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Abstract

Diffusion bridge models and stochastic interpolants enable high-quality image-
to-image (I2I) translation by creating paths between distributions in pixel space.
However, recent diffusion bridge models excel in image translation but suffer
from restricted design flexibility and complicated hyperparameter tuning, whereas
Stochastic Interpolants offer greater flexibility but lack essential refinements. We
show that these complementary strengths can be unified by interpreting all ex-
isting methods within a single SI-based framework. In this work, we unify and
expand the space of bridge models by extending Stochastic Interpolants (SIs)
with preconditioning, endpoint conditioning, and an optimized sampling algo-
rithm. These enhancements expand the design space of diffusion bridge mod-
els, leading to state-of-the-art performance in both image quality and sampling
efficiency across diverse I2I tasks. Furthermore, we identify and address a pre-
viously overlooked issue of low sample diversity under fixed conditions. We
introduce a quantitative analysis for output diversity and demonstrate how we
can modify the base distribution for further improvements. Code is available at
https://github.com/szhan311/ECSI.

1 Introduction

Denoising Diffusion Models (DDMs) and flow matching create a stochastic process to transition
Gaussian noise into a target distribution [33, 14, 34, 19]. Building upon this, diffusion bridge-based
models (DBMs) have been developed to transport between two arbitrary distributions, πT and π0,
including I2SB [21], DSBM [39], DDBM [18], DBIM [42], Bridge Matching [28]. DBMs achieve
superior image quality in I2I translation compared to DDMs [18, 21, 2], primarily because the distance
between source and target image distributions is typically smaller than that between Gaussian and
target distributions.

While DBMs like DDBM [39], DBIM [42], and I2SB [21] achieve state-of-the-art FID scores
in image-to-image translation, they suffer from limited design flexibility, constrained bridge path
formulations, and complex parameter tuning. In contrast, Stochastic Interpolants (SIs) [1, 2] offer a
simpler and more flexible framework, but they have yet to integrate practical advances from recent
diffusion bridge models, such as preconditioning. Besides, SIs require training two separate models,
unlike the more efficient single-model setup in DDBM. Table 1 summarizes the key characteristics of
these methods, highlighting that their complementary strengths had not yet been unified.

Another overlooked issue stemming from restrictive design choices in previous bridge models is
the lack of diversity in outputs. While some image translation tasks are one-to-one, we find that in
one-to-many translation tasks, like black and white edges to color images, previous methods produce
limited variation in colors and textures. We refer to this as the conditional diversity problem and
show that our approach leads to significant improvements.
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Figure 1: The design space of
bridge paths and samplers.

DDBM DBIM DSBM SI ECSI (ours)

Endpoint conditioning ✓ ✓ ✗ ✗ ✓
Uncoupled parameters ✗ ✗ ✗ ✓ ✓
Extensive bridge paths ✗ ✗ ✓ ✓ ✓

Extensive samplers ✗ ✗ ✗ ✓ ✓
Preconditioning ✓ ✓ ✗ ✗ ✓

Modified base density ✗ ✗ ✗ ✗ ✓

Table 1: Characteristics of different bridge models.

Figure 2: Samples for I2I translation with our ECSI models: Deblurring, Depth-RGB, and Edges to
Handbags. For each pair of images, we show the input image (upper) and the output image (bottom).

Our main contributions are as follows:

• We propose Endpoint-Conditioned Stochastic Interpolants (ECSI), which extend stochas-
tic interpolants by incorporating endpoint conditioning and preconditioning. Previous bridge
methods artificially coupled unrelated aspects of the transition kernel. ECSI introduces a
decoupled parametrization that expands and simplifies the design space for bridge paths
and samplers. To further improve sampling quality and efficiency, we develop a novel noise
control scheme and an efficient sampling algorithm.

• We identify a previously overlooked issue: the low diversity of outputs conditioned on fixed
source images. To address this, we propose modifying the base distribution. Furthermore, to
quantitatively evaluate conditional output diversity, we introduce a new metric—Average
Feature Diversity (AFD).

• Experimental results demonstrate our model’s state-of-the-art performance in both image
quality and sampling speed across various I2I tasks, including deblurring, edges-to-handbags
translation, and depth-to-RGB conversion. Notably, for handbag generation, our approach
yields significantly more diverse outputs with varied colors and textures.

2 Background

Notations Let πT , π0, and π0T represent the base distribution, the target distribution, and the joint
distribution of them respectively. πcond and πdata represent the distributions of the input and output
data. Let p be the distribution of a diffusion process; we denote its marginal distribution at time t by
pt, the conditional distribution at time t given the state at time s by pt|s, and the distribution at time t
given the states at times 0 and T by pt|0,T , i.e., the transition kernel of a bridge.

2.1 Denoising Diffusion Bridge Models

DDBMs [18] extend diffusion models to translate between two arbitrary distributions π0 and πT

given samples from them. Consider a reference process given by:

dXt = ftXtdt+ gtdWt, (1)
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whose transition kernel is given by qt|0(xt|x0) = N (xt; atx0, σ
2
t I). This process can be conditioned

(or "pinned") at both an initial point x0 and a terminal point xT to construct a diffusion bridge. Under
mild assumptions, the pinned process is given by Doob’s h-transform [29]:

dXt = {ftXt + g2t∇Xt
log pT |t(xT |Xt)}dt+ gtdWt (2)

where ∇Xt
log pT |t(xT | Xt) =

(at/aT )xT−Xt

σ2
t (SNRt/SNRT−1)

and SNRt := a2t/σ
2
t [18]. Eq. (2) is a stochastic

process that transport from p0 = π0 and pt = πt, which is a valid bridge process. To sample from
the conditional distribution p(x0|xT ), we can solve the reverse SDE or probability flow ODE from
t = T to t = 0 [18]:

dXt = {ftXt + g2t (s− h)}dt+ gtdWt, (3)

dXt = {ftXt + g2t (s−
1

2
h)}dt, (4)

where XT = xT , s = ∇Xt
log pT |t(xT |Xt), h = ∇Xt

log pt|T (Xt|xT ). Generally, the score
∇xt log pt|T (xt|xT ) in Eqs. (3) and (4) is intractable. However, it can be effectively estimated
by denoising bridge score matching. Let (x0, xT ) ∼ π0,T (x0, xT ), xt ∼ pt|0,T (xt|x0, xT ), t ∼
U(0, T ), and ω(t) be non-zero loss weighting term of any choice, then the score ∇xt log pT |t(xT |xt)
can be approximated by a neural network sθ(xt, xT , t) with denoising bridge score matching objective
[18]:

L(θ) = E
[
w(t)∥sθ(Xt, xT , t)−∇xt

log pt|0,T (Xt | x0, xT )∥2
]
. (5)

where E dentotes expectation over xt ∼ pt|0,T (xt, x0), (x0, xT ) ∼ π0,T , t ∼ U(0, T ).

2.2 Diffusion Bridge Implicit Models

The transition kernel of the bridge process in Eq. (2) is given by [18, 42]:

p(xt|x0, xT ) = N (xt;αtx0+βtxT , γ
2
t I) (6)

where αt = at(1−SNRT

SNRt
), βt =

at

aT

SNRT

SNRt
, γ2

t = σ2
t (1−SNRT

SNRt
). Suppose we sample in reverse time

on the discretized timesteps 0 = t0 < t1 < · · · tN−1 < tN = T . Then we can sample x0 by the
initial value xT and the updating rule:

xtn = αtnxT + βtn x̂
θ
0 +

√
γ2
tn − ρ2tn

xtn+1
− αtn+1

xT − βtn+1
x̂θ
0

γtn+1

+ ρtnϵ, ϵ ∼ N (0, I). (7)

where x̂θ
0(xt, xT , t) has the relation with the score function:

sθ(xt, xT , t) = −xt − αtxT − βtx̂
θ
0(xt, xT , t)

γ2
t

(8)

3 Have the bridge paths been fully explored?

Given the forward process defined in Eq. (1), diffusion bridge models [18, 42, 12, 8] utilize Doob’s
h-transform to construct a corresponding bridge process (Eq. (2)). While the resulting process
effectively bridges the initial distribution πT and the target distribution π0, such diffusion bridge
approaches exhibit several limitations.

• Parameter coupling. Notice that the parameters at and σt are convolved in the transition
kernel (Eq. (6)). Such coupling is unnecessary and decoupling those parameters is helpful
for searching the ‘best’ bridge path.
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• Limited design space. Despite Eq. (2) provides an infinite number of bridge paths by tuning
at and σt, but the space of bridge paths is still artificially restricted.

In contrast, the stochastic interpolants [1] framework allows a larger design space of bridge path with
more decoupled parameters. Specifically, stochastic interpolants build a bridge path directly via the
flow map:

ϕt = αtx0 + βtxT + γtz (9)

where z ∼ N (0, I). Eq. (9) builds a transport with π0 and πT as boundary conditions if the kernel
parameters satisfy [1]:

• α0 = βT = 1 and αT = β0 = γ0 = γ1 = 0;

• αt, βt, γt > 0 for t ∈ (0, T ).

The transition kernel of the stochastic interpolants in Eq. (9) is a Gaussian distribution: N (xt;αtx0 +
βtxT , γ

2
t I). Unlike DDBM, which is parameterized by only two variables at and σt, stochastic

interpolants introduce decoupled parameters αt, βt, and γt, offering a more flexible and expressive
design space for constructing bridge paths.

A detailed discussion on the rationale behind the choices of αt, βt, and and an ablation study on
the shape of γt is provided in App. E. Notably, the DDBM-VP and DDBM-VE models presented
in [18] can be considered as special cases by choosing different αt, βt, and γt, see App. D for
more details. In the experiments, we limit the scope to linear transition kernels and set T = 1, i.e.,
pt|0,T (xt|x0, xT ) = N (xt; (1− t)x0+tx1, 4γ

2
maxt(1− t)I).

Stochastic interpolants expands the space of bridge paths and leads to decoupled parameters
compared to DDBM and DBIM.

4 Has the sampler space been fully explored?

For diffusion models, EDM [17] demonstrated that the design of training and sampling schemes
could be decoupled to significantly improve results. We now explore whether a similar decoupling
is possible for bridge models, and what freedom we have to improve sampling quality with a given
trained model.

4.1 Endpoint-Conditioning for Stochastic Interpolants (ECSI)

Given transition kernel pt|0,T (xt | x0, xT ) = N (xt;αtx0 + βtxT ; γtI), we can identify the training
objective 11, reverse sampling SDEs (Eq. (10)), as demonstrated in Proposition 4.1, see App. C for
the proof.

Proposition 4.1 (Endpoint-conditioned Stochastic Interpolants). Suppose the transition kernel of
a diffusion bridge process is given by pt|0,T (xt | x0, xT ) = N (xt;αtx0 + βtxT , γ

2
t I), then the

evolution of conditional probability qt(Xt|xT ) is given by the SDE:

dXt = b(t,Xt, xT )dt+
√
2ϵtdWt, (10)

where b(t, xt, xT ) = α̇tx̂0+ β̇txT +(γ̇t+
ϵt
γt
)ẑt, x̂0 = E[x0 | xt, xT ], ẑt =: (xt−αtx̂0−βtxT )/γt.

Besides, x̂0 can be approximated by neural networks x̂θ
0 by minimizing a regression objective with

the observed x0, xT as targets,

L0[x̂
θ
0] =

∫ T

0

E[∥x̂θ
0(t, xt, xT )− x0∥22]dt (11)

where E denotes an expectation over (x0, xT ) ∼ π(x0, xT ) and xt ∼ pt(xt | x0, xT ).
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Relation to Stochastic Interpolants (SI). Both SI and ECSI in Prop. 4.1 can be seen as special
cases of Conditioned SI. A key advantage of ECSI is its efficiency: while SI need to estimate two
terms: E[x0 | x0] and E[x1 | xt], ECSI only estimate E[x0 | xt, x1]. A detailed comparison was
demonstrated in App. B.

For training, we found that we could define an expanded space of bridge paths in terms of αt, βt, γt,
where γt apparently controlled the stochasticity of the path. For sampling, we see from the proposition
above that the sampling design space is expanded even further, as the sampling dynamics depend on
αt, βt, γt and ϵt, where ϵt appears as an additional degree of freedom to control stochasticity.

Training. Eq. (11) provides the training objective of the denoiser x̂θ
0(t, xt, xT ). In the implementation,

we include additional preconditioning as DDBM [18] and DBIM [42], see App. G for more details.

Sampling. We can generate samples from the conditional distribution q0|T (x0 | xT ) by solving the
stochastic differential equation in Eq. (10) from t = T to t = 0.

4.2 Existing samplers are a strict subset of ECSI samplers

We now show that existing samplers implement a strict subset of the ECSI samplers, see Figure 1.

DDBM sampler. When ϵt = 0, Eq. (10) reduces to a deterministic ODE. Setting ϵt = γtγ̇t − α̇t

αt
γ2
t

recovers the sampling SDE used in DDBM [18]. However, DDBM only provides a single reverse
SDE and a single corresponding reverse ODE; it does not explore alternative choices of ϵt.

DBIM sampler. For small enough ∆t and γ2
t−∆t−2ϵt∆t > 0, the sampling SDE can be discretized

as:

xt−∆t ≈ αt−∆tx̂0 + βt−∆txT + z̃ (12)

where z̄t ∼ N (0, I), z̃ =
√
γ2
t−∆t − 2ϵt∆tẑt +

√
2ϵt∆tz̄t. Eq. (12) recover the DBIM sampler.

Note that the condition γ2
t−∆t−2ϵt∆t > 0 limits the design space of samplers. For example, our best

result in the experiments is achieved by setting αt = 1− t, γt =
γ2
max

4 t(1− t) and ϵt = γtγ̇t − α̇t

αt
γ2
t ,

DBIM sampler fails under this setting since γ2
t−∆t − 2ϵt∆t > 0 cannot be guaranteed all the time.

I2SB sampler. When 2ϵt∆t = γ2
t−∆t − β2

t−∆tγ
2
t /β

2
t , the coefficient of xT in Eq. (12) vanishes.

This special case corresponds to the Markovian bridge introduced in [42], and notably allows us to
recover the sampling procedure of I2SB [21]. We provide a detailed derivation of this connection
in Appendix D. The design space of the I2SB sampler is also limited, as it can be interpreted as a
special case of the DBIM sampler.

Endpoint-Conditioned Stochastic Interpolants (Prop. 4.1) identify a class of sampling SDEs
that share the same marginal distribution, but offer greater flexibility and a broader design space
for sampler construction compared to DDBM, DBIM, and I2SB.

4.3 Our implementation

Our sampler based on Euler’s discretization of the sampling SDE in Eq. (10):

xt−∆t ≈ xt − b(t, xt, xT )∆t+
√

2ϵt∆tz̄t, (13)

We set ϵt = η(γtγ̇t − α̇t

αt
γ2
t ), where η ∈ (0, 1) is an interpolation parameter. This formulation

provides continuous control over the sampling process, ranging from purely deterministic ODE
sampling (η = 0) to fully stochastic SDE sampling (η = 1). In our implementation, we let ϵt = 0
for the last two steps, Eq. (12) gets reduced to: xt−∆t ≈ αt−∆tx̂0 + βt−∆txT + γt−∆tẑt. For other
steps, we apply Eq. (13) and let ϵt = η(γtγ̇t − α̇t

αt
γ2
t ), where η is a constant. Putting all ingredients

together leads to our sampler outlined in Algorithm 1.
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Algorithm 1 ECSI Sampler

1: Input: Dθ(xt, xT , t), timesteps {tj}Nj=0, distribution πcond, schedule αt, βt, γt, ϵt, b

2: Sample xT ∼ πcond, n0 ∼ N (0, b2I)
3: xN = xT + n0

4: for i = N to 1 do
5: x̂0 = Dθ(xi, xT , ti), ẑi = (xi − αti x̂0 − βtixN )/γti
6: if i ≥ 2 then
7: Sample z̄i ∼ N (0, I)
8: di = α̇ti x̂0 + β̇tixN + (γ̇ti + ϵti/γti)ẑi
9: xi−1 = xi + di(ti − ti−1) +

√
2ϵti(ti − ti−1) z̄i

10: else
11: xi−1 = αti−1 x̂0 + βti−1xN + γti−1 ẑi
12: end if
13: end for

Figure 3: Modifying the base distribution corresponds to a lossy compression of the input that leads
to a ‘trade-off’ between unconditional diffusion and diffusion bridge models.

5 Is there any benefit to modifying the starting point of a bridge?

We expanded the paths in distribution space connecting a base and target distribution, but so far left
the endpoints fixed. While the target distribution should remain fixed, we could, in principle, modify
the base distribution. At first glance this seems counter-intuitive - because of the data processing
inequality we can only lose information about the target by modifying the base distribution. Hence,
this angle has not been explored in the bridge literature. However, we found a surprising result -
modifying the base distribution can help significantly. The situation is analogous to the benefits of
lossy compression in VAEs [6]. Information in the base distribution is not necessarily helpful, so by
modifying the base distribution (which destroys some information) the model can align better with
natural factors of variation.

5.1 Low conditional diversity in one-to-many translations

In our experiments (see Sec. 6), we observe that existing diffusion bridge models tend to produce
low-diversity outputs under fixed conditioning. For instance, when generating handbags from a
single edge map, the model is expected to produce varied outputs in terms of color, texture, and fine
details. However, we find that current bridge models generate visually similar images across different
sampling runs, despite the injection of different noise realizations during the diffusion process.

To address the issue of low output diversity, we propose modifying the base distribution used in the
bridge model. Prior works [18, 1] typically treat the base distribution πT as equivalent to the input
data distribution, denoted πcond. In contrast, our approach introduces a controlled perturbation by
redefining the base distribution as πT = πcond ∗ N (0, b2I), where b is a constant that governs the
magnitude of noise added to the input distribution. This modification enables greater diversity in the
generated outputs while maintaining conditional alignment.

Intuitively, this modification can be interpreted as a trade-off between standard diffusion models
and traditional diffusion bridge models. As illustrated in Fig. 3, diffusion models typically generate
samples starting from pure Gaussian noise, while diffusion bridge models begin sampling from
fully conditioned inputs, such as edge maps. Our approach introduces an intermediate regime by
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Table 2: Validation of our sampler via DDBM pretrained VP model (Evaluated by FID), where
ϵt = 0.3(γtγ̇t − α̇t

αt
γ2
t ).

Sampler
Edges→Handbags (64× 64) DIODE-Outdoor (256× 256)

NFE=5 NFE=10 NFE=20 NFE=5 NFE=10 NFE=20

DDBM [18] 317.22 137.15 46.74 328.33 151.93 41.03
DBIM [42] 3.60 2.46 1.74 14.25 7.98 4.99

ECSI (Ours) 2.36 2.25 1.53 10.87 6.83 4.12

sampling from noisy conditioned inputs, thereby blending the benefits of both paradigms—preserving
conditional guidance while enhancing output diversity.

Modifying the base distribution with lossy compression can significantly improve the conditional
diversity of the generated images.

5.2 How to measure the conditional diversity?

While existing metrics like FID implicitly capture the unconditional diversity of generated images,
we need to capture the diversity of outputs (e.g. color images) for a single input image (a black and
white edge map). To measure the conditional diversity, we will adopt Vendi Score (VS) [11] as a
metric. Besides, We propose the Average Feature Distance (AFD) metric to quantify the conditional
diversity among generated images. Initially, we select a group of source images {x(i)

T }Mi=1. For each
x
(i)
T , we then generate L distinct target samples. The j-th generated sample corresponding to the i-th

source image is denoted by yij . Then the AFD is calculated as follows:

AFD =
1

M

M∑
i=1

1

L2 − L

L∑
k,l=1,k ̸=l

∥F (yik)− F (yil)∥ (14)

where F (·) is a function that extracts the features of images, and ∥ · ∥ represents Euclidean norm.
Intuitively, a larger AFD indicates the better conditional diversity. Here, F (x) can be x to evaluate
the diversity directly in the pixel space. Alternatively, F (·) can be defined using the Inception-V3
model to assess the diversity in the latent space. In our experiments, we use AFD in latent space.
Furthermore, we provide additional justification for the validity of our proposed metric in App. A.

A comparison between AFD and VS. Both AFD and the VS quantify diversity in the feature space
of images, using features extracted from the Inception-V3 model. AFD measures the average pairwise
Euclidean distance between feature vectors, making it sensitive to outliers. In contrast, the Vendi
Score evaluates diversity by computing the effective number of unique feature patterns, based on the
eigenvalues of the similarity matrix, emphasizing the overall structural diversity of the feature set.
These metrics are complementary, capturing different aspects of diversity.

6 Experiments

In this section, we demonstrate how greatly expanding the space of bridge paths with ECSI leads to
significantly improved performance for I2I translation tasks, in terms of sample efficiency, image
quality and conditional diversity. We evaluate on I2I translation tasks on Edges→Handbags [16]
scaled to 64× 64 pixels and DIODE-Outdoor scaled to 256× 256 [37], and Deblurring on ImageNet
dataset [9]. For evaluation metrics, we use Fréchet Inception Distance (FID) [13] for all experiments,
and additionally measure Inception Scores (IS) [3], Learned Perceptual Image Patch Similarity
(LPIPS) [41], Mean Square Error (MSE), following previous works [42, 18]. In addition, we use VS
and AFD, Eq. 14, to measure conditional diversity. Further details of the experiments and design
guidelines are provided in Appendix G and E.

Sampler. We evaluate different sampling algorithms in Fig. 4 (a), the results demonstrate that
setting ϵt = 0 and using Eq. (12) for the last 2 steps can significantly improve sampled image
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Figure 4: Ablation studies on discretization, γmax and ϵt. (a). We evaluate different discretization
schemes on Edges2handbags (64 × 64) dataset using DDBM-VP pretrained model, A represents
simple Euler discretization in Eq. (13), B reprents setting ϵt = 0 for the last 2 steps, C represents
using Eq. (12) for ϵt = 0. (b). Ablation study on γmax evaluated by DIODE (64× 64) dataset. (c).
Ablation study on ϵt through our ECSI model with Linear path on Edges2handbags (64× 64) dataset,
where ϵt = η(γtγ̇t − α̇t

αt
γ2
t ).

Table 3: Quantitative results in the I2I translation task Edges2handbags (64 × 64) and DIODE
(256× 256) datasets. Our results were achieved by Linear transition kernel and setting η = 1.

Edges→handbags (64× 64) DIODE-Outdoor (256× 256)

Model NFE FID ↓ IS ↑ LPIPS ↓ MSE FID ↓ IS ↑ LPIPS ↓ MSE

Pix2Pix [16] 1 74.8 3.24 0.356 0.209 82.4 4.22 0.556 0.133
DDIB [36] ≥ 40† 186.84 2.04 0.869 1.05 242.3 4.22 0.798 0.794

SDEdit [25] ≥ 40 26.5 3.58 0.271 0.510 31.14 5.70 0.714 0.534
Rectified Flow [22] ≥ 40 25.3 2.80 0.241 0.088 77.18 5.87 0.534 0.157

I2SB [21] ≥ 40 7.43 3.40 0.244 0.191 9.34 5.77 0.373 0.145
DDBM [18] 118 1.83 3.73 0.142 0.040 4.43 6.21 0.244 0.084
DBIM [42] 20 1.74 3.64 0.095 0.005 4.99 6.10 0.201 0.017

ECSI (γmax = 0.125)
5 0.89 4.10 0.049 0.024 12.97 5.49 0.269 0.074
10 0.67 4.11 0.045 0.024 10.12 5.56 0.255 0.076
20 0.56 4.11 0.044 0.024 8.62 5.62 0.248 0.078

ECSI (γmax = 0.25)
5 1.46 4.21 0.040 0.016 4.16 5.83 0.104 0.029
10 1.38 4.22 0.038 0.017 3.44 5.86 0.098 0.029
20 1.40 4.20 0.038 0.017 3.27 5.85 0.094 0.029

quality compared with simple Euler discretization and DDBM sampler. Furtheremore, By specifically
designing noise control during sampling, our sampler surpasses the sampling results by DDBM and
DBIM with the same pretrained model. The results are demonstrated in Table 2. We set the number
of function evaluations (NFEs) from the set [5, 10, 20].

Bridge paths. We introduced an extensive bridge design space and begin by focusing on linear
transition paths with different strength of maximum stochasticity, i.e., pt|0,T (xt|x0, xT ) = N (xt; (1−
t)x0+txT ,

1
4γ

2
maxt(1− t)I). We conducted detailed ablation studies on γmax and η for the Linear

path on DIODE (64× 64) dataset, as shown in Fig. 4 (b) and (c). The optimal values for γmax were
found to be 0.125 and 0.25, while the best performance for η was achieved with η = 0.8 and η = 1.0.
Performance deteriorates when either parameter is too small or too large. Based on the results of
these ablation studies, we further trained ECSI models on the Edges2handbags (64× 64) and DIODE
(256× 256) datasets by taking γmax ∈ {0.125, 0.5} and setting η = 1.0. The results are presented
in Table 3. Our models establish a new benchmark for image quality, as evaluated by FID, IS and
LPIPS. Despite our models having slightly higher MSEs compared to the baseline DDBM and DBIM,
we believe that a larger MSE indicates that the generated images are distinct from their references,
suggesting a richer diversity.

Modifying base distribution. Through controlling noise in the base distribution, we achieved a more
diverse set of sample images, while this diversity comes at the cost of slightly higher FID scores and
slower sampling speed. We show generated images in Fig. 5. More visualization can be found in
Appendix I, which shows that by introducing booting noise to the input data distribution, the model
can generate samples with more diverse colors and textures. Further quantitative results are presented
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Figure 5: Visualization of conditional diversity via sampled images in a one-to-many translation task.
While FID measures diversity within columns, AFD evaluates diversity across rows. The visualization
further proved the effectiveness of AFD. More sampled images can be found in Appendix I.

Table 4: Quantitative results for Different denoisers and samplers on Edges2handbags (64× 64). Our
baseline is achieved by DDBM pretrained checkpoint and DBIM sampler.

Method FID ↓ AFD ↑ VS ↑
NFE=5 NFE=10 NFE=20 NFE=5 NFE=10 NFE=20 NFE=5 NFE=10 NFE=20

DDBM (pre) + DBIM sampler 3.60 2.46 1.74 5.63 5.20 5.84 1.16 1.23 1.26

A: DDBM (pre) + ECSI sampler 2.36 2.25 1.53 5.11 5.70 6.04 1.15 1.20 1.23
B: ECSI (pre) + ECSI sampler 0.89 0.67 0.56 6.00 6.05 6.25 1.22 1.25 1.28

B + Modified base density 3.31 2.07 1.74 8.53 9.35 9.65 1.48 1.63 1.69

in Table 4, confirming that our model surpasses the vanilla DDBM in terms of image quality, sample
efficiency, and conditional diversity.

Deblurring on ImageNet Dataset. We evaluate our models for Gaussian deblurring applying a
Gaussian kernel with σ = 10 and Uniform deblurring, shown in Table 5. The results demonstrates
that our ECSI models achieve much lower FID score.

7 Related Work

Diffusion Bridge Models. Diffusion bridges are faster diffusion processes that could learn the
mapping between two random target distributions [39, 35], demonstrating significant potential in
various areas, such as protein docking [32], mean-field game [20], I2I translation [21, 18]. According
to different design philosophies, DBMs can be divided into two groups: bridge matching and
stochastic interpolants. The idea of bridge matching was first proposed by Peluchetti et al. [28],
and can be viewed as a generalization of score matching [34]. Based on this, diffusion Schrödinger
bridge matching (DSBM) has been developed for solving Schrödinger bridge problems [35, 39]. In
addition, Liu et al. [21] utilize bridge matching to perform image restoration tasks and noted benefits
of noise empirically, the experiments shows the new model is more efficient and interpretable than
score-based generative models [21]. Furthermore, our benchmark DDBM [18] achieve significant
improvement for various I2I translation tasks, DBIM [42] improved the sampling algorithm for
DDBM, significantly reducing sampling time while maintaining the same image quality.

Image-to-Image Translations. While diffusion models are strong at generating images, applying
them to image-to-image (I2I) translation is more difficult due to artifacts in the output. DiffI2I
improves quality and alignment with fewer diffusion steps [5]. In latent space, S2ST speeds up
translation and reduces memory use [27]. Other methods improve guidance using features like
frequency control [26, 15, 38]. A common challenge is that many models require joint training on
both source and target domains, raising privacy concerns. Injecting-Diffusion tackles this by isolating
shared content for unpaired translation [24]. SDDM improves interpretability by breaking down the
score function across diffusion steps [30].
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Table 5: Deblurring results with respect to different kernels, evaluated by FID on the 10k ImageNet
(256× 256) validation subset. Our results are achieved by 20 NFEs.

Kernel DDRM DDNM Pallette CDSB I2SB ECSI (ours)
Uniform 9.9 3.0 4.1 15.5 3.9 1.11
Gaussian 6.1 2.9 3.1 7.7 3.0 0.41

8 Conclusion

We introduced Endpoint-Conditioned Stochastic Interpolants (ECSI)—an improved version of
stochastic interpolants that adds endpoint conditioning, modifies the base distribution, and uses
discretization to explore the design space of Diffusion Bridge Models (DBMs). We highlighted a key
issue often overlooked: one-to-many image translation tasks lack conditional diversity. Our findings
show that resolving this requires adjusting the starting distribution, not the path or sampler. ECSI
sets new benchmarks in image quality, sampling efficiency, and conditional diversity on tasks like
64× 64 edges2handbags, 256× 256 DIODE-outdoor, and ImageNet deblurring.

Limitations. (i) We note that optimal path design may vary by task, leaving room for future
refinement. (ii) Incorporating guidance techniques may further enhance model performance.
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Table 6: Evaluation for generative models: ImageNet-1-mode, ImageNet-2-modes, ImageNet-5-
modes, and ImageNet-10-modes.

Model ImageNet-1-mode ImageNet-2-modes ImageNet-5-modes ImageNet-10-modes

FID 58.30 57.34 57.78 57.26
AFD 0 8.14 12.84 14.47

A AFD validation

In this section, we thoroughly validate the effectiveness of our proposed metric, AFD, for measuring
conditional diversity and demonstrate its role as a complementary metric to FID. In unconditional
generation scenarios, the FID is widely used to evaluate the diversity of generated images. While low
FID scores generally indicate high diversity across the entire dataset, they do not necessarily imply
high conditional diversity. For instance, we observed that samples generated by the DDBM model
often lack diversity when conditioned on edge images, despite achieving very low FID scores. To
address this limitation, we introduce the concept of conditional diversity and propose a corresponding
metric to quantify it.

The first question is why FID failed to measure the conditional diversity. To illustrate the limitations
of FID in capturing conditional diversity, consider an extreme case: if the images generated by a
generative model are identical to a set of baseline images, the FID score can be very low since the
two distributions are indistinguishable. However, this scenario does not reflect diversity within the
conditional outputs.

To further support our point, we designed two classes of pseudo-generative models capable of
controlling the diversity of the generated images, which are further validated by FID and AFD. The
experiments are evaluated on Imagenet dataset [9].

A.1 Pseudo-generative models by random selection

We designed four pseudo-generative models: ImageNet-1-mode, ImageNet-2-modes, ImageNet-5-
modes, and ImageNet-10-modes. The experimental setup is as follows:

• We selected 11,000 samples from the ImageNet validation dataset, randomly choosing 11
images per class.

• From these, we designated 1,000 images as the "real" set, while the remaining images served
as the source pool for the generative models.

• Each ImageNet-k-modes model simulates a generative process by randomly sampling
images from a pool of k distinct images within a given class.

We present sampled images in Fig. 6, where it is evident that the ImageNet-10-modes model generates
images with the highest conditional diversity. To quantify this, we conducted experiments to calculate
both FID and AFD for the four generative models. The results are summarized in Table 6. While the
FID scores are nearly identical across all models, the AFD values increase as the conditional diversity
of the generative models improves. This highlights that AFD is a more effective metric for capturing
conditional diversity than FID.

A.2 Pseudo-generative models by strong augmentation

Strong augmentation has been widely used in computer vision to generate synthetic data while
preserving its underlying semantics [7, 40, 31, 4]. The intensity of augmentation can be adjusted,
with higher intensities producing more diverse images. To further validate our proposed metric, AFD,
as a measure of diversity, we construct pseudo-generative models using strong augmentation.

We selected 1,000 images from the ImageNet-1k dataset, one from each category. These images were
subjected to data augmentation, specifically using ColorJitter, with varying magnitudes to enhance
diversity. For each image, the augmentation was applied 16 times, creating an augmented dataset for
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Figure 6: Sampled images from 4 generative models: ImageNet-1-mode, ImageNet-2-modes,
ImageNet-5-modes, ImageNet-10-modes.

each magnitude setting. We then calculated the AFD for these augmented datasets to evaluate the
relationship between dataset diversity (as influenced by augmentation magnitude) and the AFD value.

Table 7 summarizes the AFD results across various augmentation magnitude settings. The results
show that as diversity increases, AFD values also rise, further confirming that the proposed AFD
metric is a reliable indicator of image diversity.

B Relation to Stochastic Interpolants

Conditioned Stochastic Interpolants build a marginal probability path pt|y using a mixture of in-
terpolating densities: pt|y(x) =

∫
pt(xt | x0, x1)π(x0, x1 | y)dx0dx1, where π(x0, x1 | y) is a

joint distribution with marginals π0|y(x0 | y) and π1|y(x1 | y). For linear interpolants given by:
Xt = αtX0+βtX1+γtz. The conditional kernel pt(xt | x0, x1) is given by a Gaussian distribution:
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Table 7: AFD results across different augmentation magnitudes

Augmentation magnitude 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

AFD 2.16 3.77 5.13 6.16 6.98 7.63 8.22 9.01
FID 0.20 2.95 7.02 11.62 16.33 20.84 25.12 28.89

pt(xt | x0, x1) = N (αtx0 + βtx1, σ
2
t I),∀ t ∈ [0, 1]. Then we can sample from the conditional

distribution p0|y(x0 | y) by running a stochastic process pt|y(xt | y) from time t = 1 to t = 0, which
is given by the following SDE:

dx = b(t, x, y)dt+
√
2ϵtdWt, x1 ∼ p1|y, (15)

where the drift term b(t, x, y) is:

b(t, x, y) = α̇tE[x0 | x, y] + β̇tE[x1 | x, y] + (γ̇t +
ϵt
γt
)E[z | x, y] (16)

As y represents null conditioning, Eq. (15) recover the original sampler of Stochastic Interpolants. In
the drift term, E[x0 | x, y], E[x1 | x, y] and E[z | x, y] are unknown, but we only need to estimate
two of them, since

E[xt | xt, y] = αtE[x0 | xt, y] + βtE[x1 | xt, y] + γtE[z | xt, y] = xt

We can further reduce the number of unknown term by endpoint-conditioning. Here as we replace
condition y to be endpoint x1, the term E[x1 | x, x1] = x1. So we have:

b(t, x, y) = α̇tE[x0 | x, x1] + β̇tx1 + (γ̇t +
ϵt
γt
)E[z | x, x1] (17)

This is exactly the sampler for ECSI in Prop. 4.1. Therefore, both SI and ECSI can be seen as special
cases of Conditioned SI. A key advantage of ECSI is its efficiency: while SI need to estimate two
terms: E[x0 | xt] and E[x1 | xt], ECSI only estimates E[x0 | xt, y].

C Proofs

There are infinitely many pinned processes characterized by the Gaussian transition kernel pt|0,T (xt |
x0,xT ) = N (xt;αtx0 + βtxT , γ

2
t I). Specifically, we formalize the pinned process as a linear Itô

SDE, as presented in Lemma C.1.
Lemma C.1. There exist a linear Itô SDE

dXt = [ftXt + stxT ]dt+ gtdWt, X0 = x0, (18)

where ft = α̇t

αt
, st = β̇t − α̇t

αt
βt, gt =

√
2(γtγ̇t − α̇t

αt
γ2
t ), that has a Gaussian marginal

distribution N
(
xt;αtx0 + βtxT , γ

2
t I
)
.

Proof. Let mt denote the mean function of the given Itô SDE, then we have dmt

dt = ftmt + stxT .
Given the transition kernel, the mean function mt = αtx0 + βtxT , therefore,

α̇tx0 + β̇txT = ft(αtx0 + βtxT ) + stxT . (19)

Matching the above equation:

ft =
α̇t

αt
, st = β̇t − βt

α̇t

αt
. (20)

Further, For the variance γ2
t of the process, the dynamics are given by:
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dγ2
t

dt
= 2ftγ

2
t + g2t . (21)

Solving for g2t , we substitute ft =
α̇t

αt
:

g2t =
dγ2

t

dt
− 2

α̇t

αt
γ2
t (22)

Therefore,

gt =

√
2(γtγ̇t −

α̇t

αt
γ2
t ). (23)

Given the pinned process (18), we can sample from the conditional distribution p0|T (x0|xT ) by
solving the reverse SDE or ODE from t = T to t = 0:

dXt =
[
ftXt + stxT − g2t∇Xt

log pt(Xt|xT )
]
dt+ gtdWt, XT = xT , (24)

dXt =

[
ftXt + stxT − 1

2
g2t∇Xt

log pt(Xt|xT )

]
dt XT = xT , (25)

where the score ∇Xt
log pt(Xt|xT ) can be estimated by score matching objective (5).

For dynamics described by ODE dXt = utdt, we can identify the entire class of SDEs that maintain
the same marginal distributions, as detailed in Lemma C.2. This enables us to control the noise during
sampling by appropriately designing ϵt.
Lemma C.2. Consider a continuous dynamics given by ODE of the form: dXt = utdt, with
the density evolution pt(Xt). Then there exists forward SDEs and backward SDEs that match
the marginal distribution pt. The forward SDEs are given by: dXt = (ut + ϵt∇ log pt)dt +√
2ϵtdWt, ϵt > 0. The backward SDEs are given by: dXt = (ut − ϵt∇ log pt)dt+

√
2ϵtdWt, ϵt >

0.

Proof. For the forward SDEs, the Fokker-Planck equations are given by:

∂pt(Xt)

∂t
= −∇ · [(ut + ϵt∇ log pt) pt(Xt)] + ϵt∇2pt(Xt) (26)

= −∇ · [utpt(Xt)]−∇ · [ϵt(∇ log pt)pt(Xt)] + ϵt∇2pt(Xt) (27)

= −∇ · [utpt(Xt)]− ϵt∇ · [∇pt(Xt)] + ϵt∇2pt(Xt) (28)
= −∇ · [utpt(Xt)] . (29)

This is exactly the Fokker-Planck equation for the original deterministic ODE dXt = ut dt. Therefore,
the forward SDE maintains the same marginal distribution pt(Xt) as the original ODE.

Now consider the backward SDEs, the Fokker-Planck equations become:

∂pt(Xt)

∂t
= −∇ · [(ut − ϵt∇ log pt) pt(Xt)]− ϵt∇2pt(Xt) (30)

= −∇ · [utpt(Xt)] +∇ · [ϵt(∇ log pt)pt(Xt)]− ϵt∇2pt(Xt) (31)
= −∇ · [utpt(Xt)] . (32)

This is again the Fokker-Planck equation corresponding to the original deterministic ODE dXt =
ut dt. Therefore, the backward SDE also maintains the same marginal distribution pt(Xt).
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Lemma C.3. Let (x0,xT ) ∼ π0(x0,xT ), xt ∼ pt(x|x0,xT ), Given the transition kernel: p(xt |
x0,xT ) = N

(
xt;αtx0 + βtxT , γ

2
t I
)
, if x̂0(xt,xT , t) is a denoiser function that minimizes the

expected L2 denoising error for samples drawn from π0(x0,xT ):

x̂0(xt,xT , t) = arg min
D(xt,xT ,t)

Ex0,xT ,xt

[
λ(t)∥D(xt,xT , t)− x0∥22

]
, (33)

then the score has the following relationship with x̂0(xt,xT , t):

∇xt
log pt(xt|xT ) =

αtx̂0(xt,xT , t) + βtxT − xt

γ2
t

. (34)

Proof.

L(D) = E(x0,xT )∼π0(x0,xT )Ext∼pt(xt|x0,xT )∥D(xt)− x0∥22 (35)

=

∫
Rd

∫
Rd

∫
Rd

pt(xt|x0,xT )π0(x0,xT )∥D(xt)− x0∥22 dx0︸ ︷︷ ︸
=:L(D;xt,xT )

dxTdxt, (36)

L(D;xt,xT ) =

∫
Rd

pt(xt|x0,xT )π0(x0,xT )∥D(xt)− x0∥22 dx0, (37)

we can minimize L(D) by minimizing L(D;xt,xT )independently for each {xt,xT } pair.

D∗(xt,xT ) = arg min
D(xt)

L(D;xt,xT ) (38)

0 = ∇D(xt,xT )[L(D;xt,xT )] (39)

=

∫
Rd

pt(xt|x0,xT )π0(x0,xT )2[D(x,xT )− x0] dx0 (40)

= 2[D(xt,xT )

∫
Rd

pt(xt|x0,xT )π0(x0,xT ) dx0 −
∫
Rd

pt(xt|x0,xT )π0(x0,xT )x0 dx0] (41)

= 2[D(x)pt(xt,xT )−
∫
Rd

pt(xt|x0,xT )π0(x0,xT )x0 dx0], (42)

D∗(xt,xT ) =

∫
Rd

pt(xt|x0,xT )π0(x0,xT )x0

pt(xt,xT )
dx0, (43)

∇xt
log pt(xt|xT ) =

∇xt
pt(xt,xT )

pt(xt,xT )
(44)

=

∫
∇xt

pt(xt|xT ,x0)π0(x0,xT )dx0

pt(xt,xT )
(45)

= −
∫

xt − αtx0 − βtxT

γ2

pt(xt|x0,xT )π0(x0,xT )

pt(xt,xT )
dx0 (46)

=
αtD

∗(xt,xT ) + βtxT − xt

γ2
. (47)

Thus we conclude the proof.

Proof of Prop. 4.1.
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Table 8: Specify design choices for different model families. In the implementation, σt = t for
EDM, σt = t, at = 1 for DDBM-VE, σt =

√
e

1
2βdt2+βmint − 1 and at = 1/

√
e

1
2βdt2+βmint for

DDBM-VP, where βd and βmin are parameters. We include details and proofs in Appendix D.

I2SB DDBM DBIM EDM Ours

Transition kernel

αt 1− σ2
t /σ

2
T at(1−a2

Tσ
2
t /(σ

2
t a

2
t )) at(1−a2

Tσ
2
t /(σ

2
t a

2
t )) 1 1− t

βt σ2
t /σ

2
T aTσ

2
t /(σ

2
t at) aTσ

2
t /(σ

2
t at) 0 t

γ2
t σ2

t (1− σ2
t /σ

2
T ) σ2

t (1−a2
Tσ

2
t /(σ

2
t a

2
t ))σ

2
t (1−a2

Tσ
2
t /(σ

2
t a

2
t )) σ2

t
γ2
max
4

t(1− t)

Sampling SDEs ϵt
γ2
t−∆tβ

2
t −β2

t−∆tγ
2
t

2β2
t ∆t

η(γtγ̇t − α̇t
αt

γ2
t )

{
γ2
t−∆t

2∆t
, t = 0

0, t ̸= 0

β̄tσ
2
t η(γtγ̇t − α̇t

αt
γ2
t )

η = 0 or η = 1 - η ∈ [0, 1]

Base distributionπT πcond πcond πcond πcondπcond ∗ N (0, b2I)

Discretization -
Euler Euler Euler Heun Euler

Eq. (12) Eq. (13) Eq. (12) - Eqs. (13) and (12)

Proof. Recall Eqs. (24) (25) and Lemma C.2,

dXt =

[
α̇t

αt
xt + (β̇t −

α̇t

αt
βt)xT − (γtγ̇t −

α̇t

αt
γ2
t + ϵt)∇xt

log pt(xt|xT )

]
dt+

√
2ϵtdwt. (48)

Next we take the reparameterized score in Eq. (34) into Eq. (48):

dXt =

[
α̇t

αt
Xt + (β̇t −

α̇t

αt
βt)xT − (γtγ̇t −

α̇t

αt
γ2
t + ϵt)

αtx̂0 + βtxT −Xt

γ2
t

]
dt+

√
2ϵtdwt

(49)

=

[
α̇tx̂0 + β̇txT − (γtγ̇t + ϵt)

αtx̂0 + βtxT −Xt

γ2
t

]
dt+

√
2ϵtdwt (50)

=

[
α̇tx̂0 + β̇txT − (γ̇t +

ϵt
γt
)
αtx̂0 + βtxT −Xt

γt

]
dt+

√
2ϵtdwt (51)

=

[
α̇tx̂0 + β̇txT − (γ̇t +

ϵt
γt
)ẑ

]
dt+

√
2ϵtdwt. (52)

D Reframing previous methods in our framework

We draw a link between our framework and the diffusion bridge models used in DDBM.

D.1 DDBM-VE

DDBM-VE can be reformulated in our framework as we set :

αt = st(1−
σ2
t

σ2
T

), βt =
stσ

2
t

s1σ2
T

, γt = σtst

√
(1− σ2

t

σ2
T

) (53)

Proof. In the origin DDBM paper, the evolution of conditional probability q(xt|xT ) has a time
reversed SDE of the form:

dXt =
[
f̄t(Xt)− g2t h̄t(Xt)− g2t st(Xt)

]
dt+ gtdŴt, (54)
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and an associated probability flow ODE

dXt =

[
f̄t(Xt)− g2t h̄t(Xt)−

1

2
g2t st(Xt)

]
dt. (55)

Compare Eqs. (54) and 55 with Lemma C.1. We only need to prove:

f̄t(Xt)− g2t h̄t(Xt) = ftXt + stxT , gt = gt. (56)

In the original paper,

f̄t(Xt) = 0, g2t =
d

dt
σ2
t , h̄t(Xt) =

xT − xt

σ2
T − σ2

t

. (57)

Therefore,

f̄t(Xt)− g2t h̄t(Xt) =
2σtσ̇t(xT − xt)

σ2
T − σ2

t

, g2t = 2σ̇tσt. (58)

In our framework, ft, st, g2t can be calculated:

ft =
α̇t

αt
=

d

dt
logαt =

d

dt
log

σ2
T − σ2

t

σ2
T

=
−2σtσ̇t

σ2
T − σ2

t

, (59)

st = β̇t −
α̇t

αt
βt =

2σtσ̇t

σ2
T

+
2σtσ̇t

σ2
T − σ2

t

· σ
2
t

σ2
T

=
2σtσ̇t

σ2
T − σ2

t

. (60)

g2t = 2(γtγ̇t −
α̇t

αt
γ2
t ) = 2γ2

t

(
γ̇t
γt

− α̇t

αt

)
= γ2

t

(
(σ2

T − 2σ2
t )σ̇t

(σ2
T − σ2

t )σt
+

2σ̇tσt

σ2
T − σ2

t

)
= 2σtσ̇t. (61)

Therefore,

ftXt + stxT =
2σtσ̇t(xT − xt)

σ2
T − σ2

t

= f̄t(Xt)− g2t h̄t(Xt), gt = gt, (62)

which matches the formulation in DDBM.

D.2 DDBM-VP

DDBM-VP can be reformulated in our framework as we set :

αt = at(1−
σ2
t a

2
1

σ2
1a

2
t

), βt =
σ2
t a1

σ2
1at

, γt =

√
σ2
t (1−

σ2
t a

2
1

σ2
1a

2
t

). (63)

Proof. In the original DDBM-VP setting,

f̄t(Xt) =
d log at

dt
xt, (64)

g2t = 2σtσ̇t − 2
ȧt
at

σ2
t =

2σtσ̇tat − 2σ2
t ȧt

at
, (65)

h̄t(Xt) =
(at/a1)xT − xt

σ2
t (SNRt/SNR1 − 1)

=
a1atxT − a21xt

σ2
1a

2
t − σ2

t a
2
1

. (66)
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Therefore,

f̄t(Xt)− g2t h̄t(Xt) =

[
ȧt
at

− 2σta
2
1(σ̇tat − σtȧt)

at(σ2
1a

2
t − σ2

t a
2
1)

]
xt +

2σta1(σ̇tat − σtȧt)

σ2
1a

2
t − σ2

t a
2
1

xT . (67)

In our framework, ft, st, g2t can be calculated:

ft =
α̇t

αt
=

d

dt
logαt (68)

=
d

dt
log

σ2
1a

2
t − σ2

t a
2
1

σ2
1at

(69)

=
2σ2

1atȧt − 2a21σtσ̇t

σ2
1a

2
t − σ2

t a
2
1

− ȧt
at

(70)

=
ȧt
at

− 2a21σt(atσ̇t − ȧtσt)

at(σ2
1a

2
t − σ2

t a
2
1)

, (71)

st = β̇t −
α̇t

αt
βt = βt(

β̇t

βt
− α̇t

αt
) (72)

=
σ2
t a1

σ2
1at

(
2σ̇t

σt
− 2σ2

1atȧt − 2a21σtσ̇t

σ2
1a

2
t − σ2

t a
2
1

)
(73)

=
2σta1(σ̇tat − σtȧt)

σ2
1a

2
t − σ2

t a
2
1

, (74)

g2t = γtγ̇t −
α̇t

αt
γ2
t = γ2

t

(
γ̇t
γt

− α̇t

αt

)
(75)

= γ2 d

dt
log

γt
αt

(76)

= γ2 d

dt
(
1

2
log

σ2
t σ

2
1

σ2
1a

2
t − σ2

t a
2
1

) (77)

= σ2
t

(
1− σ2

t a
2
1

σ2
1a

2
t

)(
σ̇t

σt
− σ2

1atȧt − a21σtσ̇t

σ2
1a

2
t − σ2

t a
2
1

)
(78)

=
σ̇tσtat − σ2

t ȧt
at

. (79)

Therefore,

ftXt + stxT == f̄t(Xt)− g2t h̄t(Xt), gt = gt, (80)

which matches the formulation in DDBM.

D.3 EDM

ODE formulation. The ODE formulation in EDM can be formlated in our framework as we set
αt = 1, βt = 0, γt = σt.

Proof. Recall 25, the ODE formulation is given by:

dXt =

[
ftXt + stxT − 1

2
g2t∇Xt log pt(Xt|xT )

]
dt XT = xT (81)
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where ft = α̇t

αt
, st = β̇t − α̇t

αt
βt, gt =

√
2(γtγ̇t − α̇t

αt
γ2
t ). As αt = 1, βt = 0, γt = σt, The

sampling ODE is given by:

dXt = −σtσ̇t∇xt log pt(Xt)dt (82)

Sampling SDEs with noise added. Recall Proposition 4.1, as αt = 1, βt = 0, γt = σt, then the
SDE has the form:

dXt = (−σtσ̇t + ϵt)∇xt
log pt(Xt)dt+

√
2ϵtdWt. (83)

Now we recover the stochastic sampling SDE in original EDM paper.

D.4 I2SB

I2SB can be reformulated in our framework as we let:

αt = 1− σ2
t

σ2
1

, βt =
σ2
t

σ2
1

, γt =

√
σ2
t (1−

σ2
t

σ2
1

) (84)

where σ2
t :=

∫ t

0
βτdτ .

When 2ϵt∆t = γ2
t−∆t − β2

t−∆tγ
2
t /β

2
t , the coefficient of xT in Eq. (12) vanishes. Thus, Eq. (12) can

be simplified as:

xt−∆t = (αt−∆t − αt
βt−∆t

βt
)x̂0 +

βt−∆t

βt
xt +

√
γ2
t−∆t −

β2
t−∆tγ

2
t

β2
t

z̄t (85)

Using discretization in Eq. (85):

xt−∆t = (αt−∆t − αt
βt−∆t

βt
)x̂0 +

βt−∆t

βt
xt +

√
γ2
t−∆t −

β2
t−∆tγ

2
t

β2
t

z̄t (86)

= (1− βt−∆t

βt
)x̂0 +

βt−∆t

βt
xt +

√
γ2
t−∆t −

β2
t−∆tγ

2
t

β2
t

z̄t (87)

= (1−
σ2
t−∆t

σ2
t

)x̂0 +
σ2
t−∆t

σ2
t

xt +

√√√√√σ2
t−∆t(1−

σ2
t−∆t

σ2
1

)
σ4
t

σ4
1
− σ4

t−∆t

σ4
1

σ2
t (1−

σ2
t

σ2
1
)

σ4
t

σ4
1

z̄t (88)

= (1−
σ2
t−∆t

σ2
t

)x̂0 +
σ2
t−∆t

σ2
t

xt +

√
σ2
t−∆t(σ

2
t − σ2

t−∆t)

σ2
t

z̄t (89)

In the I2SB paper, define a2n :=
∫ tn+1

tn
βτdτ , σ2

n :=
∫ tn
0

βτdτ . Therefore,

xn =
a2n

a2n + σ2
n

x̂0 +
σ2
n

a2n + σ2
n

xn+1 +

√
σ2
na

2
n

α2
n + σ2

n

z̄t (90)

Thus, we reproduce the sampler of I2SB.
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Figure 7: Ablation study on the shape of γt.

Figure 8: Sampling paths with dfferent choices of γt. As γt extreamly low, e.g, γmax = 0.025, the
model will be failed to construct details of images.

E Additional design guideline

αt and βt. Theoretically, αt and βt can be freely designed, and future work may explore alternative
design choices. However, in this paper, we focus on the simple case where αt = 1−t and βt = t. The
rationale is as follows: consider the scenario where αt = 1− βt, which represents an interpolation
along the line segment between x0 and x1. For the path p

(1)
t (x) = N ((1−βt)x0+βtx1, γ

2
t I), where

βt is invertible, it is straightforward to construct another path p
(2)
t (x) = N ((1− t)x0 + tx1, γ

2
β−1
t

I),
which achieves the same objective function but uses a different distribution of t during training. Based
on this equivalence, setting αt = 1− t and βt = t is a reasonable choice.

The shape of γt. We conducted an ablation study on γt with different shapes. Specifically, we
assumed γt has the form γt = 2γmax

√
tk(1− tk), as shown in Fig. 7, γt will have different shape as

we set different k. The results indicate that the best performance is achieved when k = 1, which is
the exact setting used in this paper.

γmax. Our ablation studies on γmax demonstrate that the optimal values of γmax are approximately
0.125 or 0.25. Furthermore, the sampling paths corresponding to different choices of γt are shown
in Fig. 8. Adding an appropriate amount of noise to the transition kernel helps in constructing finer
details.

ϵt. We use the setting ϵt = η
(
γtγ̇t − α̇t

αt
γ2
t

)
. The ablation studies on ϵt demonstrate that the optimal

choice of η for the DDBM-VP model is approximately 0.3, while the best choice for the ECSI model
with a Linear Path is around 1.0. Additionally, we present sample paths and generated images under
different η settings to illustrate heuristic parameter tuning techniques. The results are shown in
Figures 10, 11, and 12. Too small a value of η results in the loss of high-frequency information, while
too large a value of η produces over-sharpened and potentially noisy sampled images.
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Figure 9: An illustration of design choices of transition kernels and how they affect the I2I translation
process. αt and βt define the interpolation between two images, while γt controls the noise added to
the process. ntuitively, the DDBM-VE model introduces excessive noise in the middle stages, which
is unnecessary for effective image translation and may explain its poor performance. In contrast,
our Linear path results in a symmetrical noise schedule, ensuring a more balanced process. On the
other hand, the DDBM-VP path adds more noise near xT , , indicating that during training, more
computational resources are focused around x0.

Figure 10: Sampling path with dfferent choices of ϵt. As ϵt = 0, the generated images lack details,
as ϵt too large, the sampled images are over-sharpening. The best choices of ϵt are around ϵt = 0.8
and ϵt = 1.0.
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Figure 11: Comparison of sampled images with different ϵt for ECSI model, where ϵt = η(γtγ̇t −
α̇t

αt
γ2
t ), γmax = 0.25, b = 0.

F Impact Statement

Our method can improve image translation and solving inverse problem, which may benefit ap-
plications in medical imaging. However, it is important to note that as with many generative and
restoration models, our method could be misused for malicious image manipulation.
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Figure 12: Comparison of sampled images with different ϵt for DDBM-VP pretrained model, where
ϵt = η(γtγ̇t − α̇t

αt
γ2
t ).

G Experiment Details

Architecture. We maintain the architecture and parameter settings consistent with [18], utilizing
the ADM model [10] for 64 × 64 resolution, modifying the channel dimensions from 192 to 256
and reducing the number of residual blocks from three to two. Apart from these changes, all other
settings remain identical to those used for 64× 64 resolution.

Training. We include additional pre- and post-processing steps: scaling functions and loss weighting,
the same ingredient as [17]. Let Dθ(xt,xT , t) = cskip(t)xt + cout(t)(t)Fθ(cin(t)xt, cnoise(t)),

25



where Fθ is a neural network with parameter θ, the effective training target with respect to the raw
network Fθ is: Ext,x0,xT ,t

[
λ∥cskip(xt + coutFθ(cinxt, cnoise)− x0∥2

]
. Scaling scheme are chosen

by requiring network inputs and training targets to have unit variance (cin, cout), and amplifying
errors in Fθ as little as possible. Following reasoning in [18],

cin(t) =
1√

α2
tσ

2
0 + β2

t σ
2
T + 2αtβtσ0T + γ2

t

, cskip(t) = (αtσ
2
0 + βtσ0T ) ∗ c2in, (91)

cout(t) =
√
β2
t σ

2
0σ

2
1 − β2

t σ
2
0T + γ2

t σ
2
0cin, λ =

1

c2out
, cnoise(t) =

1

4
log (t), (92)

where σ2
0 , σ

2
T , and σ0T denote the variance of x0, variance of xT and the covariance of the two,

respectively.

We note that TrigFlow [23], adopts the same score reparameterization and pre-conditioning techniques.
It can be considered a special case of our framework by setting αt = cos(t), βt = 0, γt = σ0 sin(t),
t ∈ [0, π

2 ]. In this case, σT = 0, σ0T = 0,

cin(t) =
1√

α2
tσ

2
0 + γ2

t

=
1√

sin2(t)σ2
0 + cos2(t)σ2

0

=
1

σ0
, (93)

cskip(t) = (αtσ
2
0)c

2
in = cos(t) · σ2

0 ·
1

σ2
0

= cos(t), (94)

cout(t) =
√

γ2
t σ

2
0 · cin = sin(t)σ0, (95)

Dθ(xt, t) = cskipxt + coutFθ(cinxt, cnoise) = cos(t)xt + sin(t)σ0Fθ(
1

σ0
, cnoise). (96)

Then we recover TrigFlow.

In our implementation, we set σ0 = σT = 0.5, σ0T = σ2
0/2 for all training sessions. Other setting

are shown in Table 9.

Table 9: Training settings

Model
Dataset edges→handbags edges→handbags edges→handbags

η 0 0 0.5
γmax 0.125 0.25 0.125

Setting

GPU 1 A6000 48G 1 H100 96G 1 H100 96G
Batch size 32 128 200

Learning rate 1× 10−5 5× 10−5 1× 10−4

epochs 2078 2106 1443
Training time 42 days 8 days 11 days

Model
Dataset DIODE (256× 256) DOIDE (256× 256)

η 0 0
γmax 0.125 0.25

Setting

GPU 1 H100 96G 1 H100 96G
Batch size 16 16

Learning rate 2× 10−5 2× 10−5

epochs 2617 1745
Training time 17 days 25 days

Sampling. We use the same timesteps distributed according to EDM [17]: (t1/ρmax+
i
N (t

1/ρ
min−t

1/ρ
max))ρ,

where tmin = 0.001 and tmax = 1 − 10−4. The best performance achieved by setting ρ = 0.6 for
Edges2handbags and ρ = 0.8 for DIODE datasets.
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H Licenses

• Edges→Handbags [16]: BSD license.
• DIODE-Outdoor [37]: MIT license.

Figure 13: ECSI model and sampler ( γmax = 0.125, η = 1, b = 0, NFE=5, FID=0.89).
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I Additional visualizations

Figure 14: DDBM model and Our sampler (NFE=20, FID=1.53).
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Figure 15: DDBM model and ECSI sampler (η = 0.3, NFE=20, FID=4.12). Samples for DIODE
dataset (conditoned on depth images).
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Figure 16: ECSI model and sampler (γmax = 0.25, η = 1.0, b = 0, NFE=5, FID = 4.16).
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Figure 17: ECSI model and sampler (γmax = 0.25, η = 1.0, b = 0, NFE=20, FID = 3.27).
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Figure 18: DDBM model and DBIM sampler (NFE=10, FID = 2.46, AFD=5.20).
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Figure 19: DDBM model and sampler (NFE=118, FID = 1.83, AFD=6.99).
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Figure 20: ECSI model and sampler (γmax = 0.125, b = 1.0, NFE=10, FID = 2.07, AFD=9.35).
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Figure 21: DDBM model and ECSI sampler on 446 test images. (NFE=20, FID = 52.01, AFD=5.60).
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Figure 22: ECSI model and sampler on 446 test images. (γmax = 0.125, b = 0.5, NFE=20, FID =
55.93, AFD=7.39).
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We ensure that the abstract and introduction clearly summarize the proposed
method.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discuss the limitations in the Conclusion in Sec. 8. For example, we
acknowledge that the optimal paths may vary from one scenario to another, indicating a rich
avenue for further exploration and refinement in future work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We include proofs in App. C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We include detailed experiment information in Sec. 6 and App. G.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We include anonymous code access in the Abstract.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We include experiments in Sec. 6 and additional experiment details in App. G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Not include in the current version. We acknowledge that formal error bars or
statistical tests (e.g., t-tests) are not included in the current draft.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We include sufficient information on the computer resources in App. G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have carefully reviewed the NeurIPS Code of Ethics and confirm that our
research adheres to all its principles.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss both the potential positive and negative societal impacts in App. F.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We use standard, publicly available datasets (e.g., Edges2handbags, DIODE,
Imagenet), and the risk of misuse is minimal. As such, no specific safeguards were deemed
necessary.
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Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We include Licenses section in App. H.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We introduce new code for our proposed method. We include access of an
anonymous repository in the Abstract.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

42

paperswithcode.com/datasets


Answer: [NA]
Justification: Our work does not involve any human subjects, user studies, or crowdsourcing
experiments. All experiments are conducted using synthetic or publicly available datasets
without human participation.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our research does not involve human subjects, user studies, or crowdsourced
participation. Therefore, no risks were incurred, and IRB approval was not required.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Large language models (LLMs) were not used in any way that affects the core
methodology, experiments, or results presented in this paper. Any assistance from tools
such as ChatGPT was limited to minor writing edits or formatting suggestions, which do
not influence the scientific contributions or conclusions of the work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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