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ABSTRACT

We derive the implicit bias of Projected Gradient Descent (PGD) Adversarial
Training (AT). We show that a phase transition in the loss structure of as a func-
tion of the adversarial budget ¢ manifests as Catastrophic Overfitting (CO). Be-
low a critical threshold €., single step methods efficiently provide an increase in
robustness, while above this critical point, additional PGD steps and/or regulariz-
ation are needed. We show that high curvature solutions arise in the implicit bias
of PGD AT. We provide analytical and empirical evidence for our arguments by
appealing to a simple model with one-dimensional inputs and a single trainable
parameter, where the CO phenomenon can be replicated. In this model, we show
that such high curvature solutions exist for arbitrarily small e. Additionally, we
can compute the critical value €. in single-step AT for bounded parameter norms.
We believe our work provides a deeper understanding of CO that aligns with the
intuition the community has built around it.

1 INTRODUCTION

Machine Learning models are not by default robust to small corruptions in their input (Szegedy
et al.|[2014;|Goodfellow et al.,|20135). Adversarial Training (AT) (Madry et al.,|2018)) and its variants
have proven to be one of the most effective strategies towards achieving adversarially robust models
(Croce et al.| |2020). Formulated as a min-max problem, Danskin’s theorem can be invoked to
solve AT via an alternating maximization-minimization procedure (Danskin, |1966} Latorre et al.,
2023). Solving the inner maximization problem (usually with Projected Gradient Descent (PGD))
considerably slows down training, leading practitioners to use single-step approaches (Shafahi et al.,
2019; Wong et al., 2020).

Nevertheless, when solving the inner maximization problem with a single (FGSM) step, AT presents
a critical failure mode known as Catastrophic Overfitting (CO) (Wong et al., 2020; Andriushchenko
and Flammarion, 2020), where for larger adversarial budgets e the model overfits to be 100% robust
to (weak) single-step adversaries while being 0% robust to (strong) multi-step adversaries.

It has been observed that multi-step AT leads to locally linear loss landscapes in the neighborhood
of the training points (Andriushchenko and Flammarion| [2020). This has motivated the use of reg-
ularization methods to enforce local linearity and avoid CO in single-step AT (Qin et al., 2019;
Moosavi-Dezfooli et al.,|2019; |/Abad Rocamora et al., 2024). Despite the success of these methods
and the efforts in understanding CO (Li et al.|[2020a; |/Andriushchenko and Flammarion| 2020} Kim:
et al.} 2021} |Ortiz-Jimenez et al.l [2023}; |He et al.l 2023)), little is known about why multi-step AT
converges to locally linear solutions or which is the underlying phenomenon resulting in CO.

This work aims to fill this gap by connecting the empirical observations with a theoretical framework
which allows us to quantitatively understand the onset of CO in AT.

To do so, we characterize the implicit bias of multi-step AT and link its terms with the well known
high curvature and the appearance of CO (Andriushchenko and Flammarion, |2020). We construct a
simple example where CO can be fully characterized and linked to a phase transition with a critical
value €, above which CO appears. In this example, we demonstrate the voracity of our results in a
controlled setting, where we explicitly find €.. Furthermore, in this setting, we can show the failure
modes of PGD AT, where CO can appear for arbitrarily small € by increasing the curvature of the
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Algorithm 1 PGD Adversarial Training (AT) (Madry et al.,|2018)).
1: Inputs: Model weights 8, Dataset {x;,y;}., # epochs T, # batches M, radius ¢, PGD step-
sizes a, learning rate ~y and initialization radius o.
2: fort € [T] do

3 for i € [M] do

4 8} = Unif. ([—0,0]%) > Initialize perturbation
5: for s € [S] do > Solving inner max
6 0L =08._1 + o€ sign (Vg L(fo(m; + 6._1),y:)) > Signed gradient ascent step
7 8% = min{max{d¢, —¢}, €} > Project so that ||6%|__ < e
8: 0=0—~ VoLl(fo(xi+d%),y:) > SGD update

classifier, agreeing with intuition of the community in larger scale experiments. Lastly, we analyze
the data re-scaling setting, where CO can be induced for smaller € values.

We believe that our theoretical insights, jointly with our experimental results both in small and large
scale models and datasets, provides a deeper understanding of CO and which factors contribute to
its appearance/avoidance.

Notation: We use uppercase bold letters for matrices X € R™*", lowercase bold letters for vectors
x € R™ and lowercase letters for numbers = € R. Accordingly, the i row and the element in the 7, j
position of a matrix X are given by &, and x;; respectively. We use the shorthand [n] = {1, - ,n}
for any natural number n. We denote the indicator function as 1 [-].

2 BACKGROUND

We analyze AT and its single-step variants in Section2.1} In Section[2:2]we cover the efforts towards
understanding and avoiding CO in single-step AT.

2.1 ADVERSARIAL TRAINING

AT can be formulated as a min-max optimization problem. Let {(«;, y;) }_, be the training dataset,
with x; € R? and y; € [0]. Let fo : R? — R be a classifier parameterized by 8 € RP?, assigning
a score to each class so that the predicted class is given by y; = argmax;¢y fo(z;);. Let L :
R° X [0] — R™ be aloss function, the adversarial training problem can be formulated as:

n

1
in — L i 61‘7 i) - AT
3w 2 (folxi +0i), i) (AT)

For case of notation, we define A = [81,---,8,]" and g(8,A) = LS L L(folmi + 8:), i)
Then, Eq. (AT) becomes:
i 0,A). 1
min A:||I¢%fﬁ);§eg( A) ¢))
Eq. (AT) is usually solved by invoking Danskin’s theorem Danskin| (T966) to compute:

Ve max ¢(0,A)=Vgg(0,A"), A* € argmax ¢(0,A). (2)

Aif|8i]]<e A:]|85]] <e
This allows one to solve Eq. (AT) as a minimization problem using first order methods, where at
each iteration, the gradient is computed by (approximately) solving the inner maximization problem
on the right-hand-side of Eq. (2)). In order to solve the inner max, Projected Gradient Descent (PGD)
is commonly used (Madry et al., 2018). The standard AT procedure is covered in Algorithm[T} Note
that in Line 6 of Algorithm taking the gradient with respect to the perturbation §°_; or the input

x; is equivalent, i.e., Vg, L(fo(x; + 8. _1),y;) = Vsi_ L(fo(w; + 8 1), i)

The main drawback of AT is that solving the inner maximization problem considerably slows down
training in comparison to standard training. This has motivated the use of single-step adversarial

1
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training variants (Shafahi et al., [2019; [Wong et al., 20205 |Andriushchenko and Flammarion, 2020;
de Jorge et al., 2022).

2.2  SINGLE-STEP AT AND CATASTROPHIC OVERFITTING

In order to alleviate the computational overhead introduced by solving the inner maximization prob-
lem, Shafahi et al.|(2019) suggest alternating some maximization and minimization steps in a single
batch and reducing the number of epochs. This is equivalent to moving line 8 in Algorithm [I] in-
side the PGD loop. Alternatively, a single-step (FGSM) attack (Goodfellow et al., |2015) can be
employed. This is equivalent to setting S = 1 and o = 1 in Algorithm |}

Unfortunately, FGSM training often results in the so called Catastrophic Overfitting (CO) phe-
nomenon (Wong et al.,|2020). We define CO as follows:

Definition 2.1 ((3,n)-Catastrophic Overfitting (CO)). Let 3,17 € [0,1]. Let fo : RY — R° be a
classifier trained with Algorithm[T]on a dataset {(x;,;)}"_, and adversarial budget €. The (83, 7)-
CO phenomenon is characterized by a high PGD accuracy and low robust accuracy:

1 & ) 1 & i
fZIL argmax fo(a; +0g); =y;i| >1— 0, fZ]l argmax fo(x; +90,); =v: | <n,
ni3 J€lo] ni3 Jj€lo]

for some 87 : ||61||  <e Vi€ [n]and 8% obtained with the same PGD hyperparameters as used
for training with Algorithm[I} Intuitively, CO results in a model being robust to the PGD attacks
seen during training, but not being robust to other /., perturbations bounded by e.

Definition 2.2 (Critical adversarial budget €.). Let 8,1 € [0,1]. Let fp : R% — R be a classifier
trained with Algorithm (1| on a dataset {(x;,y;)}7_,. If (8,7)-CO is observed for a given set of
training hyperparameters and for all adversarial budgets € > €., but (3, 7)-CO is not observed for
any € < €., we denote €. as the critical adversarial budget.

It was initially thought that CO could be solved by adding uniform noise to the input image to add
diversity in the gradient estimation (Wong et al.| [2020; de Jorge et al.l 2022)). However, it was later
shown that this only postponed the appearance of CO to larger ¢ (Andriushchenko and Flammarion)
2020; [Abad Rocamora et al., [2024)).

According to|Andriushchenko and Flammarion|(2020), multi-step AT converges to locally linear loss
landscapes and this property is lost in single-step AT when CO appears. Conversely, regularizing the
loss to be locally linear in a neighborhood of training points ; for single-step AT can avoid CO. Let
x,, and x;, be sampled uniformly from the ball {x’ : ||z — x’|| < €}, letg(x) = VLL(fo(x),y:),
local linearity can be measured and regularized through:

* GradAlign (Andriushchenko and Flammarion 2020): 1 — M%

* CURE (Moosavi-Dezfooli et al.,|[2019): ||g(x) — g(x.)||5

* LLR (Qin etal},2019): |£(fo(x.),y) — L(fo(x),y) + (x, — ) Tg(z)|
* ELLE (Abad Rocamora et al.,[2024), for « € [0, 1]:

|£(fg(0¢ " T+ (1 - a) 'wb)ay) - £(f9(ma)7y) - (1 - a) E(f@(wb)ay)| .

Although these methods avoid CO in practice, there is no clear explanation on why multi-step AT
converges to locally linear loss landscapes. In this work, we lay the groundwork towards answering
this question.

Several works have tried to explain the appearance of CO. Kim et al.|(2021)) argue the loss landscape
becomes "distorted" when CO appears, meaning that the original point  and the FGSM adversarial
example xpgsm are well classified. But, there exist misclassified points closer to x, even in the
convex combination of & and xrgsm- (He et al.|(2023)) analyze CO from the "self fitting" perspective
and argue that during FGSM training, the network encodes features into the gradient, relying less on
the features of the image for classification and resulting in CO. |He et al.[(2023)) also show that CO
can happen in multi-step AT under large step sizes (cv in Algorithm [I). |Ortiz-Jimenez et al] (2023)
conclude that CO can be induced by discriminative features that are relevant for classification, but
not robustness.
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Even though we can heuristically understand the potential factors leading to CO, the current theory
is incomplete and not predictive, i.e., given a dataset, a network and AT hyperparameters, we cannot
predict if CO will appear, or even quantitatively analyze it in an instructive way. In this work,
we are able to understand this behavior in the language of implicit regularization, as well as fully
characterize CO in a simple 1-dimensional model, and subsequently transfer these insights to more
general settings.

3 THE IMPLICIT BIAS OF PGD AT

In this section we analyze the implicit bias of AT and its implications for CO and the loss landscape
of the AT solutions. We include all of our proofs in Appendix [E]

3.1 WHAT CAN PGD AT CONVERGE TO?

This question has been studied in-depth from the maximum margin perspective in|Li et al.[(2020b);
Lv and Zhu|(2022), which show that adversarially trained homogeneous networks converge in dir-
ection to a mixed-maximum-margin solution. Here, we take a different approach, focusing on the
effective objective being optimized, and how does the € perturbation affect the loss landscapeﬂ We
are interested in understanding which quantities, apart from the loss at the unperturbed points, is AT
implicitly minimizing. By Taylor-expanding the loss along the PGD adversarial perturbations from
Algorithm|[T] we arrive at the result in Proposition 3.1}

Proposition 3.1 (The implicit bias of PGD AT). Let fg : RY — R° be a twice-differentiable
classifier trained with Algorithm as = 1/8S, 0 = 0 and the loss function L : R° x [o] — R*
over the dataset {(x;,y;)}"_,. Let the input gradients and Hessians with respect to the input be
go(z) = VaLl(fo(x),y) : R — R? and Hy(x) = V2, L(fo(x),y) : R — R respectively.
We have that:

n n S
. € .
> Lol +35)u) =~ 3 |£ota). v+ D (5 llgota + 5], @
i=1 i=1 j=1
62 . i 7 . i
gz senlo(ai + 8] 1)) Hole: + 1) simlao(ai + 5] 1)) )|
€ n S 62 n S
= Eo(@) + g ZZRl;i’j + ﬁ Z ZRQ;i»j'
i=1j=1 i=1j=1

Here, £,(0) is the unperturbed loss, and Rq,; ; = ||gg(a:i + 6;70”1 ,Rai; = sign(ge(x; +
5;-_1))—'—Hg(:ci + &!_,)sign(ge(x; + 8}_,)) are the implicit regularizer and bias terms, for
i € [n] and j € [S]. By minimizing the R;; ; term, we take the norm of the gradients along
the PGD trajectory to be zero, which in general helps with robustness because, intuitively, if
llgo(x; +9d)[|, = 0, V4 : ||0]|, < € and the loss at x; is low, then the classifier is robust. The
Ra2.:,; term corresponds to the second order directional derivatives, which AT implicitly regularizes
by taking curvature to zero (Andriushchenko and Flammarion, 2020) and popular single-step AT
methods regularize its norm uniformly through approximations (Qin et al.l 2019} |Abad Rocamora
et al.l [2024).

Nevertheless, in Proposition @, we observe the second order directional derivatives, not their ab-
solute value. Then, theoretically, one solution to minimizing the implicit bias, would be to take
second order directional derivatives to —oo. This does not happen in practice for multi-step AT, as
multi-step AT converges to have small curvature in the neighborhood of training points. However,
some questions arise: (i) Can we have PGD AT solutions where curvature is high? (ii) Can we have
solutions where CO appears for any S and €? (iii) Can we understand why such solutions do not
appear in practice?

"While we did not study the implicit bias from the perspective of directional convergence to a margin, we
believe the study of CO can also be phrased in this way, showing a mismatch between mixed-margin solutions
with € > €.
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To answer question (i), we note that the interplay between L£y(0), R1.; ; and Ra,; ; strongly de-
pends on the details of the data and architecture, but can be characterized by the scalar coefficients
€/5,€%/252. In particular, solutions can exist which it is preferable to minimize Ro; ; over the
other terms. This case would lead to CO in PGD AT, where R..; ; obtains large negative values.

In order to tackle question (ii), in Proposition [3.2] we present a mechanism that can induce arbitrarily
small €. for which CO appears in more complex models, where the only assumption is that the first
layer is affine.

Proposition 3.2 (Re-scaling the data re-scales €). Given a classification dataset {(x;,y;)}7_, and
a model fo : R? — R° where the first layer is affine, i.e., fo(x) = fo(Wx + b), where f4 are

all the layers except the first one and @ = @ U {W,b}. Let o € R\ {0}. Solving Eq. (AT) in a
re-scaled dataset {(« - x;,y;)}1, with adversarial budget €, is equivalent to solving Eq. (AT) in

the standard dataset {(x;, y;) }1'_, with adversarial budget € = €,/ .

Corollary 3.3 (Re-scaled datasets present re-scaled €.). If training with Algorithm/|l|in the dataset
{(xs,y:) }iy presents a critical adversarial budget e, as in Definition[2.2] training in the re-scaled
dataset {(x; - v, y;) }i_q will present a critical adversarial budget €. o, = o - €.

With Proposition [3.2] and Corollary [3.3] we have a mechanism to re-scale the dataset and produce
smaller ¢, that applies to modern deep architectures like ResNets (He et al.||2016) and any training
dataset. In particular, Corollary [3.3] shows that the scale of €. does not only depend on the hyper-
parameters of Algorithm [I] but also the scale of the dataset. In Section [5.5 we confirm the result
holds for ResNets trained in MNIST, SVHN and CIFAR10.

Lastly, regarding question (iii), CO can be found for large S under certain step-sizes a;s (He et al.,
2023) and our experimental results in Section [5.4] and Appendix [FI] with S = 2 show curvature
indeed goes to large values. Nevertheless, if S is large, s is chosen appropriately and some en-
gineering tricks like adding noise prior to the PGD attack (Wong et al., 2020; de Jorge et al., [2022)
or weight decay (Goodfellow et al. 2016)) are performed, PGD AT is understood to provide reli-
able solutions (Croce and Hein|, |2020bja). We believe some key aspects are noise and weight decay.
With noise before the PGD attack, we can affect the PGD trajectory and avoid solutions like the ones
presented in Theorem 4.1l Similarly, by adding weight decay, the norm of the parameters is con-
strained, which in our toy model directly controls curvature and CO (Corollary 4.3). for additional
discussion on these topics, we refer to Appendix |C|and Section

4 CATASTROPHIC OVERFITTING AS A PHASE TRANSITION

In this section, we construct a solvable model in which the effective loss in Proposition [3.1| can be
written in full, as well as in its approximate form. Studying this model allows us to explain why CO
occurs abruptly at a critical perturbation threshold value €. which can be exactly computed, building
further intuition into what transpires in real-world settings.

4.1 Toy MODEL

Here, we characterize the transition from robust generalization to CO as a phase transition (PT) in
the perturbation value, and highlight the connections between curvature and over-fitting.

Consider a training dataset consisting of two points 1 = —x2 € R. To illustrate the effect of AT, we
may choose these points to be 1 o = +m/2. The task is binary classification, with labels generated
by taking y = O(sin(x)), where O(z) is the Heaviside function. We use the cross-entropy (CE)

loss (L) = 3 37, L(fo(w:), i), where L(fo (i), i) = —yilogpi — (1 — ;) log(1 — p;), and the
probabilities are simply p; = ef(*1) /(1 4 efe(*1)), We take the network function to be

fﬁ(mi) = Sin(el’i)7 9 e [0; emax]a (4)

where 6 is the single network parameter. Note that the network weight is bounded by 6,,,,x, which we
take to be O, = 10 for the rest of this section. This is done to match real-world settings in which
weights do not diverge, while at the same time consisting a large enough value interval to observe
CO. We provide a detailed analysis of this toy model trained using AT in Appendix [A] and employ
the results in the rest of the section.
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Figure 1: Loss landscape and optimal classifiers for the toy model and ¢ € {0.1,0.5,1}: In the
top row, we plot the loss function with respect to the single parameter in the model 6. In the bottom
row, we plot the optimal classifiers according to the loss in the upper row, the two training points
(® and @) and their adversarial regions (-- and --). The optimal classifier obtained with FGSM ()
coincides with one obtained with AT (%) for ¢ = 0.1. For larger values of ¢, the FGSM and AT
solutions differ, with FGSM obtaining distorted solutions where the FGSM-attacked points are well
classified, but clean samples are not.

The effective loss, which is optimized using the one step AT, is simply £(fo(x; + 6;), yi), which is
given explicitly by

(L) = %Zﬁ(fe(fﬁi +0;),yi) = log <1 + 67Sin(e(g*eSign(eCOS(%»») :

i=1

®)

The loss in Eq. (3)) exhibits interesting properties when varying the perturbation e. When € = 0, the
loss has infinitely many degenerate minima, at 6,,;;, = 4n + 1, and as many degenerate maxima at
Omax = 4n + 3 where n € ZT. While these extrema share the same loss values, they differ in loss
curvature with respect to the samples z;, measured by the sample-wise Hessian

02-L9+sin(%9)-ﬁ+2l9
(sin (%) +e (sm(zz cos (2)))o<92’ o
2 (1 + esm(%e))

which increases with 6, implying that the lowest curvature solution is at 6,,;;, = 1, which is indeed
the solution for ¢ — 0. However, as € is increased, the loss landscape changes, and certain minima
obtain higher or lower loss values, changing both the local and global minima. In particular, at
€. = /8, the minimum at § = 1 becomes unstable, and the loss is instead minimized at 0y, = 7,
which was originally a maximum of the loss. We explicitly show that this occurs for the toy model
in Fig.[2] (b).

The abrupt transition of the system from one minimum to another is precisely the behavior observed
in physical systems which undergo a first order phase transition, whose theory is well understood
(Landau and Lifshits, [T958)). These transitions exhibit a discontinuity in the first derivative of the
free energy with respect to some thermodynamic variable, analogized here by the discontinuity of
the derivative of the loss with respect to € at the transition point €.. We show how the loss landscape
evolves with e in Fig. [} as well as the solutions found by the network f(x). Clearly, for small
€ < €., the system is in a "generalizing" phase, where the curvature is low and the optimal robust

H(0) = agiﬁ(fe(zi%yi)
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Figure 2: (a) Visualization of Theorem @.1/for S = 3,a = 1,000 and k = 4: For any S, we
can choose a and k so that 0, is as accurate as desired and CO appears for €, arbitrarily small. (b)
Phase transition in the toy model: The critical value is ¢, = 7/8. We evaluate the FGSM and AT
losses at the optimal weight for the FGSM loss, i.e., Opgsm. For € > ¢, the phase transition occurs,
resulting in a sudden increase in the AT loss and a decrease in the FGSM loss.

solution is obtained. However, for € > €., the model is minimized at an "overfitting" phase, where
the perturbed data points are overfit by favoring a high curvature solution, completely failing on the
original data. This example illustrates that the essence of Catastrophic Overfitting lies in the phase
transition from a low curvature to a high curvature region of the solution.

In order to connect this point to Proposition[3.1} we argue it is sufficient to study the first few terms
in the series expansion of Eq. (5) with respect to ¢, in the € < 1 limit, given by

0 cos (%9)

1 + esin(%e)
where the first term corresponds to the unperturbed loss (£(6,0)), the second term is the sum of L;
norms of the sample gradients, and the last term is a product of the sample wise Hessian and the
sign of the sample gradients. In Fig. [T} we show how Eq. approximates the full solution, and
find that it predicts the same PT, but at a slightly lower € value. We can estimate €. by requiring that
the maximum at 6,,,, = 7 becomes a minimum, i.e., (£(1,€)) = (L£(7,¢)), resulting in the value

€c=11/24+ 2 ~0.24,

(L0, €)) = log (1 + fsin(%g)) +e + € sign (e cos (f))QH(e) +0(%), ()

4.2 MULTI-STEP AT IN THE TOY MODEL

In Theorem .1 and Corollary [4.2] we present an example where CO appears for arbitrarily small e
and arbitrarily large S. We then analyze the interplay between the norm of parameters of the model
|#| and the number of steps S in the appearance of CO. Finally, we discuss how CO can be induced
in deep models by re-scaling the dataset.

Theorem 4.1 (Solutions of the PGD AT problem). Let the classifier defined in Section{.1|be trained
with Algorithm S steps and PGD step sizes «s = 1/S, Vs =1,--- | S. Leta > 0 and by, = 1;‘_#
fork=1,--- oo, the pair ‘
2w S
Op = by, e, = 2
b

gives us weights 0y, for the corresponding adversarial budget €, so that:

2
1 7 * b
izﬁ(fek(xi +05),yi) — L7 < W;k,
i=1

where L* = log(1 + e) — 1 is the optimal loss for a classifier defined as in Section

Corollary 4.2 ((0,0)-CO exists at arbitrarily small € for any S). Given any S, by increasing a and
k we can take € arbitrarily close to zero with arbitrarily accurate solutions 0y, where the points

S €k i i
x; £ 5% are misclassified.

Corollary 4.3 (Bounding |f| and increasing S can avoid CO). Let by, be constrained as |by| < B,
we have that €}, > %. Meaning that bonding the norm of 0 and increasing the number of steps
can help avoid CO by avoiding the solutions in Theoremd.1
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Remark 4.4 (Additional CO solutions). In Theorem [4.1| we present sufficient conditions to observe
CO. Nevertheless, other solutions not captured by Theorem [4.1| can be observed, see Fig.[I]

In Theorem 4.1 we provide a constructive mechanism to build PGD AT solutions where CO appears
for arbitrarily small ¢ Corollary This is depicted in Fig. Q] (a), where for S = 3, a = 1,000,
setting k = 4 results in ¢, ~ 1.1077 and the solution 6y ~ 16.98301, for which both 3-step PGD
points (x; + %) are well classified, but the true adversarial accuracy is zero because of Corollary

In Corollary we show that by looking at the ratio defining €;, = %, it is clear that bounding the

norm of the parameters can lowerbound € and increasing S will improve such lowerbound. This
avoids the solutions constructed with Theorem 4.1 and overall helps avoiding CO. In Section [5.3]
we observe a similar phenomenon in real world datasets and models.

5 EXPERIMENTS

In Section [5.1] we present our experimental setup. In Section [5.2] we numerically analyze the loss
landscape of AT and FGSM on the toy model, and characterize their global minima. Next, in Sec-
tion [5.3] we demonstrate the phase transition ocurs for small S in real world image classification
datasets and models. Finally, in Section [5.5] we demonstrate our findings from Proposition [3.2]
and Corollary [3.3]in image classification experiments.

5.1 EXPERIMENTAL SETUP

For the image classification experiments, we use the popular MNIST (LeCun et al., [1998)), SVHN
(Netzer et al.|[2011)) and CIFAR10 (Krizhevsky, 2009)) datasets. We train our models with Stochastic
Gradient Descent, momentum 0.9, weight decay 0.0005, batch size 128 and the standard schedule
with cyclic learning rate proposed by (Andriushchenko and Flammarion, 2020), with 15 epochs
for MNIST/SVHN and 30 epochs for CIFAR10. We employ the PreActResNet18 architecture (He
et al.,|2016) and ¢ = 0 in Algorithm E} in all of our image classification experiments. For different
learning rate schedules like (Rice et al.,|2020) and architectures like ViT-Small (Dosovitskiy et al.,
2021), we refer to Appendix [F| All of our training setups are repeated over 3 random seeds to report
the average performance and confidence. All of our experiments are conducted on a single machine
with an NVIDIA A100 SXM4 40 GB GPU.

5.2 CATASTROPHIC OVERFITTING IN THE TOY MODEL

For our toy model (Section , we can obtain a closed form expression for the effective loss func-
tion which is optimized by single-step AT with respect to 6, see Eq. (3). Unfortunately, in order to
compute the AT landscape, we would have to exactly compute for every 6:

8" = argmax L(sin(6 - (z; + 6;)), y:) - ®)
8;E[—€,€]

As an alternative, we evaluate the loss at 10,000 evenly distributed 6 values in the [0, 10] interval.
For every 6 and training sample (x;,y;), we evaluate the loss at 100 evenly distributed 6; values in
the [—e, €] interval, and take the maximum over those in order to estimate Eq. . In Fig.|l|we can
observe that the FGSM solutions for e € {0.5, 1} display a distorted landscape, coinciding with the
findings of |Kim et al.|(2021) for larger networks and datasets.

In order to compute the critical value €., we repeat the procedure for 100 evenly spaced values of e
in the [0, 1] interval.

In Fig. E]-(b), we report the FGSM and AT losses evaluated at the FGSM solution (fggsy ). We find
€. =~ 0.3927, above this value, the AT loss suddenly increases and the FGSM loss starts decreasing.
The latter should not be observed as the true adversarial loss monotonically increases with e.

5.3 THE PHASE TRANSITION AT A LARGER SCALE

We train PreActResNet18 with the ReLU activation function with AlgorithmE], S e€{1,2,3,4} and
as = €/5. We scan over € values from 0 to 70/255, 12/255 and 16/255 for MNIST, SVHN and
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Figure 3: The phase transition in image classification: We train PreActResNet18 with 1,2, 3 and
4 PGD steps from the first € value where CO appears for one PGD step less. Larger € values require
more and more steps to not present CO.
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Figure 4: Implicit bias terms in PreActResNet18-swish trained with S = 2 on SVHN: We train
with € € {4,12}/255 and report Ry and Ry from Proposition the training PGD-2 accuracy and
test PGD-20 accuracy. For e = 12/255, the implicit bias terms explode at the same time as CO
occurs, which we mark with a vertical dashed red line (- -).

CIFARI10 respectively. For each .S, we start training at the first € value that presented CO for S — 1
steps. We report the average final PGD-20 test accuracy over 3 random seeds for every € value.

In Fig. 3| we can observe that the phase transition leading to CO is observed in MNIST, SVHN and
CIFARI10 for progressively larger €. for larger S. The phase transition is depicted by the abrupt
decay of the PGD-20 Acc. to zero in a small € change. This align with our results in the toy model
despite the simplistic assumptions Theorem [&.1|and Corollary [4.3]

Our analysis in the toy model covers the existence of a CO solution with lower loss than the robust
solution for larger e. Recent works argue longer training schedules might lead to CO (Kim et al.,
2021; |Abad Rocamora et all [2024). According to our analysis this can be the case, as longer
schedules might converge to the CO solutions shorter schedules did not. In Appendix [F-2] we find
that €. can be slightly smaller in certain datasets for longer schedules.

5.4 EMPIRICAL VALIDATION OF SECTION 3] FOR DEEP MODELS

In this section, we validate our hypothesis from Section[3] i.e., that curvature explodes in the points
along the PGD trajectory, leading to CO. We train PreActResNet18 with the swish activation. This is
necessary as the model needs to be twice-differentiable to compute R1 and R ¢ from Proposition[3.1]
which we compute on the first 3 datapoints of the training set after every epoch. We train on the
SVHN dataset using Algorithmwith S =2and @; = ap = 1/S. In order to compare the behavior
without and with CO, we select € € {4, 12}/255 following our insights from Section[5.3]

In Fig. EI, we can observe that for the model trained with ¢ = 4/255, we have that both R; and
Ro remain stable and close to 0 and the training and test adversarial accuracies consistently grow.
Alternatively, or e = 12/255, the implicit bias terms explode at the same time as CO occurs. Devi-
ating from our hypothesis in Section[3} R1 does not remain close to 0 and R, goes to +oco instead
of —o0.

5.5 RE-SCALING FOR OBTAINING SMALLER ¢,

In this section, we empirically validate the results from Proposition [3.2]and Corollary [3.3] To do so,
we train in the modified dataset {(x; - o, y;)"_, } with & € {0.25,0.5,0.75}, with o = 1 being the
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Figure 5: Phase transition in re-scaled datasets with FGSM: We preprocess the datasets by mul-
tiplying the inputs x by o € {0.25,0.5,0.75,1}. Re-scaling the dataset inputs by a factor of «
produces proportionally smaller €, in single-step AT.
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Figure 6: Phase transition in re-scaled SVHN with multiple steps: We preprocess the datasets by
multiplying the inputs « by « € {0.25,0.5,0.75, 1} and train with S € {1,2,4} PGD steps. Even
with larger S, CO can be produced earlier by re-scaling the training dataset.

original dataset. First, we train in MNIST, SVHN and CIFAR10 with S = 1. Then, we focus in the
SVHN dataset, where CO can happen for S € {1, 2,3} (See Fig.[3) in order to better analyze how
the critical values of epsilon are displaced for larger S.

In Fig.[5] we can observe a clear proportionality in €. with respect to «, with CO appearing earlier
the smaller the o. Similarly, for any number of steps .S for SVHN, the critical values ¢, are re-scaled
accordingly, confirming the result in Corollary [3.3]and showing that CO can be induced for small e.

6 CONCLUSION

In this work, we contribute to a deeper understanding of catastrophic overfitting in adversarial train-
ing by linking its appearance with a phase transition, where a CO solution attains a lower loss than
the robust solution for € larger than a critical value €.. To do so, we derive the implicit bias of PGD
AT and show that high negative curvature solutions are characteristic of CO and can appear even in
multi-step PGD. We propose a toy model where the phase transition can be fully analyzed and the
high curvature solutions can be analytically obtained. We additionally provide a scaling argument
for how the value of €. can change by re-scaling the dataset.

Future work and limitations: Our theoretical insights from the toy model show that by constraining
the parameter norm, we can avoid high curvature solutions with CO, see Corollary@ Nevertheless,
this result does not necessarily extend to deep, more complex models.

Based on our implicit bias analysis, avoiding high curvature solutions is key to avoiding CO.
Moreover, our experimental results in Appendix [F-3] and the results of [Singla et al.| (2021) indic-
ate that architectures which have intrinsically low curvature can avoid CO. This motivates the need
of a theory for linking CO with curvature in deep models.

In this work, we conduct our theoretical and experimental analysis without noise prior to the PGD
attack, i.e., 0 = 0 in Algorithmm Using o > 0 has been shown to help increase ¢, with S = 1
(Wong et al., [2020; [de Jorge et al.| 2022). In multi-step AT, 0 = ¢ is used in practice
[2018). We believe that understanding the behavior of Algorithm [I] with ¢ > 0 is an interesting
avenue and our insights with o = 0 can foster such developments.

10
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CONTENTS OF THE APPENDIX

In Appendix [A] we provide additional derivations for our toy model. Then, in Appendices[B]and|[C]
we further analyze the implicit bias of AT in the simple case of S = 1 and S = 2. Next, in
Appendix [E] we present our proofs and finally, in Appendix [F] we present additional experimental
results not fitting in the manuscript.

A ToY MODEL FOR CATASTROPHIC OVERFITTING
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Figure 7: Loss landscape and sample Hessian for the toy model and ¢ = 0: On the left, we
plot the loss function with respect to the single parameter in the model 6. On the right, we plot the
Hessian with respect to the samples. As described in the main text, the loss has infinite degenerate
extrema, where the curvature term, proportional to sample Hessian, grows as 62.

Here, we provide a detailed analysis of the toy model presented in the main text, under a single step
adversarial attack.

Consider a training dataset consisting of two points ©1 = —x2 € R, where we choose 712 =
+7/2. The task is binary classification, with labels generated by taking y = O(sin(z)), where
O(z) is the Heaviside function. We use the cross-entropy (CE) loss (£) = 3 Z?zl L(fo(x:),yi)s
where L£(fo(z;),v:) = —y;logp; — (1 — y;)log(1l — p;), and the probabilities are simply p; =
efo(®) /(1 + efo(#)). We take the network function to be

fo(zi) = sin(bz;), 6 eRT. )
where 6 is the single network parameter.

The loss is given by the mean over the single sample losses taken on the two pairs of samples and
labels (z1,y1) = (21,1) and (z2,y2) = (z2,0), as

2
1 1 ! :
(6= 5 3 £lfoles).w) = 5 (‘k’g <1+<>> e (H”D Y

o ()
= — 10 —_—— | -
1+efsin(%9)

This loss is minimized when 9y (L) = 0, which gives cos (%9) = 0, satisfied for the set of degenerate

minima 0,5, = 4n + 1, and a set of maxima at 0,,,x = 4n + 3 where n € ZT. Under an FGSM
attack with parameter e, the effective loss being optimized is £(fg(x; + ;), y;), where

0 cos(fx1)
i . . B 2 sin(fz1) +2

0p = e-sign(Vy, L(fo,(x;),y:)) = esign Q(fos(ﬁxg) , (11)

2¢— sin(fz2) +2

and is given explicitly by
2
o 1 ) ) N 7sin(G(%fesign(&cos(%’))))

(€)= 5 3 £lfolas + 60, = log (1+e ). a2
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The extrema landscape of the pertrubed loss differs from the original loss, increasingly so as € is
increased. While the perturbed loss can be fully described numerically, in order to gain analytical
insights, it is worthwhile to Taylor expand the loss function for € < 1 as

2 oo
1 o L0 (=
— 5226”7@1,( )~ log (14 (=) (13)
i=1 n=0 :
0 cos (%L 0\\>
+e ! joilgi 2 + €% sign (9 cos (g)) H(0) + O(e%),
e

which amounts to the result given in Eq. @ presented in the the main text when plugging in z; » =
j:g, where we defined the sample curvature as

0% (sin(0z1) + e (sin(0z1) + cos?(0z1)))
2 (1 + esin(6a1))?
f2esin(0z2) ((1 + eSi“(%Z)) sin(fxs) — cosQ(ng))
B 2(1 +esin(9w2))2

H(0) = 07, L(fo(x:), y:) = . (14)

B THE IMPLICIT BIAS OF SINGLE STEP AT

Here, we extend the previous discussion to a general setting, where the network is given by fo, (x;),
and the loss L(fo, (i), y:).

We first consider the SGD equations for the single step AT as in Algorithm[T]with S = 1:

0t+1 - et 7a'v9t£(f0t<wi +6z)7y1)3 6; - E'Sign (vm7£(f9f(wl)7y2)) (15)
It is useful to define the argument of &! as

g; =V, L(fo, (), yi) — 8, = € - sign(g;) (16)

As noted in Section since the weights are updated according to the loss gradient Vo £(6,¢€), it
is sufficient to study the effective loss being optimized due to the AT perturbation. In particular, we
expand the perturbed loss to second order, neglecting O(e?) terms, giving

A A 1 . .
L(fo (@i + 81), )~ L(fo, (@) ) + 8 Ve Lfo,(@0)s) + 50} V2, L(fo, (@), 38}, (1)

where |8} | < ¢, justifying the expansion. Rewriting Eq. (17)) in terms of ¢, we obtain a familiar form

2
5 sign(g:) " V5, L(fo, (xi, v:)) sign(g;). (18)
Similar to the structure of Eq. (7), we see that the first term in Eq. is the unperturbed loss,
and the second term is an implicit L; regularization term for the sample gradient g;, pushing the
single sample input gradients to zero. The third term seeks to minimize the single sample Hes-
sian V2 L( fo, (@;,;)) under the product of sign(g;). As we explained in Section and show
graphlcally in Fig. [7] this term takes large negative values at €. Therefore, if € > €, for a given
architecture and dataset, the optimal solution will overfit the perturbed data, leading to CO.

L(fo. (i + 87),y:) = L(fo, (i,y:)) + ellgills + -

C THE IMPLICIT LOCAL LINEARITY REGULARIZATION OF TWO STEP AT

Next, we would like to compare the single-step FGSM result with the multi-step approach, focusing
on the two step method, or S = 2 in Algorithm[I] Here, the perturbation is given by

85, = €1 -sign (gf) + €2 - sign (Va, L(fo, (zi + €1 - sign (g7)),v:)) » (19)
where we allow two different perturbation magnitudes €;, €5, and demonstrate that controlling the

ratio between them can effectively negate the phase transition and ameliorate CO.

14



Under review as a conference paper at ICLR 2025

1 Small-large 1 Large-small ~ T o2
_._jr_(; __________________ ] e |
T + 82 ‘ glx+061) % |
{ T+ 01
g(x+d1) 1
\.:1:+51 {
€ | €
----------- * @) T @)
| \ \
7 7

Figure 8: Visualization of PGD-2 attacks in two dimensions: In @ we plot the trajectory of the
PGD-2 attack, in @ the gradients at the different points and in @ the radius of the second step. Intuit-
ively, Large-small has a very small range of motion in the second step (see @) and therefore behaves
like single-step AT. Alternatively, Small-large effectively regularizes the difference in gradients and
curvature at « and x + ;.

C.1 FIRST LARGE STEP, SECOND SMALL STEP
First, we consider the case of €; > e5. We fix €; and expand the perturbed loss to second order in
€2 — 0, leading to
L(fo. (@i + 03,4),y:) ~ L(fo, (i + 814), v:) (20)
+ exsign (Va, £(fo, (@i +8%,),9:)) | Ve, £(Fo, (@i + 8L,),0:)
+ %sign (Vmiﬁ(f.gt (:1:1 + Ji,t), yz))T Vi,;ﬁ(fet (z; + 51,5), Yi)
x sign (Va, L(fo, (x: + 61 ,),5:)) ,

where we denote 8} , = e;sign(gj). This effective loss corresponds to an algorithm which

first takes a large step in the direction of gi, followed by a small step in the direction of
Va,L(fo, (xi + 81 ,),y:), demonstrated graphically in the center panel of Fig.

Clearly, all of the terms in Eq. are evaluated at the same point, both for the sign functions and
for the derivatives, which implies that this is equivalent to the single step FGSM result in Eq. (I8).
We therefore expect this method will undergo the same PT as a function of €5, characterized by CO
for small e» values. The local nature of this method implies that it is susceptible to overfitting, as
the curvature evaluate for each single sample can often become large and negative. We demonstrate
this clearly in the right panel of Fig. [§|for the toy model.

C.2 FIRST SMALL STEP, SECOND LARGE STEP

Next, we consider the alternative regime, in which ez >> €;. We fix €3 and expand the perturbed loss
to second order in €; — 0, giving

2
L(fo, (@i + 83,),yi) = L(fo, (:),y:) + e1llgillx + 5 Te(H, sign(g;) sign(g;) ") 2

+ AL(fo, (i), y:) + €1 sign(gy) " Agi + %TY(AHZ' sign(g;) sign(gy) "),
where we define
AL(fo, (i), yi) = L(fo,(®; + e2sign(gy)), vi) — L(fo, (@), yi), (22)
Agy = AV, L(fo, (i), yi) = Ve, L(fo, (i + easign(g})), vi) — Ve, L(fo, (), vi),
AH] = Aviiﬁ(fet (%), y:) = chciﬁ(fet (z; + ez sign(g})), yi) — Viiﬁ(fet(ﬂvi%yi)-

A complete derivation of the effective loss is provided in Appendix [D] but it can be intuitively ex-
plained by adding and subtracting the unperturbed gradient and curvature terms, resulting in effective
regularization terms for the gradient and Hessian differences, as well as the point-wise terms.
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This method clearly differs from the one presented in Appendix [C.1] as it can truly be understood
as a non-local method, involving the evaluation of the Hessian and gradients at different points,
and thus flattening the loss landscape, avoiding the PT and reducing the likelihood of CO. This is
illustrated in the left panel of Fig. [§] where taking a small initial step and a subsequent large step
does not lead to CO.

C.3 IMPLICATIONS IN NOISE-BASED SINGLE-STEP APPROACHES

Another existing approach to avoid CO is adding random noise prior to the FGSM attack in single-
step AT, e.g. Fast AT (Wong et al.} [2020) and N-FGSM (de Jorge et al, [2022). These approaches
can be interpreted as two-step approaches with a random first step. Given &7 ;, sampled uniformly
from {0 : ||9]|, < €1}, Fast AT performs an FGSM step and a projection:

65, = proj (8i,+ex-Val(fo,(mi+67,)ui)) - (23)

116]] oo <e

N-FGSM performs the same operations without the projection operator. The employed hyperpara-
meters are (€1 = €, e = 1.25 - €) for Fast AT and (¢; = 2 - €, €5 = ¢€) for N-FGSM. While these
methods are not explicitly captured by our analysis, we believe these approaches implicitly bias the
loss towards local linearity by regularizing the gradient norm at the random perturbation through

Eq. (I8).
D DERIVATION OF THE TwO STEP PGD EFFECTIVE LOSS

Here, we provide additional details regarding the derivation of the results presented in Appendix|C.2]
Recall that the perturbation to the single sample loss function is given by

5;& = € - sign (gi) + €3 - sign (Vwiﬁ(fgt (x; + €1 - sign (gz)), y7)) , (24)

we Taylor expand for €; < 1, while keeping ¢, fixed. The expansion to second order in €5 is given
by

L(fo,(x; + 85,).yi) ~ L(fo,(x; + e2sign(g})), vi) (25)

+ e Slgn(gz)—rvﬂh‘c(fet (.’I), + €2 Slgn(g;))7 y1)
2
€ . i . 7 : 7
+ 5 sign(g;) " VE, L(fo, (wi + easign(gr)), vi) sign(g;).

Due to the mismatch between the sign function arguments and the terms multiplying them, we can
add and subtract terms that correspond to the first step, i.e. the implicit regularization terms of the
single-step FGSM with € = ¢, as

["’(-fet (.’1}1' + 6%t)7y1) ~ ‘C(fef, (ml)7y1) + A‘C(fef (mz)7y1) (26)

+e Sign(Qz)Tvmq‘,E(fet (ml)a yl)

+ €1 sign(gl) T AV, L(fo, (1), yi)
2

€1 . i . %
+ 51 sign(g;) ' VZ L(fo, (i), ;) sign(g;)
2

€1 . i . i
+ = sign(g;) T AV, L(fo, (1), vi) sien(g}),

where the definitions of the various additional "difference" terms are given in Eq. (22)) in the main
text, and repeated here for completeness:

A‘C(fef, (wl)vyl) = ‘C(fet (wl + €2 Slgn(g;))vyz) - ’C(fet (wz)ayz)v 27
Ag; = Avfﬂlﬁ(fet (w2)7yl) = VmL‘C(-fet (wl + e Slgn(gtL»’ vfczﬂ(fet (wl)7yl)’
AH] = AV L(fo, (), yi) = Vi, L(fo, (x: + ez5ign(g})), V. L(fo, (i), yi)-

yz) -
Yi) —

3
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E PROOFS

Proof of Proposition31] Let 8% = 8._, + < -sign (ge(x; + 8._,)), where the projection operator
was omitted as with o = 0 and agy = 1/S Vs = 1,--- , S the perturbations never achieve a norm
greater than e. We can iteratively Taylor-expand:

; ‘ : i T i
J(@i+80) ~ f(@i + 8, ) + 5 - sien (go(@i + 61 1)) ' go(@i + 6L 1)
i
2.52

= @i+ 8L 1) + 5 - |lgo(@i + 6Ll

+ - sign (go(@; +6._,)) | Ho(a; + &' _,) sign (go(a; + 5°_,))

€2

2. 52

which can be applied recursively from s = S to s = 1 and summed from ¢ = 1 to n to obtain the
desired result:

+ - sign (go(@; +6._,)) | Hol(a; + 8:_,) sign (go(a; + 8°_,)) ,

n n

i € i
Z»C(fe(ivi‘i“ss),yi) %Z L(fo(x:),yi) + <§ ||ge(xi+6j—1)|’1
i=1 i=1 j=1
2 . . .
5 gz sten(go(e: + 8 _1)) Hole: + 8 1) si(go(ai +31.) ) |

O

Proof of Theorem Our proof flows as:

i) We show that the optimal loss value is attained when sin(6 - (x; + 6%)) = ;.

ii) We look for 6y, so that:

sin(fy - (x; — p)) = sin <0k . (:cl —p+ %)) =Yi,

and form p, €; and 6y, depending on S, a, by, k.
iii) We show that |£(sin(0y - (z; — p)), yi) — L(Sin(Ok - x;),y:)| < 20 - p.

Because of the symmetry of the sin function and our training points {(—7/2,—1), (7/2,1)}, we
will continue the analysis just by looking at the loss at (7/2, 1).

Starting with i), let £( fp, (7/2),1) = —sin(0y - (7/2+ ) +log (1 + esin(0r-(7/245))) Ttis easy
to see that the optimal loss value is £* = log(1 + e) — 1 = 0.3133, by minimizing L( fp, (7/2),1)

T(2nt+1)—% o
6

as a function of §g, where dg = 5

Following with %), our goal is to obtain 8, so that sin(y - (x — p+ ds)) = 1. Inthe case p = 0
it is trivial that, since -L sin(6j, - (w/2)) = 0y, - cos(fy - 7/2), by setting 6, = 1, we obtain §; =
sign(cos(m/2)) = sign(0) = 0 and therefore s = 0. We study p > 0 as it is a more realistic
scenario where the adversary "moves".

We are then set with the problem of finding:
sin(f - (7/2—p+6g)) =1.
To ease the analysis, we will further impose that:
sin(f, - (7/2—p+65))=1,Vs=0,---,8S.

Then it is enough to look for:

sin(f - (7/2 — p)) = sin (Gk : (77/2 —p+ %)) =1, (28)

17
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as the PGD perturbations at each step will just be 6, = “%*. In order to satisfy Eq. (28), the minimal

0), must be the one where the two maxima of the sin at 6, - (7/2 — p) and 6y, - (7/2 — p + %) are
contiguous, i.e., there is no other maximum in between them. For this to happen, we just need to

" (/2 p) =/
Op - (m/2—p)=7/24+2-7-k

Qk' L =2.7 } ’ (29)
For some £ = 0,---,00. Then, by setting ¢, = 7; and p = , we have from the second
equation 6, = by. We can substitute into the first equation of Eq. @) and solve for by:

1+4-k
be=—7—1
i in(0, - (/2 — — sin (Lekk o @msa-d)

It is then easy to see that sin(6y - (7/2 — p + €;)) = sin (7)2 = 9+ )
sin (71'/2 bk (1- 1+ %)) = sin(r/2- (1 L4k (4-5))) = 1. And that simil-
arly sin(6y, - (7r /2—p+ ﬁ)) = —1, which constitutes an adversarial example.

Finally, we show iii):

|L (sin(Oy - (7/2 —p)),1) = L(sin(0r - 7/2),1) | < p- max %E (sin(fy - z),1)

esin(akﬂc)
= et oo -2) (s 1))
()/sin(()k»:l:)
- bk
=
where in the first line, we used the Taylor remainder of the perturbed loss. This concludes the
proof. O

Proof of Proposition[3.2] Let the AT problem be as in Eq. (AT):

n

IS 1
min o Llfolar i +8:),y:) = min E e L(fg, Wala @i +8;) + ba), i)
a i—1 illoo S€a illoo S€a

0, Wo,b, T
1 & . 1
= min -— max L(f; (o Wy(x; + —98;) +ba), i
0 Wb nZH«s,Hmseu (Fo, (- Walz: + 10) +ba). i)
1
= min — ax a- - Wyl(x; +6;) + b,
6o, W b nznén <ea/ar £(fa,( ( ) ) wi)

n

1
[W=a -W,,b=b,,0=0,andec=¢/a] = min ,Z

Juin L(fo(W (@i +6) + b))

H5 H <

n

_ ngnlzuérll‘ax L(fol(m: +6:),us).

(30)
This shows that performing AT in the dataset {(x; - o, y;)}7; with €, is effectively the same as
performing AT on the standard dataset {(z;, y;)}7, with € = €, /. O

Proof of Corollary[3.3] As proved in Proposition[3.2] performing AT in the dataset {(a; - ov, y;) }1,
with ¢, is effectively the same as performing AT on the standard dataset {(x;,y;)}7; with
€= €4/

This means that if in the standard dataset {(xz;,y;)}?_, we have (5,7)-CO for ¢ > e, since

rescaling the dataset results in an effective adversarial budget of €, = € - v, in the re-scaled dataset
{(x; - a,y;)}_, we will have (3,7)-CO fore > €. - a. O
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Proof of Corollary[@.2] Based on Definition 2.1] we need to show:

i) Nearly perfect accuracy in the PGD perturbations 4.

ii) Close-to-zero accuracy in any other points with |5%| < €.

Since we are going to make arguments when a — oo, we will make the dependence of every variable
with respect to a explicit, e.g., 0x(a). Our result will hold with 5 = 7 = 0 in Deﬁmtlon- The
condition i) is obtained by construction of Theorem[.1] where we showed that:

. 7T T
sin <9k(a) : (9:Z 3.4 + Ek(a)>) =y; Vie{l,2}, G
which means that because %Ef'm) =6 - cos(f - x) < 0, by Lipchitzness:
™ T
i g — — — s Az < L
| sin (Gk(a) (x S+ ek(a)>) sin (04(a) - (21 + €4(a))) | < Ou(a) - 5
1+4-F
=711 3.4 Vi € {1,2}

which implies limg, oo sin (0 (a) - (z; + ex(a))) = y; Vi € {1,2}. Similarly, we can show ii).
Firstly, let us see that:

sin <9k(a) : (m - ﬁ + 62’“(2))) =y Vie{l,2}.

Starting from the definition and using the fact that €, (a) = 92;:22‘) and Eq. :

sin (9k(a). (wi_zifr e;(?)) :Sm( (x T e (a) + (2.5;1‘)9. ek(a)))

[ek(a):;:)] sm(@k (x ())i(2~S—1)~7r)

[sin(x &+ p - ) = —sin(z) for odd p] = — sin (Hk(a) . (a:z — ﬁ + ek.(a)>)
[Eq. GBIl = —y: Vi€ {1,2}.

Then, using the same arguments as before:

lim sin (ek(a). (x + 62’“@;))) =y Vie{1,2},

a— 00

which shows that the points x; + <:(@) are classified with the wrong label. By showing i) and ii), we

have shown that (0, 0)-CO occurs with arbitrarily small e, (a), large S and with arbitrarily accurate
solutions when increasing a. O

Proof of Corollary[.3] Ttis easy to check that if |b,| < B and by, > 0, we have that:

2rs  2mS.

= b, — B

Then, by increasing S, we can increase the lower bound on ¢; and therefore, there will not be
solutions in the form of Theorem E.1] O
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F ADDITIONAL EXPERIMENTAL VALIDATION

F.1 IMPLICIT REGULARIZATION IN TWO-STEP AT

In Appendix [C| we demonstrate that two-step AT effectively biases the loss landscape to be locally
linear around the training points. To confirm this prediction in practice, we train a two-layer fully
connected network with a hidden size of 1,024 and the Swish activatiorﬂ (Ramachandran et al.}
2017). We train the network on the MNIST dataset (LeCun et al., [1998)), with the 15-epoch cyclic
scheduler in (Andriushchenko and Flammarion, [2020) and a learning rate of 0.2.

We report the PGD-20 accuracy and the first terms in Eq. (22) at the beginning of every epoch,
for Algorithm [1) with S = 2 in the small-large (o = 5/255, as = 65/255) and large-small
(a1 = 65/255, ag = 5/255) setups. Due to the computational expenses of computing the second
order terms in Eq. (22), we compute these terms as the average in a small sample of 16 randomly
selected points from the training set. Results are averaged over the training with 3 random seeds.

Loss Oth terms 1st terms 2nd terms PGD-20 Acc.

254

— 304 6 0 0.4 5-65
e — ’ — 655
0.0 / 0.3
2.5 4 4 -100 4
-2.51 504 N 4 A 0.2 "7
~5.0 2 : =200
1.5 - . 0.1
~7.51 === AT-PGD2 4 h

= Taylor approx 1.0 0 ~300 00

-10.0 1

Figure 9: Implicit regularization terms and PGD-20 adversarial accuracy in 2-step AT: We
train a two-layer fully connected neural network on MNIST at e = 70/255 with AT-PGD-2 in the
small-large (a1 = 5/255, as = 65/255) and large-small («v; = 65/255, ay = 5/255) setups. and
measure the PGD-20 adversarial accuracy and the three terms in Eq. (ZI). CO appears in large-small
at the same time as second order terms decrease. Alternatively, small-large controls curvature and
does not incur in CO.

In Fig. 0] we first see that our series expansion in Eq. correctly approximates the loss curve
in the small-large setup, whereas in the large-small setup, this approximation does not hold. We
observe that in the large-small setup, second order terms start becoming highly negative at the point
where the PGD-20 accuracy starts decreasing and CO appears. On the other hand, in the small-large
setup, second order terms remain close to zero and CO does not appear. When looking at the first
order terms, which are a dot product between gradients at two points (see Eq. (23)), we see that
this quantity goes to zero for the large-small setup, meaning that gradients become orthogonal and
local linearity is lost. This is exactly what the GradAlign scheme (Andriushchenko and Flammarion,
2020) is designed to avoid. These results indicate that:

1) The second order approximation in Appendix [C] holds in practice and local linearity is
implicitly regularized.

2) Controlling local linearity in single-step AT, as existing methods do (Qin et al., 2019
Moosavi-Deztooli et al., |2019; |Andriushchenko and Flammarionl [2020; /Abad Rocamora
et al.,[2024)), is a good strategy to control CO.

F.2 THE PHASE TRANSITION WITH LONGER SCHEDULES

Recent works argue longer training schedules might lead to CO (Kim et al., |2021; |/Abad Rocamora
et al.l [2024). According to our analysis this can be the case, as longer schedules might converge to
the CO solutions shorter schedules did not. In Fig. |10 we find that €. is slightly larger for MNIST
and SVHN and slightly smaller for CIFAR10.

F.3 THE EFFECT OF ARCHITECTURE IN THE PHASE TRANSITION

Singla et al.|(2021)) argue low-curvature architectures like ResNets with the Swish activation provide
better properties regarding robust overfitting. In this experiment, we evaluate the appearance of CO

2We choose the swish activation as we need our classifier to be twice differentiable for AH to exist.
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Figure 10: Phase transition with a 30 or 15 epoch @ v.s. a 200 epoch ® schedule: The phase
transition occurred later for the studied € in the long schedule for MNIST and SVHN, on the contrary,
the phase transition occurred 1.5/255 points earlier with the long schedule in CIFAR10.

for PreActResNet with both the ReLU and Swish activation. We additionally evaluate the per-
formance of ViT-small (Dosovitskiy et al.l[2021), which we train with the proposed training hyper-
parameters in [Wu et al.[(2022)) (Sec. 5.1). We used an embedding size of 384, a patch size of 4, and
6 heads.

In Fig. [TT] we can observe CO occurs later for ViT-small and PRN18-Swish, confirming the result
of Singla et al.|(2021) for the swish activation and agreeing with our theory in Section@

PGD-20 Acc.

e o o o =
[N ® o

o
)

MNIST

SVHN

CIFAR10

o

=
1}

N

PGD-20 Acc.
o o
S

o
~

o
@

o

o
o

| \

—— FGSM-Swish
FGSM-Swish

—— ViT-Small

0

10 20 30 40 50 60 70
£:255

0

2

4

6
£:255

8

10

12

Figure 11: Phase transition with PRN18-ReL.U @, PRN18-Swish
transition occurs later for ViT-small and PRN18-Swish, implying that architecture plays a role in the

appearance of CO.
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