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ABSTRACT

We present GROOVE , a semi-supervised multi-modal representation learning
approach for high-content perturbation data where samples across modalities are
weakly paired through shared perturbation labels but lack direct correspondence.
Our primary contribution is GroupCLIP, a novel group-level contrastive loss that
bridges the gap between CLIP for paired cross-modal data and SupCon for uni-
modal supervised contrastive learning, addressing a fundamental gap in contrastive
learning for weakly-paired settings. We integrate GroupCLIP with an on-the-fly
backtranslating autoencoder framework to encourage cross-modally entangled
representations while maintaining group-level coherence within a shared latent
space. Critically, we introduce a comprehensive combinatorial evaluation frame-
work that systematically assesses representation learners across multiple optimal
transport aligners, addressing key limitations in existing evaluation strategies.
This framework includes novel simulations that systematically vary shared versus
modality-specific perturbation effects enabling principled assessment of method
robustness. Our combinatorial benchmarking reveals that there is not yet an aligner
that uniformly dominates across settings or modality pairs. Across simulations
and two real single-cell genetic perturbation datasets, GROOVE performs on par
with or outperforms existing approaches for downstream cross-modal matching
and imputation tasks. Our ablation studies demonstrate that GroupCLIP is the key
component driving performance gains. These results highlight the importance of
leveraging group-level constraints for effective multi-modal representation learning
in scenarios where only weak pairing is available.

1 INTRODUCTION

Perturbation screens have gained major prominence in recent years for their ability to elucidate causal
gene regulatory networks (Dixit et al., 2016), identify candidate therapeutic targets (Rood et al., 2024),
and enable small molecule repurposing (Bhandari et al., 2022). Each given modality (e.g. RNA-Seq,
ATAC-Seq, or high-content imaging) only observes a subset of the underlying biology of a system (Cui
et al., 2025), therefore recent efforts have shifted toward multi-modal investigation of perturbation
effects via paired profiling approaches (Frangieh et al., 2021; Martin-Rufino et al., 2025). While
promising, this type of profiling remains feasible only for specific combinations of modalities, such as
gene expression paired with chromatin accessibility (Martin-Rufino et al., 2025) or gene expression
paired with surface protein measurements (Frangieh et al., 2021). Notably, it is not currently feasible
to obtain both perturbed microscopy images from cell painting assays (Feldman et al., 2019) and
perturbed gene expression profiles from the same individual cells, as both measurements are inherently
destructive assays. In this setting, we do not have access to paired samples across modalities and can
only broadly group cells by their perturbation (other experimental) labels.

Consequently, recent efforts in multi-modal perturbation screens have shifted toward developing
computational approaches for post-hoc “pairing” (even though true pairs don’t actually exist) of
cells across modalities or cross-modal imputation (See Section 2). Both these objectives depend on
learning a useful joint representation of the non-paired multi-modal data with group-level information
only. Such a setting immediately rules out existing standard contrastive learning approaches for joint
cross-modal inference (see Section 2). Cross-modal contrastive approaches like CLIP (Radford et al.,
2021) need paired data while uni-modal label-based contrastive methods like SupCon (Khosla et al.,
2020) are not natively compatible with multi-modal data. Moreover, existing multi-modal single-cell
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deep learning approaches, such as uncoupled autoencoders (Samaran et al., 2024; Ashuach et al.,
2023), rely on either strong human-defined priors to establish putative cell correspondences or access
to paired data. No current framework can effectively learn from native weakly paired multi-modal
data for a well-mixed multi-modal latent representation (See Section 2).

Contributions. In this work, we develop GROOVE (GROup cOntrastiVE learning for weakly paired
multi-modal data) to address these challenges in weakly paired multi-modal data. Our approach
makes three key contributions. First, we introduce a group-level semi-supervised contrastive loss,
bridging the gap between CLIP (Radford et al., 2021) and SupCon (Khosla et al., 2020) for weakly
paired multi-modal data. Second, GROOVE integrates this loss with on-the-fly backtranslating
autoencoders adapted from neural machine translation (Artetxe et al., 2017), creating a unified
architecture for learning from weakly paired single-cell data. Finally, we develop a comprehensive
evaluation framework consisting of: (i) novel simulations that systematically vary the proportion of
shared versus modality-specific information, and (ii) combinatorial benchmarking that pairs different
representation learners with various alignment algorithms to assess both matching and cross-modal
imputation performance.

Notations. In standard constructions of multi-modal learning, one works with a setting where all
the data modalities are observed for all the samples such that D = {(x(1)

i ,x
(2)
i )}Ni=1. However, the

focus of this work is on settings where such paired data does not exist, i.e., we only have access to
one data modality per sample. We instead have access to a common state, environment, intervention
or perturbation label t ∈ T ⊂ Z that is shared across modalities and samples. This additional
information renders our data as weakly paired such that any data instance across the modalities without
the same label t are strictly unrelated. We can now re-formulate multi-modal learning in the weakly
paired setting as having data D(m) from two disjoint data modalities indexed by m ∈M = {1, 2}.
Each modality-specific dataset is a collection of N (m) samples D(m) = {(x(m)

i , ti)}N
(m)

i=1 , where
each x

(m)
i ∈ X (m) ⊆ Rk(m)

is the data instance for modality m and its corresponding label ti. Given
this, our multimodal representation learning problem is to learning an embedding z ∈ Z ⊆ Rd for
each sample in a shared low-dimensional representation space, such that d≪ min(k(1), k(2)). And
let D(m)

z = {(z(m)
i , ti)}Nm

i=1 represent the collection of latent representations and labels for modality
m. We define m̄ to denote the other modality.

2 BACKGROUND

In this section, we review related work from both the broader contrastive representation learning
literature and the single-cell community, highlighting the gap our contributions aim to address. We
also briefly review unsupervised neural translation which underpins our architecture.

Contrastive representation learning. Contrastive representation learning has emerged as a pow-
erful general paradigm (Le-Khac et al., 2020), with theoretical underpinnings (Alshammari et al.,
2025; Van Assel et al., 2025; HaoChen et al., 2021) and a wide range of practical instantiations. The
foundational InfoNCE loss (Oord et al., 2018) maximizes mutual information between positives
while minimizing it for negatives, and has since inspired numerous influential extensions (Chen et al.,
2020; He et al., 2020; Grill et al., 2020). Despite their success, these methods suffer from a key
limitation: they often misclassify samples from the same class as negatives. Supervised contrastive
learning (Khosla et al., 2020) alleviates this by leveraging labels to form multiple positives per
anchor, but remains uni-modal in design. Similarly, Yao et al. (2024) leverage perturbation labels
to pair samples across batches, but operates at the group level as a uni-modal denoising approach.
For multimodal learning, CLIP (Radford et al., 2021) and CMC (Tian et al., 2020) are the most
influential approaches, aligning image–text pairs or extending contrastive objectives across multiple
modalities. Other works, S-CLIP (Mo et al., 2023) and SemiCLIP (Gan et al., 2025), have explored
supervised and semi-supervised extensions of CLIP that leverage limited paired data with additional
label information. However, these methods still require some instance-level pairs between modalities
and cannot operate in the purely weakly-paired regime where only group labels connect modalities.
Their reliance on strictly paired data remains a critical bottleneck. Thus, a key gap in the literature is
the absence of a supervised extension of CLIP that can exploit weak pairing (Figure 1a).
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Figure 1: (a) GroupCLIP in the context for broader contrastive learning can be viewed as the multi-
modal generalization of SupCon. (b) GROOVE Architecture and training step illustration. Each
iteration consists of two steps: (1) optimize reconstruction and GroupCLIP losses, then (2) generate
cross-modal pseudo-samples in inference mode and optimize the backtranslation loss.

Weakly paired learning for multimodal single-cell data. Single-cell data is inherently unpaired
because measurements are destructive, preventing multiple modalities from being captured from the
same cell. This limitation has motivated the development of computational methods for unpaired
multimodal integration (Yang et al., 2021; Samaran et al., 2024) and weakly paired learning (Xi
et al., 2024; Ryu et al., 2025), particularly in settings involving perturbations, which are the focus
of our work. A particularly important downstream application of these methods is cross-modal
imputation, where one modality is predicted from observations of another. Next, we briefly describe
the most relevant works tackling this problem. First, Xi et al. (2024) leverage perturbation labels via
propensity score matching. Their method trains independent classifiers to predict perturbations in
each modality and then uses the resulting logits to define a common support for alignment, following
the classical balancing scores of Rubin (1974). Although conceptually appealing, this approach
has notable limitations: it assumes that all perturbation-induced variation is perfectly shared across
modalities, ignoring modality-specific effects; and the learned latent representations (classifier logits)
capture only perturbation-predictive information, discarding potentially valuable intra-perturbation
variation that may be critical for downstream tasks. Second, Ryu et al. (2025) address the alignment
stage of the pipeline by introducing a label-constrained variant of the Gromov–Wasserstein optimal
transport (GW-OT) problem (Mémoli, 2011). Unlike approaches that rely on direct sample-wise
correspondences, GW-OT aligns representations by minimizing structural discrepancies between
the metric spaces induced by the two modalities (Sebbouh et al., 2024; Van Assel et al., 2024).
This formulation allows alignment across modality-specific latent spaces of different dimensions,
each obtained via PCA. The method’s effectiveness, however, is constrained by (i) the quality and
robustness of the latent representations, (ii) the cubic computational complexity of GW-OT (Peyré
et al., 2016), and (iii) its non-convexity, which makes it susceptible to local minima (Vayer, 2020).
Finally, Samaran et al. (2024) propose the only method that integrates alignment and imputation
within a unified framework. Yet, their approach requires a predefined set of aligned features shared
across modalities—a strong assumption that is rarely satisfied in practice—and it does not leverage
perturbation labels that could substantially enhance alignment.

Multi-lingual Neural Translation. Neural machine translation has demonstrated that high-quality
translation systems can be trained using only unpaired monolingual data through unsupervised
approaches that employ shared encoder architectures, dual training objectives combining reconstruc-
tion and back-translation losses, and cross-lingual initialization strategies (Sennrich et al., 2015;
Artetxe et al., 2017; Lample et al., 2018; Conneau et al., 2018). Central to these methods is an
on-the-fly backtranslation strategy designed to encourage entangled, cross-modally1 informative
latent representations. During training, a sample from one modality is encoded to the shared latent
space, then this representation is used to generate a corresponding translation in the other modality.
Parameters are updated via a two step optimization procedure based on a reconstruction (Equation 1)
and backtranslation (Equation 2) loss. The reconstruction (x̂(m)

i ) loss computes the error in encoding
and decoding x

(m)
i from the same modality and the backtranslation loss computes the error when

1We use modal and lingual interchangeably here.
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encoding x
(m)
i and decoding to the other modality (x̂(m→m̄)

i ), followed by encoding and decoding
x̂
(m→m̄)
i back to it’s original modality. This backtranslation strategy encourages the latents to be

well-mixed across modalities. And as the model improves higher-quality pseudo-pairs are generated,
creating a positive feedback loop that enhances both cross-modal alignment and within-modality
representations. See Appendix A.1 for extended details on this procedure and the architecture. To the
best of our knowledge, iterative back-translation from multilingual neural machine translation has
not yet been applied to weakly paired single-cell multi-modal data.

Lreconstruction =
1

|M|
∑
m∈M

1

|D(m)|
∑

x
(m)
i ∈D(m)

∥∥∥x̂(m) − x
(m)
i

∥∥∥2
2

(1)

Lbacktranslation =
1

|M|
∑
m∈M

1

|D(m)|
∑

x
(m)
i ∈D(m)

∥∥∥x̂(m→m̄→m) − x
(m)
i

∥∥∥2
2

(2)

3 PROPOSED METHOD

We instantiate our base architecture using uncoupled autoencoders, which are standard in the single-
cell literature (Samaran et al., 2024; Lopez et al., 2018), with an added shared linear (coupling)
projection layer across modalities. We train using the two-step optimization procedure from unsu-
pervised machine translation (Appendix A for more details). This base model, however, does not
leverage the additional supervisory signal present in the sample associated (perturbation) labels T .
We can make use of this additional information to increase the level of supervision of our on-the-fly
autoencoder from unsupervised to semi-supervised. The label information allows us to update our
latent representation with the following desiderata: (1) sample across modalities with the same label
should be pushed close together and (2) any samples without the same label should be as far away
as possible (repulsed). Such a formulation invokes contrastive learning as a natural solution. This
motivates us to develop a novel contrastive loss for weakly paired multi-modal data. Our approach
leverages the weak pairing structure by treating samples from different modalities that share the same
label as positive pairs. For a latent representation z

(m)
i from modality m, we define its attractors as

all latent representations from the other modality m̄ that share the same label.

Formally, we define P(m)
i = {z(m̄)

j ∈ D(m̄)
z : tj = ti } as the collection of positive samples for

anchor z(m)
i (same label, opposite modality) and A(m)

i = D(m̄)
z as the collection of all candidates

from the other modality (includes both positives and negatives). Following CLIP (Radford et al.,
2021), we normalize over all candidates from the other modality (including positives). Given the
anchor z(m)

i , the loss is:

ℓ
(m)
i = − log

∑
zp∈P(m)

i

exp
(
sim(z

(m)
i , zp)/τ

)
∑

za∈A(m)
i

exp
(
sim(z

(m)
i , za)/τ

) (3)

where sim(u,v) is a similarity function between two embeddings (such as cosine similarity) and
τ > 0 is the temperature parameter used to scale similarities. Note that in addition to the standard
cosine similarity, we also experimented with t-distribution based similarity kernels, see Appendix A.4.
Averaging over all anchors and modalities gives:

LGroupCLIP =
1

|M|
∑
m∈M

1

|D(m)
z |

∑
z
(m)
i ∈D(m)

z

ℓ
(m)
i (4)

The resulting GroupCLIP loss encourages latent representations of the same label to cluster together
across modalities while pushing apart representations of all other labels. Because contrastive learning
is sensitive to batch composition, we employ a balanced under-sampling strategy that maintains equal
sample counts per label in each mini-batch, preventing class imbalance without oversampling rare
labels, see Appendix A.5.
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Our approach fills a crucial gap in the contrastive learning landscape by extending supervised
contrastive learning to the cross-modal setting (Figure 1a). Just as CLIP (Radford et al., 2021)
represents the canonical cross-modal extension of SimCLR’s (Chen et al., 2020) unsupervised
contrastive framework, GroupCLIP serves as the natural cross-modal extension of SupCon’s (Khosla
et al., 2020) supervised contrastive approach. While CLIP leverages naturally paired data without
explicit label supervision, GroupCLIP leverages label supervision without requiring natural pairings
between modalities. This distinction is critical for biological applications where true cross-modal
pairs are often unavailable, but perturbation labels provide rich supervisory signal. By bringing
supervised contrastive learning to the multi-modal domain, GroupCLIP bridges the gap between
uni-modal supervised methods and cross-modal unsupervised approaches, offering a principled
framework for scenarios with weak pairing but strong label information.

Finally, by integrating our novel GroupCLIP loss (Equation 4) with the on-the-fly backtranslating
autoencoder framework (Equation 1,2), we develop the GROOVE architecture – a novel method that
learns a unified representations from weakly paired multi-modal data with the following losses:

Lstep-1 = α · LGroupCLIP + β · Lreconstruction (5) Lstep-2 = β · Lbacktranslation (6)

α, β are hyperparameter that balance the loss components. Algorithm 1 in Appendix A.6 sketches the
overall training loop of GROOVE and Figure 1b is a visual illustration of this architecture.

4 EVALUATION FRAMEWORK

We evaluate the quality of our learned latent representations through two approaches. First, we
assess their utility for OT-based cross-modal sample matching, which is a standard evaluation (Ryu
et al., 2025; Xi et al., 2024) since high-quality latent representations should enable the recovery of
meaningful transport plans that correctly identify and match similar samples across modalities. We
then evaluate performance on a key downstream task leveraging the transport plan: uni-directional
imputation, where we predict one modality given samples from another.

4.1 COMBINATORIAL EVALUATION

We identify a key limitation in previous evaluations: they either hold the representation learner fixed
while comparing various OT methods (Ryu et al., 2025), or fix the OT approach while comparing
different representation learners (Xi et al., 2024). This evaluation paradigm can produce systematically
biased results because the performance of representation learning methods is inherently coupled with
the choice of downstream alignment algorithm. The coupling arises from fundamental differences in
the geometric assumptions underlying various OT formulations.

For instance, Entropic Optimal Transport (EOT) implicitly assumes that both modalities can be
embedded into a shared feature space, such that cross-modal correspondences are meaningful when
representations are compared using the same metric. In other words, the learned embeddings are
expected to preserve distances consistently across modalities in a common coordinate system. By
contrast, Entropic Gromov–Wasserstein Optimal Transport (EGWOT) does not assume a shared space;
instead, it treats the modalities as potentially distinct metric spaces and aligns them by comparing their
internal distance structures rather than absolute coordinates. These differing assumptions suggest
that representation learners optimized for one geometric framework may not perform optimally
under alternative OT formulations. To address this limitation, we propose a combinatorial evaluation
framework that systematically tests each representation learner against all available OT aligners. This
approach allows us to assess how representation learners and alignment algorithms interact, yielding
more robust performance evaluations that account for the sensitivity of downstream choices.

4.2 BASELINES

We focus our evaluation on approaches that can natively operate on weakly-paired data without
requiring pre-specified feature correspondences or paired samples. This includes the following
representation learning baselines: Propensity Score (PS) matching (Xi et al., 2024) and domain-
adversarial variational autoencoder with label adaptation (DAVAE), a custom modification we made
of Ashuach et al. (2023) as described in Ryu et al. (2025). PS represents the most recent approach

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

for weakly paired cross-modal matching and is the only existing method that directly addresses this
problem in its native form. DAVAE is conceptually closest to our proposed approach but differs in
employing modality identification adversarial loss and using linear probe supervision for latent space
regularization. All methods use identical architectures with consistent latent embedding dimensions,
and we evaluate each representation learner in conjunction with both standard (EOT, EGWOT) and
label-constrained optimal transport approaches (LabeledEOT, LabeledEGWOT, labeledCOOT). See
Appendix B for details.

For unidirectional imputation, we trained a 2-layer MLP interleaved with ReLU activations and a final
linear projection layer. This model was trained using the transport plan returned by the OT aligner
which defines the training sampling strategy. Specifically, when training to predict modality 1 from
modality 2 and given a transport plan T ∈ [0, 1]N

(1)×N(2)

, we sample index-j from the modality 1 for
each sample index-i from modality 2 as function of j ∼ Multinomial( T:,i∑

T:,i
), for each mini-batch.

4.3 DATASETS

Simulations. A key limitation in previous evaluations is the assumption that variation from perturba-
tions are fully shared between modalities, making modality-specific variation completely independent
of labels, an unrealistic assumption for biological data (Argelaguet et al., 2020; Lin & Zhang, 2023).
To address this, we developed a probabilistic simulation framework that captures both shared and
modality-specific latent variation affected by perturbations. Our framework models each cell through
shared latent factors (affecting both modalities identically) and modality-specific factors (unique to
each molecular layer), with two perturbation types: shared perturbations affecting both modalities
jointly, and modality-specific perturbations targeting individual modalities independently. We sys-
tematically evaluate method performance across different coupling levels by varying the proportion
of shared versus modality-specific dimensions, testing scenarios with 100%, 80%, and 50% shared
variation. Full simulation details are provided in Appendix C. For each scenario, we simulate 10
replicates with perturbation-balanced 80-20 train-test splits for evaluation.

Perturb-Multiome We use the paired gene expression and chromatin accessibly (multiome) dataset
from Martin-Rufino et al. (2025), consisting of transcription factor based perturbations for a more
realistic evaluation. The original data was pre-processed and subset to result in 2560 cells over 20
perturbation with 128 cells per perturbation with 512 genes and 256 gene accessibility scores. See
details in Appendix D. This dataset was analyzed under two frameworks: (1) perturbation balanced
5-fold splits, and (2) leave-one-perturbation-out (LOPO). All imputation results for this dataset focus
on predicting gene expression from accessibility scores.

Perturb-CITE-seq. We also use the Frangieh et al. (2021) Pertub-CITE-seq data, consisting of
genetic perturbation with paired RNA-seq and surface protein measurements, for a more realistic
evaluation. The original data was pre-processed and subset to result in 3689 cells over 19 genetic
perturbation (cells per condition: median [min, max] = 201 [72, 270]) with 20 proteins and 500 genes,
which were directly used as input. See details in Appendix E. This dataset was also analyzed under
balanced 5-fold splits and LOPO cross-validation. All imputation results for this dataset focus on
predicting gene expression from protein level measurements.

4.4 METRICS

Since our datasets contain true cell pairings, we assess OT matching accuracy using two ground-truth-
based metrics. The trace of the normalized transport plan measures the proportion of true pairs being
perfectly matched (Xi et al., 2024), e.g., it is 1.0 when all weight is assigned to true pairs and 1/N
for uninformative uniform assignments. The symmetric Barycentric Fraction of Cells Closer Than
True Match (Bary. FOSCTTM) measures how much weight the transport plan incorrectly assigns to
false pairs relative to true pairs (Demetci et al., 2022; Liu et al., 2019), where 0.0 indicates perfect
matching and 0.5 represents random uniform assignment. We report the symmetric Bary. FOSCTTM
by averaging performance across both modalities. Next, we quantify imputation accuracy using 6
metrics: MSE, 1-Wasserstein distance (WD), Cosine Similarity (Cos-sim), KNN Recall, KNN average
precession-recall (KNN PR) and KNN area under the receiver-operating characteristic curve (KNN
ROC). MSE and WD are standard metrics in the imputation literature (Gorla et al., 2025), where
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Table 1: Matching performance metrics for top 5 method combinations in each shared proportion
settings in simulations. SEs follow ±; best in bold, second-best underlined.

Shared
Prop. Method

Mean
Rank Trace

Bary.
FOSCTTM

GROOVE (cosine)+ LabeledCOOT 1.5 0.856±0.027 0.027±0.006
GROOVE (cosine)+ LabeledEOT 3.0 0.466±0.020 0.026±0.004
DAVAE+ LabeledCOOT 3.5 0.669±0.034 0.066±0.009
DAVAE+ LabeledEOT 4.5 0.453±0.023 0.042±0.006

100

PS+LabeledEOT 5.5 0.366±0.006 0.054±0.006

DAVAE+ LabeledEOT 2.5 0.165±0.008 0.146±0.014
GROOVE (cosine)+ LabeledCOOT 3.5 0.237±0.015 0.180±0.012
GROOVE (cosine)+ LabeledEOT 4.5 0.148±0.008 0.150±0.013
PS+LabeledEOT 4.5 0.156±0.005 0.161±0.011

80

DAVAE+ LabeledCOOT 6.0 0.202±0.014 0.196±0.011

DAVAE+ LabeledEOT 2.5 0.125±0.007 0.162±0.006
GROOVE (cosine)+ LabeledEOT 4.0 0.118±0.007 0.162±0.009
GROOVE (cosine)+ LabeledCOOT 5.0 0.184±0.015 0.206±0.008
GROOVE (tdist)+ LabeledEOT 5.5 0.105±0.006 0.168±0.009

50

DAVAE+ LabeledCOOT 6.0 0.164±0.011 0.214±0.007

the former assess global error and the latter quantifies the distributional alignment. Cos-sim is a
common metric in perturbation prediction tasks (Littman et al., 2025; Adduri et al., 2025). The
KNN-based metrics are motivated by recent work from (Littman et al., 2025), which demonstrated
that KNN metrics provide robust assessment of local similarity preservation in perturbation effect
prediction tasks. KNN metrics avoid bias from single gene failures by evaluating neighborhood
preservation rather than global prediction errors. All metrics are reported on held-out data (either test
sets or cross-validation folds) with standard errors (SE; across folds or replicates). Standard errors are
rounded to three decimal places; values reported as 0.000 indicate SE< 0.0005. For further details
on metrics, see Appendix F.

5 RESULTS

5.1 OVERALL SIMULATED DATA PERFORMANCE

Table 1 presents the matching performance of the top-5 ranked methods across different shared
proportion settings in simulated data. Under the standard 100% shared perturbation-relevant variation
setting, GROOVE (combined with LabeledCOOT) achieves superior performance compared to all
other method combinations. At 80% and 50% shared proportions, GROOVE ranks second on average;
however, it maintains the highest trace-based matching performance across all shared proportion
conditions. Since matching performance serves as an intermediate step toward downstream objectives,
Table 2 evaluates downstream imputation performance in the same simulated data. GROOVE -based
approaches again achieve the highest rankings under both 100% and 80% shared conditions, while
a PS-based combination is ranked marginally higher under 50% shared conditions. Statistical tests
(Appendix G) confirm GROOVE achieves significant performance gains (p<0.05) under 100%
shared conditions across both matching and imputation tasks, with cross metric average win rates
competitive with the next-highest ranking methods in other settings. A closer inspection of the
metrics reveals that GROOVE -based combinations consistently achieves top performance on nearly
every individual metric except KNN PR, where they trail PS+LabeledEOT by 0.001 (much less than
SE). Comparing the rankings between Tables 1 and 2, we notice that better matching performance
does not guarantee optimal downstream task performance. For instance, DAVAE demonstrates
better average matching performance for shared proportion < 100%, but PS-based combinations
yield better imputation performance under the same conditions. Despite these variations, GROOVE
-based combination deliver top performance under 100% shared variation and demonstrates robust,
consistent performance, securing atleast top-two ranks across all evaluated scenarios.

5.2 MULTIMODAL SINGLE-CELL PERFORMANCE

We now evaluate performance on the more realistic perturb-CITE-seq dataset. Table 3 presents
imputation performance for the top-10 method combinations under 5-fold cross-validation. In
contrast to the simulated data results, GROOVE -based approaches occupy the top-5 ranks while

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Imputation performance metrics for top 5 method combinations in each shared proportion
settings in simulations. SEs follow ±; best in bold, second-best underlined.
Shared
Prop. Method

Mean
Rank MSE Cos-sim

KNN
Recall

KNN
PR

KNN
ROC WD

GROOVE (cosine)+LabeledCOOT 1.00 0.099±0.012 0.949±0.005 0.444±0.029 0.272±0.024 0.706±0.015 0.065±0.003
DAVAE+LabeledCOOT 2.00 0.121±0.013 0.931±0.006 0.412±0.027 0.244±0.021 0.689±0.014 0.092±0.005
PS+LabeledCOOT 3.50 0.148±0.012 0.920±0.006 0.382±0.023 0.221±0.017 0.673±0.012 0.107±0.004
GROOVE (tdist)+LabeledCOOT 4.00 0.146±0.014 0.931±0.004 0.372±0.020 0.216±0.014 0.668±0.011 0.097±0.005

100

DAVAE+LabeledEOT 4.67 0.156±0.010 0.916±0.005 0.379±0.021 0.220±0.015 0.672±0.011 0.142±0.004

GROOVE (cosine)+LabeledEOT 2.83 0.623±0.119 0.837±0.011 0.241±0.014 0.137±0.008 0.598±0.008 0.199±0.027
PS+LabeledEOT 3.00 0.593±0.115 0.836±0.010 0.239±0.013 0.135±0.007 0.597±0.007 0.198±0.027
GROOVE (cosine)+LabeledCOOT 5.00 0.740±0.197 0.832±0.016 0.240±0.017 0.134±0.008 0.598±0.009 0.126±0.010
PS+LabeledEGWOT 5.00 0.614±0.113 0.834±0.009 0.238±0.014 0.135±0.007 0.597±0.007 0.256±0.028

80

PS+EOT 5.33 0.601±0.111 0.832±0.010 0.236±0.014 0.134±0.007 0.596±0.007 0.187±0.022

PS+LabeledEOT 3.83 0.516±0.040 0.830±0.011 0.215±0.011 0.123±0.006 0.585±0.006 0.183±0.011
GROOVE (cosine)+EOT 4.00 0.519±0.039 0.838±0.009 0.215±0.009 0.122±0.006 0.585±0.005 0.208±0.012
GROOVE (cosine)+LabeledEOT 4.00 0.513±0.040 0.835±0.011 0.212±0.010 0.121±0.006 0.583±0.005 0.194±0.012
DAVAE+LabeledEOT 5.33 0.517±0.041 0.833±0.009 0.211±0.012 0.121±0.007 0.582±0.006 0.189±0.009

50

GROOVE (cosine)+LabeledCOOT 6.00 0.559±0.049 0.832±0.012 0.213±0.010 0.121±0.006 0.584±0.005 0.134±0.009

PS-based approaches rank in the bottom two positions. This pattern supports the robustness of
GROOVE -based combinations across diverse experimental conditions. Next, Table 8 (Appendix H)
further shows that GROOVE -based approaches achieve the highest matching performance rankings.
Notably, a PS-based approach ties with GROOVE -based methods for top matching performance;
however, consistent with our simulation findings, superior matching performance does not necessarily
translate to improved downstream imputation results. We further report performance of the top-10
methods under LOPO cross-validation, with matching and imputation performance results presented
in Tables 9 and 10 (Appendix H), respectively. Even under this setting, GROOVE -based methods
take the top-2 ranks in imputation. We also attain the single highest Trace and Bary. FOSCTTM
metrics.

We next evaluate performance on the perturb-Multiome dataset. Tables 14 and 12 (Appendix I)
summarize matching and imputation results, respectively, for the top 10 methods under five-fold
cross-validation. Consistent with previous datasets, GROOVE attains the highest overall rank in both
tasks. These sets of results in conjunction with the simulations indicates that cosine similarity kernel
is often a good default but there are situations where the t-distribution kernel is helpful. We also
again observe that high matching performance does not necessitate good imputation performance;
DAVAE’s better matching performance compared to PS-based approaches, yet DAVAE fails to rank
within the top-10 for imputation performance. Similarly, GROOVE -based methods occupy the the
top-3 ranks of matching (Appendix I, Table. 13) and imputation performance under LOPO evaluation.
Interestingly, EOT variants enable superior imputation performance in the perturb-Multiome dataset
when holding the underlying representation learner fixed, while EGWOT variants (of which COOT is
a member) are preferred for imputation tasks in the perturb-CITE-seq dataset. This pattern suggests
that optimal OT aligner selection depends on dataset characteristics, including the specific modality
pairs, independent of the chosen representation learner.

Table 3: Imputation performance metrics for top 10 method combinations in Perturb-CITE-seq dataset
with 5-fold evaluation. SEs follow ±; best in bold, second-best underlined, homogeneous metrics
unannotated.

Method
Mean
Rank MSE Cos-sim

KNN
Recall

KNN
PR

KNN
ROC WD

GROOVE (cosine)+ LabeledEGWOT 6.83 0.261±0.001 0.049±0.002 0.020±0.001 0.017±0.000 0.503±0.000 0.353±0.001
GROOVE (cosine)+ LabeledCOOT 7.33 0.282±0.000 0.016±0.002 0.021±0.001 0.017±0.000 0.503±0.000 0.297±0.000
GROOVE (tdist)+ LabeledCOOT 7.50 0.282±0.001 0.018±0.001 0.020±0.001 0.017±0.000 0.503±0.000 0.297±0.000
GROOVE (tdist)+ LabeledEGWOT 7.67 0.261±0.000 0.046±0.002 0.019±0.001 0.017±0.000 0.502±0.000 0.353±0.001
GROOVE (tdist)+ LabeledEOT 7.67 0.262±0.000 0.042±0.002 0.020±0.001 0.017±0.000 0.503±0.000 0.347±0.002
DAVAE+ LabeledEGWOT 8.00 0.261±0.000 0.059±0.002 0.018±0.001 0.017±0.000 0.502±0.000 0.352±0.000
DAVAE+ LabeledCOOT 8.33 0.295±0.000 0.019±0.001 0.020±0.001 0.017±0.000 0.503±0.001 0.281±0.000
GROOVE (cosine)+ LabeledEOT 9.00 0.262±0.001 0.044±0.002 0.019±0.001 0.017±0.000 0.502±0.000 0.350±0.001
PS+ LabeledCOOT 9.67 0.295±0.001 0.018±0.002 0.019±0.001 0.017±0.000 0.502±0.000 0.281±0.001
PS+ LabeledEOT 10.00 0.262±0.001 0.040±0.001 0.019±0.001 0.017±0.000 0.502±0.000 0.344±0.001
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Table 4: Imputation performance metrics for top 10 method combinations in Perturb-Multiome dataset
with leave one perturbation out evaluation. SEs follow ±; best in bold, second-best underlined.

Method
Mean
Rank MSE Cos-sim

KNN
Recall

KNN
PR

KNN
ROC WD

GROOVE (tdist)+ LabeledEOT 2.17 0.306±0.003 0.140±0.015 0.192±0.007 0.132±0.004 0.558±0.004 0.425±0.003
GROOVE (cosine)+ LabeledEOT 4.83 0.310±0.002 0.078±0.008 0.198±0.008 0.133±0.004 0.561±0.004 0.432±0.001
GROOVE (tdist)+ EOT 5.00 0.309±0.002 0.100±0.012 0.180±0.008 0.126±0.004 0.551±0.005 0.431±0.002
PS+ LabeledEOT 6.67 0.310±0.002 0.074±0.008 0.177±0.007 0.122±0.003 0.550±0.004 0.431±0.002
GROOVE (cosine)+ EOT 7.17 0.311±0.002 0.073±0.006 0.183±0.006 0.127±0.003 0.553±0.004 0.433±0.001
GROOVE (cosine)+ LabeledCOOT 7.67 0.357±0.014 0.072±0.030 0.170±0.008 0.122±0.003 0.546±0.004 0.326±0.004
DAVAE+ LabeledEOT 8.33 0.310±0.003 0.080±0.004 0.117±0.006 0.101±0.002 0.517±0.003 0.428±0.002
PS+ EOT 9.50 0.310±0.002 0.077±0.008 0.129±0.006 0.104±0.002 0.524±0.003 0.432±0.002
GROOVE (tdist)+ LabeledCOOT 10.33 0.363±0.013 0.050±0.030 0.161±0.008 0.119±0.004 0.541±0.004 0.324±0.005
DAVAE+ LabeledCOOT 10.50 0.344±0.010 0.062±0.023 0.148±0.007 0.113±0.003 0.534±0.004 0.348±0.004

5.3 ABLATION ANALYSIS

We conduct ablation analyses to assess the relative importance of key components within the
GROOVE approach. These analyses fix the similarity kernel to cosine similarity and the aligner.
We examine two ablation configurations: (1) ’No GroupCLIP’: uses on-the-fly backtranslation with
reconstruction and backtranslation losses but removes the GroupCLIP loss, and (2) ’Autoencoder
only’: uses standard reconstruction loss without GroupCLIP or backtranslation. We evaluate both
configurations under the 80% shared proportion simulation setting (with LabeledEOT) and on the real
Perturb-Multiome dataset (with EOT). Table H presents the ablation results. Across both simulated
and real data, removing the GroupCLIP loss results in the largest performance decrease across all
metrics. While both ablations show substantial degradation relative to full GROOVE , the difference
between standard autoencoder and backtranslation (without GroupCLIP) is smaller by comparison,
underscoring that GroupCLIPis the primary driver of performance gains. The additional supervision
provided by GroupCLIP adds meaningful soft constraints to the latent representation. This supports
our hypothesis that backtranslation alone is insufficient for encouraging group-level coherence and
cross-group discrimination.

In the Pertub-Multiome dataset (under five-fold cross-validation), we see a meaningful increase
accross most metrics by adding on-the-fly backtranslation to the standard autoencoder framework.
However, in simulations, there difference between these two approaches is minimal. We see two
possible, but not mutually exclusive, explanations for this dependency. First, our simulations still do
not capture the full complexity of real multi-modal single-cell data that backtranslation can leverage.
Second, the original on-the-fly backtranslation framework (Artetxe et al., 2017) utilized a shared,
pre-trained multi-modal encoder, which was not available within the scope of this work. These factors
may jointly or independently lead to underestimating both the utility of backtranslation and GROOVE
overall potential in simulations. Note that we try to performe ablations in the Pertub-CITE-seq dataset
(Appendix H), but the metrics showed insufficient dynamic range to support meaningful conclusions.

We have additionally conducted a hyperparameter sweep to quantitatively assess sensitivity to
key parameters. Figure 2 presents contour plots of average matching performance (Trace and
Bary. FOSCTTM) across the 100%, 80%, and 50% shared proportion settings as functions of
temperature (τ ) and and reconstruction/backtranslation weight (β). The results reveal that GROOVE
is relatively robust to τ but more sensitive to β. As with all deep learning approaches, we expect
the hyperparameter sensitivity landscape to vary substantially across datasets and objectives. We
recommend users perform dataset-specific hyperparameter optimization for best results.

Table 5: GROOVE ablation analysis performance metrics under 80% shared variation simulations
and Perturb-Multiome dataset. SEs follow ±; best in bold, second-best underlined.

Dataset Abation Type
Bary.

FOSCTTM MSE Cos-sim
KNN
Recall

KNN
PR

KNN
ROC WD

GROOVE (cosine) 0.489±0.007 0.308±0.003 0.102±0.028 0.044±0.007 0.028±0.002 0.512±0.004 0.428±0.005
No GroupCLIP 0.497±0.001 0.310±0.001 0.076±0.007 0.036±0.002 0.025±0.000 0.507±0.001 0.432±0.002Perturb-

Multiome Autoencoder only 0.500±0.000 0.311±0.001 0.069±0.002 0.029±0.002 0.025±0.000 0.504±0.001 0.433±0.001

GROOVE (cosine) 0.143±0.012 0.622±0.122 0.836±0.011 0.239±0.015 0.137±0.008 0.597±0.008 0.195±0.021
No GroupCLIP 0.321±0.013 0.965±0.225 0.778±0.016 0.187±0.014 0.106±0.007 0.570±0.008 0.226±0.007Simulations
Autoencoder only 0.280±0.013 0.846±0.175 0.793±0.013 0.195±0.012 0.111±0.006 0.574±0.006 0.240±0.012
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6 DISCUSSION

This work introduces a multi-modal semi-supervised representation learning approach for weakly
paired data leveraging a novel group contrastive loss (GroupCLIP) inside an on-the-fly backtranslating
autoencoder. We also introduce combinatorial (with respect to OT aligners) benchmarking for multi-
modal single cell perturbation alignment and cross-modal imputation. Empirical evaluation shows that
GROOVE enables learning more useful latent representations for cell-level matching and downstream
imputation. Ablations demonstrate our GroupCLIP is a crucial component for aligning the multi-
modal representations and for good alignment performance. It is likly that GroupCLIP can have
utility beyond just single cell data since weakly paired multi-modal data is ubiquitous in many
domains (Yang et al., 2020; Mei et al., 2024; Sun et al., 2024). Our empirical results in Tables 1-4,
powered by our robust evaluation framework, reveal that GroupCLIP-derived representations achieve
particularly strong performance when paired with label-constrained OT methods (extended discussion
on this topic in Appendix J.1). Furthermore, for the first time, we empirically show that optimal
aligner choice varies across data modality pairs, methods, and shared variation percentages.

Limitations. While GROOVE demonstrates consistent performance across evaluated datasets,
several limitations warrant discussion. First, like all contrastive approaches, our method is sensitive
to hyperparameters; poor choices can lead to representation collapse or failure to leverage group
structure. Second, our ablations reveal that backtranslation contributes are mixed, with greater
effect in real data than in simulations, without pre-trained encoders, which were unavailable for
our modalities. Third, the method assumes accurate perturbation labels, a standard assumption
in single-cell perturbation screens where mislabeled samples are removed during quality control
preprocessing. Label noise would corrupt any method using this as supervision signal, making
this an experimental design consideration rather than a method-specific limitation. Fourth, neither
GROOVE nor comparable methods have been evaluated under extreme class imbalance, which could
significantly degrade performance. This should be more thoroughly evaluated in future work.

Future directions. Our work highlights several important directions for the community. First,
developing more realistic simulation frameworks that incorporate variable proportions of shared
versus modality-specific perturbation effects is critical, as the true regime in real datasets remains
unknown. Second, there is a need for the community to establish consensus on evaluation priorities:
whether sample matching or downstream tasks like imputation should serve as the primary perfor-
mance criterion. Our results demonstrate that superior matching performance does not guarantee
effective downstream imputation, indicating these objectives may require different methodological
approaches. This prioritization decision is critical, as the optimal solutions for matching tasks likely
differ from those that excel in downstream applications. Indeed our empirical results in both sim-
ulated and real data likely point to a tradeoff between matching and imputation when perturbation
effects are not fully shared across modalities (extended discussion in Appendix J.2). Third, more
sensitive imputation metrics with greater dynamic range are needed for robust perturbation prediction
evaluation. Development of these metrics necessitates close partnership with biologists to define
relevant research goals, facilitating the creation of evaluation frameworks that accurately capture
performance on scientifically meaningful tasks. Fourth, to our knowledge, this is the first application
of backtranslation architectures to single-cell data. While our ablations show some gains without
pre-trained encoders, this framework provides a natural foundation for future multi-modal single-cell
applications and should be further explored, particularly as suitable pre-trained models become avail-
able. Fifth, GroupCLIP and GROOVE do not make any strong assumptions limiting it to bimodal
data and should generalize naturally to > 2 modalities, empirical validation of GROOVE and related
methods in such setting remains valuable future work. Finally, systematic evaluation under extreme
class imbalance would clarify method robustness boundaries.
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A GROOVE EXTENDED DETAILS

A.1 ON-THE-FLY BACKTRANSLATION

Each modality-specific encoder g(m)
θ consists of a 3-layer MLP with batch normalization and ReLU

activations, while each decoder d(m)
θ uses a 2-layer MLP with an additional linear output layer (see

next subsection). A shared linear projection (a coupling layer) fθ connects all modality-specific
encoders to their respective decoders (i.e. all modality specific embeddings are passed through this),
giving the final encoder composition f

(m)
θ = fθ ◦ g(m)

θ .

In weakly paired single-cell data, each modality can be viewed as a different language with shared
semantic information. We encourage cross-modally entangled representations by ensuring latents
enable meaningful cross-modal translation through a self-backtranslation strategy. Let m̄ denote the
other modality. Given a sample’s latent representation from modality m: z(m)

i = fθ ◦ g(m)
θ (x

(m)
i ),

we perform cross-modal translation in three steps:

1. Cross-modal generation: Using the decoder of modality m̄ in inference mode, generate
x
(m→m̄)
i = d

(m̄)
θ (z

(m)
i )

2. Re-encoding: Switch to training mode and encode the generated sample:
z
(m→m̄)
i = fθ ◦ g(m̄)

θ (x
(m→m̄)
i )

3. Backtranslation: Reconstruct the original modality: x(m→m̄→m)
i = d

(m)
θ (z

(m→m̄)
i )

This on-the-fly (on-the-fly) process creates synthetic pseudo-paired samples within each mini-batch,
contingent on cross-modally informative latent representations.

A.2 ENCODER ARCHITECTURE AND REGULARIZATION

The first layer of the encoder projects each data modality from its native dimension k(m) to twice the
size of the final embedding dimension (2× d). This design follows the recommendation of Samaran
et al. (2024), who employ a variational-like encoder architecture where, for each d-dimensional
embedding, the encoder outputs both a mean and log-variance parameter.

However, unlike standard variational autoencoders, we do not optimize the variational Evidence
Lower BOund (ELBO), which combines reconstruction loss with Kullback-Leibler (KL) divergence.
Instead, we minimize only the standard reconstruction loss (like a vanilla autoencoder). This design
choice is motivated by prior work (Zhao et al., 2019), which demonstrated that KL divergence
can conflict with reconstruction objectives and degrade downstream inference performance—a
phenomenon we also observed in our internal analyses.

Our approach leverages the encoder’s outputted parameters to define a Gaussian posterior distribution
with diagonal covariance. Specifically, we interpret the 2d-dimensional encoder output as mean µ
and log-variance logσ2 parameters for a d-dimensional Gaussian distribution. During training, we
sample from this distribution using the reparameterization trick (Kingma & Welling, 2013).

To ensure numerical stability and provide mild regularization, we add a small fixed constant (10−4)
to the diagonal covariance matrix during training only. This stochastic sampling mechanism serves
three important purposes: (1) it introduces non-determinism in the encoder during training, (2) it
prevents overcrowding of samples in the latent space by encouraging distributional rather than point
estimates, and (3) it provides implicit regularization for the decoder, helping to prevent overfitting by
requiring it to reconstruct from a distribution of latent codes rather than deterministic points.

During inference, the encoder operates deterministically using only the mean parameters µ.

A.3 DECODER

The decoder takes the d-dimensional output from the shared projection layer fθ and passes it through
a 2-layer MLP with 1D batch normalization and ReLU activation and then a final linear layer top
project the embeddings from d-dimensions back to the native k(m) features

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.4 SIMILARITY KERNELS

The choice of similarity kernel significantly influences the quality and characteristics of learned
representations. While cosine similarity remains the standard choice in most contrastive approaches,
learning representations on a hypersphere (Radford et al., 2021; Chen et al., 2020), recent work
demonstrates that a heavy tailed t-distribution parameterized can yield more expressive representations
in Euclidean space (Böhm et al., 2022; Hu et al., 2022).

cosine similarity

sim(a, b) := exp
(

⟨a, b⟩
||a||22 · ||b||22

· 1
τ

)
(7)

t-distribution similarity

sim(a, b) :=

[
1 +
||a− b||22

τη

]− η+1
2 (8)

such that τ controls the temperature (bandwidth) parameter and η is the degrees of freedom (which is
set 1 for this work).

A.5 MINI-BATCH BALANCED UNDERSAMPLING STRATEGY

To address possible class imbalance in our GroupCLIP framework, we implement a balanced under-
sampling strategy that ensures equal representation across all classes within each batch. The algorithm
first computes the instance count nl for each label l in the first modality, assuming identical label
distributions across both modalities. We then identify the minority class with the smallest instance
count: nmin = mini(nl).

Given an initial batch size B and number of labels L, we compute the effective batch size using:
Beff = B − (B mod L), where each labels contributes exactly Beff/L samples per batch. This
ensures the batch size is evenly divisible by the number of labels. Importantly, our sampling strategy
respects the minority labels constraint by never sampling more than (Beff/L ≤)nmin instances from
any label across the entire training process, preventing oversampling of the minority label.

For each batch, we randomly sample Beff/L instances from each label in both modalities indepen-
dently, ensuring balanced representation while maintaining the weakly paired nature of the data. This
approach prevents dominant labels from overwhelming the contrastive learning signal and ensures
that all labels contribute equally to the learned representations, which is particularly important when
dealing with imbalanced multi-modal datasets.
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A.6 ALGORITHM SKETCH

Algorithm 1 GROOVE Training Procedure

Require: Modality-specific datasets D(1),D(2)

Require: Encoders g(1)θ , g
(2)
θ , Decoders d(1)θ , d

(2)
θ , Shared Projection fθ

Require: Hyperparameters α (reconstruction), β (GroupCLIP)
1: for while max training iteration is not reached do
2: Sample balanced mini-batches (x(1), t(1)) ∼ D(1), (x(2), t(2)) ∼ D(2) ▷ See Section A.5

Step 1: Within-Modality Reconstruction and Contrastive Alignment
3: z(1) ← fθ(g

(1)
θ (x(1)))

4: z(2) ← fθ(g
(2)
θ (x(2)))

5: x̂(1) ← d
(1)
θ (z(1))

6: x̂(2) ← d
(2)
θ (z(2))

7: Lrecon ←
∑

m∈{1,2} MSE(x(m), x̂(m))

8: LGroupCLIP ← 1

2|D(1)
z |

∑
z(1)∈D(1)

z
ℓ(1) + 1

2|D(2)
z |

∑
z(2)∈D(2)

z
ℓ(2) ▷ See Equation 4

9: Lstep1 ← β · Lrecon + α · LGroupCLIP

10: Update parameters θ using gradients from Lstep1

Step 2: On-the-Fly Backtranslation
11: Set g(1)θ , g

(2)
θ , d

(1)
θ , d

(2)
θ , fθ to Eval ▷ Generate cross-modal samples w/ nograd

12: x(1→2) ← d
(2)
θ ◦ fθ ◦ g

(1)
θ (x(1))

13: x(2→1) ← d
(1)
θ ◦ fθ ◦ g

(2)
θ (x(2))

14: Set g(1)θ , g
(2)
θ , d

(1)
θ , d

(2)
θ , fθ to Train

15: z(1→2) ← fθ(g
(2)
θ (x(1→2))) ▷ Re-encode translated samples

16: z(2→1) ← fθ(g
(1)
θ (x(2→1)))

17: x̂(1→2→1) ← d
(1)
θ (z(1→2)) ▷ Reconstruct original modality

18: x̂(2→1→2) ← d
(2)
θ (z(2→1))

19: Lbt ← 1
2 [MSE(x(1), x̂(1→2→1)) + MSE(x(2), x̂(2→1→2))]

20: Lstep2 ← β · Lbt
21: Update parameters θ using gradients from Lstep2

22: return trained encoders f (1)
θ , f

(2)
θ

17
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B BASELINE DETAILS

Baseline Implementation Details All methods use identical encoder and decoder architectures2 with a
consistent latent embedding dimension of d = 128 across all experiments. For DAVAE, we adopt
the previously reported optimal hyperparameter settings (Ryu et al., 2025). We evaluate GROOVE
with both cosine and t-distribution (tdist) similarity kernels, setting α = 1.0, τ = 0.2, for all
experiments and set β = 0.1 for single-cell data training. Note that we did not perform any rigorous
hyperparameter exploration, we do not claim the reported results are the best-case performance of
GROOVE for any of the evauated data sets.

We evaluated all representation learners in conjunction with five OT approaches: two standard
methods and three label-constrained variants. The standard OT approaches include EOT and EG-
WOT (Peyré et al., 2016; Kantorovich, 1960). The label constrained approaches include: labeledEOT,
labeledEGWOT and labeledCOOT (co-optimal transport) (Ryu et al., 2025; Titouan et al., 2020). For
all analyses, we use the default entropic regularizer settings from the Perturb-OT package3.

C SIMULATION DETAILS

To simulate complex multi-modal cellular data, we define a probabilistic model that captures shared
and modality-specific latent structures. The model begins by defining a shared latent space and two
unshared, modality-specific latent spaces, which are then combined. The following perturbation types
are used:

1. Shared perturbations: coordinately affect both modalities through the shared latent space
with identical effect sizes and cell-specific penetrance values

2. Modality-specific perturbations: independently target each modality’s unique dimensions
with separate effect sizes and penetrance parameters

We initalize the simulations with the following settings:

• Latent dimensions: 10

• Shared variation proportions:

– 100% shared: 10 shared, 0 unique dimensions
– 80% shared: 8 shared, 2 unique dimensions per modality
– 50% shared: 5 shared, 5 unique dimensions per modality

• Experimental design: 9 perturbations + 1 control condition

• Sample size: 100 cells per condition per modality

• Feature size: 1000 and 500 observed features for modalities 1 and 2, respectively

C.1 GENERATIVE MODEL

We begin by defining the latent variables. A shared latent variable Z is sampled coefficient-wise from
a scaled standard normal distribution for n total cells and ds shared dimensions:

Zij ∼ N (0, scale2) for i = 1, . . . , n, j = 1, . . . , ds

where scale is a global latent signal strength (default 0.1).

Similarly, we define two unshared latent variables, UX and UY , with du unshared dimensions:

UX,ij ∼ N (0, scale2), UY,ij ∼ N (0, scale2).

These are concatenated to form the full latent representations for each modality:

VX = [Z ∥UX ], VY = [Z ∥UY ],

2PS does not require a decoder
3https://github.com/Genentech/Perturb-OT
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with total dimensionality d = ds + du.

Each modality is associated with a transformation matrix. For modality X with pX features, the
coefficients of AX ∈ Rd×pX are sampled as

(AX)jk ∼ N (0, 1).

Similarly, for modality Y with pY features:
(AY )jk ∼ N (0, 1).

Bias vectors bX ∈ RpX and bY ∈ RpY have coefficients
(bX)j ∼ N (0, 1), (bY )j ∼ N (0, 1).

Scaling factors sX ∈ RpX and sY ∈ RpY control feature variability:
(sX)j ∼ Γ(1, 1), (sY )j ∼ Γ(1, 1).

To account for modality-specific noise, perturbation parameters are defined coefficient-wise:
µX,j ∼ N (0, 1), µY,j ∼ N (0, 1),

offsetsdX,j ∼ N (0, 1), offsetsdY,j ∼ N (0, 1),

σX,j = exp(−3.0 + offsetsdX,j), σY,j = exp(−3.0 + offsetsdY,j).

The noise for each cell i and feature j is then:

ξX,ij ∼ N (µX,j , σ
2
X,j) ·

scale
snr

, ξY,ij ∼ N (µY,j , σ
2
Y,j) ·

scale
snr

,

where snr is the signal-to-noise ratio (default 0.2).

We next incorporate L perturbations across L+ 1 conditions (including one control). Perturbations
target shared or unshared latent dimensions in a cyclic manner.

For shared perturbations, the target dimension is
ts(I) = ((I − 1) mod ds).

Effect sizes are sampled as
|es(I)| ∼ max(3,Γ(1, 1)), signs(I) ∼ 2 · Bernoulli(0.5)− 1,

es(I) = signs(I) · |es(I)|.
Each cell i has penetrance

qs,i ∼ Beta(1, 10).
For cells under perturbation I , the targeted latent dimension is shifted in both modalities:

v′X,its(I)
= vX,its(I) + es(I)qs,i, v′Y,its(I) = vY,its(I) + es(I)qs,i.

For modality-specific perturbations, the target dimension is
tu(I) = ((I − 1) mod du) + ds.

Effect sizes are defined separately for each modality:
|euX(I)| ∼ max(3,Γ(1, 1)), signuX(I) ∼ 2·Bernoulli(0.5)−1, euX(I) = signuX(I)|euX(I)|,
|euY (I)| ∼ max(3,Γ(1, 1)), signuY (I) ∼ 2·Bernoulli(0.5)−1, euY (I) = signuY (I)|euY (I)|.
With penetrance

quX,i ∼ Beta(1, 10), quY,i ∼ Beta(1, 10),
the latent variables are perturbed independently:

v′′X,itu(I)
= v′X,itu(I)

+ euX(I)quX,i, v′′Y,itu(I) = v′Y,itu(I) + euY (I)quY,i.

Let V pert
X and V pert

Y denote the final latent spaces. The observed data are generated as

Xij =
(
((V pert

X + ξX)AX + bX)⊙ sX

)
ij
, Yij =

(
((V pert

Y + ξY )AY + bY )⊙ sY

)
ij
,

where ⊙ denotes element-wise multiplication.

This model was implemented and simulations were generated using Pyro.
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D PERTURB-MULTIOME PRE-PROCESSING

We downloaded the Perturb-Multiome data from (Martin-Rufino et al., 2025). We focused on the data
at day 14 which showed the least cell type heterogeneity. To reduce the dimensionality and sparsity of
the ATAC-seq data, we filtered ATAC-seq peaks to those measured in at least 1% of cells, and mapped
peaks to the closest gene within with 100kb using the Gencode M38 annotation file. We, used the
inverse document frequency and SVD to reduce the ATACseq to 256 components. For the RNA-seq
data, we normalized the counts to 10,000 per cell and applied the log1p transformation. We filtered
genes that are expressed in fewer than 1% of cells. We then subset to the top 512 highly variable
genes using the Seurat approach with the scanpy implementation. We subset each perturbation to 128
cells per perturbation and split the data into RNA-seq and ATAC-seq for cross modal representation
and prediction. We tested approaches accuracy at leveraging the ATAC-seq data to impute into the
RNA-seq data.

E PERTURB-CITE-SEQ PRE-PROCESSING

We downloaded the Perturb-CITE-seq data from Franghei et al. (Frangieh et al., 2021). We focused
on the IFNy condition and subset the data to that condition. The data was split into RNA-seq and
CITE-seq for separate preprocessing. For RNA-seq, we normalized the total counts per cell to 10,000
and applied the log1p transformation. For both modalities we subtracted out the average expression
of cells with control perturbations so all values in the gene or protein expression matrix are relative
changes to the average control. To reduce the number of perturbations, we computed the energy
distance for each target gene against the controls and subset to perturbations with at least 50 cells
and an energy distance of 0.05. This resulted in 18 perturbations that were used for downstream
tasks. Finally, we subset the gene expression to the top 500 highly variable genes using the Seurat
method implemented in scanpy. We then tested approaches accuracy at leveraging the CITE-seq data
to impute into the RNA-seq data.
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F METRICS EXTENDED DETAILS

We evaluate cross-modal matching and prediction performance using eight complementary metrics
that capture different aspects of alignment quality and distributional similarity.

Trace Metric Assuming the sample indices correspond to the true matching, we compute the average
weight on correct matches, which is the normalized trace of the transport plan T :

Trace(T ) =
1

n
Tr(T ) =

1

n

n∑
i=1

Tii (9)

The transport plan T is first row-normalized such that
∑

j Tij = 1 for all i. A uniformly random
matching assigns Tij = 1/n for each cell, yielding Trace(T ) = 1/n. Perfect matching yields
Trace(T ) = 1.

Barycentric FOSCTTM We compute the Fraction Of Samples Closer Than the True Match using
barycentric projection. Given matching matrix T and target data X(1), we project to obtain X̂(1) =

TX(1). For each projected sample x̂
(1)
i , we compute the Euclidean distance to all samples in X(1)

and calculate the fraction of samples closer than the true match:

FOSCTTM(T ,X(1)) =
1

n

n∑
i=1

1

n− 1

∑
j ̸=i

1{d(x̂(1)
i ,x

(1)
j ) < d(x̂

(1)
i ,x

(1)
i )}, (10)

where d(·, ·) denotes Euclidean distance. The final reported symmetric Barycentric FOSCTTM is an
average over both both modalities: 0.5× (FOSCTTM(T ,X(1)) + FOSCTTM(T⊤,X(2)))

Lower values indicate better matching quality, with random matching expected to yield 0.5.

Mean Squared Error (MSE) For direct prediction evaluation, we compute the MSE between true
samples X(1) and predicted samples X̂(1):

MSE =
1

n

n∑
i=1

∥x(1)
i − x̂

(1)
i ∥

2
2. (11)

We report the mean MSE across all features.

1-Wasserstein Distance (WD) To assess distributional similarity, we compute the 1-Wasserstein
distance between true and predicted samples, averaged across features:

WD =
1

d

d∑
j=1

W1(X
(1)
:,j , X̂

(1)
:,j ), (12)

where W1 denotes the 1-Wasserstein distance between univariate distributions and X:,j represents
the j-th feature column.

Cosine Similarity We compute the average cosine similarity between corresponding true and
predicted feature vectors:

Cosine =
1

d

d∑
j=1

X
(1)
:,j · X̂

(1)
:,j

∥X(1)
:,j ∥2∥X̂

(1)
:,j ∥2

, (13)

where the dot product and norms are computed across samples for each feature.

KNN-based Metrics To evaluate neighborhood preservation, we construct k-nearest neighbor graphs
for both true and predicted data using cosine similarity. Let Gtrue and Gpred denote the binary
adjacency matrices of the respective KNN graphs (with k = 10). For each sample i, we treat Gtrue

i,: as
ground truth labels and Gpred

i,: as predictions, then compute:

KNN Recall: The fraction of true neighbors correctly identified:

KNN Recall =
1

n

n∑
i=1

∑
j G

true
i,j G

pred
i,j∑

j G
true
i,j

. (14)
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KNN Average Precision (KNN PR): The average precision score for each sample’s neighborhood
prediction:

KNN PR =
1

n

n∑
i=1

AP(Gtrue
i,: ,G

pred
i,: ), (15)

where AP denotes the average precision score.

KNN ROC-AUC (KNN ROC): The area under the ROC curve for neighborhood prediction:

KNN ROC =
1

n

n∑
i=1

AUC(Gtrue
i,: ,G

pred
i,: ), (16)

where AUC denotes the area under the receiver operating characteristic curve.
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G SIMULATIONS EXTENDED RESULTS

Table 6: Statistical significance tests for cross-modal matching metrics comparing top-ranked
GROOVE (Target) versus top-ranked non-GROOVE (Baseline) methods. One-sided paired t-tests
and win rates computed across replicates, with test direction towards metric improvement. ∆ = Target
- Baseline mean difference; n.s. = p > 0.1.

Shared
Prop. Metric Target Method Baseline Method

Avg.
∆

Win
Rate
(%) p-value

Bary. FOSCTTM GROOVE (cosine)+LabeledCOOT DAVAE+LabeledCOOT -0.039 100 8.50e-05
100%

Trace GROOVE (cosine)+LabeledCOOT DAVAE+LabeledCOOT 0.186 100 6.54e-06

Bary. FOSCTTM GROOVE (cosine)+LabeledCOOT DAVAE+LabeledEOT 0.034 0 n.s.
80%

Trace GROOVE (cosine)+LabeledCOOT DAVAE+LabeledEOT 0.072 100 1.29e-04

Bary. FOSCTTM GROOVE (cosine)+LabeledEOT DAVAE+LabeledEOT 0.000 60 n.s.
50%

Trace GROOVE (cosine)+LabeledEOT DAVAE+LabeledEOT -0.007 30 n.s.

Table 7: Statistical significance tests for cross-modal imputation metrics comparing top-ranked
GROOVE (Target) versus top-ranked non-GROOVE (Baseline) methods. One-sided paired t-tests
and win rates computed across replicates, with test direction towards metric improvement. ∆ = Target
- Baseline mean difference; n.s. = p > 0.1.

Shared
Prop. Metric Target Method Baseline Method

Avg.
∆

Win
Rate
(%) p-value

Cos-sim GROOVE (cosine)+LabeledCOOT DAVAE+LabeledCOOT 0.018 100 4.61e-05
KNN PR GROOVE (cosine)+LabeledCOOT DAVAE+LabeledCOOT 0.028 100 1.11e-03
KNN ROC GROOVE (cosine)+LabeledCOOT DAVAE+LabeledCOOT 0.017 100 2.17e-04
KNN Recall GROOVE (cosine)+LabeledCOOT DAVAE+LabeledCOOT 0.033 100 2.17e-04
MSE GROOVE (cosine)+LabeledCOOT DAVAE+LabeledCOOT -0.022 100 2.46e-06

100%

WD GROOVE (cosine)+LabeledCOOT DAVAE+LabeledCOOT -0.027 100 3.02e-06

Cos-sim GROOVE (cosine)+LabeledEOT PS+LabeledEOT 0.001 50 n.s.
KNN PR GROOVE (cosine)+LabeledEOT PS+LabeledEOT 0.002 50 n.s.
KNN ROC GROOVE (cosine)+LabeledEOT PS+LabeledEOT 0.001 60 n.s.
KNN Recall GROOVE (cosine)+LabeledEOT PS+LabeledEOT 0.002 60 n.s.
MSE GROOVE (cosine)+LabeledEOT PS+LabeledEOT 0.030 10 n.s.

80%

WD GROOVE (cosine)+LabeledEOT PS+LabeledEOT 0.001 40 n.s.

Cos-sim GROOVE (cosine)+LabeledEOT PS+LabeledEOT 0.005 90 1.35e-02
KNN PR GROOVE (cosine)+LabeledEOT PS+LabeledEOT -0.001 50 n.s.
KNN ROC GROOVE (cosine)+LabeledEOT PS+LabeledEOT -0.002 30 n.s.
KNN Recall GROOVE (cosine)+LabeledEOT PS+LabeledEOT -0.003 30 n.s.
MSE GROOVE (cosine)+LabeledEOT PS+LabeledEOT -0.003 50 n.s.

50%

WD GROOVE (cosine)+LabeledEOT PS+LabeledEOT 0.011 20 n.s.
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Figure 2: Hyperparameter sensitivity landscape for matching performance. Contour plots show
average performance across 100%, 80%, and 50% shared variation settings for each combination of
β (x-axis) and τ (y-axis), profiled using Optuna-based hyperparameter search. α = 1 for all analysis
in this work. (a) Trace-based matching performance (higher is better). (b) Barycentric FOSCTTM
(lower is better).
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H PERTURB-CITE-SEQ EXTENDED RESULTS

Table 8: Matching performance metrics for top 10 method combinations in Perturb-CITE-seq dataset
with 5-fold evaluation. SEs follow ±; best in bold, second-best underlined.

Method
Mean
Rank Trace

Bary.
FOSCTTM

GROOVE (cosine)+ LabeledEOT 3.0 0.039±0.002 0.381±0.004
PS+ LabeledEOT 3.0 0.039±0.002 0.383±0.002
GROOVE (tdist)+ LabeledEGWOT 3.5 0.033±0.001 0.365±0.001
GROOVE (cosine)+ LabeledCOOT 5.0 0.040±0.003 0.451±0.004
GROOVE (cosine)+ LabeledEGWOT 5.0 0.031±0.001 0.369±0.001
GROOVE (tdist)+ LabeledEOT 5.5 0.036±0.001 0.394±0.001
DAVAE+ LabeledEGWOT 7.5 0.024±0.000 0.383±0.003
DAVAE+ LabeledEOT 7.5 0.032±0.001 0.397±0.011
GROOVE (tdist)+ LabeledCOOT 7.5 0.036±0.002 0.452±0.004
PS+ LabeledEGWOT 9.0 0.023±0.000 0.389±0.001

Table 9: Matching performance metrics for top 10 method combinations in Perturb-CITE-seq dataset
with leave one perturbation out evaluation. SEs follow ±; best in bold.

Method
Mean
Rank Trace

Bary.
FOSCTTM

PS+ LabeledEOT 2.5 0.008±0.001 0.487±0.004
GROOVE (tdist)+ LabeledEOT 4.5 0.008±0.002 0.490±0.003
GROOVE (cosine)+ EGW 6.0 0.008±0.001 0.491±0.003
GROOVE (tdist)+ EOT 6.0 0.007±0.001 0.485±0.003
GROOVE (cosine)+ EOT 6.5 0.007±0.001 0.489±0.003
GROOVE (cosine)+ LabeledCOOT 6.5 0.010±0.002 0.495±0.003
PS+ EOT 6.5 0.007±0.001 0.488±0.003
GROOVE (cosine)+ LabeledEOT 7.0 0.007±0.001 0.487±0.003
DAVAE+ EOT 7.0 0.008±0.002 0.491±0.003
DAVAE+ LabeledCOOT 7.5 0.008±0.002 0.495±0.002

Table 10: Imputation performance metrics for top 10 method combinations in Perturb-CITE-seq
dataset with leave one perturbation out evaluation. SEs follow±; best in bold, second-best underlined,
homogeneous metrics unannotated.

Method
Mean
Rank MSE Cos-sim

KNN
Recall

KNN
PR

KNN
ROC WD

GROOVE (cosine)+ LabeledEOT 7.00 0.262±0.001 0.057±0.007 0.075±0.008 0.072±0.008 0.505±0.001 0.352±0.001
GROOVE (tdist)+ LabeledEGWOT 7.33 0.262±0.001 0.065±0.008 0.074±0.008 0.072±0.008 0.505±0.000 0.355±0.001
DAVAE+ LabeledEOT 7.83 0.262±0.001 0.082±0.008 0.074±0.008 0.073±0.008 0.504±0.001 0.354±0.000
GROOVE (tdist)+ LabeledCOOT 8.00 0.282±0.001 0.021±0.003 0.077±0.008 0.072±0.008 0.506±0.001 0.300±0.001
PS+ LabeledEOT 8.17 0.263±0.001 0.070±0.008 0.074±0.008 0.072±0.008 0.505±0.001 0.348±0.001
GROOVE (cosine)+ EGW 8.67 0.262±0.001 0.085±0.010 0.074±0.008 0.072±0.008 0.504±0.001 0.363±0.000
DAVAE+ LabeledCOOT 9.17 0.290±0.002 0.031±0.003 0.074±0.007 0.073±0.008 0.504±0.001 0.289±0.001
GROOVE (cosine)+ LabeledEGWOT 9.67 0.262±0.001 0.066±0.008 0.073±0.008 0.072±0.008 0.504±0.001 0.355±0.000
GROOVE (tdist)+ LabeledEOT 9.67 0.262±0.001 0.054±0.007 0.074±0.008 0.072±0.008 0.505±0.001 0.352±0.001
DAVAE+ LabeledEGWOT 10.33 0.262±0.001 0.088±0.009 0.071±0.008 0.073±0.008 0.502±0.001 0.354±0.001
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Table 11: GROOVE ablation analysis performance metrics in Perturb-CITE-seq dataset. SEs follow
±; best in bold, second-best underlined, homogeneous metrics unannotated.

Abation Type
Bary.

FOSCTTM MSE Cos-sim
KNN
Recall

KNN
PR

KNN
ROC WD

GROOVE (cosine) 0.368±0.005 0.261±0.001 0.047±0.002 0.019±0.001 0.017±0.000 0.502±0.000 0.353±0.000
No GroupCLIP 0.380±0.003 0.261±0.001 0.048±0.001 0.019±0.000 0.017±0.000 0.502±0.000 0.353±0.001
Autoencoder only 0.381±0.002 0.261±0.001 0.048±0.004 0.018±0.000 0.017±0.000 0.502±0.000 0.353±0.001

I PERTURB-MULTIOME EXTENDED RESULTS

Table 12: Imputation performance metrics for top 10 method combinations in Perturb-Multiome
dataset with 5-fold evaluation. SEs follow ±; best in bold, second-best underlined.

Method
Mean
Rank MSE Cos-sim

KNN
Recall

KNN
PR

KNN
ROC WD

GROOVE (cosine)+ EOT 4.50 0.308±0.003 0.098±0.028 0.052±0.005 0.029±0.001 0.515±0.003 0.428±0.005
GROOVE (cosine)+ LabeledEOT 5.17 0.311±0.001 0.075±0.004 0.066±0.003 0.032±0.001 0.523±0.002 0.433±0.001
PS+ EOT 6.17 0.308±0.003 0.113±0.029 0.043±0.004 0.027±0.001 0.511±0.002 0.426±0.004
GROOVE (tdist)+ LabeledEOT 6.50 0.311±0.001 0.071±0.002 0.066±0.003 0.032±0.001 0.523±0.002 0.433±0.001
GROOVE (tdist)+ EOT 7.33 0.310±0.002 0.090±0.022 0.047±0.007 0.028±0.002 0.513±0.003 0.430±0.003
GROOVE (cosine)+ LabeledCOOT 7.50 0.355±0.023 0.091±0.054 0.045±0.005 0.028±0.001 0.512±0.002 0.323±0.008
PS+ LabeledEOT 7.50 0.311±0.001 0.070±0.002 0.058±0.003 0.030±0.001 0.518±0.001 0.433±0.001
GROOVE (tdist)+ LabeledCOOT 9.33 0.364±0.029 0.047±0.079 0.048±0.005 0.028±0.001 0.514±0.003 0.317±0.011
PS+ LabeledCOOT 9.50 0.334±0.006 0.041±0.025 0.048±0.005 0.028±0.001 0.514±0.002 0.379±0.001
PS+ LabeledEGWOT 10.00 0.311±0.001 0.075±0.003 0.037±0.006 0.026±0.001 0.508±0.003 0.430±0.001

Table 13: Matching performance metrics for top 10 method combinations in Perturb-Multiome dataset
with leave one perturbation out evaluation. SEs follow ±; best in bold, second-best underlined.

Method
Mean
Rank Trace

Bary.
FOSCTTM

GROOVE (tdist)+ LabeledCOOT 1.5 0.014±0.003 0.481±0.019
GROOVE (tdist)+ LabeledEOT 3.0 0.008±0.000 0.480±0.004
GROOVE (cosine)+ EOT 4.5 0.008±0.000 0.487±0.004
DAVAE+ LabeledCOOT 4.5 0.010±0.002 0.488±0.009
GROOVE (cosine)+ LabeledEOT 5.0 0.008±0.000 0.486±0.003
GROOVE (tdist)+ EOT 7.0 0.008±0.000 0.487±0.003
GROOVE (tdist)+ LabeledEGWOT 7.0 0.008±0.000 0.496±0.005
GROOVE (cosine)+ LabeledCOOT 7.5 0.011±0.003 0.500±0.018
PS+ EOT 9.5 0.008±0.000 0.497±0.002
DAVAE+ LabeledEOT 10.5 0.008±0.000 0.494±0.002
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Table 14: Matching performance metrics for top 10 method combinations in Perturb-Multiome dataset
with 5-fold evaluation. SEs follow ±; best in bold, second-best underlined.

Method
Mean
Rank Trace

Bary.
FOSCTTM

GROOVE (cosine)+ LabeledCOOT 2.0 0.048±0.009 0.431±0.028
GROOVE (cosine)+ LabeledEOT 2.5 0.041±0.001 0.427±0.008
GROOVE (tdist)+ LabeledEOT 4.5 0.040±0.000 0.441±0.003
DAVAE+ LabeledCOOT 6.0 0.052±0.010 0.470±0.025
GROOVE (tdist)+ LabeledEGWOT 6.0 0.040±0.000 0.448±0.003
GROOVE (cosine)+ LabeledEGWOT 6.5 0.039±0.001 0.446±0.003
GROOVE (tdist)+ LabeledCOOT 6.5 0.047±0.017 0.457±0.050
PS+ LabeledEOT 7.0 0.039±0.000 0.445±0.003
DAVAE+ LabeledEGWOT 8.5 0.039±0.001 0.448±0.003
PS+ LabeledEGWOT 8.5 0.039±0.001 0.447±0.003

J EXTENDED DISCUSSION

J.1 SYNERGY BETWEEN GROUPCLIP AND LABELED-CONSTRAINED OT

While GroupCLIP already leverages perturbation labels during representation learning, label-
constrained OT methods provide complementary benefits at the alignment stage. Specifically,
GroupCLIP operates at the group level during training, encouraging same-label samples to cluster
together across modalities through soft constraints. Now consider the fact that perturbation effects
are not always orthogonal. Under this common setting, the latent representations of cells with similar
perturbation effects will be closer to each other (or more correlated) in the latent space. This is indeed
the type of behavior one would desire from a useful/informative latent. Label-constrained OT on the
otherhand sets a hard constraint across groups (see Ryu et al. (2025)). That is, it explicitly prevents
cross-label matches while finding optimal pairings within each label group. This is a useful constraint
when the objective is to match an individual cell within a perturbation. The empirical benefits of
this synergy between our soft-constraint and Labelled OT’s hard constraint can be quite strong: in
Table 1 (100% shared), GROOVE with LabeledCOOT achieves Trace=0.856 versus markedly worse
performance with unlabeled OT variants not even being in the top-5 (trace metrics strictly less than
5th highest combination).

J.2 MATCHING VERSUS IMPUTATION TRADEOFF

Our empirical results reveal an important observation: superior matching performance does not
necessarily translate to improved downstream imputation (Section 5). This phenomenon may reflect
a tension between these two objectives that warrants further consideration.

Xi et al. (2024) argue that reconstruction losses force models to learn modality-specific noise, which is
“counterproductive to matching.” This claim rests on the assumption that all meaningful perturbation-
induced variation is perfectly shared across modalities. However, biological reality is often more
complex: perturbation effects frequently manifest differently across modalities, with some responses
observable in only one modality (private or modality-specific variation) (Argelaguet et al., 2020; Lin
& Zhang, 2023).

This can induce a tradeoff. For optimal matching, representations can capture only shared perturbation-
relevant variation while discarding modality-specific information as “noise.” Since in this task
success is defined by recovering true instance-level pairs, i.e., the “real” co-measured cells. However,
for imputation and prediction, the most useful training/inference samples are not necessarily the
true paired cells, but rather the empirically most similar cells in the biologically relevant latent
space (which might also factor in private variation). Fundamentally, perturbations induce similarity
structures that supersedes instance-level pairing. Two unpaired cells subjected to the same perturbation
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may exhibit greater functional similarity, and thus provide more informative training signal for
imputation than a cell’s true paired counterpart, particularly when factoring weak perturbation effects
and technical measurement noise. A purely matching optimized representation, as Xi et al. (2024)
does, discard this type of variation or stucture which would be helpful for downstream imputation.

GROOVE navigates this tradeoff through the inclusion of the reconstruction objective(s). The
reconstruction and backtranslation losses (Equation 5) preserve sample-specific information, including
modality-specific variation. While this may reduce pure matching performance by retaining what
matching frameworks consider “noise,” it provides empirically beneficial information for downstream
imputation tasks. This explains why combinations with superior matching scores do not always
achieve the best imputation performance (like in Tables 1 and 2). The consistency of this matching-
imputation discordance also is need in real real datasets (Sections 5.1 and 5.2) suggests this represents
a genuine phenomenon rather than an artifact of a particular dataset or experimental design. We
believe this tradeoff warrants further theoretical investigation and empirical characterization, which
we defer to future work.
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