
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CHINATRAVEL: A REAL-WORLD BENCHMARK FOR
LANGUAGE AGENTS IN CHINESE TRAVEL PLANNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in Large Language Models (LLMs), particularly in language rea-
soning and tool-use capabilities have sparked the rapid development of Language
Agents to assist humans across various real-world applications. Among these,
travel planning stands out as a significant domain, presenting both academic chal-
lenges and practical value due to its inherent complexity and real-world relevance.
However, existing travel plan benchmarks do not test language agents with human
users or their ability to follow customized requirements, both of which are vital
for deploying them in real-world applications. In this paper, we propose China-
Travel, a new benchmark tailored to authentic Chinese travel requirements, aiming
to provide a more realistic evaluation framework for future language agents. We
collect the travel requirements through questionnaires and employ an efficient and
faithful evaluation process with 46 metrics covering feasibility, constraint satis-
faction, and preference comparison. Moreover, we identify three challenges in the
real-world deployments of travel planning, including constraint recognition, con-
cept openness, and customized preference. The empirical studies show that even
state-of-the-art neural-symbolic agents succeed in 51.3% constraint validation of
human queries. Our findings point to the need for methods that can improve the
ability of agents to understand diverse intentions or keep track of constraints with
emerging concepts from human requirements.

1 INTRODUCTION

A long-standing goal in AI is to build planning agents that are reliable and general, able to as-
sist humans in real-world environments. Recently, Large Language Models (LLMs) (Brown et al.,
2020; Ouyang et al., 2022; Achiam et al., 2023) have demonstrated remarkable potential in achiev-
ing human-level understanding and planning capabilities. This has sparked the rapid development
of a field called Language Agents, employing LLMs to perceive the surroundings, reason the solu-
tions, and take appropriate actions, ultimately building an autonomous planning agent (Shinn et al.,
2024; Yao et al., 2023; Xi et al., 2023). Equipping LLMs born from web-scale corpora, language
agents demonstrate a proficient ability to understand general natural language instructions and col-
lect domain-specific information via tools (Yao et al., 2022; Xie et al., 2023; Jimenez et al., 2024).
It alleviates the need for intensive domain-specific goal definition and model deployment with tra-
ditional rule-based or reinforcement-learning-based agents, showing few-shot generalization across
various domains. This presents a solid step toward the goal of building general artificial intelligence.

Travel planning stands out as a significant domain, presenting both academic challenges and prac-
tical value due to its inherent complexity and real-world relevance. However, LLMs are still not
able to accurately solve complex combinatorial optimization problems and tend to provide infeasi-
ble plans in travel planning. In a recently proposed U.S. domestic benchmark TravelPlanner (Xie
et al., 2024) with intercity itinerary planning, the advanced LLM, GPT-4, only achieves a success
rate of 0.6%. This result is disappointing and might make one pessimistic about the capabilities
of Language Agents in travel planning. However, a few months later, Hao et al. (2024) introduced
a neural-symbolic solution, which incorporates formal verification tools into language agents and
achieved a 97% success rate on the LLM-synthesized from TravelPlanner benchmark. This progress
has dual implications. On one hand, it leads to optimism regarding the potential of Neuro-symbolic
Language Agents. On the other hand, it prompts further inquiry into the practical applicability of
these solutions in addressing real-world travel requirements.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

I am in Shanghai now and

would like to go to Beijing for

2 days, visit some museums,

and taste some Beijing cuisine.

My budget is 5,000 yuan and

I hope to visit as many

attractions as possible. Please

give me a travel plan.User

Agent

GPT DeepSeek GLM

…

FlightSearch() TrainSearch()

AttractionSearch() RestaurantSearch()

AccommodationSearch() RouteSearch()

Tool Use Information

Itinerary PlanPlanning

[1] visit some museums…

There are some museums in Beijing:

 - The Palace Museum

 - National Museum of China

 - Beijing Capital Museum

 …

[2] taste some Beijing cuisine…

There are some restaurants:

 - Dadong Duck

 - Siji Minfu

 - Xiaodiao Litang

 …

[4] visit as many attractions as possible

- select adjacent attractions

- choose convenient transportation

…

[3] budget is 5000 yuan…

The cross-city transportation costs

about 1,500, and the accommodation

costs about 500, leaving me with a

budget of about 3,000.

- The budget is sufficient to try

different foods

[Day 1, Activity 1]

Train, G104, 06:27 → 13:12, cost: 693

Shanghai Hongqiao Railway Station

→ Beijingnan Railway Station

[Day 1, Activity 2]

The Palace Museum, 14:00 → 17:30

Transports: Metro, Beijingnan Railway

Station→ The Palace Museum, cost 3,

13:15 → 13:50, walking: 1.5km

[Day 1, Activity 3]

Siji Minfu, 17:45 → 18:45, cost 180,

Transports: Walking, The Palace

Museum → Siji Minfu, cost 0,

17:30 → 17:45, walking: 0.8km

[Day 1, Activity 4]

Wangfujing Street, 17:45 → 18:45,

Transports: Taxi, The Palace Museum

→ Wangfujing Street, cost 16,

17:30 → 17:45,

…

[Day 1, Activity 6]

Beijing XX hotel, room: 1, cost: 580

Transports: …

[Day 2, Activity 1]

Chenji century-old Luzhu, 08:10 →

08:40, cost: 32

Transports: Walking, Beijing XX hotel
→ Chenji century-old Luzhu, 0.4km

08:00 → 08:06

[Day 2, Activity 2]

National Museum of China, 09:15 →

11:45, cost: 0

Transports: Metro, Chenji century-old

Luzhu → National Museum of China,

cost 3, 08:40 → 09:15, walking: 1.2km

…

[Day 2, Activity 4]

Beijing Capital Museum

…

[Day 2, Activity 5]

Train, G153, 16:30 → 22:27, cost: 576

Beijingnan Railway Station→Shanghai

Hongqiao Railway Station

Transports: Metro, Beijing Capital

Museum → Beijingnan Railway Station,

cost: 4, 15:30 → 16:02, walking: 0.8km

Figure 1: Overview of ChinaTravel. Given a query, language agents employ various search tools to
gather information and plan a multi-day multi-POI itinerary. The language agents are expected to
provide a feasible and reasonable plan while simultaneously satisfying the hard logical constraints
and soft preference requirements. To provide convenience for global researchers, we provide an
English translation of the original Chinese information here.

In this work, we introduce ChinaTravel, tailored to authentic Chinese travel requirements, providing
a more practical evaluation framework within diverse travel requirements. ChinaTravel concentrates
on multi-point-of-interest (multi-POI) itineraries within specified cities (as illustrated in Figure 1),
which are in higher demand compared to the intercity itineraries provided by TravelPlanner. China-
Travel is built in a modular framework with (1) a rich sandbox environment with Chinese travel in-
formation, (2) diverse evaluation metrics covering feasibility, constraint satisfaction, and preference
comparison, and (3) realistic travel requirements contain both LLM-synthetic and human question-
naire queries. We constructed ChinaTravel in five stages, including manual schema and API design,
LLM-assisted generation of data entries, manual quality control, data collection from human users
with open requirements, and preference data construction. Our evaluation pipeline automatically
verifies the provided plans with the requirements annotations. An additional subset with rich travel
preferences is constructed to provide an evaluation for future language agents. Moreover, we identify
three challenges in the real-world deployments of travel planning, including constraint recognition,
concept openness, and customized preference. The empirical studies show that even state-of-the-art
neural-symbolic agents succeed in 51.3% constraint validation of the human queries. Our findings
point to the need for methods that can improve the ability of agents to understand diverse intentions
or keep track of constraints with emerging requirements from humans.

2 RELATED WORK

Large Language Model based Agents have demonstrated significant capability in understanding
complex instructions and employing domain-specific tools to complete tasks, showcasing their po-
tential in fields such as visual reasoning (Gupta & Kembhavi, 2023), healthcare (Zhang et al., 2023)
and robotics (Liu et al., 2024b). This reduces the reliance of previous agents on domain-specific
efforts, that is, either mainly following domain-specific rules to plan (rule-based agents, such as
DeepBlue (Campbell et al., 2002) and Eliza (Sharma et al., 2017)) or mainly learning from domain-
specific data to plan (reinforcement-learning-based agents, such as AlphaGo (Silver et al., 2017) and
Atari DQN (Mnih et al., 2013)). While the language agents have shown promising results in some
domains, most of their planning scenarios are limited to simple tasks with single objective function
and fail in the travel planning benchmark with complex logical constraints on the results.

Neuro-Symbolic Learning explores to combine traditional symbolic reasoning with learning to
enhance the reliability (Manhaeve et al., 2018; Wang et al., 2019; Dai et al., 2019). In the era of large
language models, Pan et al. (2023) presents the LogicLM integrates LLMs with separate symbolic

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Beijing

Chengdu

Chongqing

Guangzhou

Hangzhou

Nanjing

Shanghai

Shenzhen

Suzhou

Wuhan

Attraction

Accommodation

Restaurant

Metro

Attraction

Accommodation

Restaurant

Metro

Figure 2: Overview of ChinaTravel sandbox environment. Our sandbox involves travel information
from 10 of the most popular cities in China. ChinaTravel provides rich information about the attrac-
tions, accommodations, and restaurants that need to be involved in travel. Here is the visualization
of information from Beijing and Nanjing.

solvers for various logical reasoning tasks. They first utilize LLMs to translate a natural language
problem into a symbolic formulation. Afterward, a deterministic symbolic solver performs inference
on the formulated problem to ensure the correctness of the results. Deng et al. (2024) supplement
LogicLM with a Self-Refinement Module to enhance the reliability of LLM translation. In the travel
planning domain, Hao et al. (2024) presents a framework with a similar pipeline. It first extracts the
logical constraints from natural language queries and then formalizes them into SMT code. Thanks
to SMT solvers being sound and complete, this neural-symbolic solution guarantees the generated
plans are correct and has basically solved the TravelPlanner benchmark (achieved a 97% pass rate).

Travel Planning is a time-consuming task even for humans, encompassing travel-related informa-
tion gathering, POI selection, route mapping, and customization to meet diverse user needs (Halder
et al., 2024). Natural languages are one of the most common ways for users to express their travel re-
quirements. However, the ambiguity and complexity of travel requirements make it still challenging
for LLMs to generate accurate and reliable travel plans. Xie et al. (2024) presents the TravelPlanner
benchmark for cross-city travel planning and reveals the inadequacies of pure-LLM-driven agents.
TravelPlanner generates user queries through LLMs and provides a rigorous evaluation mechanism
to verify whether the provided plans can meet the logical constraints in the queries. It has become
a pivotal benchmark for language agents in real-world travel planning. Tang et al. (2024) study
the open-domain urban itinerary planning where a single-day multi-POI plan is required. They
integrates spatial optimization with large language models and present a system ITTNERA, to pro-
vide customized urban itineraries based on user needs. A concurrent work, TravelAgent (Chen
et al., 2024), also considers a multi-day multi-POI travel planning problem for the specified city. It
constructs an LLM-powered system to provide personalized plans. However, due to the high cost
of collecting and annotating real travel needs, they evaluate the proposed TravelAgent in only 20
queries. This also demonstrates the necessity of introducing a new benchmark for travel planning.

3 CHINATRAVEL BENCHMARK

Motivated by the significant travel demand in China, this benchmark offers a sandbox environment
for generating multi-day, multi-POI itineraries for specified cities. It includes arrangements for
attractions, restaurants, accommodations, and transportation between events, aiming to advance the
practice of language agents solutions for real-world travel planning.

ChinaTravel comprises 46 diverse evaluation metrics, including 23 environment constraints, 10 hard
logical constraints, and 13 preference requirements, which are summarized in the Table 1. Through
manual annotation and formalized code construction, we have built an automated evaluation pipeline
for these requirements of given natural language queries, enabling developers to effectively evaluate
the capabilities of language agents in addressing real-world challenges.

To evaluate capabilities in real applications, ChinaTravel provides both LLM-synthesized and hu-
man queries. We develop pure-LLM-based and neuro-symbolic language agents using the LLM-
synthesized queries as a validation set. We then test these agents on human queries, creating an
open test environment with real-world dilemmas. The details are provided in the subsection 3.5.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: Descriptions of evaluation for two benchmarks. Constraints in black are common in both
TravelPlanner and ChinaTravel. Metrics in brown are the metrics only in our benchmark.

Evaluation Metrics Description
Environment Constraint

Cross-city Transportation Available Trains or Airplanes across cities.
Correct information of cost and schedule.

Inner-city Transportation Available Metro, Taxi or Walking between different positions.
Correct information of cost, distance and duration

Attractions Available Attractions in the target city, visiting in their open time.
Attraction choices should not be repeated throughout the trip.
Correct information of cost.

Restaurants Available Restruants in the target city, visiting in their open time.
Restaurant choices should not be repeated throughout the trip.
Breakfast, lunch, and dinner are served at their designated meal times.
Correct information of cost.

Accommodation Available Accommodation in the target city.
Room information to meet headcounts.

Time The given activity events occur in chronological order.
Space Events at different positions should provide transport information.

Logical Constraint

Transportation The required type of transportation.
Attraction The required type or specified attractions.
Restruants The required type or specified restruants.
Accommodation The number of rooms and the room type must meet the requirements.

The required features or specified hotels.
Budget The total cost is within required budget.

Preference Requirement

Transportation Convenient transportation, less walking distance
Attraction More/less cost on attractions, visit more attractions,

visit more attractions with the required type.
Restruants More/less cost on meals.
Accommodation More/less cost on hotel.
Budget Minimize the total budget.
Time Unhurried itinerary.
Space Schedule the activitiess close to the required position.

3.1 ENVIRONMENT INORMATION

ChinaTravel provides a sandbox with real-world travel information. We collect information from 10
of the most popular cities in China, including Beijing, Chengdu, Chongqing, Guangzhou, Hangzhou,
Nanjing, Shanghai, Shenzhen, Suzhou, and Wuhan. There are 720 airplanes and 5770 trains across
these cities. Each record contains departure and arrival times from origin to destination, as well as
the corresponding ticket prices. We also collect information on 3413 attractions, 4655 restaurants,
and 4124 hotels. Each record contains the name, location, opening hours, and the corresponding
price per person. Moreover, there are type annotations for these POIs as information to meet user
needs. Figure 2 has demonstrated the travel information from Beijing and Nanjing, two of the
most popular cities in China. For a more realistic interaction, we simulate the API interface of
real market applications to query real-time information. The detailed designs of the sandbox are
available in Appendix A. The environmental constraints are designed to ensure the reliability of the
results. That is, the POIs visited in the plan must exist in the corresponding city, the transportation
methods provided in the plan must be feasible, and the corresponding time information should also
be reliable. For example, there should indeed be a subway line that can depart from Beijing Capital
International Airport and arrive at the Palace Museum in 80 minutes.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 LOGICAL CONSTRAINT

A crucial ability for agents is to effectively satisfy personalized user needs. We extend the log-
ical constraints from TravelPlanner (Xie et al., 2024) to adapt to the multi-POI itinerary plan-
ning problem. These user needs are termed logical constraints, which could be defined through
logical expressions based on human-defined symbolic concepts. Taking the query in Figure 1
as an example, the user has mentioned “visit the museum”, “taste Beijing cuisine”, and “budget
is 5000 yuan”, the provided plan should satisfy the following logical expressions: museum ∈
attractions type visited (plan), Beijing cuisine ∈ restaurants type visited (plan), and cost(plan) ≤
5000, where these symoblic concpets, attractions type visited, restaurants type visited and cost
could be extracted from the formulated plans (as illustrated in Figure 1). ChinaTravel invloves
16 travel-related symoblic concepts to meet the various user needs. We provide a summary and the
detailed descriptions of these concepts in Table 1.

3.3 PREFERENCE REQUIREMENT

Travel requirements not only include hard logical constraints but also soft preferences. The “soft”
means these requirements cannot be defined as constraint validation on discrete symbolic concepts,
but rather as quantitative comparisons with the related continuous concepts. This makes the eval-
uation of preference requirements different from logical constraints. In ChinaTravel, we define 20
concepts for the 13 preferences to provide a ranking-based evaluation. Specifically, we extract rel-
evant concepts from plans generated by different agents, such as the number of attractions visited,
walking distance, total cost, etc. We then use these statistics to rank the agents, ultimately providing
an automated evaluation mechanism. The detailed concept descriptions are provided in Table 1.

3.4 BENCHMARK CONSTRUCTION

ChinaTravel establishes a travel environment in terms of a rich database, API code, and the users’
queries with personal requirements. The overall benchmark is created in a five-stage approach with
a mix of LLM generation and human survey.

Stage I: Manual design of database schema and APIs. We started collecting travel information
with the motivation of multi-day multi-POI itinerary planning in four aspects: attractions, accom-
modation, activities, and transportation. Developers first determine the POI description information
that needs to be obtained from the user’s perspective, such as cuisine and hotel features. Based on
this feature set, we collect public information to construct the database. For the design of APIs,
we directly support queries based on the regular expressions from agents, which we hope will pro-
mote the use of advanced tools during planning. At the same time, we expect the design of APIs
to have similar features and characteristics to existing commercial APIs, enabling our dataset to be
applicable to more realistic scenarios.

Stage II: Automatic data generation with LLMs. We designed common travel information (ori-
gin, destination, days, number of people) and logical constraints based on the nature of travel tasks.
To facilitate scalable queries for ChinaTravel, we randomly constructed query skeletons from the
aforementioned information and used advanced large language models (e.g. GPT4o) to generate
natural language queries from these skeletons. The automatically generated data is categorized into
two difficulty levels: Easy and Medium. In Easy level, the logical constraints are straightforward,
and the descriptions for the defined concepts in natural language queries align perfectly with these
constraints. At the Medium level, the natural language expressions of logical constraints are more
varied and human-like. For example, the logic ‘Beijing cuisine ∈ restaurants type visited(plan)’
might correspond to the natural language query: ‘I want to try local food in Beijing’. We employ
prompt engineering to guide LLMs in modifying the natural language expressions to achieve auto-
mated generation.

Stage III: Manual quality control and automaticed validation. To ensure data quality, we man-
ually check whether the generated queries conform to symbolic skeletons, and re-calibrate natural
language descriptions that contain ambiguities. Additionally, we calibrate the natural language con-
cept descriptions in Medium to closely align with human questioning habits. Based on the symbolic

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

skeletons, we could verify whether the plan can pass the required logical constraints by executing
the corresponding Python code. Building on this, we ensure that each query has at least one solution
that satisfies the logical constraints by implementing a heuristic search algorithm.

Stage IV: Open requirements from humans. After the first round of closed-loop development
based on LLM-generated queries, including data generation and annotation, baseline development,
and evaluation, we further collected travel requirements from more than 250 humans through ques-
tionnaires. Based on a new round of manual quality control on these open requirements, a more
challenging set with 154 queries is constructed. These queries even include logical constraints on
undefined concepts in the deployment process, such as ‘departure time’ and ‘hot spots’, reflecting
the real challenges of neural-symbolic systems in travel planning. We carefully annotate the re-
quired logical constraints for each query, enabling the automated evaluation of these challenging
samples and forming the Human level dataset. While we have supported the automated testing of
logic constraints with undefined concepts, we hope future researchers avoid making these concepts
transparent when utilizing the Human set, in order to maintain their openness.

Stage V: Preference data construction. Through our investigation of human-annotated queries,
we identified that certain human requirements could not be expressed as hard logic constraints,
such as “minimize cost” and “maximize convenience in transportation.” We classified these as soft
preferences of human needs. To better evaluate the performance of these preferences, we distilled
and summarized preferences found in Human and automatically constructed Preference set of
146 samples using the method in stage II. We provided annotations of these preferences for each
sample and manually cleaned the data to facilitate further research.

To promote global research on travel planning, we provide the English version of all the queries in
the ChinaTravel Benchmark. Despite this, we recommend that researchers mainly use the Chinese
version, which can reflect the needs of native speakers more accurately. As discussed above, this
raises the critical challenges for Language Agents in travel planning.

3.5 KEY CHARACTERISTICS

Arbitrary description for the defined concepts. The success of neural-symbolic solutions relies
on accurate translation from natural languages to human-defined concepts. We find that even for
advanced LLMs, it is still challenging to understand the diverse descriptions of human queries.
The variability in human language, including ambiguous phrasing, context-dependent meanings,
and open-ended expressions, makes it difficult for LLMs to map these descriptions to predefined
concepts. This gap often results in failures when the models attempt to reconcile flexible human
input with pre-defined symbolic structures, hindering their performance in tasks requiring precise
constraint recognition and adherence to user preferences.

Emergence of the undefined concepts. In real-world applications, language agents will encounter
symbolic concepts that were not predefined during development, making it challenging to satisfy the
related constraints. Real-world concepts are dynamic and consistently evolving, making it unrealis-
tic to rely on a closed concept library to handle open-world demands. Therefore, neural-symbolic
language agents must learn to recognize and adapt to new concepts as they emerge in an open-world
environment, expanding their symbolic knowledge base to ensure scalability and robustness.

Diverse preference requirements. Real requirements also involve customized preferences which
are challenging for language agents. On the one hand, due to the diversity of human expressions,
LLMs often struggle to accurately interpret these preferences. For instance, a query like ‘prefer
not to be under the sun’ implies a preference for ‘more indoor attractions’ necessitating robust in-
tent analysis and a deep understanding of user behavior patterns. Currently, most methods rely
on general-purpose models, such as GPT-4, which may lack the specialized capabilities required
for this task. On the other hand, even if the LLM can accurately identify human preferences, the
symbolic search component lacks effective techniques for efficient searching. This is because inte-
grating preferences with logical constraints transforms the problem into a complex multi-objective
mixed discrete constraint optimization problem. Current SMT-based methods and heuristic search
techniques often fail to find satisfactory solutions within a limited time frame.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 EMPIRICAL STUDY

We evaluate the performance of both pure-LLM-based and neural-symbolic solutions on the China-
Travel benchmark. Regarding the former, we primarily tested the well-known method, ReAct (Yao
et al., 2023), and its Act-only ablation, where the model is instructed to zero-shot generate “Thought:
{some reasoning}, Action: {some formatted action}” or only the action part. Regarding the latter,
we follow the neural-symbolic pipelines from (Hao et al., 2024) but replace the SMT solver with
a step-by-step depth-first search to adapt to the multi-day multi-POI itinerary. The details will be
provided in the subsection 4.1. As for LLMs, we choose the DeepSeek-V2.5 (Liu et al., 2024a)
and GLM-4PLUS, which possess advanced Chinese language capabilities, and the GPT-4 as the
engine of the language agents. We do not include the given their performance close to ReAct in the
TravelPlan benchmark (Xie et al., 2024), the potential benefits of these methods may be limited.

4.1 NEURAL-SYMBOLIC SOLUTIONS

Based on the success of the neural-symbolic solution in the TravelPlan benchmark, we adapt the two-
stage SMT-based solution to our benchmark, which we call NeSy Planning. Following the (Hao
et al., 2024), we first extract the logical constraints from the natural language. Based on the ex-
tracted constraints, we present a step-by-step plan generation process with depth-first search, that
is, mimicking human travel planning by arranging the next activity one by one. Specifically, we
first generate the next activity type based on the current plan, and then recursively generate the next
activity until the goal is reached. The generated plan is then used to solve the problem.

Algorithm 1 Depth-First Greedy Search
Require: Constraints C, current plan p,

if the least activity is an intercity-transport from destination to origin then
return ConstraintValidation(p, C), p ▷ The plan p is finished, return the validation result.

end if
type = GetNextActivityType(p) ▷ Select the next type of activities, e.g. lunch, attraction.
candidates = ToolUse(type) ▷ Collect the corresponding information for the activity type
scores = RuleScore(candidates, p, C) ▷ Score candidates through constraints C.
for activity in candidates do

p.push(activity) ▷ Perform a greedy search with priority ranking.
flag, p = Depth-FirstGreedySearch(C, p)
if flag then

return True, p ▷ Return the solution p if the validation is passed.
end if
p.pop(activity)

end for
return False, p ▷ Fail to find a solution with the given conditions.

For the first step, we follow the (Hao et al., 2024) to implement the translation from natural languages
to logical constraints through prompting. The detailed prompts are provided in the Appendix B. In
the second step, we define the rule-based activity selection and score function. For example, if the
current time is in the [10:30, 12:30] and there is no scheduled lunch in the current plan, then the
agent should find a restaurant to have lunch at this time. If the current time is after 22:00 and there
are no open-time attractions nearby, the agent should choose to return to the hotel. For the score
function, we select the restaurants that satisfy the required cuisine and sort the candidates by the
price if there a budget constraints in the constraints C. These ranking functions will help us to find
a feasible solution as soon as possible. In ChinaTravel, the duration arrangement of activities is
continuous and difficult to enumerate and search. We pre-define a meal or a visit to an attraction as
90 minutes, and when there are less than 90 minutes until closing time, the event continues until the
closing time. Given these designs, we adapt the neural-symbolic solution into a multi-POI planning
problem and evaluate it in the ChinaTravel benchmark.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Main results of different LLMs and planning strategies on the ChinaTravel benchmark.
LLMs: : DeepSeek-V2.5, : GPT-4o-2024-08-06, : GLM-4PLUS.

LLMs Delivery
Rate

Environmental
Pass Rate

Logical
Pass Rate Final

Pass Rate
Micro Macro Micro Macro

Easy (#303)

Act 87.1 40.7 0.33 71.0 37.0 0
98.4 60.6 0 85.7 44.6 0

ReAct
86.5 32.2 0 58.4 18.5 0
60.4 28.1 0 39.3 17.2 0
99.3 42.0 0 73.8 30.4 0

ReAct (one-shot) 92.0 62.4 9.24 85.8 62.1 7.26
99.3 61.4 0.33 93.4 72.0 0

NeSy Planning
90.4 90.4 90.4 88.3 89.8 89.8
99.0 99.0 98.7 99.0 98.0 97.7
97.4 97.4 97.4 96.8 96.4 96.4

Medium (#180)

Act 81.1 31.0 0 64.5 43.3 0
98.9 51.9 0 94.4 81.7 0

ReAct
74.4 19.1 0 41.2 14.4 0
58.3 22.5 1.11 31.8 13.3 0.55
98.9 33.6 0 61.1 22.8 0

ReAct (one-shot) 83.9 49.0 2.78 75.3 54.4 2.78
100 53.4 0 93.9 77.2 0

NeSy Planning
90.0 90.0 90.0 80.9 57.8 57.8
90.6 90.5 90.0 80.8 55.6 55.6
90.6 90.6 90.6 81.3 57.8 57.8

Human (#154)

Act 75.3 26.4 0 55.0 29.9 0
98.7 50.8 0 80.0 54.6 0

ReAct
55.2 13.6 0 33.5 16.2 0
48.7 16.6 0.65 33.6 15.0 0
100 34.5 0 71.3 31.2 0

ReAct (one-shot) 79.2 41.8 2.60 64.2 42.2 2.60
70.8 37.4 0 62.7 44.8 0

NeSy Planning
62.3 62.2 61.0 49.6 42.2 41.6
55.8 55.4 52.0 45.6 37.7 35.7
79.2 78.9 77.3 62.9 51.3 51.3

4.2 MAIN RESULTS

We provide the main results in Table 2. For Easy set, we observe that while most models exhibit
a high delivery rate using Act and React (Yao et al., 2023) methods, they perform poorly in con-
straint satisfaction. Given that the logical constraints in this set are relatively simple (e.g., mostly
only involving the number of people and travel days), these methods achieve a favorable logical
pass rate. Unlike TravelPlanner (Xie et al., 2024), our task involves multi-day multi-POI scenar-
ios, where satisfying environmental constraints becomes more challenging as the number of POIs
increases. Consequently, purely LLM-based methods tend to fail in the environmental pass rate met-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

ric, thus resulting in a low final pass rate, with many models failing entirely. We find that the need
to document transportation details between large number of POIs often lead to a high frequency
of hallucinations in LLMs. Specifically, these models frequently invent transportation information
rather than providing the requested result from APIs in the final plan. Our attempts to address this
issue through prompt engineering alone have proven insufficient. Notably, Deepseek-V2.5 (Liu
et al., 2024a) achieves a 7.26% pass rate in ReAct due to its strong capability in following Chi-
nese instructions. In this set, NeSy unsurprisingly achieved the best results, with the final pass rate
approaching 100%. This aligns with the observations in the SMT-based method (Hao et al., 2024),
which demonstrates that when LLMs successfully translate natural language into logical constraints,
symbolic search can resolve many issues related to constraint satisfaction.

For Medium set, we observed that the performance of Act and React shows little difference com-
pared to the Easy set. However, the NeSy planning method has a significant performance decline.
This is attributed to arbitrary descriptions of defined concepts in the set, which hinder the LLM’s
ability to accurately translate natural language into logic constraints. This performance decrease
aligns with our expectations, indicating that the NeSy planning approach remains insufficient for
addressing more complex tasks.

Figure 3: Error distribution for NeSy planning on
Human set, categorized into five distinct types.

For Human set, almost all the methods’ perfor-
mance declines. Since these queries are crafted
by humans, they more closely resemble real-
world scenarios, presenting a greater challenge
for LLMs. Furthermore, the open-ended nature
of human queries introduces undefined concepts,
which also results in suboptimal performance for
the Nesy planning We conduct a detailed analy-
sis of the Human results, and manually calculate
the error rate distribution of the NeSy planning
method across all models. We categorize the er-
rors into five main types: Missing constraints er-
ror: indicates a failure to translate appropriate
logical constraints. Parsing error: occurs when
LLMs fail to generate logical constraints in the correct format. Preference error: happens when the
model mistakenly interprets human preferences as logical constraints. Arbitrary description error:
arises when the LLMs cannot accurately map human descriptions to well-defined concepts. Unde-
fined Concept Error: occurs when an undefined concept prevents the model from converting it into
suitable logical constraints. The statistical results of the error distribution are shown in Figure 3. It
can be observed that the Arbitrary Description Error accounts for the highest proportion at 59.7%,
followed by the Undefined Concept Error. This indicates that these two issues are the main reasons
for the poor performance of the current NeSy planning method on Human set. These align with the
two key challenges of the NeSy methods proposed in this paper.

4.3 CASE STUDY

Arbitrary description for the defined concepts. We present two examples of arbitrary descrip-
tions. As shown in Figure 4 (1), a user intends to visit Disneyland. Therefore, Disneyland should
be included in the POIs we need to access. However, in the database, Disneyland is listed under its
formal name, ‘Shanghai Disney Resort’. The issue arises because LLMs cannot access the entire
database, leading to errors when translating natural language into symbolic constraints. In the sec-
ond example, the user wishes to try local cuisine. LLMs extract the term ‘local cuisine’ as a string,
overlooking the intermediate logical relationship that, since the destination is Chengdu, it should
specifically refer to ‘Sichuan cuisine’ which is available in the database.

Emergence of the undefined concepts. Two examples of concepts are provided on the Fig-
ure 4(2). Although the concepts define that train start and end times should align with the travel
information in the database, users often request additional specific time constraints. A more com-
plex example is when, despite having a defined concept for budget, users introduce more intricate
constraints, such as excluding airfare from the overall budget. These challenges highlight the cur-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

EN: [Origin: Suzhou, Destination :

Shanghai, #travelers: 2, #days: 2] I am

currently in Suzhou and would like to go

to Shanghai with my friends for two days.

We will take the high-speed train back and

forth. We need to book a twin room. I

want to go to Disneyland and my budget is

1,500 yuan. Can you help me plan?

LLM Extraction

迪士尼 ∈ 𝐚𝐭𝐭𝐫𝐚𝐜𝐭𝐢𝐨𝐧_𝐧𝐚𝐦𝐞𝐬

Ground-Truth Logical Constraints

[当前位置苏州,目标位置上海,旅行人
数1,旅行天数1] 当前位置苏州，想
去上海玩一天，往返高铁(G)，早上
8点前去，下午5点前回，请问可以
帮忙规划吗
EN: [Origin: Suzhou, Destination :

Shanghai, #travelers: 1, #days: 1] I am

currently in Suzhou and would like to

go to Shanghai for a day, round trip by

high-speed rail (G), leaving before 8am

and returning before 5pm. Can you

help me plan this?

LLM Extraction: 𝐍𝐀

Ground-Truth Logical Constraints

𝐢𝐧𝐭𝐞𝐫𝐜𝐢𝐭𝐲_𝐭𝐫𝐚𝐧𝐬𝐩𝐨𝐫𝐭_𝐚𝐜𝐭𝐢𝐯𝐢𝐭𝐲
𝐠𝐨 𝐬𝐭𝐚𝐫𝐭 <= 𝟖: 𝟎𝟎

𝐢𝐧𝐭𝐞𝐫𝐜𝐢𝐭𝐲_𝐭𝐫𝐚𝐧𝐬𝐩𝐨𝐫𝐭_𝐚𝐜𝐭𝐢𝐯𝐢𝐭𝐲
𝒃𝒂𝒄𝒌 [𝒆𝒏𝒅] <= 𝟏𝟕: 𝟎𝟎

[当前位置上海,目标位置南京,旅行人
数2,旅行天数1] 从上海到南京一日游，
带女儿一起，主要目标是拍照打卡，
有哪些必去的网红景点？
EN: [Origin: Shanghai, Destination :

Nanjing, #travelers: 2, #days: 1]

I'm taking my daughter on a one-day

trip from Shanghai to Nanjing. The

main goal is to take photos and check in.

What are some must-visit Internet

celebrity attractions?

Preference

“景点尽可能热门"
more popular attractions

[当前位置武汉,目标位置成都,旅行人
数2,旅行天数4] 我和朋友想从武汉出
发去成都玩四天，去吃当地特色美食，
主打一个放松游
EN: [Origin: Wuhan, Destination :

Chengdu, #travelers: 2, #days: 4] My

friend and I want to travel from Wuhan

to Chengdu for four days, eat local

specialties, and have a relaxing trip.

[当前位置北京,目标位置苏州,旅行人
数2,旅行天数3] 我和妈妈准备从北京
去苏州旅游，打算待3天，除机票外
预算在6000元左右。
EN: [Origin: Beijing, Destination :

Suzhou, #travelers: 2, #days: 3] My

mother and I are planning to travel from

Beijing to Suzhou for 3 days, with a

budget of about 6,000 yuan, excluding

air tickets.

Ground-Truth Logical Constraints

𝐜𝐨𝐬𝐭 −
 𝐜𝐨𝐬𝐭_𝐢𝐧𝐭𝐞𝐫𝐜𝐢𝐭𝐲_𝐭𝐫𝐚𝐧𝐬𝐩𝐨𝐫𝐭 ≤
𝟔𝟎𝟎𝟎

[当前位置南京,目标位置苏州,旅行人数
3,旅行天数3] 来一个最省钱的计划
EN: [Origin: Shanghai, Destination :

Nanjing, #travelers: 2, #days: 1]

The most economical plan.

(1) Arbitrary description (2) Emergence of concepts (3) Preference requirements

[当前位置苏州,目标位置上海,旅行人数
2,旅行天数2] 当前位置苏州，想和朋
友去上海玩两天，往返高铁，需要订
一间双床房，我想要去迪士尼，预算
1500元，请问可以帮忙规划吗

上海迪士尼度假区 ∈ 𝐚𝐭𝐭𝐫𝐚𝐜𝐭𝐢𝐨𝐧_𝐧𝐚𝐦𝐞𝐬

LLM Extraction

特色美食 ∈ 𝐟𝐨𝐨𝐝_𝐭𝐲𝐩𝐞𝐬

Ground-Truth Logical Constraints

川菜 ∈ 𝐟𝐨𝐨𝐝_𝐭𝐲𝐩𝐞𝐬

LLM Extraction: 𝐍𝐀
Preference

“总消费尽可能少"
less total cost

Figure 4: Case study of challenges in real-world travel planning

rent limitations of LLMs and neural-symbolic solutions in translating such emerging constraints and
resolving satisfiability issues through symbolic systems.

Preference Cases. We present two examples to show how preferences in our benchmark. As
shown in Figure 4 (3), a user intends to visit some must-visit attractions. This reflects a user’s
preference for visiting more popular attractions. Another example is the user’s desire for the most
economical plan, indicating a preference for lower total cost. These preferences involve undefined
concepts, such as the popularity tag of attractions, and require LLMs to have a sufficient understand-
ing of human intentions and a good analysis of behavior patterns. The presence of preferences adds
complexity to tasks due to their potential interactions. For instance, there is an inherent conflict
between the preference to reduce overall cost and the desire for an enhanced travel experience.

5 CONCLUSION

In this paper, we introduced ChinaTravel, a benchmark specifically designed to evaluate language
agents in the domain of travel planning, with a focus on authentic Chinese travel requirements. We
addressed the limitations of existing benchmarks by incorporating human users and their customized
requirements, which are essential for real-world applications. ChinaTravel provides a realistic eval-
uation framework with diverse metrics covering feasibility, constraint satisfaction, and preference
comparison. By addressing the challenges identified in the benchmark, we can pave the way for the
deployment of language agents that better meet the customized requirements of users and provide
reliable and satisfactory travel planning experiences.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Advances in
Neural Information Processing Systems, pp. 1877–1901, 2020.

Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. Deep blue. Artificial intelligence, 134
(1-2):57–83, 2002.

Aili Chen, Xuyang Ge, Ziquan Fu, Yanghua Xiao, and Jiangjie Chen. TravelAgent: An AI assistant
for personalized travel planning. arXiv preprint arXiv:2409.08069, 2024.

Wang-Zhou Dai, Qiu-Ling Xu, Yang Yu, and Zhi-Hua Zhou. Bridging machine learning and logical
reasoning by abductive learning. In Advances in Neural Information Processing Systems, pp.
2811–2822, 2019.

Shujie Deng, Honghua Dong, and Xujie Si. Enhancing and evaluating logical reasoning abilities of
large language models. In Proceedings of the ICLR 2024 Workshop on Secure and Trustworthy
Large Language Models, 2024.

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
without training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14953–14962, 2023.

Sajal Halder, Kwan Hui Lim, Jeffrey Chan, and Xiuzhen Zhang. A survey on personalized itinerary
recommendation: From optimisation to deep learning. Applied Soft Computing, 152:111200,
2024.

Yilun Hao, Yongchao Chen, Yang Zhang, and Chuchu Fan. Large language models can plan your
travels rigorously with formal verification tools. CoRR, abs/2404.11891, 2024.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R.
Narasimhan. Swe-bench: Can language models resolve real-world github issues? In Proceedings
of the 12th International Conference on Learning Representations, 2024.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-
of-experts language model. arXiv preprint arXiv:2405.04434, 2024a.

Weiyu Liu, Geng Chen, Joy Hsu, Jiayuan Mao, and Jiajun Wu. Learning planning abstractions from
language. In Proceedings of the 12th International Conference on Learning Representations,
2024b.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
Deepproblog: Neural probabilistic logic programming. In Advances in Neural Information Pro-
cessing Systems, pp. 3753–3763, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin A. Riedmiller. Playing Atari with deep reinforcement learning. CoRR,
abs/1312.5602, 2013.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan
Leike, and Ryan Lowe. Training language models to follow instructions with human feedback.
In Advances in Neural Information Processing Systems, pp. 27730–27744, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Liangming Pan, Alon Albalak, Xinyi Wang, and William Yang Wang. Logic-LM: Empowering
large language models with symbolic solvers for faithful logical reasoning. In Findings of the
Association for Computational Linguistics: EMNLP, pp. 3806–3824, 2023.

Vibhor Sharma, Monika Goyal, and Drishti Malik. An intelligent behaviour shown by chatbot
system. International Journal of New Technology and Research, 3(4):263312, 2017.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflex-
ion: language agents with verbal reinforcement learning. In Advances in Neural Information
Processing Systems, 2024.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy P. Lillicrap,
Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Master-
ing the game of Go without human knowledge. Nature, 550(7676):354–359, 2017.

Yihong Tang, Zhaokai Wang, Ao Qu, Yihao Yan, Kebing Hou, Dingyi Zhuang, Xiaotong Guo,
Jinhua Zhao, Zhan Zhao, and Wei Ma. Synergizing spatial optimization with large language
models for open-domain urban itinerary planning. CoRR, abs/2402.07204, 2024.

Po-Wei Wang, Priya L. Donti, Bryan Wilder, and J. Zico Kolter. SATNet: Bridging deep learn-
ing and logical reasoning using a differentiable satisfiability solver. In Proceedings of the 36th
International Conference on Machine Learning, pp. 6545–6554, 2019.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Jun-
zhe Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong, Yuhao
Zhou, Weiran Wang, Changhao Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin, Shihan Dou,
Rongxiang Weng, Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan Zheng, Xipeng Qiu, Xuan-
jing Huang, and Tao Gui. The rise and potential of large language model based agents: A survey.
CoRR, abs/2309.07864, 2023.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and
Yu Su. Travelplanner: A benchmark for real-world planning with language agents. In Proceedings
of the 41st International Conference on Machine Learning, 2024.

Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Luoxuan Weng, Yitao Liu, Toh Jing Hua, Jun-
ning Zhao, Qian Liu, Che Liu, Leo Z. Liu, Yiheng Xu, Hongjin Su, Dongchan Shin, Caiming
Xiong, and Tao Yu. Openagents: An open platform for language agents in the wild. CoRR,
abs/2310.10634, 2023.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. In Advances in Neural Information
Processing Systems, pp. 20744–20757, 2022.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In Proceedings of the 11th
International Conference on Learning Representations, 2023.

Hongbo Zhang, Junying Chen, Feng Jiang, Fei Yu, Zhihong Chen, Guiming Chen, Jianquan Li, Xi-
angbo Wu, Zhiyi Zhang, Qingying Xiao, Xiang Wan, Benyou Wang, and Haizhou Li. Huatuogpt,
towards taming language model to be a doctor. In Findings of the Association for Computational
Linguistics: EMNLP, pp. 10859–10885, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Table 3: Database schema.

POI type feature list API

Attractions Name, Lat, Lon, Price, Type attractions keys(city)
OpenTime, CloseTime, MinTime, MaxTime attractions select(city, key, func)

attractions id is open(city, id, time)
attractions nearby(city, point, topk, dist)
attractions types(city)

Accommodations Name, Lat, Lon, Price, NumBed, accommodations keys(city)
aaccommodations select(city, key, func)
accommodations nearby(city, point, topk, dist)

Restaurants Name, Lat, Lon, Price, CuisineName, restaurants keys(city)
OpenTime, CloseTime, RecommendedFood restaurants select(city, key, func)

restaurants id is open(city, id, time)
restaurants nearby(city, point, topk, dist)
restaurants cuisine(city)
restaurants restaurants with recommended food
(city, food)

Transport - goto(city, start, end, start time, method)
intercity transport select
(start city, end city,
intercity type, earliest leave time)

NoteBook - notedown(description, content)
Env - planner(query)

next page()

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A TRAVEL INFORMATION

B PROMPTS

Act:

PROMPT = """
Collect information for a query plan using interleaving ’

Action’, and ’Observation’ steps. Ensure you gather valid
information related to transportation(including inter
and inner city), dining, attractions, and accommodation.
All information including time, cost, location and others
must be written in notebook, which will then be input
into the Planner tool. Note that the nested use of tools
is not allowed. ’Action’ can have 19 different types:

city_list = ["Shanghai", "Beijing", "Shenzhen", "Guangzhou","
Chongqing", "Suzhou", "Chengdu", "Hangzhou", "Wuhan", "
Nanjing"]

(1) attractions_keys(city: str)
Description: Returns a list of (key, type) pairs of the

attractions data.
Parameters:
city: The city name.
(2) attractions_select(city: str, key: str, func: Callable):
Description: Returns a DataFrame with data filtered by the

specified key with the specified function.
Parameters:
city: The city name.
key: The key column to filter, only one key can be used.
func: The lambda function applied to the key column, must

return a boolean value. Only apply to one key.
(3) attractions_id_is_open(city: str, id: int, time: str):
Description: Returns whether the attraction with the

specified ID is open at the specified time.
Parameters:
city: The city name.
id: The ID of the attraction.
time: The time to check, in the format ’HH:MM’.
(4) attractions_nearby(city: str, point: str, topk: int, dist

: float = 2):
Description: Returns the top K attractions within the

specified distance of the location.
Parameters:
city: The city name.
point: The name of the location.
topk: The number of attractions to return.
dist: The maximum distance from the location, default is 2.
(5) attractions_types(city: str):
Description: Returns a list of unique attraction types.
Parameters:
city: The city name.

(6) accommodations_keys(city: str):
Description: Returns a list of (key, type) pairs of the

accommodations data.
Parameters:
city: The city name.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

(7) accommodations_select(city: str, key: str, func: Callable
):

Description: Returns a DataFrame with data filtered by the
specified key with the specified function.

Parameters:
city: The city name.
key: The key column to filter, only one key can be used.
func: The lambda function applied to the key column, must

return a boolean value. Only apply to one key.
(8) accommodations_nearby(city: str, point: str, topk: int,

dist: float = 5):
Description: Returns the top K accommodations within the

specified distance of the location.
Parameters:
city: The city name.
point: The name of the location.
topk: The number of accommodations to return.
dist: The maximum distance from the location, default is 5.

(9) restaurants_keys(city: str):
Description: Returns a list of (key, type) pairs of the

restaurants data.
Parameters:
city: The city name.
(10) restaurants_select(city: str, key: str, func: Callable):
Description: Returns a DataFrame with data filtered by the

specified key with the specified function.
city: The city name.
key: The key column to filter, only one key can be used.
func: The lambda function applied to the key column, must

return a boolean value. Only apply to one key.
(11) restaurants_id_is_open(city: str, id: int, time: str):
Description: Returns whether the restaurant with the

specified ID is open at the specified time and day.
Parameters:
city: The city name.
id: The ID of the restaurant.
time: The time to check, in the format ’HH:MM’.
(12) restaurants_nearby(city: str, point: str, topk: int,

dist: float = 2):
Description: Returns the top K restaurants within the

specified distance of the location.
Parameters:
city: The city name.
point: The name of the location.
topk: The number of restaurants to return.
dist: The maximum distance from the location, default is 2.
(13) restaurants_restaurants_with_recommended_food(city: str,

food: str):
Description: Returns all restaurants with the specified food

in their recommended dishes.
Parameters:
city: The city name.
food: The food to search for.
(14) restaurants_cuisine(city: str):
Description: Returns a list of unique restaurant cuisines.
Parameters:
city: The city name.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(15) goto(city: str, start: str, end: str, start_time: str,
method: str):

Description: Returns a list of transportation options between
two locations.

Parameters:
city: The city name.
start: The start point’s name. Must be a location name and

match the data exactly.
end: The end point’s name. Must be a location name and match

the data exactly.
start_time: The departure time in the format ’HH:MM’.
method: The mode of transportation, must in [’walk’, ’taxi’,

’metro’].

(16) notedown(description: str, content: str):
Description: Writes the specified content to the notebook.
Parameters:
description: The description of the content.
content: The content to write.

(17) planner(query: str):
Description: Generates a plan based on the notebook content

and query.
Parameters:
query: The query to generate a plan for. Don’t worry about

the notebook content, the planner will read it
automatically.

(18) intercity_transport_select(start_city: str, end_city:
str, intercity_type: str):

Description: get the intercity transportation information
between two cities. You need to call this function at
least twice to get the transportation information between
two locations for going and returning.

Parameters:
start_city: The start city name.
end_city: The end city name.
intercity_type: The type of intercity transportation, must in

[’train’, ’airplane’].

(19) next_page():
Description: Get the next page of the latest Result history

if it exists. Because of the length limited, all returned
DataFrame information is split into 10 rows per page.
You can use this function to get the next page of the
Result history. Only DataFrame information can be split
into multiple pages. The function should not be used too
often, otherwise, you will soon run out of steps.

Parameters:
None

Your action will be executed in the following format: action,
so any additional text like ’Action: ’ is not allowed
and just one line is allowed for each action.

You must finish your response within 75 steps including plan.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Select the transportation, dining, attractions, and
accommodation information you need to plan your trip and
write them in the notebook. Not EVERYTHING is needed,
only what you need to plan the trip. For example, when
you get ten or more accommodations, you only need to note
down the information of the accommodation you want to
stay in, usually one, and note it down in the notebook.
You must not note down all the accommodations information
. And usually, 2-4 attractions are enough for one day.

What you note down in the notebook should be a plan or plans
for days. May be notedown(description = "Day 1(Day 1
morning is also acceptable)", content = "At 8:00, have
breakfast at hotel A, then go to attraction B, using
metro(together with the cost, time, stations and other
information). Attracion B will cost xxx yuan and xxx
hours. Then go to restaurant C for lunch, using taxi(
together with the cost, time, distance and other
information). Restaurant C will cost xxx yuan.(another
attraction is possiple too as long as there is enough
time and budget). Then... ###More details here###.")

EXAMPLE

Action[1]: intercity_transport_select(start_city=’Beijing’,
end_city=’Nanjing’, intercity_type=’train’)

Observation[1]:
Results[1]:
[MASKED]
Action[2]: intercity_transport_select(start_city=’Beijing’,

end_city=’Nanjing’, intercity_type=’airplane’)
Observation[2]: Please note down what is useful using

notedown method.
Results[2]:
[MASKED]
Action[3]: intercity_transport_select(start_city=’Nanjing’,

end_city=’Beijing’, intercity_type=’airplane’)
Observation[3]:
Results[3]:
[MASKED]
Action[4]: notedown(description=’Round trip between Beijing

and Nanjing’, content=’Heading to Nanjing on flight ’
FL154’ from ’Beijing Capital International Airport’ to ’
Nanjing Lukou International Airport’ at ’07:40’ arriving
at ’08:47’. The ticket price is 427.98. Returning to
Beijing on flight ’FL657’ from ’Nanjing Lukou
International Airport’ to ’Beijing Daxing International
Airport’ at ’18:02’ arriving at ’19:09’. The ticket price
is 412.06. Considering that the user is traveling with a
companion, the round-trip cost between Nanjing and
Beijing is 1680.08, leaving 2319.92 for planning
activities, accommodation, and dining within Nanjing.’)

Observation[4]:
Results[4]:
NoteBook updated.
Action[5]: attractions_keys(city=’Nanjing’)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Observation[5]:
Results[5]:
[MASKED]
Action[6]: attractions_select(city=’Nanjing’, key=’type’,

func=lambda x: True)
Observation[6]:
Results[6]:
[MASKED]
Action[7]: goto(city=’Nanjing’, start=’Nanjing Railay Station

’, end=’Confucius Temple’, start_time=’08:00’, method=’
metro’)

Observation[7]:
Results[7]:
[MASKED]

...... // More actions and observations

Action[X]: notedown(description=’Day 1’, content=’At 8:00,
have breakfast at hotel A, then go to attraction B, using
metro(together with the cost, time, stations and other
information). Attracion B will cost xxx yuan and xxx
hours. Then go to restaurant C for lunch, using taxi(
together with the cost, time, distance and other
information). Restaurant C will cost xxx yuan.(another
attraction is possiple too as long as there is enough
time and budget). Then... ###More details here###.’)

...... // More actions and observations

Action[n]:planner(query="My friend and I plan to visit
Nanjing for three days with a budget of 4000 yuan. We
prefer to use the subway as much as possible and enjoy
Jiangsu and Zhejiang cuisine. Please provide a travel
plan.")

EXAMPLE END

Do not forget to note down the ###transportation information
between locations### before planning. Intercity
transportation information should be noted down before
planning too.

You need to plan for each day in detail. If only one day is
planned, accommodation is not needed. If more than one
day is planned, accommodation is necessary. Nights in
accommodations should be days-1. For example, if you plan
for 3 days, you need to note down 2 nights in
accommodations.

!!!Don’t call next_page() too often, only when necessary.!!!
Once you get the suitable information, you must !!!STOP
!!! using this function. !!!

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Pay attention to function names and parameters, and the
format of the data. You must use the correct function
names and parameters to get the data you need. If you use
the wrong function names or parameters, you will not get
the correct data.!!!

It is strictly forbidden to use the next_page() too often!
Remember to note down all information you need in the

notebook before planning.
"""

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

React:

PROMPT = """
Collect information for a query plan using interleaving ’

Thought’, ’Action’, and ’Observation’ steps. Ensure you
gather valid information related to transportation,
dining, attractions, and accommodation. All information
including time, cost, location and others must be written
in notebook, which will then be input into the Planner
tool. Note that transportation bwteen locations must be
written in notebook before planning. Note that the nested
use of tools is not allowed, ’Thought’ can reason about
the current situation, and ’Action’ can have 19 different
types:

city_list = ["Shanghai", "Beijing", "Shenzhen", "Guangzhou",
"Chongqing", "Suzhou", "Chengdu", "Hangzhou", "Wuhan", "
Nanjing"]. All the cities name you use must be in this
list.

(1) attractions_keys(city: str)
Description: Returns a list of (key, type) pairs of the

attractions data.
Parameters:
city: The city name.
(2) attractions_select(city: str, key: str = "", func:

Callable = lambda x: True):
Description: Returns a DataFrame with data filtered by the

specified key with the specified function.
Parameters:
city: The city name.
key: The key column to filter, only one key can be used. If

not specified, return all data.
func: The lambda function applied to the key column, must

return a boolean value. Only apply to one key. If not
specified, return all data.

(3) attractions_id_is_open(city: str, id: int, time: str):
Description: Returns whether the attraction with the

specified ID is open at the specified time.
Parameters:
city: The city name.
id: The ID of the attraction.
time: The time to check, in the format ’HH:MM’.
(4) attractions_nearby(city: str, point: str, topk: int, dist

: float = 2):
Description: Returns the top K attractions within the

specified distance of the location.
Parameters:
city: The city name.
point: The name of the location.
topk: The number of attractions to return.
dist: The maximum distance from the location, default is 2.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

(5) attractions_types(city: str):
Description: Returns a list of unique attraction types.
Parameters:
city: The city name.

(6) accommodations_keys(city: str):
Description: Returns a list of (key, type) pairs of the

accommodations data.
Parameters:
city: The city name.
(7) accommodations_select(city: str, key: str = "", func:

Callable = lambda x: True):
Description: Returns a DataFrame with data filtered by the

specified key with the specified function.
Parameters:
city: The city name.
key: The key column to filter, only one key can be used. If

not specified, return all data.
func: The lambda function applied to the key column, must

return a boolean value. Only apply to one key. If not
specified, return all data.

(8) accommodations_nearby(city: str, point: str, topk: int,
dist: float = 5):

Description: Returns the top K accommodations within the
specified distance of the location.

Parameters:
city: The city name.
point: The name of the location.
topk: The number of accommodations to return.
dist: The maximum distance from the location, default is 5.

(9) restaurants_keys(city: str):
Description: Returns a list of (key, type) pairs of the

restaurants data.
Parameters:
city: The city name.
(10) restaurants_select(city: str, key: str = "", func:

Callable = lambda x: True):
Description: Returns a DataFrame with data filtered by the

specified key with the specified function.
city: The city name.
key: The key column to filter, only one key can be used. If

not specified, return all data.
func: The lambda function applied to the key column, must

return a boolean value. Only apply to one key. If not
specified, return all data.

(11) restaurants_id_is_open(city: str, id: int, time: str):
Description: Returns whether the restaurant with the

specified ID is open at the specified time and day.
Parameters:
city: The city name.
id: The ID of the restaurant.
time: The time to check, in the format ’HH:MM’.
(12) restaurants_nearby(city: str, point: str, topk: int,

dist: float = 2):
Description: Returns the top K restaurants within the

specified distance of the location.
Parameters:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

city: The city name.
point: The name of the location.
topk: The number of restaurants to return.
dist: The maximum distance from the location, default is 2.
(13) restaurants_restaurants_with_recommended_food(city: str

, food: str):
Description: Returns all restaurants with the specified food

in their recommended dishes.
Parameters:
city: The city name.
food: The food to search for.
(14) restaurants_cuisine(city: str):
Description: Returns a list of unique restaurant cuisines.
Parameters:
city: The city name.

(15) goto(city: str, start: str, end: str, start_time: str,
method: str):

Description: Returns a list of transportation options between
two locations.

Parameters:
city: The city name.
start: The start point’s name. Must be a location name and

match the data exactly.
end: The end point’s name. Must be a location name and match

the data exactly.
start_time: The departure time in the format ’HH:MM’.
method: The mode of transportation, must in [’walk’, ’taxi’,

’metro’].

(16) notedown(description: str, content: str):
Description: Writes the specified content to the notebook.
Parameters:
description: The description of the content.
content: The content to write.

(17) planner(query: str):
Description: Generates a plan based on the notebook content

and query.
Parameters:
query: The query to generate a plan for. Don’t worry about

the notebook content, the planner will read it
automatically.

(18) intercity_transport_select(start_city: str, end_city:
str, intercity_type: str, earliest_leave_time: str = None
):

Description: get the intercity transportation information
between two cities. You need to call this function at
least twice to get the transportation information between
two locations for going and returning.

Parameters:
start_city: The start city name.
end_city: The end city name.
intercity_type: The type of intercity transportation, must in

[’train’, ’airplane’].

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

earliest_leave_time: The earliest leave time in the format ’
HH:MM’.

Return: The transportation information between two cities
sorted by leaving time.

(19) next_page():
Description: Get the next page of the latest Result history

if it exists. Because of the length limited, all returned
DataFrame information is split into 10 rows per page.
You can use this function to get the next page of the
Result history. Only DataFrame information can be split
into multiple pages. The function should not be used too
often, otherwise, you will soon run out of steps.

Parameters:
None

Your action will be executed in the following format: action,
so any additional text like ’Action: ’ is not allowed
and just one line is allowed for each action.

You must finish your response within 75 steps including plan,
otherwise the system will terminate your response. If
you note down too often, you will soon run out of steps.
But you can note down multiple pieces of information as a
string WITHIN ONE CALL.

Select the transportation, dining, attractions, and
accommodation information you need to plan your trip and
write them in the notebook. Not EVERYTHING is needed,
only what you need to plan the trip. For example, when
you get ten or more accommodations, you only need to note
down the information of the accommodation you want to
stay in, usually one, and note it down in the notebook.
You must not note down all the accommodations information
. And usually, 2-4 attractions are enough for one day.

What you note down in the notebook should be a plan or plans
for days. May be notedown(description = "Day 1(Day 1
morning is also acceptable)", content = "At 8:00, have
breakfast at hotel A, then go to attraction B, using
metro(together with the cost, time, stations and other
information). Attracion B will cost xxx yuan and xxx
hours. Then go to restaurant C for lunch, using taxi(
together with the cost, time, distance and other
information). Restaurant C will cost xxx yuan.(another
attraction is possiple too as long as there is enough
time and budget). Then... ###More details here###.")

Do not forget to note down the ###transportation information
between locations### before planning. Intercity
transportation information should be notedown before
planning too.

You need to plan for each day in detail. If only one day is
planned, accommodation is not needed. If more than one
day is planned, accommodation is necessary. Nights in
accommodations should be days-1.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

For example, if you plan for 3 days, you need to note down 2
nights in accommodations. Do not forget to note down the
transportation information between locations before
planning. Both going and returning transportation
information should be notedown.

Call next_page() only when you need to get the next page of
the latest Result history. Once you get the suitable
information, you must STOP using this function. !!! Pay
attention to function names and parameters, and the
format of the data. You must use the correct function
names and parameters to get the data you need. If you use
the wrong function names or parameters, you will not get
the correct data.!!!

The intercity transportation back to the start city must be
notedown before planning!!!

The innercity to railway station or airport must be notedown
before planning!!!

"""

24

	Introduction
	Related Work
	ChinaTravel Benchmark
	Environment Inormation
	Logical Constraint
	Preference Requirement
	Benchmark Construction
	Key Characteristics

	Empirical Study
	Neural-Symbolic Solutions
	Main Results
	Case Study

	Conclusion
	Travel Information
	Prompts

