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ABSTRACT

Unsupervised constituency parsers organize phrases within a sentence into a tree-
shaped syntactic constituent structure that reflects the organization of sentence se-
mantics. However, the traditional objective of maximizing sentence log-likelihood
(LL) does not explicitly account for the close relationship between the constituent
structure and the semantics, resulting in a weak correlation between LL values
and parsing accuracy. In this paper, we introduce a novel objective for training
unsupervised parsers: maximizing the information between constituent structures
and sentence semantics (SemInfo). We introduce a bag-of-substrings model to
represent the semantics and apply the probability-weighted information metric
to estimate the SemInfo. Additionally, we develop a Tree Conditional Random
Field (TreeCRF)-based model to apply the SemInfo maximization objective to
Probabilistic Context-Free Grammar (PCFG) induction, the state-of-the-art non-
ensemble method for unsupervised constituency parsing. Experiments demon-
strate that SemInfo correlates more strongly with parsing accuracy than LL. Our
algorithm significantly enhances parsing accuracy by an average of 7.85 points
across five PCFG variants and in four languages, achieving state-of-the-art level
results in three of the four languages.

1 INTRODUCTION

Unsupervised constituency parsing is a syntactic task of organizing phrases of a sentence into a tree-
shaped and unlabelled constituent structure without relying on any linguistic annotations (Klein &
Manning, 2002). The constituent structure is a fundamental tool in analyzing sentence semantics
(i.e., the meaning) (Carnie, 2007; Steedman, 2000) and can significantly improve performance for
downstream Natural Language Processing systems, such as natural language inference (He et al.,
2020), machine translation (Xie & Xing, 2017) and semantic role labeling (Chen et al., 2022). Each
constituent in the structure corresponds to a meaningful substring in the sentence, which guides
us to progressively construct the sentence semantics. Figure 1 illustrates the progressive semantic
construction of the sentence “John has been working on a theory until late night”. This example
demonstrates that constituent substrings in the sentence carry significant semantic information, il-
lustrating an alignment between syntax and semantics.

Maximizing sentence log-likelihood has traditionally been the primary training objective for unsu-
pervised constituency parsers (Eisner, 2016; Kim et al., 2019a). However, Log-Likelihood (LL),
the objective function, does not explicitly factor in the syntax-semantics alignment. This leads to
a poor correlation between the LL value and the parsing accuracy, which we will discuss further
in Section 5.3. As pointed out in previous research, training a Probabilistic Context-Free Grammar
(PCFG) parser that outperforms trivial baselines with the LL maximization objective is challeng-
ing (Carroll & Charniak, 1992; Kim et al., 2019a). Successful training commonly involves altering
the LL maximization objective, such as imposing sparsity constraints (Cohen et al., 2008; Johnson
et al., 2007) or heuristically estimating the LL value (Spitkovsky et al., 2010). Evidence suggests
that the LL function might not provide robust information to distinguish between constituents and
non-constituents, rendering LL an insufficient objective function for unsupervised parsing.

In this paper, we propose a novel objective for unsupervised constituency parsing: maximizing the
semantic information that constituent structures carry. We propose a novel method for measur-
ing SemInfo, the information between constituent structures and sentence semantics. Specifically,
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John has been working on a theory until late night

John has been working on a theory until late night

has been working on a theory

has been working on a theory

a theory

until late night

until late night

(a theory)

Oh, we have
a theory

Oh, someone is
working on it

Oh, he is working
until late night

Oh, the man
is John

(has been working
on (a theory))

((has been working on (a
theory)) (until late night)

(John (has been working on
(a theory)) (until late night))

Sentence: 
John has been working on a theory until late night
Constituent tree in bracket form:
(John (has been working on (a theory)) (until late
night))

Figure 1: An illustration of the progressive semantics build-up in accordance with the constituent
structure. The tree structure in the top-right shows the simplified constituent structure for illustration
purposes. Constituent strings are highlighted in blue.

we introduce a bag-of-substrings model to represent the sentence semantics and quantify semantic
information encoded in each substring using the probability-weighted information metric devel-
oped for bag-of-words models (Aizawa, 2003). We calculate the SemInfo value by aggregating the
substring-semantic information associated with the constituent structure. Experiments show a much
stronger correlation between SemInfo and the parsing accuracy than the correlation between LL and
the parsing accuracy, suggesting that SemInfo is an effective objective function for unsupervised
constituency parsing. In addition, we develop a Tree Conditional Random Field (TreeCRF)-based
model to apply the SemInfo maximization objective to PCFG induction, the state-of-the-art non-
ensemble method for unsupervised constituency parsing. Experiments demonstrate that the Sem-
Info maximization objective improves the PCFG’s parsing accuracy by 7.85 points across five latest
PCFG variants and in four languages.

Our main contributions are: (1) Proposing a novel method for estimating SemInfo, the information
between constituent structures and sentence semantics. (2) Demonstrating a strong correlation be-
tween SemInfo values and parsing accuracy. (3) Developing a TreeCRF model to apply the SemInfo
maximization objective to PCFG induction, significantly improving parsing accuracy and achieving
state-of-the-art level results as a non-ensemble model.

2 BACKGROUND

The idea that constituent structures reflect the organization of sentence semantics is central to mod-
ern linguistic studies (Steedman, 2000; Pollard & Sag, 1987). A constituent is a substring s in a
sentence x that can function independently (Carnie, 2007) and carries individual meaning (Heim &
Kratzer, 1998). A collection of constituents forms a tree-shaped structure t, which we can represent
as a collection of its constituent strings t = {s1, s2, ...}. For example, the constituent structure in
the top right of Figure 1 can be represented as {“a theory”, “until late night”,...}. Previous research
evaluate unsupervised constituency parsers using corpus-level sentence-F1 scores SF1c (the average
of instance-level sentence-F1 scores SF1i across the corpus) (Shen et al., 2017) . The SF1i score is
computed as the F1 score of two string collections, one representing the predicted structure and the
other representing the gold structure.

In this paper, we will utilize the Probability-Weighted Information (PWI) (Aizawa, 2003) developed
for Bag-of-Words (BoW) models to measure SemInfo in our bag-of-substrings model. PWI provides
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an information-theoretic interpretation of the term frequency-inverse document frequency (tf-idf)
statistics calculated in BoW models. Let D denote a document corpus, di the i-th document in the
corpus, and wij the j-th word in di. The BoW model represents the document di as an unordered
collection of words occurring in the document (i.e., di = {wi1, wi2, ...}). Tf-idf, as shown in
Equation 1, is the product of the term frequency F (wij , di) (i.e. the frequency of wij occurring in di)
and the inverse document frequency (i.e. the inverse log-frequency of documents containing wij).
Tf-idf is an important feature in finding keywords in documents (Li et al., 2007) or in efficiently
locating documents based on the given keyword (Mishra & Vishwakarma, 2015). PWI interprets
the term frequency as the word generation probability and the inverse document frequency as the
piecewise word-document information (Equation 2). Intuitively, a word with a high tf-idf value
suggests that it carries a significant amount of information about the document (i.e., a keyword
of the document). Aizawa (2003) further interpret scaling or smoothing of the term frequency as
variations in estimating P (wij |di).

tf-idf(wij , di) = F (wij , di)︸ ︷︷ ︸
term frequency

× log
|D|

|d′ : d′ ∈ D ∧ wij ∈ d′|︸ ︷︷ ︸
inverse document frequency

(1)

≈ P (wij |di)︸ ︷︷ ︸
word generation probability

× log
P (di|wij)

P (di)︸ ︷︷ ︸
piecewise word-document information

(2)

= PWI(wij , di)

Our method is developed upon the finding of Chen et al. (2024): constituent structures can be pre-
dicted by searching frequet substrings among semantically similar paraphrases. We extend their
finidngs, interpreting the substring frequency statistic as a term in the substring-semantics infor-
mation metric and apply the information metric to improve PCFG induction. As we will see in
Section 5.2, our method significantly outperforms theirs in three out of the four languages tested.

PCFG induction is currently the state-of-the-art non-ensemble method for training unsupervised
constituency parsers (Liu et al., 2023; Yang et al., 2021a). This method trains a binary PCFG parser
over a text corpus by maximizing the average LL of the corpus. A PCFG is a generative model
defined by a tuple (NT, T,R, S, π), where NT is the set of non-terminal symbols, T is the set of
terminal symbols, R is the set of production rules, S is the start symbol, and π is the probability
distribution over the rules. The generation process starts with the start symbol S and iteratively
applies non-terminal expansion rules (A → BC : A,B,C ∈ NT ) or terminal rewriting rules
(A → w : A ∈ NT,w ∈ T ) until it produces a complete sentence x. We can represent the
generation process with a tree-shaped structure t. The PCFG assigns a probability for each distinct
way of generating x, defining a distribution P (x, t). The Inside-Outside algorithm (Baker, 1979)
provides an efficient solution for computing the total sentence probability P (x) =

∑
t P (x, t). The

algorithm constructs a β(s,A) table that records the total probability of generating a substring s
of x from the non-terminal A. The sentence probability can be calculated as P (x) = β(x, S),
the probability of x being generated from the start symbol S. The β(x, S) quantity is commonly
referred to as Z(X) (Eisner, 2016). Besides the total sentence probability, the β table can also be
used to calculate the span-posterior probability of s being a constituent (Eisner, 2016) (Equation 3).1

P (s is a constituent|x) =
∑

A∈NT

∂ logZ(x)

∂ log β(s,A)
(3)

Span-based TreeCRF models are widely adopted in constituency parsers (Kim et al., 2019b; Stern
et al., 2017) to model the parser distribution P (t|x), the probability of constituent structure t given x.
The span-based TreeCRF model determines the probability of t by evaluating whether all substrings
involved in the structure are constituents. The TreeCRF model will assign a high score to a substring
s in its potential function ϕ(s, x) if s is likely a constituent. Subsequently, the TreeCRF model can
represent the parser distribution as P (t|x) ∝

∏
s∈t ϕ(s, x). Using the TreeCRF framework, we can

interpret the Tree Minimum Bayesian Risk (TreeMBR) decoding of PCFG (Yang et al., 2021b) as a
Viterbi decoding of a TreeCRF model. In this interpretation, the TreeCRF model uses the substring’s
span-posterior probability as its potential value (i.e., ϕ(s, x) = exp(P (s is a constituent|x))). Intu-
itively, the more likely a substring is a constituent, the more likely the TreeCRF model will generate

1We explain the derivation in more detail in Section A.1.
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Figure 2: Bag-of-Substrings model derived
from a paraphrasing model

John has been
working on a theory

John is working on a
theory

John was working on
a theory

Pa
ra

ph
ra

si
ng

Naive/Maximal
Substring Frequency

working on a theory: 2/2

working on: 2/0

on a: 2/0

Figure 3: An example for naive substring fre-
quency among paraphrases failing to estimate
P (s|Sem(x)).

a structure including the substring as a constituent. Consequently, the parser distribution derived
from the TreeMBR decoding algorithm is defined as follows.

P (t|x) ∝ exp(
∑
s∈t

∑
A∈NT

∂ logZ(x)

∂ log β(s,A)
) (4)

3 SEMINFO: A METRIC OF INFORMATION BETWEEN CONSTITUENT
STRUCTURES AND SEMANTICS

In this section, we introduce our estimation method of SemInfo, the information between constituent
structures and sentence semantics. We first introduce a bag-of-substrings model, representing the
semantics of a sentence by examining whether substrings of the sentence would be regenerated
during a paraphrasing process. We assume the paraphrasing process is fully capable of generating
natural language paraphrases (i.e., the parapharases should both be acceptable as natural language
sentences and have similar semantics with the original sentence). We use instruction-following large
langauge models (LLMs) for the paraphrasing model, utilizing the their multi-lingual capability to
enable multi-lingual parsing in the supported languages. We then apply the PWI (Aizawa, 2003)
metric to measure the substring-semantics information. For a given constituent structure, we es-
timate its SemInfo value by aggregating the substring-semantics information associated with the
structure.

Our bag-of-substrings model is based on the paraphrasing model P (xp|Sem(x)) shown in Fig-
ure 2. The paraphrasing model takes a source sentence x as input, internally analyzes its semantics
Sem(x), and generates a paraphrase xp. We can repeatedly sample from the process, collecting
a paraphrase set Xp = {xp

1, x
p
2, ...}. To estimate the semantic information for substrings of x, we

examine how often these substrings are regenerated by the paraphrasing model. Specifically, if a
substring s from x is regenerated in any paraphrase xp

i , we consider s to be generated by Sem(x).
We then define a bag-of-substrings representation of Sem(x) by aggregating the regeneration ob-
servations across Xp.

We apply the PWI metric to quantify the substring-semantics information I(s, Sem(x)) between
s and Sem(x), leveraging the similarity between our bag-of-substrings model and the traditional
bag-of-words model. To facilitate the PWI calculation (Equation 5), we define two components:
P (s|Sem(x)), the substring generation probability, and log P (Sem(x)|s)

P (Sem(x)) , the piecewise mutual in-
formation between s and Sem(x). Following standard practices in bag-of-words models (Aizawa,
2003; Blei et al., 2003), we assume that sentences in the corpus D are equally likely and each rep-
resents distinct semantics. The two assumptions yield an empirical distribution P (Sem(x)) = 1

D ,
where |D| is the size of the corpus.

I(s, Sem(x)) =
1

|D|
P (s|Sem(x)) log

P (Sem(x)|s)
P (Sem(x))

(5)

3.1 DEFINING P (s|Sem(x)) AND log P (Sem(x)|s)
P (Sem(x)) WITH MAXIMAL SUBSTRING FREQUENCY

Frequency is a simple but effective empirical estimator of distributions. However, naively measuring
substring frequency among paraphrases Xp will yield a misleading estimate of P (s|Sem(x)), the

4
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probability of s being generated to carry information of Sem(x). The reason is that one substring
can be nested in another substring. If a substring s is generated to convey semantic information,
we will observe an occurrence of s along with an occurrence of all its substrings. Hence, the naive
substring frequency will wrongly count substring occurrences caused by the generation of larger
substrings as occurrences caused by P (s|Sem(x)). Let’s consider the example illustrated in Fig-
ure 3. All three substrings in the example have a frequency of 2, yet only the first substring carries
significant semantic information. This is because the occurrence of the first substring causes the
occurrence of the second and third substrings. The true frequency of the second and third substrings
should be 0 instead of 2.

We introduce the notion of maximal substring to counter this problem. Given a source sentence x
and a paraphrase xp

i , the maximal substring between the two is defined in Equation 6. Intuitively,
a maximal substring is the largest substring that occurs in both x and xp

i . Formally, we denote
the partial order relationship of string α being a substring in string β by α ≤ β, and denote the
set of maximal substrings by MS(x, xp

i ). Using maximal substrings, we can avoid over-counting
substring occurrences caused by the generation of larger substrings.

MS(x, xp
i ) := {α : α ≤ x ∧ α ≤ xp

i ∧ ∀α′(α < α′ =⇒ ¬α′ ≤ x ∨ ¬α′ ≤ xp
i )} (6)

We are now ready to define P (s|Sem(x)) using the paraphrasing distribution P (xp|Sem(x)) and
the notion of maximal substrings. We define P (s|Sem(x)) to be proportional to s’s probability of
being generated as a maximal substring in paraphrases (Eqaution 7). The probability can then be
approximated using the maximal substring frequency F (s,Xp), as shown in Equation 8.

P (s|Sem(x)) ∝ E
x
p
i ∼P (xp|Sem(x))

1(s ∈ MS(xp
i , x)) (7)

≈ 1

C
F (s,Xp) (8)

Similarly, we define the inverse document frequency for maximal substrings (Equation 9). The
inverse document frequency can serve as an estimate of the piecewise substring-semantics informa-
tion, quantifying how useful a substring is to convey semantic information. A high inverse document
frequency implies that we can easily identify the target semantics Sem(x) in a corpus with the max-
imal substring (i.e., the substring carries high information about Sem(x)).

log
P (Sem(x)|s)
P (Sem(x))

≈ log
|D|

|{x′ : x′ ∈ D ∧ s ∈ MS(x, x′)}| (9)

3.2 SEMINFO METRIC

A constituent structure t can be represented as a set of constituent substrings. We define SemInfo,
the information between the structure t and the semantics Sem(x), as the cumulative substring-
semantics information associated with the structure (Equation 10). We estimate the substring-
semantics information with the maximal substring frequency-inverse document frequency developed
in the above sections.

I(t, Sem(x)) =
∑
s∈t

I(s, Sem(x)) (10)

∝
∑
s∈t

F (s,Xp) log
|D|

|{x′ : x′ ∈ D ∧ s ∈ MS(x, x′)}|︸ ︷︷ ︸
maximal substring frequency-inverse document frequency

(11)

4 SEMINFO MAXIMIZATION VIA TREECRF MODEL

We apply the SemInfo maximization objective to PCFG induction models by maximizing Equa-
tion 12 and using the pipeline shown in Figure 4. We consider the PCFG parser a one-step reinforce-
ment learning policy P (t|x) and consider the SemInfo value I(t, Sem(x)) the reward function. As
shown in Figure 4, we first compute the log(Z(x)) by applying the inside-algorithm on the PCFG
model. Then, we perform back-propagation, calculating the parser distribution P (t|x) in accor-
dance with Equation 3 and Equation 4. We choose the TreeCRF model because we can efficiently
sample from the tree distribution and calculate the entropy. We apply the REINFORCE algorithm
with average baseline (Williams, 1992) and maximum entropy regularization (Ziebart et al., 2008)
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REINFORCE term

Sentence 

PCFG Model

LL term

Constituent
Tree

TreeCRF

Compute 

Figure 4: Pipeline of our SemInfo maximization training

to maximize the expected SemInfo. We also include the traditional LL term logZ(x) in Equation 12
because we found the inclusion significantly stabilizes the training process. The stabilization might
be related to the correlation between LL values and parsing accuracy at the early training stage, as
we will discuss in Section 5.3.2.

J (D) = E
x∼D

[logZ(x) + E
t∼P (t|x)

[ logP (t|x)(I(t, Sem(x))−

E
t∼P (t|x)

I(t, Sem(x)) + βH(P (t|x)))]] (12)

5 EXPERIMENT

5.1 EXPERIMENT SETUP

We evaluate the effect of the SemInfo maximization objective on five latest PCFG variants: Neural-
PCFG (NPCFG), Compound-PCFG (CPCFG) (Kim et al., 2019a), TNPCFG (Yang et al., 2021b),
Simple-NPCFG (SNPCFG), and Simple-CPCFG (SCPCFG) (Liu et al., 2023).2 SNPCFG and
SCPCFG represent the current state-of-the-art for non-ensemble unsupervised constituency pars-
ing. We use 60 NTs for NPCFG and CPCFG, and 1024 NTs for TNPCFG, SNPCFG, and SCPCFG
in our experiment. We conduct the evaluations in three datasets and four languages, namely Penn
TreeBank (PTB) (Marcus et al., 1999) for English, Chinese Treebank 5.1 (CTB) (Palmer et al., 2005)
for the Chinese, and SPMRL (Seddah et al., 2013) for the German and French. We adopt the stan-
dard data split for the PTB dataset, using Sections 02-21 for training, Section 22 for validation, and
Section 23 for testing (Kim et al., 2019a). We adopt the official data split for the CTB and SPMRL
datasets.

Following Shen et al. (2017), we train the PCFG induction model on raw text and evaluate its parsing
performance using the SF1c scores. When aggregating for the SF1c score, we include only sentences
longer than two words and drop punctuation and trivial spans (i.e., sentence-level spans and spans
with only one word). We also use the SF1i score to evaluate the correlation between the SemInfo
value and parsing accuracy.

Following Chen et al. (2024), we use the gpt-4o-mini-2024-07-18 model as our paraphras-
ing model and apply normalization to the source sentence and the paraphrases. We use eight
semantic-preserving prompts for the paraphrasing model.3 We apply the snowball stemmer (Bird
& Loper, 2004) to normalize the source sentence and its paraphrases before calculating the max-
imal substring frequency and the inverse document frequency. We apply the log-normalization
(Sparck Jones, 1972) to the maximal substring frequency to avoid some high-frequency substrings
dominating the SemInfo value. We found that the log-normalization variant performs marginally but
consistently better than the unnormalized variant in our preliminary experiment. The application of
log-normalization is aligned with the theoretical framework of Aizawa (2003).

5.2 SEMINFO MAXIMIZATION SIGNIFICANTLY IMPROVES PARSING ACCURACY

Table 1 compares SemInfo-trained PCFGs and LL-trained PCFGs for five PCFG variants and in four
languages. For each variant, we independently train three PCFG models on the SemInfo and LL
objectives and report the mean and standard deviation of the model’s performance. We can observe
that the SemInfo-trained PCFGs achieve significantly higher parsing accuracy than the LL-trained
PCFGs. The average improvements are 13.09, 6.02, 7.31, and 4.92 SF1c scores in English, Chinese,

2Our implementation is based on the source code released by Yang et al. (2021b) and Liu et al. (2023)
3Detailed prompts are listed in Section A.7
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English Chinese French German
SemInfo (Ours) LL SemInfo LL SemInfo LL SemInfo LL

CPCFG 65.74±0.81 53.75±0.81 50.39±0.87 51.45±0.49 52.15±0.75 47.50±0.41 49.80±0.31 45.64±0.73
NPCFG 64.45±1.13 50.96±1.82 53.30±0.42 42.12±3.07 52.36±0.62 47.95±0.09 50.74±0.28 45.85±0.63
SCPCFG 67.27±1.08 49.42±2.42 51.76±0.54 46.20±3.65 52.79±0.80 45.03±0.42 47.97±0.76 45.50±0.71
SNPCFG 67.15±0.62 58.19±1.13 51.55±0.82 43.79±0.39 55.21±0.47 49.64±0.91 49.65±0.29 40.51±1.26
TNPCFG 66.55±0.96 53.37±4.28 51.79±0.83 45.14±3.05 54.11±0.66 39.97±4.10 49.26±0.64 44.94±1.34
Average ∆ +13.09 +6.02 +7.31 +4.92
MaxTreeDecoding 58.28 49.03 52.03 50.82
GPT4o-mini 36.16 11.82 30.01 33.56

Table 1: SF1c scores of five PCFG variants trained with SemInfo and LL. Each cell in the upper
section reports the mean SF1cscore and the standard deviation across three identical and indepen-
dently trained PCFG models. Average ∆ indicates average improvements in the SF1cscore when
training with SemInfo compared to LL. Improvements that are statistically significant (p < 0.05)
are highlighted in bold.

French, and German, respectively. Two-tailed t-tests indicate the improvement to be statistically
significant (p<0.05) in 17 out of 20 combinations. Two of the three insignificant results are due
to the high score variance of the LL-trained PCFGs. The significant improvement demonstrates
the benefit of the SemInfo maximization objective in the unsupervised constituency parsing task.
The result also confirms the importance of semantic factors in identifying the syntactic constituent
structure.

Table 1 also compares the SemInfo trained PCFG with two baseline parsers: the Maximum Tree
Decoding (MTD) parser that predicts the constituent structure by finding the structure with maxi-
mum SemInfo value, and the GPT4o-mini parser that asks the GPT4o-mini model to directly predict
the constituent structure. Among the two baselines, we see that the MTD parser has significantly
higher SF1cscores than the GPT4o-mini parser across the four languages. The accuracy gap indi-
cates that SemInfo is discovering non-trivial information about the constituent structure. Comparing
the SemInfo-trained PCFG and the MTD parser, we see that all SemInfo-trained PCFG variants
outperform the MTD parser in English, Chinese, and French. The accuracy improvement indicates
that the constituent information provided by the SemInfo value is noisy, and the grammar learns to
mitigate the noises. In German, SemInfo-trained PCFGs perform worse than the MTD parser. One
possible reason is that the German validation/testing set has a significantly different word vocabulary
compared to the training set, unlike the datasets in the other three languages. The out-of-vocabulary
rate in German dataset is 14%, while the rate is 5%, 6%, and 7% in the English, Chinese, and French
dataset. This shift in word distribution might be a significant factor in German PCFGs’ poor parsing
accuracy.

5.3 SEMINFO STRONGLY CORRELATES WITH PARSING ACCURACY

In this section, we evaluate two aspects of the SemInfo and LL functions: (1) Whether the function
can accurately evaluate the model’s prediction. (2) Whether the function can approximately rank
models in accordance with their performance. We evaluate the two aspects using Spearman correla-
tion (Spearman, 1904), examining whether the objective function can rank good predictions/models
higher than the bad ones. We evaluate the prediction ranking capability using a sentence-level cor-
relation and the model ranking capability using a corpus-level correlation.

5.3.1 SEMINFO IS AN ACCURATE METRIC OF PARSING ACCURACY

The sentence-level correlation assesses the objective function’s capability to evaluate the model pre-
diction accurately. We independently train eight identical PCFG models using the LL maximization
objective. Each model is trained with a unique random seed for 30k steps. For every sentence, the
eight models produce eight (SF1i, SemInfo, LL) tuples, which we use to calculate the sentence-level
Spearman correlation coefficient.

Figure 5 illustrates the SemInfo-SF1i correlation and the LL-SF1i correlation using a random sen-
tence in the English validation set. We observed a strong positive correlation for the (SemInfo,
SF1i) pairs but observed no positive correlation for the (LL, SF1i) pairs. Table 2 demonstrates the
correlation in a more statistically reliable way. We perform mean-aggregation on the sentence-level
correlation coefficient using Fisher’s Z transformation (Fisher, 1915). Fisher’s Z transformation
converts the correlation coefficient to a uni-variance space, reducing the negative impact caused by
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SemInfo-SF1i LL-SF1i SemInfo-LL
CPCFG 0.6518 0.0223 0.0196
NPCFG 0.6347 -0.0074 -0.0045
SCPCFG 0.6431 -0.0013 0.0505
SNPCFG 0.9289 0.0102 0.0182
TNPCFG 0.6449 0.1077 0.1426

Table 2: Spearman correlation coefficient
among (SemInfo, LL, SF1i), and LL over the
English validation set. Correlations are aggre-
gated at the corpus-level.

Figure 5: Spearman rank analysis of (SemInfo,
LL, SF1i) pairs obtained from eight indepen-
dently trained NPCFG models. The values are
measured on a sentence from the English dataset.
Please refer to Figure 8 for more examples.

the skewness in the coefficient’s distribution(Silver & Dunlap, 1987). The aggregated coefficients
for the SemInfo-SF1i correlation range from 0.6-0.9, whereas the aggregated coefficients for the
LL-SF1i correlation center around 0. We can consistently observe the correlation coefficient gap in
different stages of training, as discussed in Appendix A.2. This sentence-level correlation analysis
demonstrates a strong positive correlation between SemInfo and SF1i, while identifying no apparent
correlation between LL and SF1i. The high SemInfo-SF1i coefficient indicates that SemInfo can
serve as an accurate metric of parsing accuracy. The gap in correlation coefficients suggests that
SemInfo is a better objective function for unsupervised constituency parsing than LL.

5.3.2 SEMINFO RANKS PCFG MODELS BETTER THAN LL

Figure 6: Spearman ρ with SF1c in dif-
ferent training stages of NPCFG.

The corpus-level correlation evaluates the objective func-
tions’ capability to rank models in accordance with their
performance. We examine the correlation using model
checkpoints collected over different training stages of the
above eight PCFG models. Each stage is represented by a
window over the amount of training steps. For example, a
stage [1k, 10k] contains checkpoints from 1k to 10k steps.
These checkpoints produce SF1c scores, average SemInfo
values, and average LL values, which we use to calculate
the corpus-level coefficient at that training stage.

Figure 6 illustrates the SemInfo-SF1c and LL-SF1c corre-
lation curves for NPCFG.4 We can observe that LL does
have a strong corpus-level correlation with SF1c at the
early stage of training despite having a near-non-existent
sentence-level correlation. However, the strength of the corpus-level correlation diminishes quickly,
dropping below 0.4 at the late training stage. This result indicates that LL is able to identify a rea-
sonable PCFG model among a set of poorly performing models in the early training stage, but such
ability quickly degrades as the training goes on. In comparison, SemInfo maintains a strong corre-
lation across the whole training process, which indicates SemInfo’s superior capability in ranking
PCFG models by their performance.

5.4 COMPARING WITH STATE-OF-THE-ARTS

Table 3 compares three SemInfo-trained PCFG variants with the state-of-the-art non-ensemble meth-
ods for unsupervised constituency parsing. The SemInfo-trained PCFGs achieved state-of-the-art
level parsing accuracy in English, Chinese, and French, outperforming the second-best algorithm by
1.82, 11.02, and 4.47 SF1cscores, respectively. The SemInfo-trained PCFGs, while using less than
half the parameters, perform on par or significantly better than the larger SCPCFG and SNPCFG re-
ported by Liu et al. (2023). The comparison showcases the strong parsing accuracy of the SemInfo-
trained PCFGs, confirming the usefulness of semantic information in discovering the constituent
structure.

4We include the correlation curve for the other four PCFG variants in Appendix A.3.
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English Chinese French German
NPCFG (60NT) 63.62±1.07 53.92±0.48 51.88±0.73 47.77±0.26
SCPCFG (1024NT) 66.92±0.76 52.26±0.41 52.29±0.53 45.32±0.67
SNPCFG (1024NT) 66.84±0.53 52.04±0.93 54.37±0.10 47.27±0.16

Spanoverlap (Chen et al., 2024) 52.9 48.7 48.5 49.5
SCPCFG (2048NT) (Liu et al., 2023) 60.6 42.9 49.9 49.1
SNPCFG (4096NT) (Liu et al., 2023) 65.1 39.9 38 46.7
URNNG (Kim et al., 2019b) 40.7 29.1 - -
NBL-PCFG (Yang et al., 2021a) 60.4 - - -
S-DIORA (Xu et al., 2021) 57.6 - - -
Constituency Test (Cao et al., 2020) 62.8 - - -

Table 3: SF1con English, Chinese, French, and German test sets. The top section shows the score
for SemInfo-trained PCFGs while the bottom section shows the result from previous work.

6 RELATED WORKS

Parsing with PCFG PCFG induction is a long-established (Klein & Manning, 2002) and state-
of-the-art (Liu et al., 2023) approach for non-ensemble unsupervised constituency parsing. Much
research has dedicated to improving PCFG induction from the model perspective, such as scaling
up the PCFG model (Yang et al., 2021b; Liu et al., 2023), integrating lexical information (Yang
et al., 2021a), and allowing PCFG rule probabilities to condition on sentence embeddings through
variational inferences (Kim et al., 2019a). Our improvement is from the model optimization per-
spective and can be combined with the above efforts. Our experiments validate the effectiveness of
the SemInfo maximization objective in improving unlexicalized PCFGs. The SemInfo maximization
objective is also applicable to lexicalized PCFGs, which we leave to future work.

Parsing with Semantics Zhao & Titov (2020) and Zhang et al. (2021) have sought to improve PCFG
induction by learning to identify visual features, maximizing the association between constituent
structures and these visual features. If we consider the visual features as semantic representations,
their approach is effectively maximizing the semantic information of the constituent structure. In
comparison, our method shares the same underlying principle but represents the semantics with
textual features. Our method leverages large language models as semantic processors, utilizing their
outstanding semantic processing capabilities (Minaee et al., 2024). We believe that combining both
textual and visual semantic representations presents a significant research direction for unsupervised
parsing tasks.

Improving Parsing with Ensemble Models Ensembling unsupervised parsers (Shayegh et al.,
2024) significantly improves accuracy for unsupervised parsing by aggregating predictions from
various base parsers. They show that those base parsers predict the constituent structure differently
and utilize the difference to obtain a more accurate parsing result. Our method can be combined
with the ensemble method for better parsing accuracy. We conduct a parser agreement analysis
in Appendix A.5 to show the potential. The agreement analysis shows an agreement score of 80
among our SemInfo-trained PCFG parsers using various paraphrasing models. The agreement score
is similar to that of homogeneous parsers reported in Shayegh et al. (2024). The analysis also shows
that our parsers have an agreement score of 50 with other base parsers, similar to the score between
heterogeneous parsers. The similarity in agreement score suggests that our parsers should be able to
serve as a useful component.

7 CONCLUSION

In this paper, we proposed and validated a novel objective for unsupervised constituency parsing:
maximizing the information between constituent structures and sentence semantics (SemInfo). We
developed a bag-of-substrings model to represent the semantics and applied the probability-weighted
information metric to estimate the SemInfo. We applied the SemInfo maximization objective by
maximizing the expected SemInfo for a PCFG-based TreeCRF parser. Experiments showed that
SemInfo has a strong sentence-level correlation with parsing accuracy and that SemInfo maintains
a consistent corpus-level correlation throughout the PCFG training process. The result indicates
that SemInfo can serve as an accurate metric of parsing accuracy as well as a reliable training
objective for unsupervised parsing. As a result, SemInfo-trained PCFGs significantly outperformed
LL-trained PCFGs across four languages, achieving state-of-the-art level performance in three of
them. Our findings underscore the effectiveness of leveraging semantic information in unsupervised
constituency parsing, paving the way for semantically-informed unsupervised parsing methods.
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8 REPRODUCIBILITY

We provide a detailed description of our method in Sections 3 and 4. Implementation details, in-
cluding data source, model architecture, and hyperparameter settings, are included in Section 5.1.
We will release our source code publicly after the review process.
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A APPENDIX

A.1 COMPUTING SPAN-POSTERIOR PROBABILITY VIA BACK-PROPAGATION

In Section 2, we claimed that the span-posterior probability P (s is a constituent|x) can be computed
using back-propagation.

P (s is a constituent|x) =
∑

A∈NT

∂ logZ(x)

∂ log β(s,A)
(13)

Proof. Firstly, we define the span-posterior probability as Equation 14. Here s is a substring of x,
spanning from the i-th word to the j-th word (i.e., s := (xi, ..., xj)). Intuitively, s is a constituent if
there exists a non-terminal A that is expanded into s.

P (s is a constituent|x) =
∑

A∈NT P (S → x ∧A → si,j)

P (x)
(14)

We split P (S → x ∧ A → si,j) into two parts in Equation 15: P (S → x1, ..., xi−1, A, xj+1, ...),
the probability of generating words outside s, and P (A → s), the probability generating words
inside s. The outside probability can be computed using back-propagation (Eisner, 2016). The
inside probability is already computed by the β table. Exploiting algebraic transformations shown

13
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Figure 7: Sentence-level Spearman correlations for models trained for 10k steps, 20k steps, and 30k
steps.

Figure 8: Sentence-level correlation on six random sentences.

in Equation 17, we can derive the formula shown in Equation 13.

P (s is a constituent|x) = 1

Z(x)

∑
A∈NT

P (S → x1, ..., xi−1, A, xj+1, ...)P (A → s) (15)

=
1

Z(x)

∑
A∈NT

∂Z(x)

∂β(s,A)
β(s,A) (16)

=
1

Z(x)

∑
A∈NT

Z(x)
∂ logZ(x)

∂ log β(s,A)

1

β(s,A)
β(s,A) (17)

=
∑

A∈NT

∂ logZ(X)

∂ log β(s,A)
(18)
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Figure 9: Corpus-level Spearman correlation in different training stages.

A.2 SENTENCE-LEVEL CORRELATION IN DIFFERENT TRAINING STAGES

In Table 2, we showed a strong sentence-level correlation between SemInfo and SF1i but a weak
correlation between LL and SF1i. Nevertheless, the question of whether the correlation gap is related
to the number of training steps remains. Figure 7 excludes the number of training steps as a factor
in the correlation gap. In this experiment, we calculate the correlation coefficient for models trained
for 10k steps, 20k steps, and 30k steps. We can observe that, for all PCFG variants, the correlation
coefficients for (SemInfo, SF1i) are consistently over 0.6, while the coefficients for (LL, SF1i) are
consistently below 0.1. This result underscores our conclusion that SemInfo can serve as an accurate
of parsing accuracy.

A.3 MORE DETAILED ANALYSIS FOR CORPUS-LEVEL CORRELATION

Figure 9 shows the corpus-level correlation in different training stages for all five PCFG variants.
We observe the same phenomenon explained in Section 5.3.2 for CPCFG, NPCFG, SNPCFG, and
TNPCFG. The correlation coefficients for (SemInfo, SF1c) are consistently above 0.75, whereas the
coefficients for (LL, SF1c) drop quickly as the training progresses. We can observe the stronger
correlation between SemInfo and SF1cin Figure 10. The figure plots the training curves of the
corpus-level SF1cscore, the average SemInfo value, and the average LL value over the English
validation set. For example, we can see that SemInfo ranks the NPCFG models represented by the
green and grey lines as the lowest, and those represented by the purple and blue lines as the highest.
This largely agrees with the SF1cscores, where the NPCFG models represented by the green and
grey lines are among the bottom three worst-performing models, and the models represented by
the blue and purple lines are among the top three best-performing models. In comparison, we see
that all models have similar LL scores, which indicates LL’s inability to rank models in accordance
with their parsing performance. These results underscore our conclusion that SemInfo ranks PCFG
models better than LL.

In Figure 9, we observe that the correlation strength for (SemInfo, SF1c) also drops as training
processes in SCPCFG. One reason is that SCPCFG failed to explore constituent structures with
high SemInfo values. As shown in Figure 10, the average SemInfo value across the eight models
is around 42 for SCPCFG, while the average SemInfo value is greater or equal to 45 for the other
four PCFG variants. This result indicates that the constituent information provided in low SemInfo
regions might contain more noise than the information provided in high SemInfo regions.

A.4 ROBUSTNESS AGAINST PARAPHRASING NOISES

Table 4 compares the parsing accuracy of NPCFG models trained using seven paraphrasing mod-
els. These models are split into three groups: large models (gpt4o, gpt-4o-mini, gpt-3.5),
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Figure 10: Training curves of SemInfo, LL, and SF1c. Each line represents the curve for a single
PCFG model.
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Paraphrasing Model Variations
Large Models Medium Models Small Models

gpt35 gpt4o gpt4omini llama3.2-3b qwen2.5-3b llama3.2 1b qwen2.5-0.5b
SemInfo-NPCFG 66.85±0.25 65.19±0.54 64.45±1.13 63.78±0.55 63.58±0.13 63.10±0.70 59.01±0.24
SemInfo-MTD 55.56 59.45 58.28 55.17 55.03 48.5 43.3
LL-NPCFG 50.96±1.82
Right Branching 38.4

Table 4: SF1c of the NPCFG and MaxTreeDecoding (MTD) parsers using SemInfo values obtained
from seven paraphrasing models. LL-NPCFG indicates the SF1c score of the LL-trained NPCFG
parser.

(a) NPCFG (b) SNPCFG (c) CPCFG

(d) SCPCFG (e) TNPCFG

Figure 11: PCFG agreements between independent training runs.

medium models (llama3.2-3b and qwen2.5-3b), and small models (llama3.2-1b and
qwen2.5-0.5b), each representing paraphrasing models with different levels of noises. The table
also includes a MaximumTreeDecoding (MTD) parser, an LL-trained NPCFG parser and a trivial
right-branching parser for reference. We use the MTD parser to reflect the paraphrasing quality
because its parsing accuracy depends solely on the paraphrasing quality.

We can observe that the SemInfo-trained NPCFG parsers are robust against paraphrasing noises. The
accuracy gap between the best (gpt4o) and the worst (qwen2.5-0.5b) performing MTD parser
is 16.15 SF1c score. In comparison, the gap between the best and worst performing SemInfo-trained
NPCFG parser is 7.84 SF1c score, less than half of the gap in the MTD parser. In addition, we
can observe that the PCFG parser can benefit from the SemInfo maximization training, even when
using noisy paraphrases. all SemInfo-trained PCFG parsers significantly outperform the baseline
LL-trained parser by a large margin. The SemInfo-trained PCFG parser outperforms the LL-trained
parser by 9 points when the SemInfo-trained parser is trained using the noisiest paraphrasing model
(qwen2.5-0.5b). The noise level is significant in the qwen2.5-0.5b model because the cor-
responding MTD parser performs more similarly to the trivial right branching parser than other
parsers.

A.5 POTENTIAL FOR ENSEMBLING

Figure 11, Figure 12, and Figure 13 suggests that the SemInfo-trained PCFG would benefit from
parser ensembling (Shayegh et al., 2024). We calculate the parser agreement score by evaluating the
SF1c of one parser’s prediction against another, following Shayegh et al. (2024). A higher agree-
ment score indicates that the two parsers tend to make more similar predictions. In analyzing the
agreement between heterogeneous parsers, we use the gpt-4o-mini for training the five PCFG
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Figure 12: NPCFG parser agreement when trained with different paraphrasing models

CPCFG NPCFG SCPCFG SNPCFG TNPCFG
∆ by TypeSemInfo (Ours) LL SemInfo LL SemInfo LL SemInfo LL SemInfo LL

NP 88.88±0.06 79.77±1.58 88.98±0.34 80.63±2.10 87.45±1.16 79.41±1.47 86.51±0.18 70.95±1.64 87.89±1.23 77.73±5.72 +10.90
VP 71.19±1.10 40.79±1.49 65.69±2.06 28.29±3.24 73.80±1.65 28.53±1.15 76.35±2.18 80.21±0.51 72.23±2.19 45.82±7.52 +26.65
PP 68.22±5.68 72.27±0.47 70.15±5.42 75.15±0.83 79.75±0.57 73.83±8.94 80.26±1.45 78.85±0.98 78.51±0.83 71.07±8.49 +2.09
SBAR 80.99±1.40 52.18±2.15 80.37±3.48 56.32±6.03 84.16±0.56 40.81±12.99 82.17±0.91 81.28±1.06 82.45±1.55 54.46±4.92 +22.67
ADVP 91.87±0.56 88.38±0.97 91.48±0.61 89.78±1.17 92.22±1.01 88.57±4.53 92.11±0.74 89.67±0.93 90.93±1.59 88.07±0.71 +4.48
ADJP 71.82±1.43 63.08±1.90 75.18±2.85 61.66±9.97 78.39±1.78 60.40±8.03 75.77±3.74 75.55±2.18 72.90±4.19 65.40±6.60 +7.93
∆ by Model +12.42 +13.05 +20.14 +3.90 +12.76

Table 5: Recall on six most frequent constituent types. The recall data is calculated over the English
test set. ∆ by Type indicates the average recall improvement for the constituent type. ∆ by Model
indicates the average recall improvement for the PCFG variant.

variants. We use the parsing predictions released by Shayegh et al. (2024) for CPCFG, Constest,
ContextDistort, DIORA, NPCFG, and SDIORA parsers.

Figure 11 and Figure 12 illustrate the parser agreement between three independent training runs
and the agreement among parsers using different paraphrasing models, respectively. The agreement
score between independent runs (80-87) might be too high to benefit from the ensemble method.
However, the agreement score among parsers using different paraphrasing models (70-83) is similar
to the homogeneous parser agreement reported by Shayegh et al. (2024) (74-75). This similarity
suggests that ensembling SemInfo-trained PCFG parsers using different paraphrasing models would
improve accuracy.

Figure 13 illustrates the agreement among heterogeneous parsers. We can observe that the agreement
score between our SemInfo-trained PCFG parsers ranges from 54-58, significantly lower than the
agreement scores between runs and paraphrasing models. The agreement score is in the same range
as the score among heterogeneous parsers, which indicates a potential accuracy improvement by
ensembling our parser with other heterogeneous parsers.

A.6 RECALL ON SIX MOST-FREQUENT CONSTITUENT TYPES

Table 5 shows the recall of the six most frequent constituent types on the English test set, following
Yang et al. (2021b). We see that PCFGs trained with SemInfo achieves significant improvement in
Noun Phrases (NP), Verb Phrase (VP), and Subordinate Clauses (SBAR). These three constituents
are the most typical constituents that carry semantic information. The significant improvement
underscores the importance of semantic information in identifying the constituent structure.
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Figure 13: Agreement between heterogeneous parsers
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A.7 PARAPHRASING PROMPTS

We use the below prompts to generate paraphrases from the gpt-4o-mini-2024-07-18model.
{lang} is a placeholder for langauges. For example, we set {lang}=“English” when collecting En-
glish paraphrases.

• Create grammatical sentences by shuffling the phrases in the below sentence. The generated
sentences must be in {lang}. Use the same word as in the original sentence

• Create grammatical sentences by changing the tense in the below sentence. The generated
sentences must be in {lang}. Use the same word as in the original sentence.

• Create grammatical sentences by restating the below sentences in passive voice. The gen-
erated sentences must be in {lang}. Use the same word as in the original sentence.

• Create grammatical sentences by restating the below sentences in active voice. The gener-
ated sentences must be in {lang}. Use the same word as in the original sentence.

• Create grammatical clefting sentences based on the below sentence. The generated sen-
tences must be in {lang}. Use the same word as in the original sentence.

• Create pairs of interrogative and its answers based on the below sentence. The generated
sentences must be grammatically correct and be explicit. The sentences must be in {lang}.
Use the same word as in the original sentence. The answer to the questions should be a
substring of the given sentence.

• Create pairs of confirmatory questions and its answers based on the below sentence. The
generated sentences must be grammatically correct and textually diverse. The sentences
must be in {lang}. Use the same word as in the original sentence. The answer to the
questions should be a substring of the given sentence.

• Create grammatical sentences by performing the topicalization transformation to the below
sentence. The sentences must be in {lang}. Use the same word as in the original sentence.

• Create grammatical sentences by performing the heavy NP shift transformation to the be-
low sentence. The sentences must be in {lang}. Use the same word as in the original
sentence.

A.8 EXAMPLES OF THE COLLECTED PARAPHRASES

The below list contains examples of our collected paraphrases for Such agency ‘ self-help ’ borrow-
ing is unauthorized and expensive , far more expensive than direct Treasury borrowing , said Rep.
Fortney Stark -LRB- D. , Calif. -RRB- , the bill ’s chief sponsor ..

• ’Self-help’ borrowing by such agency is unauthorized and expensive, far more expensive
than direct Treasury borrowing,’ said Rep. Fortney Stark -LRB- D., Calif. -RRB-, the bill’s
chief sponsor.

• Far more expensive than direct Treasury borrowing is such agency ’ self-help ’ borrowing,
unauthorized and expensive, said Rep. Fortney Stark -LRB- D., Calif. -RRB-, the bill ’s
chief sponsor.

• Yes, he said it is far more expensive than direct Treasury borrowing.
• What is unauthorized and expensive is such agency ’self-help’ borrowing, far more expen-

sive than direct Treasury borrowing, according to Rep. Fortney Stark.
• ’Self-help’ borrowing by such agency is considered unauthorized and is regarded as expen-

sive, far more expensive than direct Treasury borrowing,” said Rep. Fortney Stark -LRB-
D., Calif. -RRB-, who is the chief sponsor of the bill.

• According to Rep. Fortney Stark -LRB- D. , Calif. -RRB- , the bill ’s chief sponsor , such
agency ’self-help’ borrowing is unauthorized and far more expensive than direct Treasury
borrowing.
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