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Abstract001

Zero-shot Visual Question Answering (VQA)002
poses a challenging and crucial task in vision003
and language reasoning, demanding models004
to generate answers based on questions and005
images without human annotation. Previous006
approaches mainly focus on transforming im-007
ages into captions and utilizing language model008
knowledge to answer visual questions. Despite009
the promising results, such a paradigm suffers010
from hallucination and high inference costs.011
In this paper, we propose a zero-shot VQA012
framework MKDG, which transfers knowledge013
from large language models (LLMs) and multi-014
modality models through a synthetic data gen-015
eration approach, thus utilizing the ability of016
LLMs and mitigating the hallucination. Specif-017
ically, our method introduces a three-step syn-018
thetic data generation and training pipeline that019
first creates pseudo questions and answers with020
caption model and LLMs. To alleviate the hal-021
lucination and unbalanced data distribution in022
synthetic data, we propose a CLIP-based fil-023
tering and data selection strategy. Finally, we024
fine-tune a moderate-sized generative vision025
language model with the automatically curated026
synthetic dataset to perform VQA task. Exper-027
imental results on popular VQA benchmarks028
demonstrate the effectiveness of MKDG. We029
achieve superior performance and outperform030
outperforming strong baselines incorporating031
GPT-3 with significantly lower inference cost.032

1 Introduction033

Visual Question Answering (VQA) is a core chal-034

lenge in vision and language (VL) tasks, which035

aims to understand and answer questions related036

to visual inputs. It plays a crucial role in com-037

plex real-world applications such as visual dia-038

log (Das et al., 2017), visual relationship detec-039

tion (Lu et al., 2016) and vision language naviga-040

tion (Anderson et al., 2018). However, training a041

robust and versatile VQA model traditionally de-042

mands a substantial amount of human annotations,043

which can be costly and introduce various data bi- 044

ases. To address this, a promising strategy is to 045

achieve zero-shot learning for a specific VQA task 046

by exploiting rich language/image data from re- 047

lated VL tasks (Lin et al., 2014), or transferring 048

knowledge from pre-trained large language models 049

(LLMs) (Zhang et al., 2022; Brown et al., 2020a; 050

Touvron et al., 2023a,b). Those generic knowledge 051

sources make it possible to accomplish VQA tasks 052

without human-annotated question-answers. 053

Previous explorations in zero-shot VQA can be 054

summarized into two categories. The first paradigm 055

leverages pre-trained foundation models to directly 056

perform zero-shot VQA. Recent studies (Yang 057

et al., 2022; Hu et al., 2022; Tiong et al., 2022; Guo 058

et al., 2023; Du et al., 2023) use a two-stage ap- 059

proach with Large Language Models (LLMs): rep- 060

resenting visual inputs through captions and then 061

generating answers with an LLM. This method 062

benefits from the reasoning capability of LLMs 063

but faces visual information loss due to the inher- 064

ent limitations of captioning and expensive infer- 065

ence with large LLMs like GPT-3 (Brown et al., 066

2020a). An alternative approach (Li et al., 2023; 067

Awadalla et al., 2023; Alayrac et al., 2022) aligns 068

LLMs (Zhang et al., 2022; Chung et al., 2022a) 069

with visual encoders (Dosovitskiy et al., 2020; He 070

et al., 2015) using image-caption data. While this 071

method demonstrates promising generalization in 072

VQA tasks, it is prone to restricted reasoning ca- 073

pability. The alignments in these models focus on 074

describing the visual scene rather than extracting 075

visual information relevant to the question. The 076

second paradigm generates synthetic VQA sam- 077

ples (Banerjee et al., 2020; Changpinyo et al., 2022) 078

by converting existing image-caption pairs into 079

image-question-answer triplets. However, these 080

approaches often suffer from deficiency in informa- 081

tion due to limited caption content. 082

To address these challenges, we propose a 083

novel data generation framework for zero-shot 084
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Figure 1: Comparison of zero shot VQA paradigm. Caption based VQA methods convert the image to captions
and utilize language model to answer visual question. In contrast to previous approaches, we leverage foundation
with diverse knowledge to generate synthetic data and finetune a generative vision language model to answer visual
questions.

VQA called Multifaceted Knowledge-guided Data085

Generation (MKDG). As shown in Figure 1,086

MKDG generates synthetic training data for VQA087

tasks by integrating multiple pre-trained vision and088

language models. Our key insights are as follows:089

1) Generating synthetic data to transfer pre-trained090

model knowledge to a specific VQA domain is091

more efficient and effective than converting VQA092

to question answering tasks. 2) Constructing an-093

swer candidates with LLMs and using CLIP for094

data filtering enhances synthetic data quality which095

play a critical role in zero-shot VQA performance.096

3) Converting VQA samples into the CLIP embed-097

ding space and using clustering-based data selec-098

tion allows us to reduce the negative impact of data099

bias in synthetic data. Compared with widely used100

LLM synthetic data generation pipeline such as101

LLAVA (Liu et al., 2023b), we focus on design102

an efficient framework that automatically filter and103

select high-quality synthetic data.104

Our MKDG framework integrates three pre-105

trained large models—CLIP (Radford et al., 2021),106

a generative vision-language model (VLM) (Li107

et al., 2023; Awadalla et al., 2023), and an108

LLM (Peng et al., 2023; Bai et al., 2023)—into109

a data generation and task-specific fine-tuning110

pipeline. Starting from a set of images, our pipeline111

consists of three main steps: 1) Data generation112

with LLM and VLM. We employ BLIP2 to generate113

captions for the unlabeled images to provide the114

LLM with visual information. An well-designed115

instruction and human annotated demonstrations116

are provided to prompt the LLM to create pseudo117

questions, answer options, and answers for an im- 118

age. Here, the introduction of LLM knowledge 119

alleviate the deficiency in informativeness in pre- 120

vious synthetic data generation based methods. 2) 121

Knowledge-based data Filtering with CLIP. We 122

assess the quality of the generated questions and 123

answers using CLIP, filtering out data where CLIP 124

and LLM make disparate choices, the image ques- 125

tion pairs with low similarity and duplicated ques- 126

tions. The data selection reduce the incorrect an- 127

swers in synthetic data by CLIP prior knowledge, 128

thus reducing the hallucination of LLM. Further- 129

more, we utilize CLIP to map VQA samples into 130

an embedding space and employ the K-means al- 131

gorithm to cluster the generated data. We then 132

select representative data points from these clus- 133

ters to construct a high-quality synthetic dataset. 134

3) Synthetic data training with VLM. We finetune 135

a moderate-sized VLM with the automatically cu- 136

rated synthetic dataset. This training paradigm di- 137

rectly processes the visual inputs and thus reduces 138

the visual information loss, while the knowledge 139

encoded in the synthetic dataset alleviates the re- 140

stricted reasoning ability in the caption pre-trained 141

VLM, such as BLIP2. Moreover, the fine-tuned 142

VLM model achieves a much lower inference cost 143

compared to previous LLM-based methods. 144

We empirically validate the MKDG framework 145

on popular VQA benchmarks, OKVQA (Marino 146

et al., 2019), A-OKVQA (Schwenk et al., 2022), 147

VizWiz (Gurari et al., 2018), GQA (Hudson and 148

Manning, 2019) and VQAV2 (Goyal et al., 2017), 149

demonstrating it superior performance. 150
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Our main contributions are summarized as fol-151

lowing:152

• We introduce MKDG, a framework that ef-153

fectively transfer knowledge from large pre-154

trained vision and language models to visual155

question answering via synthetic data training.156

• We are the first to introduce prior knowledge157

in CLIP to perform automatic VQA data fil-158

tering and selection, which improve the data159

quality and reduce the negative impact of un-160

even data distribution in synthetic VQA data.161

• Experimental results on popular VQA bench-162

marks demonstrate that the MKDG outper-163

forms strong baselines equipped with larger164

GPT3 model.165

2 Related Works166

2.1 Large Pretrained Models167

Recently, large language models (Brown et al.,168

2020a; Touvron et al., 2023a,b; Chung et al.,169

2022a) have achieved tremendous success. With a170

tremendous amount of training data and the scal-171

ing up of the number of parameters, large lan-172

guage models exhibit surprising capabilities, such173

as chain-of-thought reasoning (Wei et al., 2022),174

in-context learning (Brown et al., 2020b), and in-175

struction following (Chung et al., 2022b). Vision-176

language models, including BLIP2 (Li et al., 2023),177

Flamingo (Alayrac et al., 2022) and BEIT-3 (Wang178

et al., 2023b), also benefit from large-scale train-179

ing, which has led to significant progress in uni-180

fied vision-language understanding and generation181

tasks. In particular, CLIP (Radford et al., 2021)182

employs a contrastive learning strategy on a huge183

amount of image-text pairs and shows impressive184

transferable ability over downstream tasks. CLIP185

provides an expressive vision-language joint em-186

bedding space, which enables content similarity187

measurement between image and text data.188

2.2 Synthetic Visual Data Generation189

With the development of pre-trained language mod-190

els (Brown et al., 2020a; Chung et al., 2022a;191

Touvron et al., 2023b,a), automatic visual data192

generation attracts increasing interest. The early193

explorations (Changpinyo et al., 2022; Banerjee194

et al., 2020) utilize the T5-based question genera-195

tion model and question answer model to convert196

caption datasets to synthetic VQA data. More re-197

cently, several works (Liu et al., 2023b,a; Wang198

et al., 2023a) generate visual instruction follow- 199

ing datasets by instructing powerful LLM such 200

as GPT4 (OpenAI, 2023a) to generate VQA data 201

based on image annotations. In this work, we fo- 202

cus on the zero-shot VQA setting and propose a 203

knowledge-guided data filtering strategy that can 204

be seamlessly integrated into other synthetic data 205

generation pipelines. 206

2.3 Zero-shot VQA 207

Visual Question Answering(VQA) involves ad- 208

vanced reasoning and image recognition. For zero- 209

shot VQA, early methods (Changpinyo et al., 2022; 210

Banerjee et al., 2020) generated synthetic VQA 211

data from image captions using simple rules, then 212

used this data for training. VQ2A (Changpinyo 213

et al., 2022) extracted answer candidates from cap- 214

tions with rule-based methods and used a T5 (Raf- 215

fel et al., 2019)-based question generator to create 216

VQA samples, filtering the data with a T5-based 217

QA model. Different from generating VQA sam- 218

ples from captions, recently proposed BLIP2 (Li 219

et al., 2023) and Flamingo (Alayrac et al., 2022) 220

train a vision-language model with caption data, 221

which can generalize to VQA tasks without task- 222

specific fine-tuning. With the advent of large pre- 223

trained models, another promising strategy is to 224

convert vision information into image captions and 225

utilize the pre-trained large language model to com- 226

prehend the input and generate the expected an- 227

swer. Recent works (Tsimpoukelli et al., 2021; 228

Dai et al., 2022; Jin et al., 2022; Guo et al., 2023; 229

Hu et al., 2022) utilize this strategy and obtain 230

promising performance with powerful LLMs such 231

as GPT3 (Brown et al., 2020a). In this work, we 232

propose a synthetic data generation pipeline with 233

novel knowledge-guided data filtering to address 234

the zero-shot VQA task. 235

3 Methods 236

In this section, we introduce our MKDG frame- 237

work, which incorporates CLIP (Radford et al., 238

2021), VLM (Li et al., 2023; Awadalla et al., 2023) 239

and LLM (Peng et al., 2023; Bai et al., 2023) knowl- 240

edge through synthetic VQA data training for zero- 241

shot VQA. We depict the overall pipeline of our 242

model in Section 3.1. In Section 3.2, we intro- 243

duce the synthetic VQA data generation with LLM 244

and Caption model. In Section 3.3, the knowledge- 245

based data filtering is presented. Finally, we present 246

the training with selected synthetic data in Section 247
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Figure 2: The overall pipeline of our methods. We utilize BLIP2 to convert the images to captions. The LLM is
prompted to generate synthetic data based on caption, instruction and demonstration. We leverage CLIP to filter out
low quality data and select a high quality subset with clustering strategy. The selected subset is used to finetune a
BLIP2 for visual question answering.

3.4.248

3.1 Overall Architecture249

The primary challenge of zero-shot visual question250

answering (VQA) lies in effectively incorporating251

the knowledge encoded in these pre-trained models252

to benefit visual question answering. Our motiva-253

tion is that synthetic data generation is the most effi-254

cient way to transfer Large Language Model (LLM)255

knowledge and we propose a synthetic VQA data256

generation pipeline. However, due to the visual in-257

formation loss and bias in LLM, the hallucination258

and imbalanced data distribution in LLM generated259

data negatively impact the VQA data quality. To260

address the issue, we propose a knowledge-guided261

data filtering method that utilize the CLIP knowl-262

edge learned from contrastive vision-language pre-263

training to perform data filtering and selection.264

The overall pipeline is illustrated in Figure 2.265

Specifically, we work with a set of unlabeled im-266

ages I and three pre-trained models, CLIP (Rad-267

ford et al., 2021), a generative VLM (Li et al., 2023;268

Awadalla et al., 2023), and an LLM (Peng et al.,269

2023; Bai et al., 2023). In Synthetic Data Gener-270

ation phase, we first use the VLM to generate a271

set of captions C for each image. We then employ272

the LLM to generate questions Q, corresponding273

options O and language model generated answers274

Allm, which collectively form a synthetic dataset D.275

In Knowledge Based Data Filtering step, we lever-276

age knowledge from CLIP to choose a high-quality277

subset D∗ from synthetic data D. The selected278

dataset D∗ is then employed to fine-tune the gen-279

erative VLM, serving as our VQA model. We will280

introduce the details of each step in the subsequent281

sections.282

3.2 Synthetic Data Generation 283

To transfer knowledge from pre-trained models 284

to synthetic data, we start by constructing the 285

synthetic data D with LLM and BLIP. The con- 286

struction pipeline contains the following steps: 287

1) We employ BLIP2 to transform unlabeled im- 288

ages I = {in|n = 1, . . . , N} into captions C = 289

{cn|n = 1, . . . , N} to provide visual information 290

for LLMs where N is the total number of images. 291

2) We write a task instruction and provide 8 hu- 292

man annotated target VQA domain demonstrations 293

as illustrated in Figure 3. The demonstrations are 294

written based on target VQA domain question style 295

to benefit the knowledge transfer process. More 296

details are provided in the appendix. 3) The LLM 297

follows these demonstrations to generate questions 298

Q = {qn|n = 1, . . . , N}, options O = {on|n = 299

1, . . . , N} and answer Allm = {anl |i = 1, . . . , N}. 300

The overall process can be formulated as follows: 301

D = {(in, qn, anl , on1 , . . . , onM )|n = 1, . . . , N}
(1) 302

where M is the number of answer options for each 303

sample. We clarify the necessity of generating 304

answer options as follows: The generated answer 305

options are the answers with highest confidence in 306

the LLM question-answer generation space. We 307

explicitly preserve this LLM knowledge instead 308

of only keeping the top one answer. This strategy 309

also forms the basis for discriminative models like 310

CLIP to perform visual question answering during 311

data selection. 312

In conclusion, we construct synthetic data D 313

from unlabeled images I , which is achieved by 314

integrating the knowledge from LLM and BLIP2. 315

However, the synthetic data D is noisy and requires 316
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Figure 3: Prompting in synthetic data generation. We
carefully designed 8 demonstrations and instructions
to guide LLM to generate questions requiring outside
knowledge to answer based on image caption.

Figure 4: VQA data quality evaluation pipeline. To
evaluate the quality of VQA sample, we convert the
question-answer pair to an image description and com-
pute the cosine similarity between the image and the
description.

data filtering.317

3.3 Knowledge-guided Data Filtering318

In the initial phases of experimental exploration,319

we identified two primary issues with the synthetic320

data D, which is generated by the LLM and cap-321

tion model. The first issue is hallucination, where322

answers are incorrect or unrelated to the questions323

Secondly, generated questions are biased towards324

certain types, leading to duplication and creating325

low-quality data. We provide more evidence of326

this phenomenon in the appendix. To address the327

issues, we propose to perform VQA data quality328

evaluation and balanced data filtering using CLIP329

prior knowledge.330

3.3.1 Quality Evaluation of VQA Data331

We evaluate the quality of synthetic data from two332

perspectives: answer correctness and image rel-333

evance. To improve the correctness of synthetic334

data, we compute the CLIP score for answer op-335

tions {on1 , . . . , onM} of each sample in the synthetic336

data D. The option with the highest CLIP score is 337

regarded as the CLIP-chosen answer, denoted as anc . 338

We retain VQA samples where the CLIP’s answer 339

anc and the LLM’s answer anl are identical, which 340

mitigate hallucination caused by language model. 341

To ensure the QA pair is relevant to the image, we 342

utilize the CLIP score, which represents the rele- 343

vance between the QA pair and the image in the 344

CLIP embedding space. Specifically, we convert 345

the question and answer into an image description, 346

such as "{question} Answer: {answer}", and calcu- 347

late the cosine similarity between the image and the 348

description. we discard samples with a CLIP score 349

lower than a specified threshold. We illustrate the 350

quality evaluation pipeline in Figure 4. 351

3.3.2 Balanced Data Selection. 352

We illustrate the data selection pipeline in Figure 5. 353

The skewed distribution of synthetic training data 354

negatively impacts performance and hinders the 355

effective transfer of pre-trained model knowledge 356

via synthetic data D. We propose to use a clus- 357

tering algorithm to select a balanced subset from 358

synthetic data D. We firstly comprehensively repre- 359

sent VQA sample in an embedding space. Our pro- 360

posed approach involves extracting question and 361

image embeddings using CLIP and concatenating 362

these embeddings to form the VQA embedding. 363

The process is formulated as follows: 364

env = CLIPVisual(in), in ∈ I (2) 365
366

ent = CLIPTextual(qn), qn ∈ D (3) 367
368

en = Concat(env , e
n
t ) (4) 369

where CLIPVisual and CLIPTextual indicate the 370

visual and text encoders in CLIP. We denote the set 371

of embedding of VQA samples by E = {en|n = 372

1, . . . , N}. Given the high dimension of the VQA 373

embedding E and the limited scale of the avail- 374

able data, we employ Principal Component Anal- 375

ysis(PCA) to reduce the dimensionality of E for 376

efficient clustering. Subsequently, K-means is used 377

to cluster the synthetic data D based on E. In our 378

prior investigations, we noted that the CLIP score 379

alone fails to accurately gauge the quality of VQA 380

samples above a certain threshold. To address this, 381

we randomly sample an equal amount of VQA sam- 382

ples from each cluster, creating a balanced subset 383

D∗ = {(qn, qn, an)|n = 1, . . . , N∗}, where N∗ 384

is the total number of samples in selected datasets. 385

This subset serves as the foundation for transferring 386

knowledge from pre-trained models. 387

5



Figure 5: The pipeline of data clustering. The ques-
tion and image in VQA sample are embedded by CLIP
textual and visual encoders. We concatenate the result-
ing feature and utilize PCA to reduce the dimensionality.
Finally, the VQA embeddings are clustered by Kmeans
and we sample an equal size of data from each cluster.

3.4 Training with Synthetic Data388

The selected synthetic data D∗ represent the col-389

lective intelligence of pre-trained models. We then390

finetune a pre-trained generative vision language391

model, such as BLIP2 (Li et al., 2023) and Open-392

Flamingo (Awadalla et al., 2023), using D∗ to excel393

in visual question answering.This pipeline not only394

harnesses the knowledge within pre-trained mod-395

els but also learns to process visual input directly396

without relying on a caption, preventing visual in-397

formation loss. Specifically, we train the VLM398

with the following objective:399

Ln(θ) = − 1

ln

ln∑
j=1

logPθ(wj |w<j , i
n, qn) (5)400

where ln is the number of words in an, wj is the401

j-th word in answer text an and in, qn are the im-402

age and question in the selected synthetic data D∗.403

θ are the parameters of the vision language model404

for fine-tuning. In summary, our approach involves405

training a generative vision language model, in-406

corporating knowledge learned from multiple pre-407

trained models to excel in visual question answer-408

ing.409

4 Experiments 410

In this section, we demonstrate MKDG’s effective- 411

ness on zero-shot VQA task. We show that our 412

method achieves promising performance on VQA 413

benchmarks without VQA annotation. Then we 414

conduct ablation experiments on the contribution 415

of each component in our pipeline. 416

4.1 Experimental Setting 417

4.1.1 Datasets and Evaluation 418

Our experimental evaluations are performed on 419

five benchmark datasets for knowledge-based 420

visual question answering: OK-VQA (Marino 421

et al., 2019), A-OKVQA (Schwenk et al., 2022), 422

VizWiz (Gurari et al., 2018), GQA (Hudson and 423

Manning, 2019), and VQAV2 (Goyal et al., 2017). 424

OK-VQA contains 14K image-question pairs fo- 425

cused on open-ended questions with detailed an- 426

swers. A-OKVQA improves on OK-VQA with 427

25K pairs of higher-quality questions and images. 428

VizWiz features diverse images and questions from 429

visually impaired individuals, with a validation set 430

of about 4K images. GQA tests visual reasoning 431

with 5K images in the test-dev set. VQAV2 is a 432

general benchmark with 200K images in the vali- 433

dation set. To align with prior work (Tiong et al., 434

2022; Guo et al., 2023; Du et al., 2023), we mea- 435

sure standard VQA Accuracy (Goyal et al., 2017) 436

on OK-VQA, A-OKVQA, and VQAV2, and top-1 437

accuracy for VizWiz and GQA. For all benchmarks, 438

we use an open-ended generation strategy. Follow- 439

ing (Li et al., 2023; Awadalla et al., 2023), we use 440

beam search with a size of 5 and a length penalty 441

of -1 to ensure answers fit the desired format. 442

4.1.2 Implementation Detail 443

To generate the synthetic data and serve as the out- 444

side knowledge source for our pipeline, we use 445

Vicuna-7B (Peng et al., 2023) and QWEN72B (Bai 446

et al., 2023) as the language model. Vicuna is 447

finetuned with the conversation collected from 448

GPT4 (OpenAI, 2023b) based on LLAMA2 (Tou- 449

vron et al., 2023b), which serves as a power- 450

ful and feasible language model for research pur- 451

poses. QWEN72B is an open-source language 452

model series that encompasses distinct models 453

with varying parameter counts. For the genera- 454

tive vision language model, we adopts BLIP2 (Li 455

et al., 2023) with OPT-2.7B(Zhang et al., 2022), 456

FlanT5 XL (Chung et al., 2022a) and Open- 457

Flamingo3B (Awadalla et al., 2023) for our experi- 458
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Model Infer Param. OK-VQA A-OKVQA VizWiz GQA VQAV2
In-context-learning

PICa & 16 Demo (Yang et al., 2022) 175B 46.9 - - - -
PromptCap-FlanT5 XXL

& 32 Demo (Hu et al., 2022) 11B 42.0 - - - -
PromptCap & 1 Demo (Hu et al., 2022) 175B 48.7 - - - -

Zero-shot VQA
Frozon (Tsimpoukelli et al., 2021) 7B 5.9 - - - 29.5

VLKD (Dai et al., 2022) <1B 13.3 - - 29.3 42.6
FewVLM (Jin et al., 2022) <1B 16.5 - - - -

PICa (Yang et al., 2022) 175B 17.7 - - - -
VQ2A† (Changpinyo et al., 2022) - 19.8 - - 50.0 57.9
PNP-VQA3B (Tiong et al., 2022) 3B 34.1 42.3 - - 62.1
PNP-VQA11B (Tiong et al., 2022) 11B 35.9 41.9 - - 64.8

LAMOC11B (Du et al., 2023) 11.4B 40.3 37.9 - - -
openFlamingo(9B) (Awadalla et al., 2023) 9B 37.8 - 27.5 - 52.7

Flamingo (3B) (Alayrac et al., 2022) 3B 41.2 - 28.9 - 49.2
Flamingo (9B) (Alayrac et al., 2022) 9B 44.7 - 28.8 - 51.8

Img2LLM6.7B (Guo et al., 2023) 6.7B 38.2 33.3 - - -
Img2LLM-175B (Guo et al., 2023) 175B 45.6 42.9 - - 60.6

openFlamingo(3B) 3B 28.2 26.2 23.7 - 44.6
openFlamingo(3B) + MKDG 3B 39.7(+11.5) 36.4(+11.5) 42.8(+19.1) - 50.0(+5.4)

BLIP-2 OPT2.7B 3.1B 30.2 26.3 14.3 33.9 50.1
BLIP-2 OPT2.7B + MKDG 3.1B 48.3(+18.1) 42.8(+16.5) 43.7(+29.4) 41.3(+8.3) 57.1(+7.0)

BLIP-2 FlanT5(XL) 7.8B 39.4 40.0 17.9 44.2 62.6
BLIP-2 FlanT5XL + MKDG 3.4B 46.3(+6.9) 46.0(+6.0) 46.0(+28.1) 42.5(-1.7) 60.3(-2.3)

Table 1: Comparison with state-of-the-art methods on popular VQA benchmarks. We present the inference
time parameters size in Infer Param.. The In-context learning indicate methods utilize demonstrations and we
mark the number of used demonstrations after &. The † indicates the inference strategy is classification instead of
open-word generation.
ments. We use the CLIP (Radford et al., 2021) with459

ViT-L/14 visual encoder to select high-quality data.460

For synthetic data generation, we use about 80k im-461

ages from COCO2014 training set (Lin et al., 2014),462

and the captions are generated by the BLIP2 OPT-463

2.7B. The number of anwer options M is set to 4464

in our experiments. Before knowledge-guided data465

filtering, we collect about 230k valid VQA sam-466

ples from QWEN72B and about 310k valid VQA467

samples from Vicuna7B. We combined data gener-468

ated by two different language models to integrate469

the knowledge from both. For Vicuna 7B, it takes470

about one day to generate data with 4 NVIDIA A40471

GPUs and we use API to access Qwen72B. For K-472

means clustering, we use PCA (Pearson, 1901) to473

reduce the dimension to 256 and the number of474

clustering centers is set to 400. We sample 40k475

VQA samples for the model training. We provide a476

hyper-parameter sensitive analysis in the Appendix.477

We generate individual synthetic datasets for each478

benchmark except the A-OKVQA and OK-VQA,479

which share a synthetic dataset. During model train-480

ing, we only finetune the Q-former in BLIP2 and481

adopt the text-aware visual feature extraction. For482

OpenFlamingo3B, we follow the pre-trained train-483

ing setting, which finetunes the perceiver and gated484

dense cross-attention layers. The learning rate is485

set to 1e-4 with a cosine annealing AdamW opti-486

mizer (Loshchilov and Hutter, 2017). The training 487

takes about 1h on 4 NVIDIA A40 GPUs. 488

4.1.3 Baselines 489

We compare MKDG with strong baselines in zero- 490

shot VQA task to showcase the effectiveness. The 491

baselines can be summarized into two categories, 492

corresponding to the two sections in Table 1. LLM 493

with In-context-learning consists of methods (Yang 494

et al., 2022; Hu et al., 2022) that transfer images 495

into captions and then use a pre-trained large lan- 496

guage model to accomplish VQA task. Such meth- 497

ods rely on in-context learning for better perfor- 498

mance and the demonstrations come from the train- 499

ing set of the target dataset, which introduces ad- 500

ditional target domain information in inference. In 501

Zero-shot VQA, methods (Li et al., 2023; Alayrac 502

et al., 2022; Tsimpoukelli et al., 2021; Dai et al., 503

2022; Jin et al., 2022) leverage large-scale caption 504

data for pretraining, thus obtaining generalizable 505

ability to accomplish zero-shot VQA task. VQ2A 506

(Changpinyo et al., 2022) utilizes a rule-based strat- 507

egy to extract answer candidates from the caption 508

and use FlanT5 XXL to generate synthetic data. 509

Methods (Tiong et al., 2022; Du et al., 2023; Guo 510

et al., 2023) focus on providing the language model 511

with a better caption to achieve better visual ques- 512

tion performance. 513
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4.2 Zero-shot Visual Question Answering514

4.2.1 Knowledge Based VQA515

To comprehensively evaluate our method, we com-516

pare MKDG with baselines on knowledge-based517

VQA benchmarks, including OK-VQA test set, A-518

OKVQA validation set, and Vizwiz validation set,519

as shown in Table 1. MKDG shows significant520

performance improvements over previous methods521

on OK-VQA and A-OKVQA, achieving results522

comparable to GPT-3 175B-based methods like523

PICa (Yang et al., 2022), Img2LLM-175B (Guo524

et al., 2023), and PromptCap (Hu et al., 2022), but525

with only 1.7% of the inference parameters. On526

the more challenging Vizwiz benchmark, MKDG527

outperforms zero-shot BLIP2 (Li et al., 2023) and528

OpenFlamingo (Awadalla et al., 2023), demonstrat-529

ing its adaptability to previously underperforming530

task domains. Compared to caption-based meth-531

ods (Tiong et al., 2022; Guo et al., 2023; Du et al.,532

2023) without in-context learning, our approach533

achieves state-of-the-art performance with smaller534

pre-trained models. This highlights the efficiency535

of our knowledge transfer paradigm and the detri-536

mental impact of information loss when converting537

images to captions for VQA performance.538

4.2.2 Results on VQAV2 and GQA539

Additionally, we evaluate MKDG on general-540

purpose VQA, VQAV2 (Goyal et al., 2017)541

and relational reasoning VQA, GQA (Hudson542

and Manning, 2019). As shown in Table 1,543

though MKDG brings improvements over pre-544

trained BLIP2 OPT2.7B, the performance in BLIP2545

FLan5XL decreases slightly compared with the546

pre-trained one, which already achieves strong547

performance. Our approach aims to enhance the548

model’s performance to a moderate level in the549

new VQA domain where its performance has been550

sub-optimal.551

4.3 Ablation Study552

4.3.1 Data Selection Strategy553

In this section, we conduct an ablation study to554

provide a comprehensive interpretation of our pro-555

posed methods. We disentangle our knowledge-556

based data selection strategy and select multiple557

datasets with different strategies. In detail, Base558

indicate that no data filtering is applied and we559

preserve 540k noisy synthetic data. The Rank-560

ing means that we only preserve the top k samples561

sorted by the CLIP score. In Consistent, we remove562

Strategy Total Data OK-VQA A-OKVQA
Base 540k 43.6 37.8
Ranking 540k 43.7 38.1
Consistent 211k 47.2 42.1
Ranking + Consistent 211k 47.0 41.0
Consistent + Clustering 211k 48.3 42.8

Table 2: Ablation on data selection strategy. For a fair
comparison, we train a BLIP2-OPT2.7b model with data
selected by different strategies. Total Data indicate the
available data size after filtering and we sample 40,000
data from available data to train the model.

the VQA samples where the language model’s an- 563

swer ail and CLIP answer aic are inconsistent. The 564

Clustering indicate that the VQA samples below a 565

CLIP score threshold are removed. For the rest of 566

the samples, we perform K-means clustering and 567

randomly sample an equal size of data from each 568

cluster. our methods choose the Consistent + Clus- 569

tering and we present the OK-VQA, A-OKVQA 570

performance of these strategies in Table 2. The 571

result demonstrates that our data selection is the 572

most effective way of extracting knowledge from 573

synthetic data. Additionally, we observed that the 574

Consistent outperform Consistent + Ranking on 575

OK-VQA, which proves that the high CLIP scores 576

don’t exhibit a positive correlation with high VQA 577

data quality. However, as Ranking largely out- 578

performs Base, we conclude that CLIP scores are 579

capable of filtering out low-quality VQA samples. 580

These findings contribute to our final strategy Con- 581

sistent + Clustering. 582

5 Conclusion 583

We propose MKDG, a zero-shot Visual Question 584

Answering (VQA) framework that leverages pre- 585

trained model knowledge through synthetic data 586

generation. MKDG encodes the extensive knowl- 587

edge of large language models (LLMs) in synthetic 588

data and uses the vision-language knowledge in 589

CLIP to filter out noise VQA samples. Specifically, 590

MKDG employs a caption model to provide visual 591

information to the LLM, prompting it to generate 592

synthetic VQA data. To mitigate hallucinations 593

and uneven data distribution, we use CLIP’s prior 594

knowledge to filter out incorrect VQA data and 595

select a high-quality subset through clustering. Fi- 596

nally, we train a moderate-sized generative vision- 597

language model with the curated data, integrating 598

the knowledge from CLIP, LLM, and VLM. Ex- 599

perimental results demonstrate the superior perfor- 600

mance of our method across various popular VQA 601

benchmarks. 602
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6 Limitation603

Limited Improvements in General VQA. De-604

spite the promising results on knowledge-based605

VQA benchmarks, our approach has several lim-606

itations. Specifically, because our generated data607

rely on integrating foundation model knowledge,608

MKDG does not achieve significant improvements609

on general VQA benchmarks such as VQAV2 and610

GQA, where questions focus on visual perception611

and scene understanding. Additionally, existing612

models like BLIP2 (Li et al., 2023) and Open-613

Flamingo (Awadalla et al., 2023) already perform614

well on these benchmarks. Therefore, our paradigm615

is more suited for facilitating knowledge transfer616

within sub-optimal target domains.617

Sub-optimal Domain Generalization Ability.618

The proposed MKDG pipeline generates synthetic619

datasets for specific VQA domains by prompting620

LLMs with domain-specific prompts. While it621

achieves significant improvements in the target622

VQA domain, the fine-tuned model’s performance623

gains in other VQA domains are limited. For exam-624

ple, the synthetic VQA dataset is generate based on625

the prompts regarding OK-VQA benchmark, the626

fine-tuned model on this datasets may not benefit627

the performance on GQA benchmark. Therefore,628

our pipeline serves as an efficient framework for629

VQA domain adaptation without requiring annota-630

tions.631
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A Appendix871

A.0.1 Visualization.872

This section aims to provide a visual depiction of873

the characteristics and quality of the synthetic data,874

thereby facilitating a deeper comprehension of our875

methodology. Presented in Figure 6, we showcase876

three examples illustrating the generated synthetic877

data alongside the predictions made by both a large878

language model and CLIP. Notably, in the first two879

cases, both the large language model and CLIP ex-880

hibit concurrence, while in the final case, discrepan-881

cies arise between their choices. When both large882

language model and CLIP converge in agreement,883

it signifies a robust alignment between the gener-884

ated questions, answers, and corresponding images.885

This alignment implies that the synthetic data tends886

to possess favorable attributes: answers are pre-887

dominantly correct, questions maintain relevancy888

to the image content, and there is less ambiguity in889

answers.890

A.0.2 Ablation Study of language model and891

caption quality.892

To provide more insights into the role of language893

model and caption quality in MKDG framework,894

we finetune the models with synthetic data gener-895

ated by different language model and caption. The896

language model serve as the knowledge source for897

synthetic data while the captions are source of vi-898

sual information for language model. To explore899

the importance of caption quality in VQA data gen-900

eration, we propose three categories of captions to901

conduct experiments. The BLIP2 OPT2.7B indi-902

cates the short and relatively low quality captions903

generated by the pre-trained BLIP2 OPT2.7B. The904

ShareGPT4V indicates the dense caption generated905

by ShareGPT4V (Chen et al., 2023), which con-906

tained a GPT4V (Chen et al., 2023) style detailed907

image description. The Ground Truth indicates908

the precise caption annotated by human. The re-909

sults are shown in Table 3, we observe the quality910

of data generated by QWEN72B is higher than911

that of Vicuna7B when the caption is generated by912

ShareGPT4V or ground truth caption. However,913

Vicuna 7B generates better data with BLIP2 gener-914

ated caption. The performance gap demonstrates915

that scaling up language model will not guarantee916

improvements under MKDG framework. Another917

observation is that Ground Truth captions achieve918

the best results across all language models, which919

reveal that the precision of caption is the most im-920

BLIP2 OPT2.7B ShareGPT4V Ground Truth
Vicuna7B 46.8 43.9 47.5
Qwen72B 44.1 46.1 47.6
Mixed Data 48.3 47.2 48.4

Table 3: The performance with different language
model and caption. For fair comparison, we train a
BLIP2 OPT2.7B with the data generated by different
language model and captions. The results on OKVQA
are reported in the table.

portant factor in MKDG. Furthermore, we utilize 921

the mixture of data generated by the two LLMs and 922

achieve highest performance. This phenomenon 923

indicates the language model contains different 924

inductive bias in generating VQA data. Our pro- 925

posed clustering and selection strategies extract and 926

fuse the informative parts of the data generated by 927

two LLMs thus achieving better performance. 928

A.1 Bias in Generated Questions 929

We mentioned that the generated questions from 930

large language model are biased towards certain 931

question types in main paper section Knowledge 932

Based Data Filtering. In order to provide a clear 933

understanding of this phenomenon, We calculated 934

the frequency of the first four words in the ques- 935

tions from all generated data and present the top 936

10 question type in Figure 7. We observe that the 937

top one question type What is the name account 938

for 22.94% data and the sum of top 4 question type 939

account for 49.8% data. The statistical results of 940

this analysis demonstrate that the generated ques- 941

tions exhibit a bias towards certain question types, 942

which leads to duplication in data and harms the 943

VQA performance as demonstrated in main paper 944

ablation study Table 2. 945

A.2 Inference Time Comparison. 946

For a quantitative comparison of inference effi- 947

ciency, we measured the inference time of BLIP2- 948

OPT2.7B and Vicuna 7B/13B on an A40 GPU, 949

averaging the inference time over 1000 samples. In 950

the case of Vicuna, we utilized 8 demonstrations to 951

guide answer generation. BLIP2 achieved an infer- 952

ence time of 1.009 seconds per sample. In contrast, 953

Vicuna 7B exhibited an inference time of 4.893 954

seconds per sample, while the 13B model showed 955

10.101 seconds per sample. The inference time of 956

our methods is equal to BLIP2-OPT2.7B, which in- 957

dicates that our methods significantly improved in- 958

ference efficiency compared to caption-based VQA 959

methods and achieve strong performance. 960
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Figure 6: Visualization of the synthetic data We show the example caption, question, candidates and answer
generated in our pipeline. We use red check mark to indicate the answer chosen by large language model and the
green check mark to indicate the answer chosen by CLIP.

Figure 7: The question type distribution in generated
data. We present percentage of the top 10 question type
in generated data.

PCA Dimension 32 64 128 256 512
vqa score 47.67 48.38 48.26 48.52 47.77

Number of Clusters 200 300 400 500 600
vqa score 48.80 48.12 49.01 48.78 48.84

Table 4: Hyperparameters ablation experiments.

A.3 Analysis on Hyperparameters.961

We performed ablation study on hyperparameters962

on the OK-VQA training set with varied choices963

for PCA reduction dimension and the number of964

Kmeans clusters. The results are presented in Ta-965

ble 4. Notably, our methods is insensitivity to966

changes in PCA reduction dimension and the num-967

ber of Kmeans clusters.968

A.4 Instruction and Demonstration969

The instruction and demonstration are critical for970

guiding the LLM to generate desired data for-971

mat, which is especially important in knowledge972

based VQA benchmarks where the answers are973

usually one word. To ensure the diversity of gener-974

ated question types, we introduce question prefixes975

such as [’What’, ’How’, ’Where’, ’Who’, ’Why’,976

’Is’].We provide the complete instruction for OK-977

VQA dataset as follow: Generate a question based978

on captions of an image. Provide the possible979

answer candidates and correct answer. Ensure 980

that the generated question demonstrates a strong 981

connection with the provided caption. Emphasize 982

that the question should be informative and require 983

knowledge within the LLM to answer. For instance, 984

instruct the model to inquire about specific details 985

mentioned in the caption, demanding comprehen- 986

sion of external knowledge to respond accurately. 987

For the demonstrations, we manually write 8 OK- 988

VQA style VQA sample and use the corresponding 989

captions from MSCOCO. To get the answer candi- 990

dates, we use ChatGPT to generate the reasonable 991

answer candidates. The complete demonstration 992

are presented as follow: 993

Caption: A large white, yellow and red bus driving 994

down a street. A white, red and yellow transit bus 995

is making its way through a town. A red, white and 996

yellow bus on a street. A Victory Liner bus driv- 997

ing down a street. A red, yellow and white transit 998

bus travelling down a street. Question: Is this a 999

privately or publically owned vehicle? Candidates 1000

in a single word or phrase: public private govern- 1001

ment commercial Correct Answer in a single word 1002

or phrase: private 1003

Caption: A person standing on a tennis court hold- 1004

ing a racket. A person holding a tennis racket at 1005

a tennis court. a little kid that has a racket in his 1006

hand. A young man holding a tennis racquet on 1007

top of a tennis court. There is a group of people 1008

playing tennis on a court. Question: Which type 1009

of tennis is being played? Candidates in a single 1010

word or phrase: single mixed team double Correct 1011

Answer in a single word or phrase: double 1012

Caption: A collection of pictures showing the be- 1013

fore and after of a bathroom remodel. a bathroom 1014
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slowly getting remodeld with different pics. Three1015

different photos of a bathroom being remodeled.1016

The room was remodeled and the bathtub was re-1017

moved. Three images of the process of a bathroom1018

remodel. Question: What material is the bath-1019

tub made out of? Candidates in a single word or1020

phrase: porcelain marble ceramic acrylic Correct1021

Answer in a single word or phrase: ceramic1022

Caption: A brown horse standing next to a building1023

wearing a blanket. A horse inside of a barn getting1024

a bath. A horse tied to a stable wearing a pink and1025

blue blanket. a horse wearing something tethered1026

to a wall. A horse stands near the stalls wearing1027

a blanket. Question: Where is this photo taken?1028

Candidates in a single word or phrase: barn stable1029

farm ranch Correct Answer in a single word or1030

phrase: stable1031

Caption: A group of livestock are grazing in bright1032

green grass. A group of dogs are roaming around1033

a bright green field. A green pasture with cattle1034

spread around it. Cows and horses graze in a1035

wide open green field. Cattle and horses grazing1036

in a green pasture. Question: Are these different1037

animals in this picture or all they all the same1038

animal? Candidates in a single word or phrase:1039

same different mixed varied Correct Answer in a1040

single word or phrase: different1041

Caption: Beach umbrellas provide shade at the1042

beach as people walk the shoreline. People at the1043

beach with several umbrellas scattered around. A1044

beach scene with several colorful bathers umbrel-1045

las. People spending time on a beach during the1046

summer. some people at a beach with rainbow1047

colored umbrellas. Question: Who invented the1048

colorful objects in the image? Candidates in a1049

single word or phrase: samuel fox mary anderson1050

george sage john w. dickinson Correct Answer in a1051

single word or phrase: samuel fox1052

Caption: Two teams’ coaches shake hands on a1053

baseball field. A picture of three people talking to1054

each other. A man in black pants and a white shirt1055

holds a baseball and a man in a baseball uniform1056

stands next to a man with sunglasses and a blue t-1057

shirt. Baseball player and manager meeting before1058

the game. A friendly chat on the field at a baseball1059

game. Question: When you fill a glass to the top1060

you are also referring to which part of the headgear 1061

worn here? Candidates in a single word or phrase: 1062

brim crown visor strap Correct Answer in a single 1063

word or phrase: brim 1064

Caption: A two-person vanity is below a mirror in 1065

the bathroom. A double-sink vanity is in front of 1066

a wide mirror with side lighting in this rest room. 1067

An elegant bathroom has a light up mirror, marble 1068

counter tops and dual sinks. A nice marble tile 1069

sink with his and her. A lighted mirror illuminates 1070

two tidy bathroom sinks. Question: What is that 1071

counter top made of? Candidates in a single word 1072

or phrase: granite quartz marble ceramic Correct 1073

Answer in a single word or phrase: marble 1074

15


	Introduction
	Related Works
	Large Pretrained Models
	Synthetic Visual Data Generation
	Zero-shot VQA

	Methods
	Overall Architecture
	Synthetic Data Generation
	Knowledge-guided Data Filtering
	Quality Evaluation of VQA Data
	Balanced Data Selection.

	Training with Synthetic Data

	Experiments
	Experimental Setting
	Datasets and Evaluation
	Implementation Detail
	Baselines

	Zero-shot Visual Question Answering
	Knowledge Based VQA
	Results on VQAV2 and GQA

	Ablation Study
	Data Selection Strategy


	Conclusion
	Limitation
	Appendix
	Visualization.
	Ablation Study of language model and caption quality.

	Bias in Generated Questions
	Inference Time Comparison.
	Analysis on Hyperparameters.
	Instruction and Demonstration


