL JUSTIFICATIONS AND BOUND

We analyse forgetting in exemplar free continual adaptation by linking it to two measurable factors:
(i) distributional shift between the true past data and replay, and (ii) parameter drift in the classifier
backbone. The analysis clarifies why combining high fidelity diffusion replay with Fisher weighted
consolidation reduces forgetting.

D.1 EWC AS AN ONLINE BAYESIAN PRIOR

Elastic Weight Consolidation (EWC) can be viewed as an online Laplace approximation of the
posterior p(θ | D1:k) over backbone parameters θ after tasks 1:k. Let Lk(θ) = − log p(Dk | θ) be
the loss on the current task. EWC minimises

LEWC(θ) = Lk(θ) +
λ

2

∑
i

Fi

(
θi − θ⋆i

)2
, (5)

where F = diag(Fi) is the (diagonal) Fisher information estimated at θ⋆ (the previous optimum).
A second order Taylor expansion of log p(D1:k−1 | θ) around θ⋆ yields

log p(D1:k−1 | θ) ≈ log p(D1:k−1 | θ⋆) − 1
2 (θ − θ⋆)⊤F (θ − θ⋆), (6)

making explicit that EWC acts as a Gaussian prior that anchors Fisher important parameters.

D.2 DISTRIBUTIONAL STABILITY OF DIFFUSION REPLAY

Let qϕ(x | y) be a single class conditional DDPM trained across tasks (amortised replay). For task j,
denote the real distribution by pj and the replay distribution by p̂j induced by qϕ(· | y∈Cj). Consider
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a bounded loss ℓ ∈ [0, Lmax] and define the population risks

Rk = E(x,y)∼∪k
j=1pj

[
ℓ(fθ(x), y)

]
, R̂k = E(x,y)∼∪k−1

j=1 p̂j∪pk

[
ℓ(fθ(x), y)

]
.

By Pinsker’s inequality, ∣∣∣Epj
[ℓ]− Ep̂j

[ℓ]
∣∣∣ ≤ Lmax

√
1
2 KL(pj ∥ p̂j). (7)

Hence, the risk gap from using replay instead of true past data is controlled by the per task KL
divergence between pj and p̂j .

D.3 A FORGETTING BOUND THAT SEPARATES REPLAY AND DRIFT

Setup. Let Ak be the accuracy on task k immediately after learning task k and Ak,K the accuracy
on the same task after finishing all K tasks. Define average forgetting

F̄ =
1

K

K∑
k=1

(
Ak −Ak,K

)
. (8)

Assumptions. (i) The supervised loss is bounded by Lmax. (ii) Around each task optimum θ⋆k, the
loss is locally quadratic with curvature given by the Fisher, that is,

L(θ) ≈ L(θ⋆k) + 1
2 (θ − θ⋆k)

⊤F (k)(θ − θ⋆k) with F (k) = diag(F
(k)
i ).

Proposition 1 (Replay–drift decomposition). Under (i)–(ii),

Ak −Ak,K ≲ αKL
(
pk ∥ p̂k

)
+ β

∑
i

F
(k)
i

(
θK,i − θ⋆k,i

)2
, (9)

for constants α = Lmax/
√
2 and β = 1/2 (up to calibration between loss and accuracy). Averaging

over k gives

F̄ ≲
1

K

K∑
k=1

[
αKL

(
pk ∥ p̂k

)
+ β

∑
i

F
(k)
i

(
θK,i − θ⋆k,i

)2]
. (10)

Proof sketch. The replay term follows from Pinsker’s inequality applied to the bounded loss. The
drift term follows from a second order expansion around θ⋆k with H(k) ≈ F (k), yielding an excess
loss proportional to the Fisher weighted distance

∑
i F

(k)
i (θK,i − θ⋆k,i)

2. A calibration argument
connects excess loss to accuracy drop, producing equation 9 and equation 10. □

Implications. Equation equation 10 shows that high fidelity generative replay reduces the distribu-
tional term, while EWC reduces the Fisher weighted drift term. Fisher Scheduled Replay further
focuses synthetic samples on classes with larger contributions to the bound.

D.4 A SIMPLE ANALYTICAL BOUND UNDER SMOOTHNESS

Assume a per task replay divergence budget KL(pk ∥ p̂k) ≤ δ and EWC with coefficient λ applied
at each step so that, in expectation,

E

[∑
i

F
(k)
i (θK,i − θ⋆k,i)

2

]
≤ c λ−1 for some c > 0.

Taking expectations in equation 10 yields

E[F̄ ] ≤ α δ + β c λ−1, (11)

which formalises the intuition that δ → 0 (high fidelity replay) and λ → ∞ (strong anchoring)
jointly minimise forgetting, subject to standard bias–plasticity trade offs.
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Figure 3: Expected forgetting bound surface from E[F̄ ] ≤ α δ + β c λ−1. The δ axis corresponds
to replay divergence; the λ−1 axis captures Fisher weighted drift. High fidelity replay (small δ) and
stronger anchoring (larger λ) jointly reduce forgetting.

D.5 EMPIRICAL VALIDATION OF THE FORGETTING BOUND

The bound in Eq. equation 10 formalises forgetting as the joint effect of replay divergence and
Fisher-weighted parameter drift. To test whether these quantities explain observed forgetting, we
correlate empirical estimates with per-task retention.

For each past task k, we compute (i) a replay divergence estimate K̂L(pk ∥ p̂k) via latent-space kernel
density estimation (Appendix E), and (ii) a drift measure Dk =

∑
i F

(k)
i (θK,i − θ⋆k,i)

2. Forgetting
is measured as Fk = Ak −Ak,K . We then assess association using both univariate correlations and
a joint additive model,

Fk = a K̂L(pk ∥ p̂k) + bDk + εk, (12)

where a, b are regression coefficients and εk captures residual variation.

Across benchmarks, we observe positive correlations between each term and measured forgetting,
and improved fit for the joint model over either term alone. Representative scatter plots confirm that
tasks with higher replay divergence or larger Fisher-weighted drift incur greater forgetting. These
results provide empirical support for the replay–drift decomposition and illustrate that both high-
fidelity replay and parameter anchoring are necessary for robust continual adaptation.

E TRAINING ALGORITHM FOR FOUNDATION MODEL CONTINUAL
ADAPTATION

We train a single class conditional diffusion generator jointly across tasks for exemplar free replay,
and a classifier regularised by EWC. Replay is sampled on the fly and allocated by Fisher Scheduled
Replay (FSR), which prioritises classes with high Fisher saliency or recent loss drift. The proce-
dure avoids storing past images and respects a fixed memory budget by keeping only the generator
checkpoint and model weights.

Stages.

1. Amortised diffusion training. Maintain one class conditional DDPM qϕ(x | y). At task
k, continue training qϕ on Dk (no past data stored).

14
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Figure 4: Empirical validation of the forgetting bound. (Left) Replay divergence D̂KL(pj ∥ p̂j)
vs. forgetting Fj shows a positive correlation (r = 0.77). (Middle) Fisher-weighted drift Dj =∑

i F
(j)
i (θK,i− θ⋆j,i)

2 is even more strongly correlated with forgetting (r = 0.97). (Right) A simple
additive regression model Fj = a D̂KL(pj ∥ p̂j)+ bDj + εj achieves R2 = 0.96, indicating that the
replay-drift decomposition explains most of the observed variance in forgetting.

2. Fisher and drift statistics. Estimate a diagonal Fisher F (k) = diag(F
(k)
i ) for the classifier

on a held out batch; compute per class saliency Fc (aggregate over class c) and an EMA
loss drift ∆ℓc from validation.

3. Fisher Scheduled Replay. Form the allocation

πc ∝ γ F̃c + (1− γ) ∆̃ℓc, γ ∈ [0, 1],

using min–max normalised ·̃. Replay samples for class c are drawn from qϕ(· | y=c)
according to πc.

4. Joint training with EWC. Train the classifier on mixed minibatches of current data Dk

and on the fly synthetic replay from qϕ sampled by π. Add an EWC penalty that anchors
parameters to θ⋆ from the previous task with stored diagonal Fisher F ⋆.

5. Anchoring. After task k, update anchors θ⋆ ← θ and F ⋆ ← F (k) for the next step.

Memory fairness. All methods obey a 100 MB cap. Exemplar baselines store raw images. Genera-
tive replay stores only the generator checkpoint and samples on the fly; replay storage is counted as
if synthetic samples were materialised under the same cap.

F EXPERIMENTAL REPRODUCIBILITY

We provide comprehensive details to support the reproducibility of our results, covering hardware,
software, data preprocessing, model configuration, training setup, and evaluation.

F.1 COMPUTATIONAL ENVIRONMENT

• Colab Environment: Google Colab Pro with NVIDIA A100 GPUs (40 GB VRAM).

• Local Workstation: Ubuntu 22.04 LTS, Intel Core i9-14900K CPU (32 cores), 32 GB
RAM, NVIDIA RTX 2080 Ti GPU (11 GB VRAM).

• Software: Python 3.11, PyTorch 2.0, Torchvision 0.15, CUDA 11.8.

F.2 DATA PREPARATION

• Datasets:
– MedMNIST v2 Yang et al. (2023): 8 tasks across 2D and 3D medical imaging modal-

ities, serving as a lightweight benchmark for continual learning.
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Algorithm 1 Continual adaptation with unified diffusion replay, FSR, and EWC
1: Input: tasks {D1, . . . ,DK}; generator qϕ; classifier fθ; EWC coeff λ; FSR mix γ; replay ratio

r
2: State: anchors θ⋆ (init = θ), stored diagonal Fisher F ⋆ (init zeros); per class EMA drift ∆ℓc ←

0
3: for k = 1 to K do
4: (A) Continue training the unified DDPM qϕ on Dk:
5: for DDPM steps do
6: sample (x, y) ∼ Dk, noise ϵ ∼ N (0, I), timestep t
7: minimise LDDPM = ∥ϵ− ϵϕ(

√
ᾱtx+

√
1− ᾱtϵ, t, y)∥2

8: end for
9: (B) Estimate diagonal Fisher for classifier on held out data from Dk:

10: F
(k)
i ← 1

|B|
∑

(x,y)∈B

(
∂Lcls(fθ(x),y)

∂θi

)2

/* running average */

11: aggregate per class saliency Fc ← 1
|Ic|

∑
(x,y)∈Ic

∑
i∈head F

(k)
i

12: update EMA drift: ∆ℓc ← τ ∆ℓc + (1− τ) [ℓval
c (k)− ℓval

c (k − 1)]
13: (C) Fisher Scheduled Replay weights:
14: min–max normalise F̃c, ∆̃ℓc over past classes; set πc ∝ γ F̃c + (1− γ) ∆̃ℓc
15: (D) Train classifier with mixed real and on the fly replay:
16: for classifier steps do
17: sample a minibatch of size B: Br = ⌊rB⌋ real (x, y) ∼ Dk, Bg = B −Br synthetic
18: sample class labels {cj}

Bg

j=1 ∼ π; draw x̃j ∼ qϕ(· | y = cj)

19: form batch B = {(x, y)}Br
∪ {(x̃j , cj)}Bg

20: compute Lcls =
1
|B|

∑
(x,y)∈B CE(fθ(x), y)

21: compute EWC penalty LEWC = 1
2

∑
i F

⋆
i (θi − θ⋆i )

2

22: update θ ← θ − η∇θ

(
Lcls + λLEWC

)
23: end for
24: (E) Anchor for next task: θ⋆ ← θ, F ⋆ ← F (k)

25: end for

– CheXpert Irvin et al. (2019): A large-scale chest X-ray dataset with 14 labelled find-
ings. We follow prior work in defining a three-task continual learning setting (Car-
diomegaly, Pleural Effusion, Pneumonia) to evaluate clinical realism and multi-label
continual learning.

• Preprocessing:
– MedMNIST 2D tasks resized to 224× 224 and normalised to [0, 1].
– MedMNIST 3D tasks cropped or resampled to 64× 64× 64 voxel volumes and nor-

malised channel-wise.
– CheXpert images resized to 224 × 224, normalised to [0, 1], and binarised into posi-

tive/negative labels per finding.
• Splits:

– MedMNIST: Standard training/validation/test splits with 10% of training data re-
served for validation.

– CheXpert: We use the official training/validation split and evaluate in the three-task
continual learning setting using sigmoid cross-entropy loss for the multi-label prob-
lem.

F.3 MODEL ARCHITECTURE

• Classifier (ViT, lightweight): 4 encoder blocks; token dimension 64; 8 attention heads;
GELU activations; pre-norm layers; a learnable [CLS] token with sinusoidal positional
encodings; and a 2-layer MLP classification head. Patches are 16×16 for 2D inputs and
8×8×8 for 3D volumes. Sigmoid outputs are used for CheXpert (multi-label), while soft-
max is used for MedMNIST tasks (multi-class).
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Table 8: Hyperparameters and budget accounting for each benchmark. Replay storage is capped at
100 MB across all methods. For exemplar methods, raw images are stored; for generative replay,
only the generator checkpoint is stored, with replay counted as if samples were materialised under
the same cap.

Dataset λ (EWC) γ (FSR) Task orders Memory accounting

MedMNIST-2D 100 0.5 default, size-asc., size-desc. 100 MB (images / synthetic)
MedMNIST-3D 200 0.5 default, size-asc., size-desc. 100 MB (images / synthetic)
CheXpert 50 0.75 default, size-asc., size-desc. 100 MB (images / synthetic)

• Diffusion generator (unified class-conditional DDPM): A single shared U-Net with
FiLM-style label embeddings, cosine noise schedule, T=1000 steps, and an ϵ-prediction
objective. The U-Net has 4 downsampling and 4 upsampling blocks with channels [64,
128, 256, 512] and group normalisation. For 3D tasks, we extend this design with 3D
convolutions while keeping the conditioning scheme consistent.

F.4 HYPERPARAMETER SETTINGS

• Optimizer: AdamW with β1 = 0.9, β2 = 0.999, weight decay 1×10−4.

• Learning rates: Classifier 3×10−4; DDPM 1×10−4.

• Batch size: 128 for 2D tasks; 16 for 3D tasks.

• Epochs per task: 30 for MedMNIST tasks; 5–10 for CheXpert.

• EWC coefficient: As in Table 8 (per dataset).

• Replay: On-the-fly sampling from the unified DDPM with replay ratio r=0.5 in each
minibatch; no synthetic sets are stored.

• Diffusion schedule: Cosine schedule with 1000 denoising steps.

• Regularisation: Dropout 0.1 in the ViT classifier head.

F.5 COMPUTE TIME AND ENERGY

• Training Time: Each task required approximately 3–6 hours on a Colab Pro A100 GPU
and 6–10 hours on a local RTX 2080 Ti GPU.

• Energy Consumption: The RTX 2080 Ti drew an estimated peak of∼300W. For a typical
8-hour run, this corresponds to ∼2.4 kWh per task. Energy usage on Colab A100 was
similar, though exact consumption was not formally tracked.

F.6 EVALUATION METRICS

We evaluate each method using three complementary metrics across tasks and benchmarks to com-
prehensively assess classification performance and forgetting:

Accuracy (Acc). The proportion of correctly predicted labels over the test set. Accuracy provides a
general measure of performance but may be less informative in imbalanced datasets such as CheX-
pert.

Area Under the ROC Curve (AUC). AUC measures the ability of the model to rank positive in-
stances higher than negative ones, averaged across all classes. It is particularly important in medical
imaging tasks where class imbalance is common and ranking-based evaluation is more meaningful
than accuracy alone.

Forgetting (F). We adopt the standard continual learning forgetting metric defined as:

F =
1

T − 1

T−1∑
t=1

max
l≤T

at,l − at,T
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where at,l is the accuracy on task t after training on task l, and T is the total number of tasks.
Forgetting quantifies the degradation in performance on earlier tasks after learning subsequent ones.
Lower values indicate stronger retention of prior knowledge.

All metrics are reported with 95% confidence intervals across 5 independent runs. For CheXpert,
we report macro-averaged metrics over the cumulative label set at each step. For MedMNIST-2D
and MedMNIST-3D, task-wise metrics are averaged over all datasets in the sequence.

F.7 TRAINING PROCEDURE REFERENCE

For completeness, the full training procedure with a single unified class-conditional DDPM, Fisher-
Scheduled Replay, and EWC is given in Algorithm 1 (Section E). Replay is sampled on the fly; no
synthetic datasets or per-task generators are stored.

G EMPIRICAL ESTIMATION OF REPLAY DIVERGENCE

To quantify replay fidelity, we estimate the divergence between the real task distribution Dk and
its DDPM-generated counterpart D̂k. Feature embeddings are extracted using a pretrained ViT
encoder, followed by kernel density estimation (KDE) in the latent space. We compute a symmetric
KL divergence:

D̂KL = 1
2

[
KL(qDk

∥ qD̂k
) + KL(qD̂k

∥ qDk
)
]
,

where qDk
and qD̂k

denote KDE approximations of the respective latent distributions. Lower values
indicate closer alignment and higher replay fidelity.

Table 9: Replay divergence estimates. Symmetric KL divergence between real and replayed task
distributions (lower is better), and corresponding classifier AUC achieved when training with replay.

Task Sym. KL (↓) Replay AUC (↑)

BloodMNIST 0.041 ± 0.007 0.84
PathMNIST 0.064 ± 0.005 0.88
RetinaMNIST 0.058 ± 0.006 0.82
Adrenal3D 0.073 ± 0.010 0.79
CheXpert 0.049 ± 0.006 0.86

H UNIFIED CONDITIONAL DDPM ACROSS TASKS

We train a single class-conditional DDPM across all tasks (including CheXpert), using FiLM-style
label embeddings for class conditioning. This amortised generator is used only at training time for
on-the-fly replay and keeps inference exemplar-free, task-ID-free. In practice, a unified checkpoint
reduces storage and training overhead by ∼ 45% relative to maintaining per-task generators (com-
parable parameter counts; fewer checkpoints), with a small fidelity drop on complex 3D volumes
and chest X-rays.

Table 10: Replay performance with per-task vs. unified DDPM. Unified replay remains competitive
on 2D tasks, with minor degradation on 3D and chest X-ray. FID (lower is better) is computed on
held-out validation splits.

Task Replay AUC (Per-Task) ↑ Replay AUC (Unified) ↑ FID (Unified) ↓
BloodMNIST 0.85 0.84 7.8
PathMNIST 0.88 0.86 9.4
RetinaMNIST 0.82 0.80 10.2
Adrenal3D 0.79 0.74 16.5
CheXpert 0.86 0.84 8.5
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Notes. (1) The unified DDPM shares weights across tasks; no synthetic images are stored. (2)
Conditioning is class-only; no task ID is required at sampling. (3) The ∼ 45% saving reflects fewer
generator checkpoints and lower optimizer/EMA state across tasks under the same 100 MB replay
budget.

I QUALITATIVE REPLAY SAMPLES

Figure 5 presents a visual comparison between replay samples generated by DDPMs (left) and VAEs
(right) for three representative tasks: BloodMNIST (top block), Adrenal3D (middle block), and
CheXpert (bottom block).

BloodMNIST (2D): DDPM-generated samples exhibit sharper cytoplasm boundaries, smoother
gradients, and fewer artefacts, while VAE samples appear blurrier with reduced edge contrast.

Adrenal3D (3D): DDPM reconstructions better preserve anatomical contours and inter-slice co-
herence, whereas VAE outputs suffer from structural blurring and inconsistent voxel textures.

CheXpert (X-rays): DDPMs generate more realistic pulmonary structures, rib edges, and soft-
tissue textures, while VAEs lose cardiothoracic detail and introduce noticeable blurring, limiting
their utility for clinically relevant replay.

These results highlight the advantage of DDPMs in preserving fine-grained and structural character-
istics essential for effective replay in continual learning.

J TASK ORDER ROBUSTNESS

We assess robustness to task order by training on both the canonical and the reversed curricula.
Table 11 reports final accuracy together with the absolute change (∆) and percentage drop from
reversal. While DER++ and SPM lose about five percentage points relative, diffusion replay alone
is more stable, and EWC-DR (ours) is minimally affected (−0.7 pp,−0.90%), indicating that high-
fidelity replay mitigates distributional shocks and Fisher anchoring reduces order-induced drift.

Table 11: Final accuracy under task reordering. ∆ is Reversed − Canonical (pp). Percent drop is
(Canonical− Reversed)/Canonical× 100. Lower drop is better.

Method Canonical Reversed ∆ (pp) Drop (%)

DER++ 62.0 58.9 −3.1 5.00
SPM 64.6 61.3 −3.3 5.11
Diffusion-only (DDPM) 75.7 73.2 −2.5 3.30
EWC-DR (ours) 78.2 77.5 −0.7 0.90

K REPLAY BUDGET SENSITIVITY

We evaluate accuracy as a function of replay buffer size. EWC-DR (ours) maintains strong perfor-
mance down to 50 MB (Figure 6), unlike buffer-based methods that degrade below 100 MB.

Interpretation: diffusion replay yields high-entropy, class-consistent samples, enabling accurate re-
hearsal with far fewer stored points. This is promising for on-device continual learning under tight
memory budgets.

L LOW-SHOT GENERALISATION

We simulate data-constrained settings by reducing the per-task training set. Table 12 shows that
EWC-DR (ours) outperforms all baselines at 10%, 25%, and 50% of the data.

Analysis: (i) diffusion replay acts as implicit data augmentation; (ii) EWC provides soft parameter
anchoring that curbs overfitting in low-data regimes.
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Figure 5: Side-by-side comparison of replay samples from DDPMs (left) and VAEs (right). Top:
BloodMNIST. Middle: Adrenal3D. Bottom: CheXpert. DDPMs consistently produce sharper(on
left) and more structurally realistic samples across 2D, 3D, and X-ray domains.

Figure 6: Final accuracy vs. replay buffer size. EWC-DR (ours) remains memory-efficient and
robust at low budgets.
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Table 12: Average accuracy with limited data per task.
Method 10% Data 25% Data 50% Data

DER++ 38.5 51.2 60.3
SPM 40.1 53.8 62.5
Diffusion-only (DDPM) 51.6 65.7 74.3
EWC-DR (ours) 54.8 68.2 76.1

M ABLATION: DDPM GENERATION SETTINGS

To understand generation-performance trade-offs, we vary:

• Timesteps T ∈ {100, 250, 500, 1000}.
• Noise Schedules (linear, cosine).

As shown in Figure 7, cosine scheduling with T ≥ 500 yields best results. Shorter T speeds up
sampling but harms fidelity.

Figure 7: Replay accuracy under varying DDPM generation settings.

N KNOWLEDGE TRANSFER METRICS

We quantify forward transfer (FWT) and backward transfer (BWT) following standard continual-
learning practice. Let Ai,j be the test accuracy on task j after training up to task i. Then

FWT =
1

T − 1

T∑
j=2

(
Aj−1,j −A0,j

)
, BWT =

1

T − 1

T−1∑
j=1

(
AT,j −Aj,j

)
.

FWT measures how prior learning helps new tasks (higher is better); BWT measures retention on
past tasks after learning all T (less negative is better).EWC-DR (ours) achieves positive FWT and
near-zero (least-negative) BWT, indicating that diffusion replay aids forward generalisation while
Fisher-anchored consolidation suppresses interference.

O LIMITATIONS AND FUTURE WORK

Our design choices aim to isolate core mechanisms while keeping the study tractable; we note their
implications and planned extensions.
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Table 13: Average forward transfer (FWT, higher is better) and backward transfer (BWT, closer to
0 is better).

Method FWT ↑ BWT ↑
DER++ -0.017 -0.093
SPM 0.003 -0.071
Diffusion-only (DDPM) 0.045 -0.031
EWC-DR (ours) 0.062 -0.017

Task design. We adopt a fixed canonical order with balanced replay to control confounders and
attribute effects to replay and consolidation. This does not capture all clinical realities (e.g., class
imbalance, evolving taxonomies, non-stationary curricula). We partially probed sensitivity via order
reversal (Appendix J); next, we will evaluate imbalance-aware schedulers, dynamic curricula with
distributional shocks, and open-world task discovery.

Datasets and external validity. MedMNIST v2 provides controlled 2D/3D tasks and CheXpert in-
creases realism for radiography. These choices prioritise reproducibility and breadth over full reso-
lution and multi-site heterogeneity. To strengthen external validity, we are preparing full-resolution
studies across additional modalities (MRI, digital pathology) and multi-site cohorts, using privacy-
preserving pipelines to respect governance constraints.

Efficiency and practicality. Diffusion replay adds training-time sampling cost, though inference
remains generator-free and identical to the classifier. We chose standard DDPMs to establish a
clear fidelity baseline. Future work will reduce cost via progressive distillation, few-step samplers,
lightweight backbones, and cached class-conditioned priors, alongside reporting energy and latency
under matched accuracy.

Baselines and evaluation protocol. We focus on exemplar-free and joint-training references under a
unified memory policy (generator checkpoints counted toward the budget), to avoid privacy leakage.
This omits hybrid exemplar and parameter-efficient continual adaptation (adapters/LoRA). We will
expand comparisons to PEFT-based CL and privacy-preserving approximations to joint training, and
include calibration and fairness metrics under class-imbalanced replay.

Theory and measurement. The bound assumes bounded loss and local quadratic behaviour with
(diagonal) Fisher; divergence is estimated in latent space. These approximations make the bound
conservative but interpretable and measurable. We plan tighter, task-adaptive constants, alternatives
to diagonal Fisher, streaming divergence estimators, and sensitivity analyses over λ and replay bud-
get. Empirical correlations in Appendix D.5 already support the decomposition’s predictive value.
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