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Abstract
We propose Electrostatic Field Matching (EFM),
a novel method that is suitable for both genera-
tive modeling and distribution transfer tasks. Our
approach is inspired by the physics of an electri-
cal capacitor. We place source and target distri-
butions on the capacitor plates and assign them
positive and negative charges, respectively. Then
we learn the electrostatic field of the capacitor
using a neural network approximator. To map the
distributions to each other, we start at one plate
of the capacitor and move the samples along the
learned electrostatic field lines until they reach
the other plate. We theoretically justify that this
approach provably yields the distribution transfer.
In practice, we demonstrate the performance of
our EFM in toy and image data experiments.

1. Introduction
The basic task of generative modeling is to learn a transfor-
mation between two distributions accessible by i.i.d. sam-
ples. The typical scenarios considered are noise-to-data
(Goodfellow et al., 2014) and data-to-data (Zhu et al.,
2017). These are usually referred to as the unconditional
data generation and data translation, respectively.

Physics is often at the heart of the principles of generative
modeling. One of the first attempts to link generative mod-
els and physics was made in Energy-Based models (LeCun
& Huang, 2005, EBM). They parameterize data distribu-
tions using the Gibbs-Boltzmann distribution density and
generate data through simulation of Langevin dynamics (Du
& Mordatch, 2019; Song & Kingma, 2021).

Diffusion Models (Sohl-Dickstein et al., 2015; Ho et al.,
2020, DM) is a popular class of generative models which is
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Figure 1. Our Electrostatic field matching (EFM) method. Two
data distributions P(x+) and Q(x−), x± ∈ RD are placed in the
space RD+1 in the planes z = 0 and z = L, respectively. The dis-
tribution P(x+) is assigned a positive charge, and the distribution
Q(x−) – a negative charge. These charges create an electric field
E(x̃), where x̃ = (x, z) ∈ RD+1. The lines of the field begin at
positive charges and end at negative charges. Movement along the
electric field lines provably (see our Theorem 3.1) transforms the
distribution P(x+) into the distribution Q(x−).

inspired by the nonequilibrium thermodynamics. The dif-
fusion models consist of forward and backward stochastic
processes (Song et al., 2021). The forward process cor-
rupts the data via injection of Gaussian noise; the backward
process reverses the forward process and recovers the data.

Poisson Flow Generative Models (Xu et al., 2022; 2023,
PFGM) use ideas from the electrostatic theory for the data
generation process, recovering an electric field between a
hyperplane of the data and a hemisphere of large radius.

Both DM and PFGM use physical principles to corrupt data,
simplifying the data distribution to a tractable one. As a
result, they are only used directly for noise-to-data tasks.

Recently, modifications of DM have appeared that can learn
diffusion in a data-to-data scenario. Diffusion Bridge Match-
ing (Shi et al., 2024; Albergo & Vanden-Eijnden, 2023;
Peluchetti, 2023, BM) is an SDE-based method that recov-
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ers the continuous-time Markovian process between data
distributions. Flow matching (Lipman et al., 2023; Liu et al.,
2023; Klein et al., 2024; Chen & Lipman, 2024; Xie et al.,
2024, FM) is the limiting case of BM that learns ODE-based
transformation between distributions.

However, there is no method based on electrostatic theory
that can be applied to data-to-data translation tasks.

Contributions. We propose and theoretically justify a new
paradigm for generative modeling called Electrostatic Field
Matching (EFM). It is based on the electrostatic theory and
suitable for both noise-to-data and data-to-data generative
scenarios. We provide proof-of-concept experiments on low-
and high-dimensional generative modeling tasks.

2. Background and Related Works
2.1. Basic physics

To understand the physics behind the electrostatic field
matching method, let us recall some basic background from
standard Maxwell’s 3D-electrostatics and then generalize
it to the case of D dimensions. Information on Maxwell’s
electrostatics can be found in any electricity textbook, for
instance (Landau & Lifshitz, 1971, Chapter 5).

2.1.1. MAXWELL’S ELECTROSTATICS1

The field of a point charge. Let a point charge q ∈ R be
located at a point x′ ∈ R3. At a point x ∈ R3 it creates an
electric field2 E(x) ∈ R3 equal to:

E(x) =
q

4π

x− x′

||x− x′||3
. (1)

The superposition principle. If point charges q1, q2, ..., qN
are located at points x1, x2, ..., xN , they create independent
fields E1(x),E2(x), ...,EN (x) at a given point x ∈ R3. All
these charges together produce the following field:

E(x) =
N∑

n=1

En(x) =
N∑

n=1

qn
4π

(x− xn)

||x− xn||3
, (2)

In the general case, we are dealing with a continuously
distributed charge q(x). Then the superposition principle

1All formulas are written in the Heaviside–Lorentz system of
units, where Planck’s constant ℏ = 1, the speed of light c = 1, and
the electric constant, which stands as a multiplier in Coulomb’s
law (see (1)), is k = 1/(4π). This system of units is convenient
for our purposes because formulas look particularly simple in this
system of units (the Gauss’s theorem and the circulation theorem).

2The meaning of electric field is as follows. If a charge q0 is
placed in an electric field, then the force acting on q0 equals to
F = q0E. Using (1), we obtain Coulomb’s law of interaction of
point charges: F = k qq0

||x−x′||3 (x − x′), where k = 1
4π

.

can be written as:

E(x) =
∫

1

4π

(x− x′)
||x− x′||3

q(x′)dx′. (3)

The charge distribution q(x) can have values greater than
zero (positive charge) or less than zero (negative charge).

An electric field strength line is a curve x(t) ∈ R3, t ∈
[a, b] ⊂ R whose tangent to each point is parallel to the
electric field at that point. In other words:

dx(t)
dt

= E(x(t)),where t ∈ [a, b] ⊂ R. (4)

Electric field lines are the key concept in our work. The
basic properties of these lines follow from Gauss’s theorem
and the circulation theorem formulated below. The rigorous
formulations and proofs of the field line properties are given
in Appendix A (for a more general D-dimentional case).

The electric field flux. Consider an element of area dS. It
is a vector whose length is equal to the considered area dS
and whose direction is orthogonal to this area. For closed
surfaces, the direction is always selected outward. The
electric field flux E through this element is dΦ = E · dS,
i.e., the inner product between vectors E and dS. The field
flux through a finite surface Σ is given by

Φ =

∫
Σ

dΦ =
x

Σ

E · dS. (5)

It indicates the density of field lines passing through Σ.

Gauss’s theorem (Landau & Lifshitz, 1971, M31). For any
closed two-dimensional surface ∂M , which bounds the set
M ⊂ R3 (see Fig. 2), the electric field flux is equal to the
total charge enclosed by this surface:

x

∂M

E · dS =

∫
M

q(x)dx. (6)

Intuitively, the Gauss’s theorem states that the number of
lines passing through any closed surface is determined only
by the charge inside that surface (and is proportional to it).

In particular, it follows from Gauss’s theorem that the elec-
tric field line must begin at a positive charge (or at infinity)
and end at a negative charge (or at infinity). Lines cannot
simply terminate in a space where there are no charges, see
Lemma A.3 and Corollary A.4 for extended discussions.

Theorem on the electric field circulation (Landau & Lif-
shitz, 1971, M26). For any closed loop ℓ (Fig. 3) the electric
field circulation is equal to zero:∮

ℓ

E · dl = 0, (7)
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Figure 2. An illustration of the Gauss’s theorem.

where dl is the length element of the closed loop ℓ. This
length element is a vector whose length is determined by
the infinitesimal segment dl, see Fig. 3, whose direction is
the tangent at a given point to the curve ℓ.

Figure 3. An illustration of the electric field circulation theorem.

It follows from the circulation theorem that there are no
field lines which form closed loops, see Lemma A.7.

2.1.2. D-DIMENSIONAL ELECTROSTATICS

The generalization of electrostatic equations for higher di-
mensions appears in discussions related to the influence of
extra dimensions on physics (Ehrenfest, 1917; Gurevich &
Mostepanenko, 1971; Caruso et al., 2023). The generaliza-
tion modifies equations (6) and (7) by replacing R3 with
RD and replacing dimensionality 2 of ∂M with D − 1 in
the Gauss’s theorem. The definitions in (4) and the superpo-
sition principle remain unchanged. The differences affect
only the explicit expression for the electric field.

The electric field at the point x ∈ RD of a point charge q,
which is located at x′ ∈ RD equals to:

E(x) =
q

SD−1

x− x′

||x− x′||D
, (8)

where SD−1 is the surface area of an (D − 1)-dimensional
sphere with radius 1.

The field of a distributed charge q(x) can be obtained by the
principle of superposition as in (3) for 3D case:

E(x) =
∫

1

SD−1

x− x′

||x− x′||D
q(x′)dx′. (9)

The Gauss’s theorem and the circulation theorem in a D-
dimensional space together ensure the following principal
characteristics of electric field lines:

(i) Electric field lines cannot terminate in points where there
are no charges;

(ii) For a system having zero total charge (
∫
q(x)dx = 0),

electric field lines almost surely3 start at positive charge and
end at negative charge;

(iii) There are no electric field lines that form closed loops.

2.2. Poisson Flow Generative Model (PFGM)

The first attempt to couple electrostatic theory and genera-
tive modeling is proposed by (Xu et al., 2022; 2023). The
authors work with a D-dimensional data distribution.

They embed this distribution into (D + 1)-dimensional
space. The new point in this space can be written as

(x1, x2, ..., xD, z) = (x, z) = x̃ ∈ RD+1. (10)

The data is then placed on the hyperplane z = 0 at RD+1

by applying x→ x̃ = (x, 0). The data distribution is inter-
preted then as a positive electrostatic charge distribution.

The intuition of the method is that the charged points x̃
in the hyperplane z = 0 generate the electric field E(·)
which behaves at infinity as the field of a point charge. If a
point charge is placed inside a sphere S∞ with an infinite
radius, then the flux density P∞(·) through the surface of the
sphere is distributed uniformly. For simplicity, the authors
consider the hemisphere S+∞ (Fig. 4b, upper half of S∞).
The electric field lines define the correspondence between
uniformly distributed charges on the surface of S+∞ and the
data distribution P0(x̃) located in the hyperplane z = 0.

If a massless point charge is placed in the electric field E(·)
with field lines directed from P0(·) to P∞(·), then the charge
moves along the lines to P∞(·). This movement transforms
the data samples from the complex distribution P0(·) into

3The term “almost surely” indicates that for a randomly se-
lected point from the first positively charged distribution, the prob-
ability that its electric field line terminates at the second negatively
charged distribution (rather than at infinity) equals 1.
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(a) Near the plate. (b) Away from the plate.

Figure 4. PFGM concept. The original data have a distribution P0(x̃), which is assigned a positive charge that produces an electric field
E(x̃). Near the plate (Fig. 4a), the field lines can have a complex structure, while away from the plate (Fig. 4b) the charge looks like a
point, and therefore the electric field is uniformly distributed: x̃ ∼ U(S+

∞).

the simple distribution P∞(·) on the hemisphere. The corre-
sponding inverse transformation generates the data samples
from uniformly distributed samples on the hemisphere. The
inverse map is a movement along these field lines in the
backward direction and is defined by the following ODE
with electric field −E(·) being the velocity field:

dx̃(t)
dt

= −E(x̃(t)). (11)

To recover the electric field E(·) in the extended (D + 1)-
dimensional space, the authors propose to approximate it
with a neural network fθ(·) : RD+1 → RD+1.

First, they compute the ground truth electric field E(x̃) em-
pirically at a set of arbitrary (D + 1)-dimensional points
x̃ inside the hemisphere S+∞ through samples from P0(·)
using (9). Second, the electric field is learned at x̃ by mini-
mizing the difference between the predicted fθ(x̃) and the
ground-truth E(x̃). Having learned the electric field E(·)
in the (D + 1)-dimensional space, they simulate ODE (11)
with initial samples from P∞(·) until the spatial coordinate
z reaches 0. Finally, they get samples x̃T ∼ P0(·), where T
is the end time of the ODE simulation.

3. Electrostatic Field Matching (EFM)
This section introduces Electrostatic Field Matching (EFM),
a novel generative modeling paradigm applicable to both
noise-to-data and data-to-data generation grounded in elec-
trostatic theory. In M3.1, we give an intuitive description of
the method. In M3.2, we give the theoretical foundation of
the method and the main theorem. In M3.3, we formulate
the learning and inference algorithms of the EFM.

3.1. Intuitive explanation of the method

Our idea is to consider distributions as electric charge den-
sities. One could assign positive charge values to the first
distribution and negative charges to the second one, i.e., the

charge density follows the distributions up to a sign. We
then place these distributions on two D-dimensional planes
at distance L from each other (Fig. 1). This will produce
an electric field with lines starting at one density and finish-
ing at another. We prove Theorem 3.1 — our key result —
which shows that movement along the lines guarantees an
almost sure transition from one distribution to another.

3.2. Formal theoretical justification

Let P(x+) and Q(x−), with x± ∈ RD, be two data distribu-
tions. We assign to the first distribution a positive charge
q+(x+) = P(x+) and to the second distribution a negative
charge q−(x−) = −Q(x−). Note that the charge distri-
butions are normalized such that

∫
q+(x+)dx+ = 1 and∫

q−(x−)dx− = −1, resulting in a total charge of zero.

We place these q+ and q− in (D + 1)-dimensional space.
Each point in this space has the same form as in (10). More
precisely, we place q+ in the hyperplane z = 0, and q− in
z = L (Fig. 1). One can think of it as a (D+1)-dimensional
capacitor. The distributions can be written with Dirac delta
function δ(·) as:

q+(x̃) = q+(x, z) = q+(x)δ(z),
q−(x̃) = q−(x, z) = q−(x)δ(z − L).

(12)

The electric field produced at the point x̃ ∈ RD+1 in the
space plates consists of two summands:

E(x̃) = E+(x̃) + E−(x̃), (13)

where E+(x) and E−(x̃) are the fields created by q+(x̃+)
and q−(x̃−), respectively. The exact expression for these
fields is given by (9) with replacement of D by D + 1:

E±(x̃) =
∫

1

SD

x̃− x̃′

||x̃− x̃′||D+1
q±(x̃′

)dx̃′
. (14)
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Consider the field lines originating from the plate P(x̃+).
Due to the total zero charge, these lines almost surely termi-
nate on Q(x̃−), as established in Lemma A.6. The transport
from P(·) to Q(·) can be initiated in two distinct directions:
either toward (forward-oriented) or away from (backward-
oriented) the target plate. While backward-oriented lines
exhibit greater curvature and longer paths, they still termi-
nate in the target distribution, see Figs. 21a and 21b.

We define the stochastic forward map TF from supp(P)
to supp(Q) through forward-oriented field lines.4 For this,
we consider a point x̃+ = (x+, ε), ε→ 0+ slightly shifted
in the direction of the second plate. Let us move along the
corresponding field line by integrating dx̃(t) = E(x̃(t))dt
until coming to the second plate at a point x̃−F = (x−F , L).
Next, two situations may arise (Fig. 7):

1. The values of the field to the left and right of the plate
z = L have different signs. Here the field is directed
toward the plate from two different sides.

2. The values of the field to the left and right of the plate
have the same signs on the left and right, i.e., the field
line crosses z = L and continues to the region z > L.5

Figure 5. An illustration of the forward map TF .

In the first case, the movement ends. In the second case,
it is necessary to stop the movement at the point x̃−F with
probability ν(x−

F ) and continues the movement into the
region z > L with probability 1− ν(x−

F ), where

ν(x) =

{
1, if E±

z (x̃) have opposite signs
E−

z (̃x)−E+
z (̃x)

E−
z (̃x)

if E±
z (x̃) have same sign

(15)
and E±

z (x̃) = Ez(x̃ ± εez), ε → 0+ denote the left and
right limits of the field value at the point x̃ in z direction.
The latter field line also reaches the target distribution Q, at

4Here supp(·) denotes the support of a distribution.
5The movement in the opposite direction is impossible since

the projection Ez of the field is positive in the interval z∈(0, L).

a point x̃′−F . Finally, we define the forward map as follows:

TF (x+) =

{
x−
F with probability ν(x−

F )

x′−
F with probability 1− ν(x−

F )
. (16)

The probability ν(x) allows us to understand whether it is
needed to stop at the first intersection point x−F , or continue
moving to the next point x′−

F (see Fig. 5). In particular, the
probability value is proportional to the electric field flux.

The stochastic backward map TB is constructed similarly
using left limit ε→ 0− and backward-oriented field lines.

The complete transport is described by the random variable:

T (x+) =

{
TF (x

+) with probability µ(x+),

TB(x
+) with probability 1− µ(x+),

(17)

capturing both forward and backward trajectory endpoints
for each x+ ∈ supp(P) on the left plate, where:

µ(x) =

{
1, if E±

z (x̃) have same sign
E+

z (̃x)
E+

z (̃x)+|E−
z (̃x)| if E±

z (x̃) have opp. signs
(18)

The value µ(x+) allows one to choose a forward or back-
ward sets of lines with a probability proportional to the field
flux in the corresponding direction (i.e., E+

z or |E−
z |). At

the same time, if it is impossible to move backward, i.e.,
E−

z >0, the forward map TF is always chosen (µ(x+)=1).

Then, for this stochastic map, we prove the next theorem:

Theorem 3.1 (Electrostatic Field Matching). Let P(x+)
and Q(x−) be two data distributions that have compact
support. Let x+ be distributed as P(x+). Then x− = T (x+)
is distributed as Q(x−) almost surely:

If x+ ∼ P(x+)⇒ T (x+) = x− ∼ Q(x−). (19)

In other words, the movement along electrostatic field lines
does indeed transfer P(x+) to Q(x−), as we intended. The
proof of the theorem is given in Appendix B.

3.3. Learning and Inference Algorithm

To move between data distributions, it is sufficient to follow
the electric field lines. The lines can be found from the
trained neural network approximating the electric field E(x̃).
In practice, we only use forward-oriented field lines, since
backward-oriented ones have more curvature and require a
larger training volume, see Appendices C.1 and C.3.

Training. To recover the electric field E(·) in (D + 1)-
dimensional points between the hyperplanes, we approxi-
mate it with a neural network fθ(·) : RD+1 → RD+1. The
approximation requires setting of a training volume. We
sample the value t from the uniform distribution U(0, L)
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and take two random samples x̃+ and x̃−. Then, we get a
new point x̃ via the following averaging and noising:

x̃ =
t

L
x̃− + (1− t

L
)x̃+ + ε̃, (20)

where random ε̃ is obtained as follows. First, the noise
ε is sampled from N (L2 , σ

2I(D+1)×(D+1)), where σ is a
hyperparameter. Then, the Euclidean norm ||ε|| is multiplied
by a normalized standard Gaussian vector m:

ε̃ = ||ε|| m

||m||
, m ∼ N (0, I(D+1)×(D+1)). (21)

The noise term increases the training volume, thus, leading
to the greater generalization ability of the neural network.
We highlight that this interpolation is just one of the possible
ways to define intermediate points, see Appendix C.4.

The ground-truth E(x̃) is estimated with (13). Specifically,
the integral is approximated via Monte Carlo sampling of
(9) by using samples from P(x+) and Q(x−). Then we
use a neural network approximation fθ(x̃) to learn the nor-
malized ground-truth electric field E(̃x)

||E(̃x)|| at points from
the extended (D + 1)-dimensional space as, analogously
to PFGM, we empirically found that this strategy works
better than learning the unnormalized field. We learn fθ(·)
by minimizing the squared error between the normalized
ground truth E(̃x)

||E(̃x)|| and the predictions fθ(x̃) with SGD,
i.e., the learning objective is

Ex̃||fθ(x̃)−
E(x̃)
||E(x̃)||

||22 → min
θ

. (22)

Inference. Having learned the normalized vector field
E(·)

||E(·)|| in the extended space with fθ(·), we simulate the
movement between hyperplanes to transfer data from P(x+)
to Q(x−). For this, we run an ODE solver for (11).

One needs a right stopping time for the ODE solver. We
follow the idea of PFGM and exploit the following formula:

dx̃ = d(x, z) =
(dx
dt

dt

dz
dz, dz

)
= (Ex(x̃)E−1

z (x̃), 1)dz

= (
Ex(x̃)
||E(x̃)||

||E(x̃)||
Ez(x̃)

, 1)dz ≈ (fθ(x̃)xf−1
θ (x̃)z, 1)dz

(23)

where we denote fθ(x̃) = (fθ(x̃)x, fθ(x̃)z) and E(x̃) =
(Ex(x̃),Ez(x̃)). In this new ODE (23), we replace the time
variable t with the physically meaningful variable z. We
start with samples from P(x+), i.e., when z = 0, and we
stop when z reaches L (= right plate) during the ODE path.

According to definition (16) of the forward map TF , when
field line crosses the plane z = L, one should continue
its movement with probability 1 − ν(x−

F ) until the line

reaches z = L again. However, in practice we simply
stop the movement as accurate estimation of this probability
is non-trivial, see Appendix C.2 for extended discussions.

All the ingredients for training and inference in our method
are described in Algorithms 1 and 2, where we summarize
the learning and the inference procedures, correspondingly.

Algorithm 1 EFM Training
Input: Distributions accessible by samples:

P(x+)δ(z) and Q(x−)δ(z − L);
NN approximator fθ(·) : RD+1 → RD+1;

Output: The learned electrostatic field fθ(·)
Repeat until converged :

Sample a batch of points x̃+ ∼ P(x+)δ(z);
Sample a batch of points x̃− ∼ Q(x−)δ(z − L);
Sample a batch of times t ∼ U(0, L);
Sample a batch of noise ε̃ with (21);
Calculate x̃ = tx̃+ + (1− t)x̃− + ε̃;
Estimate E+(x̃) and E−(x̃) through (9);
Calculate E(x̃) with (13);
Compute L = Ex̃||fθ(x̃)− E(̃x)

||E(̃x)|| ||
2
2 → minθ;

Update θ by using ∂L
∂θ ;

Algorithm 2 EFM Sampling

Input: sample x̃+ from P(x+)δ(z); step size ∆τ > 0;
the learned field f∗

θ (·) : RD+1 → RD+1;
Output: mapped sample x̃− approximating Q(x−)δ(z−L)
Set x̃0 = x̃+

for τ ∈ {0,∆τ, 2∆τ, . . . , L−∆τ} do
Calculate f∗

θ (x̃τ ) = (f∗
θ (x̃τ )x, f∗

θ (x̃τ )z)
x̃τ+∆τ =

[
(x̃τ )x + f∗

θ (x̃τ )
−1
z f∗

θ (x̃τ )x∆τ ; τ +∆τ
]

x̃− ← x̃L

4. Experimental Illustrations
In this section, we demonstrate the proof-of-concept ex-
periments with our proposed EFM method. We show a 2-
dimensional illustrative experiment (§4.1), image-to-image
translation experiment (§4.2) and image generation experi-
ment (§4.3) with the colored MNIST and CIFAR-10 datasets.
Various additional aspects of EFM are studied in Appen-
dices: the influence of the interplate distance L (App. C.1),
training volume (App. C.4) and backward-oriented field
lines (App. C.3). We give details of experiments in Ap-
pendix D.

4.1. Gaussian to Swiss Roll Experiment

An intuitive first test to validate the method is to transfer
between distributions whose densities can be visualized for
comparison. We consider the 2-dimensional zero-centered
Gaussian distribution with the identity covariance matrix as
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(a) Samples from P(x+), which are
placed on the left hyperplane z = 0 .

(b) Samples from Q(x−), which are
placed on the right hyperplane z = L.

(c) Mapped samples by T (x+) for the
distance L = 6.

(d) Mapped samples for T (x+) for the
distance L = 30.

Figure 6. Illustrative 2D Gaussian→Swiss Roll experiment: input and target distributions P(x+) and Q(x−) together with the result of
the distribution transfer learned with our EFM method for distances L = 6 and L = 30 between the capacitor plates.

P(x+) and the Swiss Roll distribution as Q(x−), see their
visualizations in Figs. 6a and 6b, respectively.

To show the effect of hyperparameter L in our EFM method,
we do two experiments. In the first one, the samples from
Q(x−) are placed on the hyperplane L = 6 (see Fig. 6c),
while in the second one, we use L = 30 (see Fig. 6d). We
show the learned trajectories of samples’ movement along
the electrostatic field in Figs. 8a and 8b, respectively.

When L is small, the electric field lines are more or less
straight, see Fig. 8a. The learned normalized electric field
fθ(·) allows one to accurately perform the distribution trans-
fer, see Fig. 6c. However, if the distance L between the
hyperplanes is large, the learned map recovers the target
density Q(x−) poorly (see Fig. 6d). Presumably, this oc-
curs due to a higher difficulty of the electrical field E(·)
approximation for a large interplane distance L, as well
as the neccesity to consider the lines outside z ∈ (0, L),
i.e., backward-oriented lines as well as the forward-oriented
lines which go to the area z > L (intersect the plate twice).

4.2. Image-to-Image Translation Experiment

Here we consider the image-to-image translation task for
transforming colored digits 3 to colored digits 2 (Gushchin
et al., 2024, M5.3). The data is based on the conventional
MNIST images dataset but the digits are randomly colored.
We consider unpaired translation task, i.e., there is no pre-

Figure 7. The sampling trajectories of our EFM method in image-
to-image translation experiment, see §4.2.

(a) L = 6 (b) L = 30

Figure 8. Electric field line structure for the Gaussian→Swiss Roll
experiment with L = 6 and L = 30. It can be seen that at large
distances, the field lines are more curved than at small distances.

defined correspondence, see (Zhu et al., 2017, Fig. 2).

We place colored digits 3 on the left hyperplane z = 0
and colored digits 2 on the right plate z = 10. We learn the
normalized electric field between the plates and demonstrate
input-translated pairs in Fig. 10a and 10b, respectively. Also,
we show how the translation happens in Fig. 7.

For comparison, we add the results of the translation of
the popular ODE-based Flow Matching (FM) method (Liu
et al., 2023; Lipman et al., 2023; Tong et al., 2023) in Fig.
10c. The key difference between our method and FM is that
FM matches to a time-conditional transformation (velocity),
whereas our method matches to a space-conditional trans-
formation (electric field). Interestingly, FM does not always

Figure 9. The sampling trajectories of our EFM method in noise-
to-image generation experiment, see §4.3.
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(a) Samples from P(x+), which are placed on the left
plate z = 0.

(b) Samples from our approximation of Q(x−), located
on the right plate z = 10.

(c) Samples from FM’s approximation of Q(x−),
located on the right plate z = 10.

Figure 10. Image-to-Image translation. Pictures from the initial distribution, the result of applying our EFM method as well as the Flow
Matching method are presented respectively.

(a) White noise samples from P(x+), which are placed
on the left plate z = 0.

(b) Samples from our approximation of Q(x−), located
on the right plate z = 30.

(c) Samples from PFGM’s approximation of Q(x−),
simulated from hemisphere with the learned field.

Figure 11. Noise-to-Image generation. Pictures from the initial distribution (Fig. 11a), the result of our EFM method (Fig. 11b) as well as
the PFGM method (Fig. 11c) are presented.

(a) White noise samples from P(x+) which are placed on
the left plate z = 0.

(b) Samples from our approximation of Q(x−) located
on the right plate z = 500.

(c) Samples from PFGM’s approximation of Q(x−) sim-
ulated from hemisphere with the learned field.

Figure 12. Noise-to-Image generation. Pictures from the initial distribution (Fig. 12a), the result of our EFM method (Fig. 12b) as well as
the PFGM method (Fig. 12c) are presented.

accurately translate the shape and color of the initial digits 3.
In Appendix D, we demonstrate the results of the translation
obtained with several other relevant methods.

4.3. Image Generation Experiments

MNIST. We also consider the task of generating 32 × 32
full colored digits from the MNIST dataset. For this task,
we place white noise on the left hyperplane z = 0 and
colored digits on the right plate z = 30. After learning the
electric field between the plates, we demonstrate mapping to
the target distribution Q(x−) in Fig. 11b. We qualitatively
see that even using only forward lines allows to recovers
the target distribution Q(x−) of colored digits well. The
sampling trajectories for our EFM are shown in Fig. 9.

CIFAR-10. The experiment with qualitative comparisons
on more complex CIFAR-10 data is presented in Fig.12b.
We place the white noise on the left plate z = 0, while
images are placed on the right plate z = 500.

For completeness and comparison, we show the results of
generation of (Xu et al., 2022, PFGM) which is also based
on the electrostatic theory, see Fig.11c and Fig.12c.

5. Limitations
Our EFM method has several limitations which open promis-
ing avenues for future work and improvements.

Influence of dimensionality. In high dimensions, our algo-
rithm may need to operate with small values. Specifically,
the multiplier 1/||x − x′||D in the electric field formula
(9) can produce values comparable to machine precision as
D increases. As a result, the training of our method may
become less stable. Note that the same holds for PFGM.

The impact of interplate distance L on the field. The
larger the interplate distance L is, the more curved and dis-
perse the electric field lines become, see, e.g., Fig. 8b. With
an increase of the distance the electric field has to be ac-
curately learned in a larger volume between the plates. A

8
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careful selection of the hyperparameter L may be impor-
tant when applying our method. Further discussion of the
choice of parameter L can be found in Appendix C.1.

Defining the optimal training volume. Our training ap-
proach involves sampling points x̃+ and x̃− from the dis-
tributions, interpolating them with (20) and noising them
with (21). This allows us to consider an intermediate point x̃
between the plates (20) to learn the electrostatic field. There
may exist more clever schemes to choose such points, see
Appendix C.4. It is a promising question of further research.

The problem of lines going beyond z ∈ (0, L). Modeling
the movement along the electric field lines, e.g., forward
stochastic map TF in (16), theoretically requires considering
the lines which cross the boundary z = L. However, in
practice, we ignore this requirement and stop when z =
L, which may lead to incorrect learning of the target data
distribution. We discuss it in Appendix C.2.

Backward-oriented field lines. Each plate emits two dis-
tinct field line sets: forward-oriented and backward-oriented
trajectories. Our practical implementation exclusively uti-
lizes forward-oriented lines due to their reduced training
volume requirements. Nevertheless, backward-oriented tra-
jectories remain theoretically significant, particularly for
ensuring complete support coverage of Q(x−), see Ap-
pendix C.3.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. Properties of D-dimensional electric field lines
In this auxiliary section, we formulate and prove the basic properties of electric field lines in D-dimensions.

Definition A.1 (The flux of the electric field). The flux of the electric field E through an area dS is called dΦ = E · dS. The
flux through a finite surface Σ is defined as an integral:

Φ =

∫
Σ

dΦ =
x

Σ

E · dS. (24)

Definition A.2 (The stream surface, Fig.13). Consider a closed piecewise smooth curve Γ placed in an electric field.
Consider field line passes through each point of this contour. The set of these lines is called a stream surface (tube).

Figure 13. The electric field flux through an arbitrary stream tube.

Lemma A.3 (Conservation of the field flux.). The electric field flux is conserved along a stream surface if there are no
charges inside that surface.

Proof. Consider an arbitrary stream tube (Fig. 13). Let us cut this tube by two arbitrary piecewise smooth cross sections.
As a result, we obtain a closed surface. Let us denote the flow through the side cross sections by Φ1 and Φ2, respectively.
Note that the normal for closed surfaces is directed outwards. Near the right end of the tube, the normal and the electric field
are co-directional, and near the left boundary, they have opposite directions. Therefore, Φ1 = −Φ′

1. We have to prove that
Φ′

1 = Φ2. The full flux is a sum of fluxes through the ends of the tube and through its lateral surface:

Φfull = Φ1 +Φ2 +Φlat. (25)

By the definition of a stream tube, the flux through the lateral surface must be zero: Φlat = 0, because the field E and the
normal to the lateral surface are orthogonal. Thus, Φfull = Φ1 +Φ2 = Φ2 − Φ′

1. From Gauss’s theorem (6), we derive:

Φfull =
x

∂M

E · dS =

∫
M

q(x)dx = 0. (26)

It follows that Φ′
1 = Φ2.

Corollary A.4 (Impossibility of line termination in empty space). An electric field line cannot terminate in empty space.

Proof. Otherwise, the field flux inside the current tube surrounding the termination point will not be conserved. Intuitively,
near a given point the field will enter, but will not exit, which is impossible in a region with a zero charge density.

Lemma A.5 (The electric field flux from a point charge.). Let us assume that a surface Σ is seen at a solid angle6 Ω from a
point charge q0 (Fig. 14). The electric field flux through this surface is equal to:

6By definition, the solid angle Ω at which the given surface Σ is visible from a given point Q is equal to the area of the projection of this
surface Σ onto the unit sphere centered at this point. Mathematically, the solid angle element in RD is defined as dΩD = r·dS

rD
= dS⊥

rD−1 ,
where r ∈ RD is a vector drawn from Q to the considered point on surface Σ, r = ||r|| , dS⊥ = dS cosα = dS · r

r
.

11
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Figure 14. The field flux of a point charge q0 through an arbitrary surface Σ seen at solid angle Ω.

Φ =
q0Ω

SD−1
. (27)

Proof. Divide Σ into small surface elements dS. The total flux is the integral over the entire surface, Φ =
∫
Σ
dΦ. By

definition of flux (Definition A.1), and according to (8) we have:

dΦ = E · dS = EdS cosα = EdS⊥ =
q0

SD−1

dS⊥

rD−1
=

q0dΩ

SD−1
, (28)

where α is the angle between E and dS, dS⊥ = dS cosα. Then after integration over the solid angle, we obtain (27).

Lemma A.6 (Electric field lines start and end points). Let an electrically neutral system,
∫
q(x)dx = 0, be bounded in

space, i.e., q(x) has compact support. Then the electric field lines must begin at positive charges and end at negative charges,
except perhaps for the number of lines of zero measure.

Proof. Let us denote the diameter of the system by ℓ = maxx,x′∈supp(q)(||x− x′||). Consider our system at a large distance
L≫ ℓ. Let the small parameter ξ = ℓ/L≪ 1 characterize this distance. We use the multipole decomposition of an electric
field (Landau & Lifshitz, 1971, M40-41):

E|r→L = E(0) + E(1) + ... = Epoint +O

(
ξ

LD−2

)
. (29)

Multipole decomposition is a representation of an electric field as a sum of contributions from point sources of different
multipoles, monopole E(0) = Epoint, dipole E(1), quadrupole E(2), etc. It allows describing the field at large distances from
the system, simplifying the calculations by neglecting the contributions of higher multipoles. In our problem, the multipole
decomposition shows that the field at a large distance from the system looks as a field of a point charge located at the origin.
All other contributions can be neglected. And therefore, in the limiting case ξ → 0, L→∞ the formula (27) can be used.
Since there is no limit on the increase of L, one can achieve an approximation accuracy as high as one needs.

Then Φ =
∫

E · dS = QΩ/SD−1 = 0, where Q =
∫
q(x)dx = 0 is the total charge. Hence,

∫
E · dS = 0 when ||r|| = L→∞. (30)

Suppose a non-measure-zero set of field lines escapes to infinity. These lines would generate flux Φ ̸= 0 in contradiction to
Φ = 0. Thus, all field lines originate at positive charges and terminate at negative ones, except for a set of measure zero.

Lemma A.7 (The absence of electric field closed loops). Electric field lines cannot form closed loops (as in Fig. 15).

12
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Figure 15. Closed loop of an electric field line. This situation is impossible due to the circulation theorem.

Proof. Assume that there exists a closed loop ℓ. Then along this loop
∮
ℓ

E · dl > 0. At the same time, by virtue of the
circulation theorem (7)

∮
ℓ

E · dl = 0. Since the two expressions contradict to each other there can be no such thing.

B. Proof of Electrostatic Field Matching theorem
In this section, we prove several auxiliary lemmas, and then move on to the main theorem. Let P(·), Q(·) be two
D-dimensional data distributions having a compact support, located on the planes z = 0 and z = L in RD+1, respectively.

Lemma B.1 (On the relation between distribution and field values). For any point in the support of distribution P(·):

E+
z (x̃)− E−

z (x̃) = P(x̃). (31)

Proof. Consider an infinitesimal volume dS is the support of P. Consider a closed surface, a cylinder with infinitesimal
indentation in different directions in the plane z = 0, see Fig. 16.

Figure 16. The considered area.

The flux through this surface consists of three summands: dΦ+, the flux in the positive direction of the z-axis; dΦ−, the flux
in the negative direction of the z-axis; and dΦlat, the flux through the lateral surface:

dΦfull = dΦ+ + dΦ− + dΦlat = E+
z dS − E−

z dS + 0. (32)

Here dΦlat = 0 since the height of the cylinder under consideration can be made as small as one wants (infinitesimal of
higher order than dS). dΦ− = −E−

z dS has a negative sign due to the fact that the normal to the closed surface is directed
outward, i.e. in the opposite direction from the axis z. Then, due to the Gauss’s theorem (6):

dΦfull = (E+
z − E−

z )dS = PdS (33)

which proves the lemma.
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Let {x̃qi}ni=1 be a sample of points distributed over P. Let dn be the number of points from the sample that fall in the
volume dS in the support of P. Then dn = dnF + dnB , where dnF is the number of points in dS that correspond to the
mapping TF (that is, the movement along forward oriented lines; see (17)), and dnB corresponds to TB .

Lemma B.2 (First lemma on the flow). Let the field near the element dS have different signs on different sides: E+
z > 0

and E−
z < 0. Then:

dnF

n

a.s.−−−−→
n→∞

E+
z dS = dΦF ,

dnB

n

a.s.−−−−→
n→∞

|E−
z |dS = dΦB ,

(34)

where
(
...

a.s.−−−−→
n→∞

...
)

denotes the almost sure convergence, and dΦF,B denotes the electric field flux near the plate surface
in the forward and backward directions.

Proof. According to the multiplication rule of probability and the law of large numbers:

dnF

n

a.s.−−−−→
n→∞

(probability of choosing TF ) · (probability of falling in dS) =

= µ(x̃) · P(x̃)dS =
E+

z

E+
z + |E−

z |
· (E+

z + |E−
z |)dS = E+

z dS = dΦF .
(35)

In the second equality, the definitions of probability µ(·), see (18), and Lemma B.1 were used. The case dnB is proved
similarly.

Lemma B.3 (Second lemma on the flow). Let P,Q, {x̃qi}ni=1, dS, dn have the same meaning as in Lemma B.2. Let E+
z and

E−
z have the same sign near dS (i.e. E±

z > 0). Then

dn

n

a.s.−−−−→
n→∞

dΦafter − dΦbefore, (36)

where dΦbefore is the field flux through the current tube supported on dS immediately before crossing the plane dS ∈
suppP(·), and dΦafter is the flux after crossing.

Proof. By the probability product theorem, the strong law of large numbers, Lemma B.1, and the definition of flux:

dn

n
→ µ(x)P(x)dS = 1 · P(x)dS = (E+

z − E−
z )dS = dΦafter − dΦbefore. (37)

Remark. This statement implies that when the field crosses the plane P containing a charge (proportional to dn/n), the
field flux must increase by dn/n.

Lemmas B.2 and B.3 address the behavior near the distribution P. Similar statements are valid for the behavior near Q.
When moving along field lines, we eventually reach the plane z = L. At this point two different scenarios may occur:

1. E+
z (L) and E−

z (L) have opposite signs. Then the field line motion terminates in this case.

2. E+
z (L) and E−

z (L) have the same sign. Then some number dn′ of lines inside current tube (corresponding to sample
{x+

i }ni=1 ∼ P) must terminate, while others continue moving.

This portion dn′ can be found from the line termination property in Q.

Lemma B.4 (Line Termination). If E+
z (L) and E−

z (L) have the same sign upon crossing z = L, the number of lines
terminating on z = L satisfies:

dn′

n
→ −dΦafter + dΦbefore, (38)
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Remark. When the field crosses the plane Q containing a charge (proportional to dn′/n), the field flux must decrease by
dn′/n.

Proof. Consider the current tube before it intersects the plane z = L. Let us denote the number of lines inside dnbefore. As a
result of the intersection z = L, some of the lines dn′ stop moving, while some of the lines dnafter continue moving. In view
of the first Lemma B.2 on flow, as well as the conservation of flow inside the current tube (Lemma A.3):

dnbefore

n

a.s.−−−−→
n→∞

dΦbefore. (39)

Then, by virtue of the law of large numbers and the fact that dnbefore = dn′ + dnafter, we have:

dn′

n

a.s.−−−−→
n→∞

(probability of termination) · dnbefore

n

a.s.−−−−→
n→∞

ν(x−) · dΦbefore

E−
z − E+

z

E−
z

· E−
z dS′ = (E−

z − E+
z )dS′ = −dΦafter + dΦbefore

(40)

We now proceed to prove the main theorem.

Theorem B.5 (Electrostatic Field Matching). Let P(x+) and Q(x−) be two data distributions that have compact support.
Let x+ be distributed as P(x+). Then x− = T (x+) is distributed as Q(x−) almost surely:

If x+ ∼ P(x+)⇒ T (x+) = x− ∼ Q(x−). (41)

Proof. 1. Let {x+
i }ni=1 be a sample of points distributed according to P(·). Applying the mapping T (·), we obtain the

corresponding points on the target distribution: {x−
i }ni=1 = {T (x+

i )}ni=1.

2. Consider a D-dimensional area element dS′ on Q(·). Let dn′ denote the number of points x−
i within this region. We

define the empirical distribution:

Q̂n(x
−)dS′ =

dn′

n
. (42)

Our goal is to prove:

Q̂n(·)
almost surely−−−−−−−→

n→∞
Q(·). (43)

3. The dn′ points arrive at Q(·) through two pathways (Fig. 17), forward-oriented (dn′
F ) and backward-oriented (dn′

B)
trajectories:

dn′ = dn′
F + dn′

B . (44)

4. Consider the current tube terminating at dS′ corresponding to forward-oriented arrivals (dn′
F ). Since P(·) and Q(·)

have compact supports and the total charge related to the system of the two plates is zero, by Lemma A.6, these tubes
must start from P(·) almost surely.

5. During the motion against field lines from Q to P, multiple crossings of z = 0 and/or z = L may occur (N = 0, 1 or 2,
see Fig. 18). Denote the intersection points:

x− = x0 → x1 → · · · → xN → xN+1 = x+. (45)

Their corresponding area elements are

dS′ = dS0 → dS1 → · · · → dSN → dSN+1 = dS. (46)

Point counts in these areas read
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Figure 17. An element of volume dS′ is selected on the distribution Q(·). dn′ is the number of points x−
i falling into this volume. Some

points came to the distribution Q(·) from the front (denote them by dn′
F ), and some came from the back (dn′

B).

Figure 18. Intersection points.

dn′ = dn0 → dn1 → · · · → dnN → dnN+1 = dn, (47)

where dni is number of points x+
i ∈ supp P (or T (x+

i ) ∈ supp Q) inside the volume dSi.

6. The dni are not arbitrary but related by flux conservation. Only the charged planes (z = 0 or z = L) can alter the
count:

• At zi = 0: Line count increases by dni.
• At zi = L: Line count decreases by dni.

It can be written mathematically as:
N+1∑
i=0

(−1)fidni = 0, (48)

where

fi =

{
0 if zi = 0,

1 if zi = L.
(49)

7. Due to the first Lemma on flow B.2:

dnN+1

n
≡ dn

n

a.s.−−−−→
n→∞

dΦN+1 ≡ dΦ, (50)
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8. Due to the second Lemma on the flow B.3, and because of the line termination Lemma B.4:

(−1)fi · dni

n

a.s.−−−−→
n→∞

dΦafter,i − dΦbefore,i. (51)

9. According to the law of conservation of flux along the tube (Lemma A.3) from xi to xi−1:

dΦafter,i = dΦbefore,i−1. (52)

10. Whence we obtain a chain of equalities:

0 =

N+1∑
i=0

(−1)fidni = −
dn′

F

n
+ (−1)f1 dn1

n
+ ...+ (−1)fN dnN

n
+

dn

n
⇒

dn′
F

n
= (−1)f1 dn1

n
+ ...+ (−1)fN dnN

n
+

dn

n

a.s.−−−−→
n→∞

a.s.−−−−→
n→∞

−dΦafter,1 − dΦbefore,1 + ...+ dΦafter,N − dΦbefore,N + dΦN+1 =

= dΦafter,1 + 0 + ...+ 0 = dΦ′
F .

(53)

Consequently,

dn′
F

n

a.s.−−−−→
n→∞

dΦ′
F . (54)

Note that this property is not obvious in general, since the points dn′ are obtained by applying the mapping T (·) to a
certain sample of points, while the flux dΦ′ is determined by the true value of the field, which is defined by the entire
distribution of charges P and Q.

Similarly, it can be proven that
dn′

B

n

a.s.−−−−→
n→∞

dΦ′
B . (55)

11. Then, by virtue of the Gauss’s theorem (6), we finally have

Q̂ndS
′ =

dn′

n
=

dn′
F

n
+

dn′
B

n

a.s.−−−−→
n→∞

dΦ′
F

Φ0
+

dΦ′
B

Φ0
= QdS. (56)

This completes the proof.

C. Extended discussion of limitations
C.1. The problem of choosing the hyperparameter L

The interplate distance L between the left and right plates of the capacitor is the key tuning hyperparameter that influences
the performance. In the M4.1, we provide an experiment on Swiss roll dataset that demonstrates the impact of L on
the performance (Fig. 8). With neural-network-based approaches, the electric field becomes less recoverable as the
hyperparameter increases as, informally speaking, the required training volume also grows.

We also carry out another example of the influence of the hyperparameter L in noise-to-image generation CIFAR-10
experiment (Fig. 19). It can be seen that increasing L up to the value of 5000 leads to a significant decrease in the generation
quality. At the same time, no significant differences are observed for the average values of L = 50, 500. The theoretical
ideal L⋆ that minimizes the approximation error remains unknown and represents an important direction for future work.
Hovewer, usually we choose L of an order comparable to the standard deviation of the data distributions.
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(a) L = 50 (b) L = 500 (c) L = 5000

Figure 19. The influence of the interplate distance L on the performance of the Noise-to-Image generation of CIFAR-10 dataset. Pictures
EFM method with L = 50 (Fig. 19a), L = 500 (Fig. 19b) as well as L = 5000 (Fig. 19c) are presented.

C.2. The problem of lines going beyond z = L

When moving from P to Q along the field lines, we eventually reach the plane z = L. Two different scenarios may occur:

1. E+
z (L) and E−

z (L) have opposite signs. The field line motion terminates in this case.

2. E+
z (L) and E−

z (L) have the same sign. Then, the movement should end at this point with probability ν(x−), and with
probability 1− ν(x−), the movement should continue (recall (15)).

Overall, one needs a stochastic choice for terminating and/or continuing the movement. To make this choice, it is necessary
to calculate the value of the field E±

z (L) to the left and right of the plate z = L at the point of interest and calculate ν(x−).

Suppose that the situation of continuing movement is realized. This motion should be performed by integrating dx(t) = Edt
until the line is on the target distribution again. Note that such a motion should indeed end on the distribution Q (Lemma
A.6), and also that further movement is impossible (since E+

z (L) < 0, and between plates z ∈ (0, L) always Ez > 0, in
particular E−

z (L) > 0, i.e., the first situation is realized). An example of considered problem is shown in Fig. 20. Note
that in practice, the field is calculated from a sample of data (rather than from a continuous distribution), so it is difficult to
calculate E±

z accurately.

Figure 20. A toy experiment Gaussian into two Gaussians. The two Gaussians are significantly separated from each other, so a large
number of lines flying out of the region z = L is observed. Further integration along the field lines still leads to a target distribution.

C.3. Backward-oriented field lines

Transport between plates can occur via two distinct trajectory classes (Fig. 21a):

• Forward-oriented trajectories (red lines): Initial motion directed toward the target plate

• Backward-oriented trajectories (black lines): Initial motion receding from the target plate
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Note that due to the Lemma A.6, both series must end at the second distribution. The difference between the two series is
the greater curvature of the backward-oriented series compared to the forward-oriented one. From a practical point of view,
using backward-oriented series is less useful than forward-oriented. This is due not only to the curvature of the lines, but
also to the significantly larger training volume (Vbackward shaded in black in the figure is much larger than red Vforward).

We also note another feature related to the training volume. In Fig. 21a, we can see that lines starting at the periphery of the
data distribution are particularly curved, and may partially leave the training volume (points A,B,C,D,E, F,G,H).

(a) Two series of field lines: Forward-directed (red lines),
and backward-directed (blue lines). Blue lines require much
larger training volume Vbackward than red lines, which take up
Vforward. The figure also shows the field lines starting from
the peripheral distribution points that can leave the training
volume (points A,B,C,D,E, F,G,H).

(b) Two series of field lines: forward-directed (red lines), and
backward-directed (blue lines). It can be seen that forward-
oriented (red) lines starting at the P(·) distribution may not
completely cover the target Q(·) distribution.

Figure 21. An illustration of forward-oriented and backward-oriented lines.

When source (P) and target (Q) distributions exhibit significant mean shifts (µP ̸= µQ), the number of forward-oriented lines
extending beyond the z = L boundary can be quite large. In such a situation, there appears a region on the second distribution
that is not covered by forward-oriented lines (in Fig. 21b red lines do not completely cover the second distribution).

C.4. Training Volume Selection

Our electrostatic framework allows flexible training volume definitions between plates. The (20) formula is not the only
possible training volume option (different from the flow matching, which uses this particular interpolant for loss construction).
In Fig. 22 a comparison of the two approaches is shown:

• Linear interpolation between P and Q samples using (20)

• Uniform cube mesh between plates.

Figure 22 showcases the equivalent performance for both approaches in Gaussian-to-Swiss-roll transport.

D. Experimental details
We aggregate the hyper-parameters of our Algorithm 1 for different experiments in the Table 1. We base our code for the
experiments on PFGM’s code https://github.com/Newbeeer/Poisson_flow.
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(a) Training volume for our EFM method that is defined by
interpolation from (20).

(b) Training volume for our EFM method that is defined by
uniform cube mesh between plates.

(c) The learned trajectories of our EFM with training volume
defined in 20.

(d) The learned trajectories of our EFM with training volume
defined by the cube mesh.

Figure 22. Learned trajectories of our EFM method with different training volumes on Gaussian-to-Swiss roll experiment.

Toy experiments. In the 2D illustrative example (§4.1), we make the inference by constructing the ODE Euler solver for the
equation 11 with the iterative scheme (see Alg.2)

Image data experiments. In the case of the Image experiments (§4.2 and §4.3), we use the RK45 ODE
solver provided by https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.
RK45.html for the inference process with the hyper-parameters rtol=1e-4 , atol=1e-4 and number of steps (NFE) equals
to 100. Also, we use Exponential Moving Averaging (EMA) technique with the ema rate decay equals to 0.99 . As for the
optimization procedure, we use Adam optimizer (Kingma & Ba, 2015) with the learning rate λ = 2e− 4 and weight decay
equals to 1e-4.

Evaluation of the training time for our solver on the image’s experiments (see §4.2 and §4.3)takes less than 10 hours on a
single GPU GTX 1080ti (11 GB VRAM).

Experiment D Batch Size L NFE,Num Steps λ,LR Weight Decay σ
Gaussian Swiss-roll 2 1024 6 20 2e-3 0. 0.001
Colored MNIST Translation (3→2) 3072 64 10 100 2e-4 1e-4 0.01
Colored MNIST Generation 3072 64 30 100 2e-4 1e-4 0.01
CIFAR-10 Generation 3072 64 500 100 2e-4 1e-4 0.05

Table 1. Hyper-parameters of Algorithm 1 for different experiments, where D is the dimensionality of task, L is the distance betwenn plates and σ is used for the definition

points between plates (see §3.3).
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Baselines. We use the source code https://github.com/Newbeeer/pfgmpp for running PFGM in our ex-
periments. We found the following values of hyper parameters are appropriate for us: γ = 5, t = 0.3, ε =
1e − 3, see (Xu et al., 2022) for details. Also, we utilize the source code of Flow Matching (FM) from the
github page https://github.com/atong01/conditional-flow-matching/tree/main for experiments
in §4.2. We also add extra baselines: Cycle-GAN from the github page https://github.com/junyanz/
pytorch-CycleGAN-and-pix2pix, DDIB from https://github.com/suxuann/ddib and DSBM from
https://github.com/yuyang-shi/dsbm-pytorch. Their results are shown in Figure 23.

(a) Samples from Cycle-GAN approximation of Q(x−) (b) Samples from DDIB approximation of Q(x−) (c) Samples from DSBM approximation of Q(x−)

Figure 23. Image-to-Image translation experiment (Colored MNIST dataset, 3 → 2). The results of alternative translation methods:
Cycle-GAN (Zhu et al., 2017), DDIB (Su et al., 2023) and DSBM (De Bortoli et al., 2024)
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