Under review as a conference paper at ICLR 2025

CHINATRAVEL: A REAL-WORLD BENCHMARK FOR
LLANGUAGE AGENTS IN CHINESE TRAVEL PLANNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in Large Language Models (LLMs), particularly in language rea-
soning and tool-use capabilities have sparked the rapid development of Language
Agents to assist humans across various real-world applications. Among these,
travel planning stands out as a significant domain, presenting both academic chal-
lenges and practical value due to its inherent complexity and real-world relevance.
However, existing travel plan benchmarks do not test language agents with human
users or their ability to follow customized requirements, both of which are vital
for deploying them in real-world applications. In this paper, we propose China-
Travel, a new benchmark tailored to authentic Chinese travel requirements, aiming
to provide a more realistic evaluation framework for future language agents. We
collect the travel requirements through questionnaires and employ an efficient and
faithful evaluation process with 46 metrics covering feasibility, constraint satis-
faction, and preference comparison. Moreover, we identify three challenges in the
real-world deployments of travel planning, including constraint recognition, con-
cept openness, and customized preference. The empirical studies show that even
state-of-the-art neural-symbolic agents succeed in 51.3% constraint validation of
human queries. Our findings point to the need for methods that can improve the
ability of agents to understand diverse intentions or keep track of constraints with
emerging concepts from human requirements.

1 INTRODUCTION

A long-standing goal in Al is to build planning agents that are reliable and general, able to as-
sist humans in real-world environments. Recently, Large Language Models (LLMs) (Brown et al.,
2020; |Ouyang et al., [2022; |/Achiam et al., [2023) have demonstrated remarkable potential in achiev-
ing human-level understanding and planning capabilities. This has sparked the rapid development
of a field called Language Agents, employing LLMs to perceive the surroundings, reason the solu-
tions, and take appropriate actions, ultimately building an autonomous planning agent (Shinn et al.,
2024; |Yao et al.| 2023} X1 et al.| 2023). Equipping LLMs born from web-scale corpora, language
agents demonstrate a proficient ability to understand general natural language instructions and col-
lect domain-specific information via tools (Yao et al., [2022; | Xie et al., [2023} |Jimenez et al., [2024).
It alleviates the need for intensive domain-specific goal definition and model deployment with tra-
ditional rule-based or reinforcement-learning-based agents, showing few-shot generalization across
various domains. This presents a solid step toward the goal of building general artificial intelligence.

Travel planning stands out as a significant domain, presenting both academic challenges and prac-
tical value due to its inherent complexity and real-world relevance. However, LLMs are still not
able to accurately solve complex combinatorial optimization problems and tend to provide infeasi-
ble plans in travel planning. In a recently proposed U.S. domestic benchmark TravelPlanner (Xie
et al., |2024) with intercity itinerary planning, the advanced LLM, GPT-4, only achieves a success
rate of 0.6%. This result is disappointing and might make one pessimistic about the capabilities
of Language Agents in travel planning. However, a few months later, Hao et al.| (2024)) introduced
a neural-symbolic solution, which incorporates formal verification tools into language agents and
achieved a 97% success rate on the LLM-synthesized from TravelPlanner benchmark. This progress
has dual implications. On one hand, it leads to optimism regarding the potential of Neuro-symbolic
Language Agents. On the other hand, it prompts further inquiry into the practical applicability of
these solutions in addressing real-world travel requirements.

Under review as a conference paper at ICLR 2025

I am in Shanghai now and
would like to go to Beijing for
2 days, visit some museums,
and taste some Beijing cuisine.
My budget is 5,000 yuan and
| I'hope to visit as many
attractions as possible. Please
User “1 give me a travel plan.

Agent

® ¥ 6o -

GPT DeepSeek GLM

Tool Use g '3 Information

Planning

[1] visit some museums...
There are some museums in Beijing:
- The Palace Museum
- National Museum of China
- Beijing Capital Museum

[2] taste some Beijing cuisine...
There are some restaurants:
- Dadong Duck
- Siji Minfu
- Xiaodiao Litang

[3] budget is 5000 yuan...
The cross-city transportation costs
about 1,500, and the accommodation
costs about 500, leaving me with a
budget of about 3,000.

Itinerary Plan

[Day 1, Activity 1]

Train, G104, 06:27 — 13:12, cost: 693
Shanghai Honggiao Railway Station
— Beijingnan Railway Station

[Day 1, Activity 2] &

The Palace Museum, 14:00 - 17:30
Transports: Metro, Beijingnan Railway
Station— The Palace Museum, cost 3,
13:15 — 13:50, walking: 1.5km
[Day 1, Activity 3] {7

Siji Minfu, 17:45 — 18:45, cost 180,
Transports: Walking, The Palace
Museum - Siji Minfu, cost 0,

17:30 - 17:45, walking: 0.8km &
[Day 1, Activity 4] =

Wangfujing Street, 17:45 — 18:45,
Transports: Taxi, The Palace Museum
- Wangfujing Street, cost 16, &5

[Day 2, Activity 1]

Chenji century-old Luzhu, 08:10 -
08:40, cost: 32

Transports: Walking, Beijing XX hotel
— Chenji century-old Luzhu, O‘Akmﬁ_
08:00 — 08:06 .

[Day 2, Activity 2] =

National Museum of China, 09:15 —

11:45, cost: 0 !
Transports: Metro, Chenji century-old
Luzhu - National Museum of China,
cost 3, 08:40 — 09:15, walking: 1.2km

[Day 2, Activity 4] é
Beijing Capital Museum

[Day 2, Activity 5] k)
Train, G153, 16:30 — 22:27, cost: 576

- The budget is sufficient to try

N 17:30 - 17:45, Beijingnan Railway Station—Shanghai
S FlightSearch() g TrainSearch() f"_fferem foods . . e Honggiao Railway Station
e i [4] visit as many attractions as possible [Day 1, Activity 6] fer: Transports: Metro, Beijing Capital
£ Atractionsearch() [T RestaurantSearch() | = _ geject adjacent attractions Beijing XX hotel, room: 1, cost: 580 Museum — Beijingnan Railway Station,
= Transports: ... cost: 4, 15:30 — 16:02, walking: 0.8km

woret, AccommodationSearch() - RouteSearch() - choose convenient transportation

Figure 1: Overview of ChinaTravel. Given a query, language agents employ various search tools to
gather information and plan a multi-day multi-POI itinerary. The language agents are expected to
provide a feasible and reasonable plan while simultaneously satisfying the hard logical constraints
and soft preference requirements. To provide convenience for global researchers, we provide an
English translation of the original Chinese information here.

In this work, we introduce ChinaTravel, tailored to authentic Chinese travel requirements, providing
a more practical evaluation framework within diverse travel requirements. ChinaTravel concentrates
on multi-point-of-interest (multi-POI) itineraries within specified cities (as illustrated in Figure [T),
which are in higher demand compared to the intercity itineraries provided by TravelPlanner. China-
Travel is built in a modular framework with (1) a rich sandbox environment with Chinese travel in-
formation, (2) diverse evaluation metrics covering feasibility, constraint satisfaction, and preference
comparison, and (3) realistic travel requirements contain both LLM-synthetic and human question-
naire queries. We constructed ChinaTravel in five stages, including manual schema and API design,
LLM-assisted generation of data entries, manual quality control, data collection from human users
with open requirements, and preference data construction. Our evaluation pipeline automatically
verifies the provided plans with the requirements annotations. An additional subset with rich travel
preferences is constructed to provide an evaluation for future language agents. Moreover, we identify
three challenges in the real-world deployments of travel planning, including constraint recognition,
concept openness, and customized preference. The empirical studies show that even state-of-the-art
neural-symbolic agents succeed in 51.3% constraint validation of the human queries. Our findings
point to the need for methods that can improve the ability of agents to understand diverse intentions
or keep track of constraints with emerging requirements from humans.

2 RELATED WORK

Large Language Model based Agents have demonstrated significant capability in understanding
complex instructions and employing domain-specific tools to complete tasks, showcasing their po-
tential in fields such as visual reasoning (Gupta & Kembhavil 2023), healthcare (Zhang et al., [2023)
and robotics (Liu et al.l 2024b). This reduces the reliance of previous agents on domain-specific
efforts, that is, either mainly following domain-specific rules to plan (rule-based agents, such as
DeepBlue (Campbell et al.||2002) and Eliza (Sharma et al.,|2017))) or mainly learning from domain-
specific data to plan (reinforcement-learning-based agents, such as AlphaGo (Silver et al.; 2017 and
Atari DQN (Mnih et al., 2013))). While the language agents have shown promising results in some
domains, most of their planning scenarios are limited to simple tasks with single objective function
and fail in the travel planning benchmark with complex logical constraints on the results.

Neuro-Symbolic Learning explores to combine traditional symbolic reasoning with learning to
enhance the reliability (Manhaeve et al.| 2018 Wang et al., 2019} Dai et al.|[2019). In the era of large
language models, [Pan et al.| (2023) presents the LogicLM integrates LLMs with separate symbolic

Under review as a conference paper at ICLR 2025

Attraction
Accommodation
Restaurant

Flieh m Attraction
(e Beijing.) W Flights ; Accommodation

v @ Trains 4
¥4 Chengdu @ Citics v\ L Restaurant
10 @ ..
—
-

& Chongging
)‘ 1h Guangzty:ér

i Hangzhou
g Nanjing |

Beifing

1.1 ‘Shanghai (0MRq1
1l shenzhen '

| Suzhou

= Wuhan €] - T*‘ i

Metro

Figure 2: Overview of ChinaTravel sandbox environment. Our sandbox involves travel information
from 10 of the most popular cities in China. ChinaTravel provides rich information about the attrac-
tions, accommodations, and restaurants that need to be involved in travel. Here is the visualization
of information from Beijing and Nanjing.

solvers for various logical reasoning tasks. They first utilize LLMs to translate a natural language
problem into a symbolic formulation. Afterward, a deterministic symbolic solver performs inference
on the formulated problem to ensure the correctness of the results. |[Deng et al.[(2024) supplement
LogicLM with a Self-Refinement Module to enhance the reliability of LLM translation. In the travel
planning domain, Hao et al.|(2024)) presents a framework with a similar pipeline. It first extracts the
logical constraints from natural language queries and then formalizes them into SMT code. Thanks
to SMT solvers being sound and complete, this neural-symbolic solution guarantees the generated
plans are correct and has basically solved the TravelPlanner benchmark (achieved a 97% pass rate).

Travel Planning is a time-consuming task even for humans, encompassing travel-related informa-
tion gathering, POI selection, route mapping, and customization to meet diverse user needs (Halder
et al.,[2024)). Natural languages are one of the most common ways for users to express their travel re-
quirements. However, the ambiguity and complexity of travel requirements make it still challenging
for LLMs to generate accurate and reliable travel plans. Xie et al.|(2024) presents the TravelPlanner
benchmark for cross-city travel planning and reveals the inadequacies of pure-LLM-driven agents.
TravelPlanner generates user queries through LLMs and provides a rigorous evaluation mechanism
to verify whether the provided plans can meet the logical constraints in the queries. It has become
a pivotal benchmark for language agents in real-world travel planning. [Tang et al.| (2024) study
the open-domain urban itinerary planning where a single-day multi-POI plan is required. They
integrates spatial optimization with large language models and present a system ITTNERA, to pro-
vide customized urban itineraries based on user needs. A concurrent work, TravelAgent (Chen
et al.l|2024), also considers a multi-day multi-POI travel planning problem for the specified city. It
constructs an LLM-powered system to provide personalized plans. However, due to the high cost
of collecting and annotating real travel needs, they evaluate the proposed TravelAgent in only 20
queries. This also demonstrates the necessity of introducing a new benchmark for travel planning.

3 CHINATRAVEL BENCHMARK

Motivated by the significant travel demand in China, this benchmark offers a sandbox environment
for generating multi-day, multi-POI itineraries for specified cities. It includes arrangements for
attractions, restaurants, accommodations, and transportation between events, aiming to advance the
practice of language agents solutions for real-world travel planning.

ChinaTravel comprises 46 diverse evaluation metrics, including 23 environment constraints, 10 hard
logical constraints, and 13 preference requirements, which are summarized in the Table[I] Through
manual annotation and formalized code construction, we have built an automated evaluation pipeline
for these requirements of given natural language queries, enabling developers to effectively evaluate
the capabilities of language agents in addressing real-world challenges.

To evaluate capabilities in real applications, ChinaTravel provides both LLM-synthesized and hu-
man queries. We develop pure-LLM-based and neuro-symbolic language agents using the LLM-
synthesized queries as a validation set. We then test these agents on human queries, creating an
open test environment with real-world dilemmas. The details are provided in the subsection [3.3]

Under review as a conference paper at ICLR 2025

Table 1: Descriptions of evaluation for two benchmarks. Constraints in black are common in both
TravelPlanner and ChinaTravel. Metrics in brown are the metrics only in our benchmark.

Evaluation Metrics Description

Environment Constraint

Cross-city Transportation Available Trains or Airplanes across cities.
Correct information of cost and schedule.

Inner-city Transportation — Available Metro, Taxi or Walking between different positions.
Correct information of cost, distance and duration

Attractions Available Attractions in the target city, visiting in their open time.
Attraction choices should not be repeated throughout the trip.
Correct information of cost.

Restaurants Available Restruants in the target city, visiting in their open time.
Restaurant choices should not be repeated throughout the trip.
Breakfast, lunch, and dinner are served at their designated meal times.
Correct information of cost.

Accommodation Available Accommodation in the target city.
Room information to meet headcounts.
Time The given activity events occur in chronological order.
Space Events at different positions should provide transport information.
Logical Constraint
Transportation The required type of transportation.
Attraction The required type or specified attractions.
Restruants The required type or specified restruants.
Accommodation The number of rooms and the room type must meet the requirements.
The required features or specified hotels.
Budget The total cost is within required budget.
Preference Requirement
Transportation Convenient transportation, less walking distance
Attraction More/less cost on attractions, visit more attractions,
visit more attractions with the required type.
Restruants More/less cost on meals.
Accommodation More/less cost on hotel.
Budget Minimize the total budget.
Time Unhurried itinerary.
Space Schedule the activitiess close to the required position.

3.1 ENVIRONMENT INORMATION

ChinaTravel provides a sandbox with real-world travel information. We collect information from 10
of the most popular cities in China, including Beijing, Chengdu, Chongqing, Guangzhou, Hangzhou,
Nanjing, Shanghai, Shenzhen, Suzhou, and Wuhan. There are 720 airplanes and 5770 trains across
these cities. Each record contains departure and arrival times from origin to destination, as well as
the corresponding ticket prices. We also collect information on 3413 attractions, 4655 restaurants,
and 4124 hotels. Each record contains the name, location, opening hours, and the corresponding
price per person. Moreover, there are type annotations for these POIs as information to meet user
needs. Figure [2] has demonstrated the travel information from Beijing and Nanjing, two of the
most popular cities in China. For a more realistic interaction, we simulate the API interface of
real market applications to query real-time information. The detailed designs of the sandbox are
available in Appendix [A] The environmental constraints are designed to ensure the reliability of the
results. That is, the POIs visited in the plan must exist in the corresponding city, the transportation
methods provided in the plan must be feasible, and the corresponding time information should also
be reliable. For example, there should indeed be a subway line that can depart from Beijing Capital
International Airport and arrive at the Palace Museum in 80 minutes.

Under review as a conference paper at ICLR 2025

3.2 LoOGICAL CONSTRAINT

A crucial ability for agents is to effectively satisfy personalized user needs. We extend the log-
ical constraints from TravelPlanner (Xie et al.| [2024) to adapt to the multi-POI itinerary plan-
ning problem. These user needs are termed logical constraints, which could be defined through
logical expressions based on human-defined symbolic concepts. Taking the query in Figure [I]
as an example, the user has mentioned “visit the museum”, “taste Beijing cuisine”, and “budget
is 5000 yuan”, the provided plan should satisfy the following logical expressions: museum &
attractions_type_visited (plan), Beijing cuisine € restaurants_type_visited (plan), and cost(plan) <
5000, where these symoblic concpets, attractions_type_visited, restaurants_type_visited and cost
could be extracted from the formulated plans (as illustrated in Figure [I). ChinaTravel invloves
16 travel-related symoblic concepts to meet the various user needs. We provide a summary and the
detailed descriptions of these concepts in Table [I]

3.3 PREFERENCE REQUIREMENT

Travel requirements not only include hard logical constraints but also soft preferences. The “soft”
means these requirements cannot be defined as constraint validation on discrete symbolic concepts,
but rather as quantitative comparisons with the related continuous concepts. This makes the eval-
uation of preference requirements different from logical constraints. In ChinaTravel, we define 20
concepts for the 13 preferences to provide a ranking-based evaluation. Specifically, we extract rel-
evant concepts from plans generated by different agents, such as the number of attractions visited,
walking distance, total cost, etc. We then use these statistics to rank the agents, ultimately providing
an automated evaluation mechanism. The detailed concept descriptions are provided in Table[T}

3.4 BENCHMARK CONSTRUCTION

ChinaTravel establishes a travel environment in terms of a rich database, API code, and the users’
queries with personal requirements. The overall benchmark is created in a five-stage approach with
a mix of LLM generation and human survey.

Stage I: Manual design of database schema and APIs. We started collecting travel information
with the motivation of multi-day multi-POI itinerary planning in four aspects: attractions, accom-
modation, activities, and transportation. Developers first determine the POI description information
that needs to be obtained from the user’s perspective, such as cuisine and hotel features. Based on
this feature set, we collect public information to construct the database. For the design of APIs,
we directly support queries based on the regular expressions from agents, which we hope will pro-
mote the use of advanced tools during planning. At the same time, we expect the design of APIs
to have similar features and characteristics to existing commercial APIs, enabling our dataset to be
applicable to more realistic scenarios.

Stage II: Automatic data generation with LLMs. We designed common travel information (ori-
gin, destination, days, number of people) and logical constraints based on the nature of travel tasks.
To facilitate scalable queries for ChinaTravel, we randomly constructed query skeletons from the
aforementioned information and used advanced large language models (e.g. GPT4o0) to generate
natural language queries from these skeletons. The automatically generated data is categorized into
two difficulty levels: Easy and Medium. In Easy level, the logical constraints are straightforward,
and the descriptions for the defined concepts in natural language queries align perfectly with these
constraints. At the Medium level, the natural language expressions of logical constraints are more
varied and human-like. For example, the logic ‘Beijing cuisine € restaurants_type_visited(plan)’
might correspond to the natural language query: ‘I want to try local food in Beijing’. We employ
prompt engineering to guide LLMs in modifying the natural language expressions to achieve auto-
mated generation.

Stage II1: Manual quality control and automaticed validation. To ensure data quality, we man-
ually check whether the generated queries conform to symbolic skeletons, and re-calibrate natural
language descriptions that contain ambiguities. Additionally, we calibrate the natural language con-
cept descriptions in Medium to closely align with human questioning habits. Based on the symbolic

Under review as a conference paper at ICLR 2025

skeletons, we could verify whether the plan can pass the required logical constraints by executing
the corresponding Python code. Building on this, we ensure that each query has at least one solution
that satisfies the logical constraints by implementing a heuristic search algorithm.

Stage IV: Open requirements from humans. After the first round of closed-loop development
based on LLM-generated queries, including data generation and annotation, baseline development,
and evaluation, we further collected travel requirements from more than 250 humans through ques-
tionnaires. Based on a new round of manual quality control on these open requirements, a more
challenging set with 154 queries is constructed. These queries even include logical constraints on
undefined concepts in the deployment process, such as ‘departure time’ and ‘hot spots’, reflecting
the real challenges of neural-symbolic systems in travel planning. We carefully annotate the re-
quired logical constraints for each query, enabling the automated evaluation of these challenging
samples and forming the Human level dataset. While we have supported the automated testing of
logic constraints with undefined concepts, we hope future researchers avoid making these concepts
transparent when utilizing the Human set, in order to maintain their openness.

Stage V: Preference data construction. Through our investigation of human-annotated queries,
we identified that certain human requirements could not be expressed as hard logic constraints,
such as “minimize cost” and “maximize convenience in transportation.” We classified these as soft
preferences of human needs. To better evaluate the performance of these preferences, we distilled
and summarized preferences found in Human and automatically constructed Preference set of
146 samples using the method in stage II. We provided annotations of these preferences for each
sample and manually cleaned the data to facilitate further research.

To promote global research on travel planning, we provide the English version of all the queries in
the ChinaTravel Benchmark. Despite this, we recommend that researchers mainly use the Chinese
version, which can reflect the needs of native speakers more accurately. As discussed above, this
raises the critical challenges for Language Agents in travel planning.

3.5 KEY CHARACTERISTICS

Arbitrary description for the defined concepts. The success of neural-symbolic solutions relies
on accurate translation from natural languages to human-defined concepts. We find that even for
advanced LLMs, it is still challenging to understand the diverse descriptions of human queries.
The variability in human language, including ambiguous phrasing, context-dependent meanings,
and open-ended expressions, makes it difficult for LLMs to map these descriptions to predefined
concepts. This gap often results in failures when the models attempt to reconcile flexible human
input with pre-defined symbolic structures, hindering their performance in tasks requiring precise
constraint recognition and adherence to user preferences.

Emergence of the undefined concepts. Inreal-world applications, language agents will encounter
symbolic concepts that were not predefined during development, making it challenging to satisfy the
related constraints. Real-world concepts are dynamic and consistently evolving, making it unrealis-
tic to rely on a closed concept library to handle open-world demands. Therefore, neural-symbolic
language agents must learn to recognize and adapt to new concepts as they emerge in an open-world
environment, expanding their symbolic knowledge base to ensure scalability and robustness.

Diverse preference requirements. Real requirements also involve customized preferences which
are challenging for language agents. On the one hand, due to the diversity of human expressions,
LLMs often struggle to accurately interpret these preferences. For instance, a query like ‘prefer
not to be under the sun’ implies a preference for ‘more indoor attractions’ necessitating robust in-
tent analysis and a deep understanding of user behavior patterns. Currently, most methods rely
on general-purpose models, such as GPT-4, which may lack the specialized capabilities required
for this task. On the other hand, even if the LLM can accurately identify human preferences, the
symbolic search component lacks effective techniques for efficient searching. This is because inte-
grating preferences with logical constraints transforms the problem into a complex multi-objective
mixed discrete constraint optimization problem. Current SMT-based methods and heuristic search
techniques often fail to find satisfactory solutions within a limited time frame.

Under review as a conference paper at ICLR 2025

4 EMPIRICAL STUDY

We evaluate the performance of both pure-LLM-based and neural-symbolic solutions on the China-
Travel benchmark. Regarding the former, we primarily tested the well-known method, ReAct (Yao
et al.,[2023), and its Act-only ablation, where the model is instructed to zero-shot generate “Thought:
{some reasoning}, Action: {some formatted action}” or only the action part. Regarding the latter,
we follow the neural-symbolic pipelines from (Hao et al.l |2024) but replace the SMT solver with
a step-by-step depth-first search to adapt to the multi-day multi-POI itinerary. The details will be
provided in the subsection As for LLMs, we choose the DeepSeek-V2.5 (Liu et al., 2024a)
and GLM-4PLUS, which possess advanced Chinese language capabilities, and the GPT-4 as the
engine of the language agents. We do not include the given their performance close to ReAct in the
TravelPlan benchmark (Xie et al.,2024]), the potential benefits of these methods may be limited.

4.1 NEURAL-SYMBOLIC SOLUTIONS

Based on the success of the neural-symbolic solution in the TravelPlan benchmark, we adapt the two-
stage SMT-based solution to our benchmark, which we call NeSy Planning. Following the (Hao
et al.l 2024)), we first extract the logical constraints from the natural language. Based on the ex-
tracted constraints, we present a step-by-step plan generation process with depth-first search, that
is, mimicking human travel planning by arranging the next activity one by one. Specifically, we
first generate the next activity type based on the current plan, and then recursively generate the next
activity until the goal is reached. The generated plan is then used to solve the problem.

Algorithm 1 Depth-First Greedy Search

Require: Constraints C, current plan p,
if the least activity is an intercity-transport from destination to origin then

return ConstraintValidation(p, C), p > The plan p is finished, return the validation result.
end if
type = GetNextActivity Type(p) > Select the next type of activities, e.g. lunch, attraction.
candidates = ToolUse(type) > Collect the corresponding information for the activity type
scores = RuleScore(candidates, p, C) > Score candidates through constraints C.
for activity in candidates do

p.push(activity) > Perform a greedy search with priority ranking.

flag, p = Depth-FirstGreedySearch(C, p)

if flag then

return True, p > Return the solution p if the validation is passed.

end if

p-pop(activity)
end for
return False, p > Fail to find a solution with the given conditions.

For the first step, we follow the (Hao et al.,2024) to implement the translation from natural languages
to logical constraints through prompting. The detailed prompts are provided in the Appendix [B] In
the second step, we define the rule-based activity selection and score function. For example, if the
current time is in the [10:30, 12:30] and there is no scheduled lunch in the current plan, then the
agent should find a restaurant to have lunch at this time. If the current time is after 22:00 and there
are no open-time attractions nearby, the agent should choose to return to the hotel. For the score
function, we select the restaurants that satisfy the required cuisine and sort the candidates by the
price if there a budget constraints in the constraints C'. These ranking functions will help us to find
a feasible solution as soon as possible. In ChinaTravel, the duration arrangement of activities is
continuous and difficult to enumerate and search. We pre-define a meal or a visit to an attraction as
90 minutes, and when there are less than 90 minutes until closing time, the event continues until the
closing time. Given these designs, we adapt the neural-symbolic solution into a multi-POI planning
problem and evaluate it in the ChinaTravel benchmark.

Under review as a conference paper at ICLR 2025

Table 2: Main results of different LLMs and planning strategies on the ChinaTravel benchmark.
LLMs: @: DeepSeek-V2.5, @: GPT-40-2024-08-06, & : GLM-4PLUS.

Environmental Logical

Delivery Final
LLMs Rate Pass Rate Pass Rate Pass Rate
Micro Macro Micro Macro
Easy (#303)
Act ' 87.1 407 033 710 370 0
&) 98.4 60.6 0 857 446 0
o) 86.5 322 0 58.4 18.5 0
ReAct W 60.4 28.1 0 39.3 17.2 0
® 99.3 42.0 0 73.8 30.4 0
N 92.0 624 924 858 62.1 7.26
ReAct (one-shot) g5 g9 3 614 033 934 720 0
e 90.4 904 904 883 89.8 89.8
NeSy Planning N4 99.0 99.0 98.7 99.0 98.0 97.7
&) 97.4 974 974 968 964 96.4
Medium (#180)
Act ' 81.1 31.0 0 645 433 0
&) 98.9 51.9 0 944 81.7 0
e 74.4 19.1 0 41.2 14.4 0
ReAct N 58.3 22.5 1.11 31.8 13.3 0.55
&) 98.9 33.6 0 61.1 22.8 0
N 83.9 490 278 753 544 2.78
ReAct (one-shot) g 409 534 0 939 772 0
) 90.0 90.0 900 809 57.8 57.8
NeSy Planning w 90.6 90.5 900 80.8 55.6 55.6
&) 90.6 90.6 906 813 57.8 57.8
Human (#154)
Act ' 75.3 26.4 0 550 299 0
&) 98.7 50.8 0 80.0 54.6 0
e 55.2 13.6 0 33.5 16.2 0
ReAct W 48.7 16.6 0.65 33.6 15.0 0
©® 100 34.5 0 71.3 31.2 0
N 79.2 418 260 642 422 2.60
ReAct (one-shot) g5 7' 374 0 627 4438 0
e 62.3 622 61.0 496 422 41.6
NeSy Planning & 55.8 554 520 456 377 35.7
® 79.2 789 773 629 513 513

4.2 MAIN RESULTS

We provide the main results in Table |Zl For Easy set, we observe that while most models exhibit
a high delivery rate using Act and React (Yao et al. [2023) methods, they perform poorly in con-
straint satisfaction. Given that the logical constraints in this set are relatively simple (e.g., mostly
only involving the number of people and travel days), these methods achieve a favorable logical
pass rate. Unlike TravelPlanner (Xie et al., [2024), our task involves multi-day multi-POI scenar-
ios, where satisfying environmental constraints becomes more challenging as the number of POIs
increases. Consequently, purely LLM-based methods tend to fail in the environmental pass rate met-

Under review as a conference paper at ICLR 2025

ric, thus resulting in a low final pass rate, with many models failing entirely. We find that the need
to document transportation details between large number of POIs often lead to a high frequency
of hallucinations in LLMs. Specifically, these models frequently invent transportation information
rather than providing the requested result from APIs in the final plan. Our attempts to address this
issue through prompt engineering alone have proven insufficient. Notably, Deepseek-V2.5 (Liu
et al.l 2024a) achieves a 7.26% pass rate in ReAct due to its strong capability in following Chi-
nese instructions. In this set, NeSy unsurprisingly achieved the best results, with the final pass rate
approaching 100%. This aligns with the observations in the SMT-based method (Hao et al., |2024),
which demonstrates that when LLMs successfully translate natural language into logical constraints,
symbolic search can resolve many issues related to constraint satisfaction.

For Medium set, we observed that the performance of Act and React shows little difference com-
pared to the Easy set. However, the NeSy planning method has a significant performance decline.
This is attributed to arbitrary descriptions of defined concepts in the set, which hinder the LLM’s
ability to accurately translate natural language into logic constraints. This performance decrease
aligns with our expectations, indicating that the NeSy planning approach remains insufficient for
addressing more complex tasks.

For Human set, almost all the methods’ perfor-
mance declines. Since these queries are crafted
by humans, they more closely resemble real-
world scenarios, presenting a greater challenge
for LLMs. Furthermore, the open-ended nature
of human queries introduces undefined concepts,
which also results in suboptimal performance for
the Nesy planning We conduct a detailed analy-
sis of the Human results, and manually calculate
the error rate distribution of the NeSy planning
method across all models. We categorize the er-
rors into five main types: Missing constraints er-
ror: indicates a failure to translate appropriate
logical constraints. Parsing error: occurs when
LLMs fail to generate logical constraints in the correct format. Preference error: happens when the
model mistakenly interprets human preferences as logical constraints. Arbitrary description error:
arises when the LLMs cannot accurately map human descriptions to well-defined concepts. Unde-
fined Concept Error: occurs when an undefined concept prevents the model from converting it into
suitable logical constraints. The statistical results of the error distribution are shown in Figure 3] It
can be observed that the Arbitrary Description Error accounts for the highest proportion at 59.7%,
followed by the Undefined Concept Error. This indicates that these two issues are the main reasons
for the poor performance of the current NeSy planning method on Human set. These align with the
two key challenges of the NeSy methods proposed in this paper.

Error Types
Missing constraints error
Parsing error
Preference error
I Arbitrary description error
I Undefined concept error

Figure 3: Error distribution for NeSy planning on
Human set, categorized into five distinct types.

4.3 CASE STUDY

Arbitrary description for the defined concepts. We present two examples of arbitrary descrip-
tions. As shown in Figure 4] (1), a user intends to visit Disneyland. Therefore, Disneyland should
be included in the POIs we need to access. However, in the database, Disneyland is listed under its
formal name, ‘Shanghai Disney Resort’. The issue arises because LLMs cannot access the entire
database, leading to errors when translating natural language into symbolic constraints. In the sec-
ond example, the user wishes to try local cuisine. LLMs extract the term ‘local cuisine’ as a string,
overlooking the intermediate logical relationship that, since the destination is Chengdu, it should
specifically refer to ‘Sichuan cuisine’ which is available in the database.

Emergence of the undefined concepts. Two examples of concepts are provided on the Fig-
ure [42). Although the concepts define that train start and end times should align with the travel
information in the database, users often request additional specific time constraints. A more com-
plex example is when, despite having a defined concept for budget, users introduce more intricate
constraints, such as excluding airfare from the overall budget. These challenges highlight the cur-

Under review as a conference paper at ICLR 2025

2 BiATRERR2] HEIRIETN, BFIAR
RELEAR, HRE%, BEIT
—iERGE, BIRELELTE, ME
15007T, iAIRIEJLARSCAILING

EN: [Origin: Suzhou, Destination :
Shanghai, #travelers: 2, #days: 2] | am
currently in Suzhou and would like to go
to Shanghai with my friends for two days.
We will take the high-speed train back and
forth. We need to book a twin room. |

want to go to Disneyland and my budget is
1,500 yuan. Can you help me plan?

LLM Extraction

B+ € attraction_names

gt RERE € attraction_names

[ﬁamﬁﬁmaﬁmﬁiﬁ,ﬁﬁﬁ@

[HRIf BRI, BIRERRER IRITA
2, iiRITREA] HANAAARA EMIE\:,EHE.
RERETIUR, KZEsEEE,

[MRIRZEM, B ﬁ{ﬁﬁtﬁ,ﬁﬁﬁ/\
1 RITREN] HRIRERIN, 18
ﬁilﬁfn—f HRBRG), BL

SegiE], EiRETLA

8 =]

1 rt%LHzJﬂ%
EN: [Origin: Suzhou, Destination :
Shanghai, #travelers: 1, #days: 1] | am
currently in Suzhou and would like to
go to Shanghai for a day, round trip by
high-speed rail (G), leaving before 8am
and returning before 5pm. Can you /

help me plan this?

LLM Extraction: NA

intercity_transport_activity
[go][start] <= 8:00
intercity_transport_activity
[back][end] <= 17:00

[ZRINEALR, BARAIEHM IRITA
#2 ATREL3] BANISEEE MR

[HRIE LS, B BRI k1T, \
#2 irTREN] N EBEIR R —

‘Fﬁiz])t L,—#_ EE%E?TE}EP?;H £,
BT B 7

EN: [Origin: Shanghai, Destination :
Nanjing, #travelers: 2, #days: 1]

I'm taking my daughter on a one-day

trip from Shanghai to Nanjing. The

main goal is to take photos and check in.

What are some must-visit Internet

celebrity attractions?

"RRREIREA)"

more popular attractions

FiilE, FTEH3R, BASE [T ER R, BB RTAZL
FREE6000TT/ A, 3, HiR{TREL3] S REEATTH
EN: [Origin: Shanghai, Destination :
Nanjing, #travelers: 2, #days: 1]

The most economical plan.

FFT— DA

EN: [Origin: Wuhan, Destination :
Chengdu, #travelers: 2, #days: 4] My
friend and | want to travel from Wuhan
to Chengdu for four days, eat local
specialties, and have a relaxing trip.

EN: [Origin: Beijing, Destination :
Suzhou, #travelers: 2, #days: 3] My
mother and | are planning to travel from
Beijing to Suzhou for 3 days, with a
budget of about 6,000 yuan, excluding
air tickets.

LLM Extraction
1SEER € food_types

JIIEE € food_types cost_intercity_transport <
6000

(1) Arbitrary description (2) Emergence of concepts

LLM Extraction: NA

NESEEISEE T
cost — less total cost

(3) Preference requirements

Figure 4: Case study of challenges in real-world travel planning

rent limitations of LLMs and neural-symbolic solutions in translating such emerging constraints and
resolving satisfiability issues through symbolic systems.

Preference Cases. We present two examples to show how preferences in our benchmark. As
shown in Figure E (3), a user intends to visit some must-visit attractions. This reflects a user’s
preference for visiting more popular attractions. Another example is the user’s desire for the most
economical plan, indicating a preference for lower total cost. These preferences involve undefined
concepts, such as the popularity tag of attractions, and require LLMs to have a sufficient understand-
ing of human intentions and a good analysis of behavior patterns. The presence of preferences adds
complexity to tasks due to their potential interactions. For instance, there is an inherent conflict
between the preference to reduce overall cost and the desire for an enhanced travel experience.

5 CONCLUSION

In this paper, we introduced ChinaTravel, a benchmark specifically designed to evaluate language
agents in the domain of travel planning, with a focus on authentic Chinese travel requirements. We
addressed the limitations of existing benchmarks by incorporating human users and their customized
requirements, which are essential for real-world applications. ChinaTravel provides a realistic eval-
uation framework with diverse metrics covering feasibility, constraint satisfaction, and preference
comparison. By addressing the challenges identified in the benchmark, we can pave the way for the
deployment of language agents that better meet the customized requirements of users and provide
reliable and satisfactory travel planning experiences.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Advances in
Neural Information Processing Systems, pp. 1877-1901, 2020.

Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. Deep blue. Artificial intelligence, 134
(1-2):57-83, 2002.

Aili Chen, Xuyang Ge, Ziquan Fu, Yanghua Xiao, and Jiangjie Chen. TravelAgent: An Al assistant
for personalized travel planning. arXiv preprint arXiv:2409.08069, 2024.

Wang-Zhou Dai, Qiu-Ling Xu, Yang Yu, and Zhi-Hua Zhou. Bridging machine learning and logical
reasoning by abductive learning. In Advances in Neural Information Processing Systems, pp.
2811-2822, 2019.

Shujie Deng, Honghua Dong, and Xujie Si. Enhancing and evaluating logical reasoning abilities of
large language models. In Proceedings of the ICLR 2024 Workshop on Secure and Trustworthy
Large Language Models, 2024.

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
without training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14953-14962, 2023.

Sajal Halder, Kwan Hui Lim, Jeffrey Chan, and Xiuzhen Zhang. A survey on personalized itinerary
recommendation: From optimisation to deep learning. Applied Soft Computing, 152:111200,
2024.

Yilun Hao, Yongchao Chen, Yang Zhang, and Chuchu Fan. Large language models can plan your
travels rigorously with formal verification tools. CoRR, abs/2404.11891, 2024.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R.
Narasimhan. Swe-bench: Can language models resolve real-world github issues? In Proceedings
of the 12th International Conference on Learning Representations, 2024.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-
of-experts language model. arXiv preprint arXiv:2405.04434, 2024a.

Weiyu Liu, Geng Chen, Joy Hsu, Jiayuan Mao, and Jiajun Wu. Learning planning abstractions from
language. In Proceedings of the 12th International Conference on Learning Representations,

2024b.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
Deepproblog: Neural probabilistic logic programming. In Advances in Neural Information Pro-
cessing Systems, pp. 3753-3763, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin A. Riedmiller. Playing Atari with deep reinforcement learning. CoRR,
abs/1312.5602, 2013.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan
Leike, and Ryan Lowe. Training language models to follow instructions with human feedback.
In Advances in Neural Information Processing Systems, pp. 27730-27744, 2022.

11

Under review as a conference paper at ICLR 2025

Liangming Pan, Alon Albalak, Xinyi Wang, and William Yang Wang. Logic-LM: Empowering
large language models with symbolic solvers for faithful logical reasoning. In Findings of the
Association for Computational Linguistics: EMNLP, pp. 3806-3824, 2023.

Vibhor Sharma, Monika Goyal, and Drishti Malik. An intelligent behaviour shown by chatbot
system. International Journal of New Technology and Research, 3(4):263312, 2017.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflex-
ion: language agents with verbal reinforcement learning. In Advances in Neural Information
Processing Systems, 2024.

David Silver, Julian Schrittwieser, Karen Simonyan, loannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy P. Lillicrap,
Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Master-
ing the game of Go without human knowledge. Nature, 550(7676):354-359, 2017.

Yihong Tang, Zhaokai Wang, Ao Qu, Yihao Yan, Kebing Hou, Dingyi Zhuang, Xiaotong Guo,
Jinhua Zhao, Zhan Zhao, and Wei Ma. Synergizing spatial optimization with large language
models for open-domain urban itinerary planning. CoRR, abs/2402.07204, 2024.

Po-Wei Wang, Priya L. Donti, Bryan Wilder, and J. Zico Kolter. SATNet: Bridging deep learn-
ing and logical reasoning using a differentiable satisfiability solver. In Proceedings of the 36th
International Conference on Machine Learning, pp. 6545-6554, 2019.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Jun-
zhe Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong, Yuhao
Zhou, Weiran Wang, Changhao Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin, Shihan Dou,
Rongxiang Weng, Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan Zheng, Xipeng Qiu, Xuan-
jing Huang, and Tao Gui. The rise and potential of large language model based agents: A survey.
CoRR, abs/2309.07864, 2023.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and
Yu Su. Travelplanner: A benchmark for real-world planning with language agents. In Proceedings
of the 41st International Conference on Machine Learning, 2024.

Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Luoxuan Weng, Yitao Liu, Toh Jing Hua, Jun-
ning Zhao, Qian Liu, Che Liu, Leo Z. Liu, Yiheng Xu, Hongjin Su, Dongchan Shin, Caiming
Xiong, and Tao Yu. Openagents: An open platform for language agents in the wild. CoRR,
abs/2310.10634, 2023.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. In Advances in Neural Information
Processing Systems, pp. 20744-20757, 2022.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In Proceedings of the 11th
International Conference on Learning Representations, 2023.

Hongbo Zhang, Junying Chen, Feng Jiang, Fei Yu, Zhihong Chen, Guiming Chen, Jianquan Li, Xi-
angbo Wu, Zhiyi Zhang, Qingying Xiao, Xiang Wan, Benyou Wang, and Haizhou Li. Huatuogpt,
towards taming language model to be a doctor. In Findings of the Association for Computational
Linguistics: EMNLP, pp. 10859-10885, 2023.

12

Under review as a conference paper at ICLR 2025

Table 3: Database schema.

POI type feature list API

Attractions Name, Lat, Lon, Price, Type attractions_keys(city)

OpenTime, CloseTime, MinTime, MaxTime attractions_select(city, key, func)
attractions_id_is_open(city, id, time)
attractions_nearby(city, point, topk, dist)
attractions_types(city)

Accommodations Name, Lat, Lon, Price, NumBed, accommodations_keys(city)
aaccommodations_select(city, key, func)
accommodations_nearby(city, point, topk, dist)

Restaurants Name, Lat, Lon, Price, CuisineName, restaurants_keys(city)

OpenTime, CloseTime, RecommendedFood restaurants_select(city, key, func)
restaurants_id_is_open(city, id, time)
restaurants_nearby(city, point, topk, dist)
restaurants_cuisine(city)
restaurants_restaurants_with_recommended_food
(city, food)

Transport - goto(city, start, end, start_time, method)
intercity_transport_select
(start_city, end_city,
intercity_type, earliest_leave_time)

NoteBook - notedown(description, content)

Env - planner(query)
next_page()

13

Under review as a conference paper at ICLR 2025

A TRAVEL INFORMATION

B PROMPTS

Act:

PROMPT = nmnn

Collect information for a query plan using interleaving ’
Action’, and ’'Observation’ steps. Ensure you gather valid
information related to transportation(including inter
and inner city), dining, attractions, and accommodation.
All information including time, cost, location and others
must be written in notebook, which will then be input
into the Planner tool. Note that the nested use of tools
is not allowed. ’"Action’ can have 19 different types:

city_list = ["Shanghai", "Beijing", "Shenzhen", "Guangzhou","
Chongging", "Suzhou", "Chengdu", "Hangzhou", "Wuhan", "
Nanjing"]

(1) attractions_keys(city: str)

Description: Returns a list of (key, type) pairs of the
attractions data.

Parameters:

city: The city name.

(2) attractions_select(city: str, key: str, func: Callable):

Description: Returns a DataFrame with data filtered by the
specified key with the specified function.

Parameters:

city: The city name.

key: The key column to filter, only one key can be used.

func: The lambda function applied to the key column, must
return a boolean value. Only apply to one key.

(3) attractions_id_is_open(city: str, id: int, time: str):

Description: Returns whether the attraction with the
specified ID is open at the specified time.

Parameters:

city: The city name.

id: The ID of the attraction.

time: The time to check, in the format ’'HH:MM’.

(4) attractions_nearby(city: str, point: str, topk: int, dist

float = 2):

Description: Returns the top K attractions within the
specified distance of the location.

Parameters:

city: The city name.

point: The name of the location.

topk: The number of attractions to return.

dist: The maximum distance from the location, default is 2.

(5) attractions_types(city: str):

Description: Returns a list of unique attraction types.

Parameters:

city: The city name.

(6) accommodations_keys (city: str):

Description: Returns a list of (key, type) pairs of the
accommodations data.

Parameters:

city: The city name.

Under review as a conference paper at ICLR 2025

(7) accommodations_select (city: str, key: str, func: Callable
) :

Description: Returns a DataFrame with data filtered by the
specified key with the specified function.

Parameters:

city: The city name.

key: The key column to filter, only one key can be used.

func: The lambda function applied to the key column, must
return a boolean value. Only apply to one key.

(8) accommodations_nearby(city: str, point: str, topk: int,
dist: float = 5):

Description: Returns the top K accommodations within the
specified distance of the location.

Parameters:

city: The city name.

point: The name of the location.

topk: The number of accommodations to return.

dist: The maximum distance from the location, default is 5.

(9) restaurants_keys(city: str):

Description: Returns a list of (key, type) pairs of the
restaurants data.

Parameters:

city: The city name.

(10) restaurants_select (city: str, key: str, func: Callable):

Description: Returns a DataFrame with data filtered by the
specified key with the specified function.

city: The city name.

key: The key column to filter, only one key can be used.

func: The lambda function applied to the key column, must
return a boolean value. Only apply to one key.

(11) restaurants_id_is_open(city: str, id: int, time: str):

Description: Returns whether the restaurant with the
specified ID is open at the specified time and day.

Parameters:

city: The city name.

id: The ID of the restaurant.

time: The time to check, in the format ’'HH:MM’.

(12) restaurants_nearby(city: str, point: str, topk: int,
dist: float = 2):

Description: Returns the top K restaurants within the
specified distance of the location.

Parameters:

city: The city name.

point: The name of the location.

topk: The number of restaurants to return.

dist: The maximum distance from the location, default is 2.

(13) restaurants_restaurants_with_recommended_food(city: str,
food: str):

Description: Returns all restaurants with the specified food
in their recommended dishes.

Parameters:

city: The city name.

food: The food to search for.

(14) restaurants_cuisine(city: str):

Description: Returns a list of unique restaurant cuisines.

Parameters:

city: The city name.

15

Under review as a conference paper at ICLR 2025

(15) goto(city: str, start: str, end: str, start_time: str,
method: str):

Description: Returns a list of transportation options between
two locations.

Parameters:

city: The city name.

start: The start point’s name. Must be a location name and
match the data exactly.

end: The end point’s name. Must be a location name and match
the data exactly.

start_time: The departure time in the format ’'HH:MM’.

method: The mode of transportation, must in ['walk’, ’'taxi’,
"metro’].

(16) notedown (description: str, content: str):
Description: Writes the specified content to the notebook.
Parameters:

description: The description of the content.

content: The content to write.

(17) planner (query: str):

Description: Generates a plan based on the notebook content
and query.

Parameters:

query: The query to generate a plan for. Don’t worry about
the notebook content, the planner will read it
automatically.

(18) intercity_transport_select (start_city: str, end_city:
str, intercity_type: str):

Description: get the intercity transportation information
between two cities. You need to call this function at
least twice to get the transportation information between

two locations for going and returning.

Parameters:

start_city: The start city name.

end_city: The end city name.

intercity_type: The type of intercity transportation, must in

["train’, ’'airplane’].

(19) next_page():

Description: Get the next page of the latest Result history
if it exists. Because of the length limited, all returned
DataFrame information is split into 10 rows per page.
You can use this function to get the next page of the
Result history. Only DataFrame information can be split
into multiple pages. The function should not be used too
often, otherwise, you will soon run out of steps.

Parameters:

None

Your action will be executed in the following format: action,
so any additional text like ’'Action: ’ is not allowed
and just one line is allowed for each action.

You must finish your response within 75 steps including plan.

16

Under review as a conference paper at ICLR 2025

Select the transportation, dining, attractions, and
accommodation information you need to plan your trip and
write them in the notebook. Not EVERYTHING is needed,
only what you need to plan the trip. For example, when
you get ten or more accommodations, you only need to note

down the information of the accommodation you want to

stay in, usually one, and note it down in the notebook.

You must not note down all the accommodations information
And usually, 2-4 attractions are enough for one day.

What you note down in the notebook should be a plan or plans
for days. May be notedown (description = "Day 1 (Day 1
morning is also acceptable)", content = "At 8:00, have
breakfast at hotel A, then go to attraction B, using
metro (together with the cost, time, stations and other
information). Attracion B will cost xxx yuan and XxX
hours. Then go to restaurant C for lunch, using taxi (
together with the cost, time, distance and other
information). Restaurant C will cost xxx yuan. (another
attraction is possiple too as long as there is enough
time and budget). Then... ###More details here###.")

EXAMPLE
Action[l]: intercity_transport_select (start_city=’Beijing’

end_city=’'Nanjing’, intercity_type='train’)
Observation[1l]:

~

Results[1]:

[MASKED]

Action[2]: intercity_transport_select (start_city=’'Beijing’,
end_city='Nanjing’, intercity_type="airplane’)

Observation[2]: Please note down what is useful using
notedown method.

Results|[2]:

[MASKED]

Action[3]: intercity_transport_select (start_city=’'Nanjing’,

end_city='Beijing’, intercity_type='airplane’)

Observation[3]:

Results[3]:

[MASKED]

Action[4]: notedown (description="Round trip between Beijing
and Nanjing’, content=’Heading to Nanjing on flight '
FL154’ from ’'Beijing Capital International Airport’ to
Nanjing Lukou International Airport’ at "07:40’ arriving
at "08:47'. The ticket price is 427.98. Returning to
Beijing on flight 'FL657’ from ’'Nanjing Lukou
International Airport’ to ’'Beijing Daxing International
Airport’ at ’18:02’ arriving at ’19:09’. The ticket price

is 412.06. Considering that the user is traveling with a
companion, the round-trip cost between Nanjing and
Beijing is 1680.08, leaving 2319.92 for planning
activities, accommodation, and dining within Nanjing.’)

Observation([4]:

4

Results[4]:
NoteBook updated.
Action[5]: attractions_keys (city=’'Nanjing’)

17

Under review as a conference paper at ICLR 2025

Observation([5]:

Results[5]:

[MASKED]

Action[6]: attractions_select (city='Nanjing’, key='type’,
func=lambda x: True)

Observation[6]:

Results[6]:

[MASKED]

Action[7]: goto(city='"Nanjing’, start='Nanjing Railay Station
", end='Confucius Temple’, start_time=’08:00’, method=’
metro’)

Observation[7]:

Results([7]:

[MASKED]

...... // More actions and observations

Action[X]: notedown (description=’'Day 1’, content=’At 8:00,
have breakfast at hotel A, then go to attraction B, using
metro (together with the cost, time, stations and other
information). Attracion B will cost xxx yuan and XxXx
hours. Then go to restaurant C for lunch, using taxi(
together with the cost, time, distance and other
information). Restaurant C will cost xxx yuan. (another
attraction is possiple too as long as there is enough
time and budget). Then... ###More details here###.’)

...... // More actions and observations

Action[n] :planner (query="My friend and I plan to visit
Nanjing for three days with a budget of 4000 yuan. We
prefer to use the subway as much as possible and enjoy

Jiangsu and Zhejiang cuisine. Please provide a travel
plan.")

##4# EXAMPLE END ###

Do not forget to note down the ###transportation information
between locations### before planning. Intercity
transportation information should be noted down before
planning too.

You need to plan for each day in detail. If only one day is
planned, accommodation is not needed. If more than one
day is planned, accommodation is necessary. Nights in
accommodations should be days-1. For example, if you plan

for 3 days, you need to note down 2 nights in
accommodations.

!''""Don’t call next_page() too often, only when necessary.!!!
Once you get the suitable information, you must !!!STOP
''"!" using this function. !!!

18

Under review as a conference paper at ICLR 2025

Pay attention to function names and parameters, and the
format of the data. You must use the correct function
names and parameters to get the data you need. If you use

the wrong function names or parameters, you will not get
the correct data.!!!

It is strictly forbidden to use the next_page() too often!
Remember to note down all information you need in the
notebook before planning.

nmmn

19

Under review as a conference paper at ICLR 2025

PROMPT = nmwan
Collect information for a query plan using interleaving '
Thought’, ’"Action’, and ’'Observation’ steps. Ensure you
gather valid information related to transportation,
dining, attractions, and accommodation. All information
including time, cost, location and others must be written
in notebook, which will then be input into the Planner
tool. Note that transportation bwteen locations must be
written in notebook before planning. Note that the nested
use of tools is not allowed, ’'Thought’ can reason about
the current situation, and ’'Action’ can have 19 different

types:
city_list = ["Shanghai", "Beijing", "Shenzhen", "Guangzhou",
"Chongging", "Suzhou", "Chengdu", "Hangzhou", "Wuhan", "
Nanjing"]. All the cities name you use must be in this
list.

(1) attractions_keys(city: str)
Description: Returns a list of (key, type) pairs of the
attractions data.

Parameters:
city: The city name.
(2) attractions_select (city: str, key: str = "", func:

Callable = lambda x: True):

Description: Returns a DataFrame with data filtered by the
specified key with the specified function.

Parameters:

city: The city name.

key: The key column to filter, only one key can be used. If
not specified, return all data.

func: The lambda function applied to the key column, must
return a boolean value. Only apply to one key. If not
specified, return all data.

(3) attractions_id_is_open(city: str, id: int, time: str):

Description: Returns whether the attraction with the
specified ID is open at the specified time.

Parameters:

city: The city name.

id: The ID of the attraction.

time: The time to check, in the format ’'HH:MM’.

(4) attractions_nearby(city: str, point: str, topk: int, dist

float = 2):

Description: Returns the top K attractions within the
specified distance of the location.

Parameters:

city: The city name.

point: The name of the location.

topk: The number of attractions to return.

dist: The maximum distance from the location, default is 2.

20

Under review as a conference paper at ICLR 2025

(5) attractions_types(city: str):

Description: Returns a list of unique attraction types.
Parameters:

city: The city name.

(6) accommodations_keys (city: str):

Description: Returns a list of (key, type) pairs of the
accommodations data.

Parameters:

city: The city name.

(7) accommodations_select (city: str, key: str = "", func:
Callable = lambda x: True):

Description: Returns a DataFrame with data filtered by the
specified key with the specified function.

Parameters:

city: The city name.

key: The key column to filter, only one key can be used. If
not specified, return all data.

func: The lambda function applied to the key column, must
return a boolean value. Only apply to one key. If not
specified, return all data.

(8) accommodations_nearby(city: str, point: str, topk: int,
dist: float = 5):

Description: Returns the top K accommodations within the
specified distance of the location.

Parameters:

city: The city name.

point: The name of the location.

topk: The number of accommodations to return.

dist: The maximum distance from the location, default is 5.

(9) restaurants_keys(city: str):

Description: Returns a list of (key, type) pairs of the
restaurants data.

Parameters:

city: The city name.

(10) restaurants_select(city: str, key: str = "", func:
Callable = lambda x: True):

Description: Returns a DataFrame with data filtered by the
specified key with the specified function.

city: The city name.

key: The key column to filter, only one key can be used. If
not specified, return all data.

func: The lambda function applied to the key column, must
return a boolean value. Only apply to one key. If not
specified, return all data.

(11) restaurants_id_is_open(city: str, id: int, time: str):

Description: Returns whether the restaurant with the
specified ID is open at the specified time and day.

Parameters:

city: The city name.

id: The ID of the restaurant.

time: The time to check, in the format ’'HH:MM’.

(12) restaurants_nearby(city: str, point: str, topk: int,
dist: float = 2):

Description: Returns the top K restaurants within the
specified distance of the location.

Parameters:

21

Under review as a conference paper at ICLR 2025

city: The city name.

point: The name of the location.

topk: The number of restaurants to return.

dist: The maximum distance from the location, default is 2.
(13) restaurants_restaurants_with_recommended_food(city: str

, food: str):
Description: Returns all restaurants with the specified food
in their recommended dishes.

Parameters:

city: The city name.

food: The food to search for.

(14) restaurants_cuisine(city: str):

Description: Returns a list of unique restaurant cuisines.

Parameters:

city: The city name.

(15) goto(city: str, start: str, end: str, start_time: str,
method: str):

Description: Returns a list of transportation options between
two locations.

Parameters:

city: The city name.

start: The start point’s name. Must be a location name and
match the data exactly.

end: The end point’s name. Must be a location name and match
the data exactly.

start_time: The departure time in the format ’'HH:MM’.

method: The mode of transportation, must in ['walk’, ’'taxi’,
"metro’].

(16) notedown (description: str, content: str):
Description: Writes the specified content to the notebook.
Parameters:

description: The description of the content.

content: The content to write.

(17) planner (query: str):

Description: Generates a plan based on the notebook content
and query.

Parameters:

query: The query to generate a plan for. Don’t worry about
the notebook content, the planner will read it
automatically.

(18) intercity_transport_select (start_city: str, end_city:
str, intercity_type: str, earliest_leave_time: str = None
) :

Description: get the intercity transportation information
between two cities. You need to call this function at
least twice to get the transportation information between

two locations for going and returning.

Parameters:

start_city: The start city name.

end_city: The end city name.

intercity_type: The type of intercity transportation, must in

["train’, ’'airplane’].

22

Under review as a conference paper at ICLR 2025

earliest_leave_time: The earliest leave time in the format '
HH:MM' .

Return: The transportation information between two cities
sorted by leaving time.

(19) next_page():

Description: Get the next page of the latest Result history
if it exists. Because of the length limited, all returned
DataFrame information is split into 10 rows per page.
You can use this function to get the next page of the
Result history. Only DataFrame information can be split
into multiple pages. The function should not be used too
often, otherwise, you will soon run out of steps.

Parameters:

None

Your action will be executed in the following format: action,
so any additional text like ’'Action: ’ is not allowed
and just one line is allowed for each action.

You must finish your response within 75 steps including plan,
otherwise the system will terminate your response. If
you note down too often, you will soon run out of steps.
But you can note down multiple pieces of information as a
string WITHIN ONE CALL.

Select the transportation, dining, attractions, and
accommodation information you need to plan your trip and
write them in the notebook. Not EVERYTHING is needed,
only what you need to plan the trip. For example, when
you get ten or more accommodations, you only need to note

down the information of the accommodation you want to

stay in, usually one, and note it down in the notebook.

You must not note down all the accommodations information
And usually, 2-4 attractions are enough for one day.

What you note down in the notebook should be a plan or plans
for days. May be notedown (description = "Day 1 (Day 1
morning is also acceptable)", content = "At 8:00, have
breakfast at hotel A, then go to attraction B, using
metro (together with the cost, time, stations and other
information). Attracion B will cost xxx yuan and XxxX
hours. Then go to restaurant C for lunch, using taxi (
together with the cost, time, distance and other
information). Restaurant C will cost xxx yuan. (another
attraction is possiple too as long as there is enough
time and budget). Then... ###More details here###.")

Do not forget to note down the ###transportation information
between locations### before planning. Intercity
transportation information should be notedown before
planning too.

You need to plan for each day in detail. If only one day is
planned, accommodation is not needed. If more than one
day is planned, accommodation is necessary. Nights in
accommodations should be days-1.

23

Under review as a conference paper at ICLR 2025

For example, if you plan for 3 days, you need to note down 2
nights in accommodations. Do not forget to note down the
transportation information between locations before
planning. Both going and returning transportation
information should be notedown.

Call next_page () only when you need to get the next page of
the latest Result history. Once you get the suitable
information, you must STOP using this function. !!! Pay
attention to function names and parameters, and the
format of the data. You must use the correct function
names and parameters to get the data you need. If you use

the wrong function names or parameters, you will not get
the correct data.!!!

The intercity transportation back to the start city must be
notedown before planning!!!

The innercity to railway station or airport must be notedown
before planning!!!

mwww

24

	Introduction
	Related Work
	ChinaTravel Benchmark
	Environment Inormation
	Logical Constraint
	Preference Requirement
	Benchmark Construction
	Key Characteristics

	Empirical Study
	Neural-Symbolic Solutions
	Main Results
	Case Study

	Conclusion
	Travel Information
	Prompts

