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Abstract

Zero-shot Visual Question Answering (VQA)
poses a challenging and crucial task in vision
and language reasoning, demanding models
to generate answers based on questions and
images without human annotation. Previous
approaches mainly focus on transforming im-
ages into captions and utilizing language model
knowledge to answer visual questions. Despite
the promising results, such a paradigm suffers
from hallucination and high inference costs.
In this paper, we propose a zero-shot VQA
framework MKDG, which transfers knowledge
from large language models (LLMs) and multi-
modality models through a synthetic data gen-
eration approach, thus utilizing the ability of
LLMs and mitigating the hallucination. Specif-
ically, our method introduces a three-step syn-
thetic data generation and training pipeline that
first creates pseudo questions and answers with
caption model and LLMs. To alleviate the hal-
lucination and unbalanced data distribution in
synthetic data, we propose a CLIP-based fil-
tering and data selection strategy. Finally, we
fine-tune a moderate-sized generative vision
language model with the automatically curated
synthetic dataset to perform VQA task. Exper-
imental results on popular VQA benchmarks
demonstrate the effectiveness of MKDG. We
achieve superior performance and outperform
outperforming strong baselines incorporating
GPT-3 with significantly lower inference cost.

1 Introduction

Visual Question Answering (VQA) is a core chal-
lenge in vision and language (VL) tasks, which
aims to understand and answer questions related
to visual inputs. It plays a crucial role in com-
plex real-world applications such as visual dia-
log (Das et al., 2017), visual relationship detec-
tion (Lu et al., 2016) and vision language naviga-
tion (Anderson et al., 2018). However, training a
robust and versatile VQA model traditionally de-
mands a substantial amount of human annotations,

which can be costly and introduce various data bi-
ases. To address this, a promising strategy is to
achieve zero-shot learning for a specific VQA task
by exploiting rich language/image data from re-
lated VL tasks (Lin et al., 2014), or transferring
knowledge from pre-trained large language models
(LLMs) (Zhang et al., 2022; Brown et al., 2020a;
Touvron et al., 2023a,b). Those generic knowledge
sources make it possible to accomplish VQA tasks
without human-annotated question-answers.

Previous explorations in zero-shot VQA can be
summarized into two categories. The first paradigm
leverages pre-trained foundation models to directly
perform zero-shot VQA. Recent studies (Yang
et al., 2022; Hu et al., 2022; Tiong et al., 2022; Guo
et al., 2023; Du et al., 2023) use a two-stage ap-
proach with Large Language Models (LLMs): rep-
resenting visual inputs through captions and then
generating answers with an LLM. This method
benefits from the reasoning capability of LLMs
but faces visual information loss due to the inher-
ent limitations of captioning and expensive infer-
ence with large LLMs like GPT-3 (Brown et al.,
2020a). An alternative approach (Li et al., 2023;
Awadalla et al., 2023; Alayrac et al., 2022) aligns
LLMs (Zhang et al., 2022; Chung et al., 2022a)
with visual encoders (Dosovitskiy et al., 2020; He
et al., 2015) using image-caption data. While this
method demonstrates promising generalization in
VQA tasks, it is prone to restricted reasoning ca-
pability. The alignments in these models focus on
describing the visual scene rather than extracting
visual information relevant to the question. The
second paradigm generates synthetic VQA sam-
ples (Banerjee et al., 2020; Changpinyo et al., 2022)
by converting existing image-caption pairs into
image-question-answer triplets. However, these
approaches often suffer from deficiency in informa-
tion due to limited caption content.

To address these challenges, we propose a
novel data generation framework for zero-shot
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Figure 1: Comparison of zero shot VQA paradigm. Caption based VQA methods convert the image to captions
and utilize language model to answer visual question. In contrast to previous approaches, we leverage foundation
with diverse knowledge to generate synthetic data and finetune a generative vision language model to answer visual

questions.

VQA called Multifaceted Knowledge-guided Data
Generation (MKDG). As shown in Figure 1,
MKDG generates synthetic training data for VQA
tasks by integrating multiple pre-trained vision and
language models. Our key insights are as follows:
1) Generating synthetic data to transfer pre-trained
model knowledge to a specific VQA domain is
more efficient and effective than converting VQA
to question answering tasks. 2) Constructing an-
swer candidates with LLMs and using CLIP for
data filtering enhances synthetic data quality which
play a critical role in zero-shot VQA performance.
3) Converting VQA samples into the CLIP embed-
ding space and using clustering-based data selec-
tion allows us to reduce the negative impact of data
bias in synthetic data. Compared with widely used
LLM synthetic data generation pipeline such as
LLAVA (Liu et al., 2023b), we focus on design
an efficient framework that automatically filter and
select high-quality synthetic data.

Our MKDG framework integrates three pre-
trained large models—CLIP (Radford et al., 2021),
a generative vision-language model (VLM) (Li
et al., 2023; Awadalla et al., 2023), and an
LLM (Peng et al., 2023; Bai et al., 2023)—into
a data generation and task-specific fine-tuning
pipeline. Starting from a set of images, our pipeline
consists of three main steps: 1) Data generation
with LLM and VLM. We employ BLIP2 to generate
captions for the unlabeled images to provide the
LLM with visual information. An well-designed
instruction and human annotated demonstrations
are provided to prompt the LLM to create pseudo

questions, answer options, and answers for an im-
age. Here, the introduction of LLM knowledge
alleviate the deficiency in informativeness in pre-
vious synthetic data generation based methods. 2)
Knowledge-based data Filtering with CLIP. We
assess the quality of the generated questions and
answers using CLIP, filtering out data where CLIP
and LLM make disparate choices, the image ques-
tion pairs with low similarity and duplicated ques-
tions. The data selection reduce the incorrect an-
swers in synthetic data by CLIP prior knowledge,
thus reducing the hallucination of LLM. Further-
more, we utilize CLIP to map VQA samples into
an embedding space and employ the K-means al-
gorithm to cluster the generated data. We then
select representative data points from these clus-
ters to construct a high-quality synthetic dataset.
3) Synthetic data training with VLM. We finetune
a moderate-sized VLM with the automatically cu-
rated synthetic dataset. This training paradigm di-
rectly processes the visual inputs and thus reduces
the visual information loss, while the knowledge
encoded in the synthetic dataset alleviates the re-
stricted reasoning ability in the caption pre-trained
VLM, such as BLIP2. Moreover, the fine-tuned
VLM model achieves a much lower inference cost
compared to previous LLM-based methods.

We empirically validate the MKDG framework
on popular VQA benchmarks, OKVQA (Marino
et al., 2019), A-OKVQA (Schwenk et al., 2022),
VizWiz (Gurari et al., 2018), GQA (Hudson and
Manning, 2019) and VQAV2 (Goyal et al., 2017),
demonstrating it superior performance.



Our main contributions are summarized as fol-
lowing:

* We introduce MKDG, a framework that ef-
fectively transfer knowledge from large pre-
trained vision and language models to visual
question answering via synthetic data training.

* We are the first to introduce prior knowledge
in CLIP to perform automatic VQA data fil-
tering and selection, which improve the data
quality and reduce the negative impact of un-
even data distribution in synthetic VQA data.

» Experimental results on popular VQA bench-
marks demonstrate that the MKDG outper-
forms strong baselines equipped with larger
GPT3 model.

2 Related Works
2.1 Large Pretrained Models

Recently, large language models (Brown et al.,
2020a; Touvron et al., 2023a,b; Chung et al.,
2022a) have achieved tremendous success. With a
tremendous amount of training data and the scal-
ing up of the number of parameters, large lan-
guage models exhibit surprising capabilities, such
as chain-of-thought reasoning (Wei et al., 2022),
in-context learning (Brown et al., 2020b), and in-
struction following (Chung et al., 2022b). Vision-
language models, including BLIP2 (Li et al., 2023),
Flamingo (Alayrac et al., 2022) and BEIT-3 (Wang
et al., 2023b), also benefit from large-scale train-
ing, which has led to significant progress in uni-
fied vision-language understanding and generation
tasks. In particular, CLIP (Radford et al., 2021)
employs a contrastive learning strategy on a huge
amount of image-text pairs and shows impressive
transferable ability over downstream tasks. CLIP
provides an expressive vision-language joint em-
bedding space, which enables content similarity
measurement between image and text data.

2.2 Synthetic Visual Data Generation

With the development of pre-trained language mod-
els (Brown et al., 2020a; Chung et al., 2022a;
Touvron et al., 2023b,a), automatic visual data
generation attracts increasing interest. The early
explorations (Changpinyo et al., 2022; Banerjee
et al., 2020) utilize the T5-based question genera-
tion model and question answer model to convert
caption datasets to synthetic VQA data. More re-
cently, several works (Liu et al., 2023b,a; Wang

et al., 2023a) generate visual instruction follow-
ing datasets by instructing powerful LLM such
as GPT4 (OpenAl, 2023a) to generate VQA data
based on image annotations. In this work, we fo-
cus on the zero-shot VQA setting and propose a
knowledge-guided data filtering strategy that can
be seamlessly integrated into other synthetic data
generation pipelines.

2.3 Zero-shot VQA

Visual Question Answering(VQA) involves ad-
vanced reasoning and image recognition. For zero-
shot VQA, early methods (Changpinyo et al., 2022;
Banerjee et al., 2020) generated synthetic VQA
data from image captions using simple rules, then
used this data for training. VQ2A (Changpinyo
et al., 2022) extracted answer candidates from cap-
tions with rule-based methods and used a TS5 (Raf-
fel et al., 2019)-based question generator to create
VQA samples, filtering the data with a T5-based
QA model. Different from generating VQA sam-
ples from captions, recently proposed BLIP2 (Li
et al., 2023) and Flamingo (Alayrac et al., 2022)
train a vision-language model with caption data,
which can generalize to VQA tasks without task-
specific fine-tuning. With the advent of large pre-
trained models, another promising strategy is to
convert vision information into image captions and
utilize the pre-trained large language model to com-
prehend the input and generate the expected an-
swer. Recent works (Tsimpoukelli et al., 2021;
Dai et al., 2022; Jin et al., 2022; Guo et al., 2023;
Hu et al., 2022) utilize this strategy and obtain
promising performance with powerful LLMs such
as GPT3 (Brown et al., 2020a). In this work, we
propose a synthetic data generation pipeline with
novel knowledge-guided data filtering to address
the zero-shot VQA task.

3 Methods

In this section, we introduce our MKDG frame-
work, which incorporates CLIP (Radford et al.,
2021), VLM (Li et al., 2023; Awadalla et al., 2023)
and LLM (Peng et al., 2023; Bai et al., 2023) knowl-
edge through synthetic VQA data training for zero-
shot VQA. We depict the overall pipeline of our
model in Section 3.1. In Section 3.2, we intro-
duce the synthetic VQA data generation with LLM
and Caption model. In Section 3.3, the knowledge-
based data filtering is presented. Finally, we present
the training with selected synthetic data in Section
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Figure 2: The overall pipeline of our methods. We utilize BLIP2 to convert the images to captions. The LLM is
prompted to generate synthetic data based on caption, instruction and demonstration. We leverage CLIP to filter out
low quality data and select a high quality subset with clustering strategy. The selected subset is used to finetune a

BLIP2 for visual question answering.

3.4.

3.1 Overall Architecture

The primary challenge of zero-shot visual question
answering (VQA) lies in effectively incorporating
the knowledge encoded in these pre-trained models
to benefit visual question answering. Our motiva-
tion is that synthetic data generation is the most effi-
cient way to transfer Large Language Model (LLM)
knowledge and we propose a synthetic VQA data
generation pipeline. However, due to the visual in-
formation loss and bias in LLM, the hallucination
and imbalanced data distribution in LLM generated
data negatively impact the VQA data quality. To
address the issue, we propose a knowledge-guided
data filtering method that utilize the CLIP knowl-
edge learned from contrastive vision-language pre-
training to perform data filtering and selection.

The overall pipeline is illustrated in Figure 2.
Specifically, we work with a set of unlabeled im-
ages I and three pre-trained models, CLIP (Rad-
ford et al., 2021), a generative VLM (Li et al., 2023;
Awadalla et al., 2023), and an LLM (Peng et al.,
2023; Bai et al., 2023). In Synthetic Data Gener-
ation phase, we first use the VLM to generate a
set of captions C' for each image. We then employ
the LLM to generate questions (), corresponding
options O and language model generated answers
Ajim, which collectively form a synthetic dataset D.
In Knowledge Based Data Filtering step, we lever-
age knowledge from CLIP to choose a high-quality
subset D* from synthetic data D. The selected
dataset D* is then employed to fine-tune the gen-
erative VLM, serving as our VQA model. We will
introduce the details of each step in the subsequent
sections.

3.2 Synthetic Data Generation

To transfer knowledge from pre-trained models
to synthetic data, we start by constructing the
synthetic data D with LLM and BLIP. The con-
struction pipeline contains the following steps:
1) We employ BLIP2 to transform unlabeled im-
ages [ = {i"|n = 1,..., N} into captions C' =
{c"In =1,..., N} to provide visual information
for LLMs where N is the total number of images.
2) We write a task instruction and provide & hu-
man annotated target VQA domain demonstrations
as illustrated in Figure 3. The demonstrations are
written based on target VQA domain question style
to benefit the knowledge transfer process. More
details are provided in the appendix. 3) The LLM
follows these demonstrations to generate questions
Q={q"In=1,...,N}, options O = {o"|n =
1,..., N} and answer Ay, = {a}'|i =1,...,N}.
The overall process can be formulated as follows:

D ={@\",q",a}',0},...,0%)n=1,...,N}

ey
where M is the number of answer options for each
sample. We clarify the necessity of generating
answer options as follows: The generated answer
options are the answers with highest confidence in
the LLM question-answer generation space. We
explicitly preserve this LLM knowledge instead
of only keeping the top one answer. This strategy
also forms the basis for discriminative models like
CLIP to perform visual question answering during
data selection.

In conclusion, we construct synthetic data D
from unlabeled images I, which is achieved by
integrating the knowledge from LLM and BLIP2.
However, the synthetic data D is noisy and requires
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data filtering.

3.3 Knowledge-guided Data Filtering

In the initial phases of experimental exploration,
we identified two primary issues with the synthetic
data D, which is generated by the LLM and cap-
tion model. The first issue is hallucination, where
answers are incorrect or unrelated to the questions
Secondly, generated questions are biased towards
certain types, leading to duplication and creating
low-quality data. We provide more evidence of
this phenomenon in the appendix. To address the
issues, we propose to perform VQA data quality
evaluation and balanced data filtering using CLIP
prior knowledge.

3.3.1 Quality Evaluation of VQA Data

We evaluate the quality of synthetic data from two
perspectives: answer correctness and image rel-
evance. To improve the correctness of synthetic
data, we compute the CLIP score for answer op-
tions {of, ..., o, } of each sample in the synthetic

data D. The option with the highest CLIP score is
regarded as the CLIP-chosen answer, denoted as a".
We retain VQA samples where the CLIP’s answer
ay and the LLM’s answer a;' are identical, which
mitigate hallucination caused by language model.
To ensure the QA pair is relevant to the image, we
utilize the CLIP score, which represents the rele-
vance between the QA pair and the image in the
CLIP embedding space. Specifically, we convert
the question and answer into an image description,
such as "{question} Answer: {answer}", and calcu-
late the cosine similarity between the image and the
description. we discard samples with a CLIP score
lower than a specified threshold. We illustrate the
quality evaluation pipeline in Figure 4.

3.3.2 Balanced Data Selection.

We illustrate the data selection pipeline in Figure 5.
The skewed distribution of synthetic training data
negatively impacts performance and hinders the
effective transfer of pre-trained model knowledge
via synthetic data D. We propose to use a clus-
tering algorithm to select a balanced subset from
synthetic data D. We firstly comprehensively repre-
sent VQA sample in an embedding space. Our pro-
posed approach involves extracting question and
image embeddings using CLIP and concatenating
these embeddings to form the VQA embedding.
The process is formulated as follows:

e, = CLIPVisual(i")," € I (2)

ef’ = CLIPTextual(¢"),q" € D 3)
e = Concat(e;), ;') (4)

where CLIPVisual and CLIPTextual indicate the
visual and text encoders in CLIP. We denote the set
of embedding of VQA samples by E = {e"|n =
1,..., N}. Given the high dimension of the VQA
embedding F and the limited scale of the avail-
able data, we employ Principal Component Anal-
ysis(PCA) to reduce the dimensionality of E for
efficient clustering. Subsequently, K-means is used
to cluster the synthetic data D based on E. In our
prior investigations, we noted that the CLIP score
alone fails to accurately gauge the quality of VOA
samples above a certain threshold. To address this,
we randomly sample an equal amount of VQA sam-
ples from each cluster, creating a balanced subset
D* = {(¢",q",a")n = 1,...,N*}, where N*
is the total number of samples in selected datasets.
This subset serves as the foundation for transferring
knowledge from pre-trained models.
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3.4 Training with Synthetic Data

The selected synthetic data D* represent the col-
lective intelligence of pre-trained models. We then
finetune a pre-trained generative vision language
model, such as BLIP2 (Li et al., 2023) and Open-
Flamingo (Awadalla et al., 2023), using D* to excel
in visual question answering.This pipeline not only
harnesses the knowledge within pre-trained mod-
els but also learns to process visual input directly
without relying on a caption, preventing visual in-
formation loss. Specifically, we train the VLM
with the following objective:

l
1 & .
—Z—E log Pp(wjlw<;,i", q") (5)
njzl

L") =

where [,, is the number of words in a”, w; is the
j-th word in answer text a” and ¢™, ¢" are the im-
age and question in the selected synthetic data D*.
0 are the parameters of the vision language model
for fine-tuning. In summary, our approach involves
training a generative vision language model, in-
corporating knowledge learned from multiple pre-
trained models to excel in visual question answer-
ing.

4 Experiments

In this section, we demonstrate MKDG'’s effective-
ness on zero-shot VQA task. We show that our
method achieves promising performance on VQA
benchmarks without VQA annotation. Then we
conduct ablation experiments on the contribution
of each component in our pipeline.

4.1 Experimental Setting

4.1.1 Datasets and Evaluation

Our experimental evaluations are performed on
five benchmark datasets for knowledge-based
visual question answering: OK-VQA (Marino
et al., 2019), A-OKVQA (Schwenk et al., 2022),
VizWiz (Gurari et al., 2018), GQA (Hudson and
Manning, 2019), and VQAV2 (Goyal et al., 2017).
OK-VQA contains 14K image-question pairs fo-
cused on open-ended questions with detailed an-
swers. A-OKVQA improves on OK-VQA with
25K pairs of higher-quality questions and images.
VizWiz features diverse images and questions from
visually impaired individuals, with a validation set
of about 4K images. GQA tests visual reasoning
with 5K images in the test-dev set. VQAV2 is a
general benchmark with 200K images in the vali-
dation set. To align with prior work (Tiong et al.,
2022; Guo et al., 2023; Du et al., 2023), we mea-
sure standard VQA Accuracy (Goyal et al., 2017)
on OK-VQA, A-OKVQA, and VQAV2, and top-1
accuracy for VizWiz and GQA. For all benchmarks,
we use an open-ended generation strategy. Follow-
ing (Li et al., 2023; Awadalla et al., 2023), we use
beam search with a size of 5 and a length penalty
of -1 to ensure answers fit the desired format.

4.1.2 Implementation Detail

To generate the synthetic data and serve as the out-
side knowledge source for our pipeline, we use
Vicuna-7B (Peng et al., 2023) and QWEN72B (Bai
et al., 2023) as the language model. Vicuna is
finetuned with the conversation collected from
GPT4 (OpenAl, 2023b) based on LLAMA?2 (Tou-
vron et al., 2023b), which serves as a power-
ful and feasible language model for research pur-
poses. QWEN72B is an open-source language
model series that encompasses distinct models
with varying parameter counts. For the genera-
tive vision language model, we adopts BLIP2 (Li
et al., 2023) with OPT-2.7B(Zhang et al., 2022),
FlanT5 XL (Chung et al., 2022a) and Open-
Flamingo3B (Awadalla et al., 2023) for our experi-



Model [Infer Param.] OK-VQA A-OKVQA  VizWiz GQA VQAV2
In-context-learning
PICa & 16 Demo (Yang et al., 2022) 175B 46.9 - - - -
PromptCap-FlanT5 XXL
& 32 Demo (Hu et al., 2022) 1B 42.0 - - - -
PromptCap & 1 Demo (Hu et al., 2022) 175B 48.7 - - - -
Zero-shot VQA
Frozon (Tsimpoukelli et al., 2021) 7B 59 - - - 29.5
VLKD (Dai et al., 2022) <1B 13.3 - - 29.3 42.6
FewVLM (Jin et al., 2022) <1B 16.5 - - - -
PICa (Yang et al., 2022) 175B 17.7 - - - -
VQ2AT (Changpinyo et al., 2022) - 19.8 - - 50.0 57.9
PNP-VQA3B (Tiong et al., 2022) 3B 34.1 42.3 - - 62.1
PNP-VQAI11B (Tiong et al., 2022) 11B 35.9 41.9 - - 64.8
LAMOCI11B (Du et al., 2023) 11.4B 40.3 37.9 - - -
openFlamingo(9B) (Awadalla et al., 2023) 9B 37.8 - 27.5 - 52.7
Flamingo (3B) (Alayrac et al., 2022) 3B 41.2 - 28.9 - 49.2
Flamingo (9B) (Alayrac et al., 2022) 9B 44.7 - 28.8 - 51.8
Img2L.LM6.7B (Guo et al., 2023) 6.7B 38.2 333 - - -
Img2LLM-175B (Guo et al., 2023) 175B 45.6 429 - - 60.6
openFlamingo(3B) 3B 28.2 26.2 23.7 - 44.6
openFlamingo(3B) + MKDG 3B 39.7(+11.5)36.4(+11.5) 42.8(+19.1) - 50.0(+5.4)
BLIP-2 OPT2.7B 3.1B 30.2 26.3 14.3 33.9 50.1
BLIP-2 OPT2.7B + MKDG 3.1B 48.3(+18.1) 42.8(+16.5) 43.7(+29.4) 41.3(+8.3) 57.1(+7.0)
BLIP-2 FlanT5(XL) 7.8B 394 40.0 17.9 442 62.6
BLIP-2 FlanT5XL + MKDG 3.4B 46.3(+6.9) 46.0(+6.0) 46.0(+28.1) 42.5(-1.7) 60.3(-2.3)

Table 1: Comparison with state-of-the-art methods on popular VQA benchmarks. We present the inference
time parameters size in Infer Param.. The In-context learning indicate methods utilize demonstrations and we
mark the number of used demonstrations after &. The T indicates the inference strategy is classification instead of

open-word generation.

ments. We use the CLIP (Radford et al., 2021) with
ViT-L/14 visual encoder to select high-quality data.
For synthetic data generation, we use about 80k im-
ages from COCO2014 training set (Lin et al., 2014),
and the captions are generated by the BLIP2 OPT-
2.7B. The number of anwer options M is set to 4
in our experiments. Before knowledge-guided data
filtering, we collect about 230k valid VQA sam-
ples from QWEN72B and about 310k valid VQA
samples from Vicuna7B. We combined data gener-
ated by two different language models to integrate
the knowledge from both. For Vicuna 7B, it takes
about one day to generate data with 4 NVIDIA A40
GPUs and we use API to access Qwen72B. For K-
means clustering, we use PCA (Pearson, 1901) to
reduce the dimension to 256 and the number of
clustering centers is set to 400. We sample 40k
VQA samples for the model training. We provide a
hyper-parameter sensitive analysis in the Appendix.
We generate individual synthetic datasets for each
benchmark except the A-OKVQA and OK-VQA,
which share a synthetic dataset. During model train-
ing, we only finetune the Q-former in BLIP2 and
adopt the text-aware visual feature extraction. For
OpenFlamingo3B, we follow the pre-trained train-
ing setting, which finetunes the perceiver and gated
dense cross-attention layers. The learning rate is
set to le-4 with a cosine annealing AdamW opti-

mizer (Loshchilov and Hutter, 2017). The training
takes about 1h on 4 NVIDIA A40 GPUs.

4.1.3 Baselines

We compare MKDG with strong baselines in zero-
shot VQA task to showcase the effectiveness. The
baselines can be summarized into two categories,
corresponding to the two sections in Table 1. LLM
with In-context-learning consists of methods (Yang
et al., 2022; Hu et al., 2022) that transfer images
into captions and then use a pre-trained large lan-
guage model to accomplish VQA task. Such meth-
ods rely on in-context learning for better perfor-
mance and the demonstrations come from the train-
ing set of the target dataset, which introduces ad-
ditional target domain information in inference. In
Zero-shot VOA, methods (Li et al., 2023; Alayrac
et al., 2022; Tsimpoukelli et al., 2021; Dai et al.,
2022; Jin et al., 2022) leverage large-scale caption
data for pretraining, thus obtaining generalizable
ability to accomplish zero-shot VQA task. VQ2A
(Changpinyo et al., 2022) utilizes a rule-based strat-
egy to extract answer candidates from the caption
and use FlanT5 XXL to generate synthetic data.
Methods (Tiong et al., 2022; Du et al., 2023; Guo
et al., 2023) focus on providing the language model
with a better caption to achieve better visual ques-
tion performance.



4.2 Zero-shot Visual Question Answering
4.2.1 Knowledge Based VQA

To comprehensively evaluate our method, we com-
pare MKDG with baselines on knowledge-based
VQA benchmarks, including OK-VQA test set, A-
OKVQA validation set, and Vizwiz validation set,
as shown in Table 1. MKDG shows significant
performance improvements over previous methods
on OK-VQA and A-OKVQA, achieving results
comparable to GPT-3 175B-based methods like
PICa (Yang et al., 2022), Img2L.LM-175B (Guo
et al., 2023), and PromptCap (Hu et al., 2022), but
with only 1.7% of the inference parameters. On
the more challenging Vizwiz benchmark, MKDG
outperforms zero-shot BLIP2 (Li et al., 2023) and
OpenFlamingo (Awadalla et al., 2023), demonstrat-
ing its adaptability to previously underperforming
task domains. Compared to caption-based meth-
ods (Tiong et al., 2022; Guo et al., 2023; Du et al.,
2023) without in-context learning, our approach
achieves state-of-the-art performance with smaller
pre-trained models. This highlights the efficiency
of our knowledge transfer paradigm and the detri-
mental impact of information loss when converting
images to captions for VQA performance.

4.2.2 Results on VQAV2 and GQA

Additionally, we evaluate MKDG on general-
purpose VQA, VQAV2 (Goyal et al., 2017)
and relational reasoning VQA, GQA (Hudson
and Manning, 2019). As shown in Table 1,
though MKDG brings improvements over pre-
trained BLIP2 OPT2.7B, the performance in BLIP2
FLan5XL decreases slightly compared with the
pre-trained one, which already achieves strong
performance. Our approach aims to enhance the
model’s performance to a moderate level in the
new VQA domain where its performance has been
sub-optimal.

4.3 Ablation Study
4.3.1 Data Selection Strategy

In this section, we conduct an ablation study to
provide a comprehensive interpretation of our pro-
posed methods. We disentangle our knowledge-
based data selection strategy and select multiple
datasets with different strategies. In detail, Base
indicate that no data filtering is applied and we
preserve 540k noisy synthetic data. The Rank-
ing means that we only preserve the top k samples
sorted by the CLIP score. In Consistent, we remove

Strategy Total Data OK-VQA A-OKVQA
Base 540k 43.6 37.8
Ranking 540k 43.7 38.1
Consistent 211k 47.2 42.1
Ranking + Consistent 211k 47.0 41.0
Consistent + Clustering| 211k 48.3 42.8

Table 2: Ablation on data selection strategy. For a fair
comparison, we train a BLIP2-OPT2.7b model with data
selected by different strategies. Total Data indicate the
available data size after filtering and we sample 40,000
data from available data to train the model.

the VQA samples where the language model’s an-
swer a} and CLIP answer a’, are inconsistent. The
Clustering indicate that the VQA samples below a
CLIP score threshold are removed. For the rest of
the samples, we perform K-means clustering and
randomly sample an equal size of data from each
cluster. our methods choose the Consistent + Clus-
tering and we present the OK-VQA, A-OKVQA
performance of these strategies in Table 2. The
result demonstrates that our data selection is the
most effective way of extracting knowledge from
synthetic data. Additionally, we observed that the
Consistent outperform Consistent + Ranking on
OK-VQA, which proves that the high CLIP scores
don’t exhibit a positive correlation with high VQA
data quality. However, as Ranking largely out-
performs Base, we conclude that CLIP scores are
capable of filtering out low-quality VQA samples.
These findings contribute to our final strategy Con-
sistent + Clustering.

5 Conclusion

We propose MKDG, a zero-shot Visual Question
Answering (VQA) framework that leverages pre-
trained model knowledge through synthetic data
generation. MKDG encodes the extensive knowl-
edge of large language models (LLMs) in synthetic
data and uses the vision-language knowledge in
CLIP to filter out noise VQA samples. Specifically,
MKDG employs a caption model to provide visual
information to the LLM, prompting it to generate
synthetic VQA data. To mitigate hallucinations
and uneven data distribution, we use CLIP’s prior
knowledge to filter out incorrect VQA data and
select a high-quality subset through clustering. Fi-
nally, we train a moderate-sized generative vision-
language model with the curated data, integrating
the knowledge from CLIP, LLM, and VLM. Ex-
perimental results demonstrate the superior perfor-
mance of our method across various popular VQA
benchmarks.



6 Limitation

Limited Improvements in General VQA. De-
spite the promising results on knowledge-based
VQA benchmarks, our approach has several lim-
itations. Specifically, because our generated data
rely on integrating foundation model knowledge,
MKDG does not achieve significant improvements
on general VQA benchmarks such as VQAV2 and
GQA, where questions focus on visual perception
and scene understanding. Additionally, existing
models like BLIP2 (Li et al., 2023) and Open-
Flamingo (Awadalla et al., 2023) already perform
well on these benchmarks. Therefore, our paradigm
is more suited for facilitating knowledge transfer
within sub-optimal target domains.

Sub-optimal Domain Generalization Ability.
The proposed MKDG pipeline generates synthetic
datasets for specific VQA domains by prompting
LLMs with domain-specific prompts. While it
achieves significant improvements in the target
VQA domain, the fine-tuned model’s performance
gains in other VQA domains are limited. For exam-
ple, the synthetic VQA dataset is generate based on
the prompts regarding OK-VQA benchmark, the
fine-tuned model on this datasets may not benefit
the performance on GQA benchmark. Therefore,
our pipeline serves as an efficient framework for
VQA domain adaptation without requiring annota-
tions.
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A Appendix

A.0.1 Visualization.

This section aims to provide a visual depiction of
the characteristics and quality of the synthetic data,
thereby facilitating a deeper comprehension of our
methodology. Presented in Figure 6, we showcase
three examples illustrating the generated synthetic
data alongside the predictions made by both a large
language model and CLIP. Notably, in the first two
cases, both the large language model and CLIP ex-
hibit concurrence, while in the final case, discrepan-
cies arise between their choices. When both large
language model and CLIP converge in agreement,
it signifies a robust alignment between the gener-
ated questions, answers, and corresponding images.
This alignment implies that the synthetic data tends
to possess favorable attributes: answers are pre-
dominantly correct, questions maintain relevancy
to the image content, and there is less ambiguity in
answers.

A.0.2 Ablation Study of language model and
caption quality.

To provide more insights into the role of language
model and caption quality in MKDG framework,
we finetune the models with synthetic data gener-
ated by different language model and caption. The
language model serve as the knowledge source for
synthetic data while the captions are source of vi-
sual information for language model. To explore
the importance of caption quality in VQA data gen-
eration, we propose three categories of captions to
conduct experiments. The BLIP2 OPT2.7B indi-
cates the short and relatively low quality captions
generated by the pre-trained BLIP2 OPT2.7B. The
ShareGPT4V indicates the dense caption generated
by ShareGPT4V (Chen et al., 2023), which con-
tained a GPT4V (Chen et al., 2023) style detailed
image description. The Ground Truth indicates
the precise caption annotated by human. The re-
sults are shown in Table 3, we observe the quality
of data generated by QWEN72B is higher than
that of Vicuna7B when the caption is generated by
ShareGPT4V or ground truth caption. However,
Vicuna 7B generates better data with BLIP2 gener-
ated caption. The performance gap demonstrates
that scaling up language model will not guarantee
improvements under MKDG framework. Another
observation is that Ground Truth captions achieve
the best results across all language models, which
reveal that the precision of caption is the most im-
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BLIP2 OPT2.7B ShareGPT4V Ground Truth
Vicuna7B 46.8 43.9 47.5
Qwen72B 44.1 46.1 47.6
Mixed Data 48.3 472 48.4

Table 3: The performance with different language
model and caption. For fair comparison, we train a
BLIP2 OPT2.7B with the data generated by different
language model and captions. The results on OKVQA
are reported in the table.

portant factor in MKDG. Furthermore, we utilize
the mixture of data generated by the two LLMs and
achieve highest performance. This phenomenon
indicates the language model contains different
inductive bias in generating VQA data. Our pro-
posed clustering and selection strategies extract and
fuse the informative parts of the data generated by
two LLMs thus achieving better performance.

A.1 Bias in Generated Questions

We mentioned that the generated questions from
large language model are biased towards certain
question types in main paper section Knowledge
Based Data Filtering. In order to provide a clear
understanding of this phenomenon, We calculated
the frequency of the first four words in the ques-
tions from all generated data and present the top
10 question type in Figure 7. We observe that the
top one question type What is the name account
for 22.94% data and the sum of top 4 question type
account for 49.8% data. The statistical results of
this analysis demonstrate that the generated ques-
tions exhibit a bias towards certain question types,
which leads to duplication in data and harms the
VQA performance as demonstrated in main paper
ablation study Table 2.

A.2 Inference Time Comparison.

For a quantitative comparison of inference effi-
ciency, we measured the inference time of BLIP2-
OPT2.7B and Vicuna 7B/13B on an A40 GPU,
averaging the inference time over 1000 samples. In
the case of Vicuna, we utilized 8 demonstrations to
guide answer generation. BLIP2 achieved an infer-
ence time of 1.009 seconds per sample. In contrast,
Vicuna 7B exhibited an inference time of 4.893
seconds per sample, while the 13B model showed
10.101 seconds per sample. The inference time of
our methods is equal to BLIP2-OPT2.7B, which in-
dicates that our methods significantly improved in-
ference efficiency compared to caption-based VQA
methods and achieve strong performance.



Caption:

A Gecko on a wood surface.
Question:

What is the scientific name for the
animal in the image?
Candidates:

Gecko, Lizard, Reptile, Amphibial

(4

Caption:

Christmas with claus.
Question:

What is the holiday celebrated
in the image?

Candidates:
Halloween,Christmas,
Thanksgiving, Easter

Caption:

Wind turbines on a green field.
Question:

‘What is the primary purpose of
wind turbines in the image?
Candidates:

generate electricity,

produce wind,

harnessing energy,

storing wind power

Figure 6: Visualization of the synthetic data We show the example caption, question, candidates and answer
generated in our pipeline. We use red check mark to indicate the answer chosen by large language model and the
green check mark to indicate the answer chosen by CLIP.

Occurrence Ratio of Questions

What is the

Where is the

Why is the

Who is the

Is this a

Where is this

How is the

Why are the

How many people
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5.60%
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2.50%
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2.94%
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Figure 7: The question type distribution in generated
data. We present percentage of the top 10 question type
in generated data.

PCA Dimension 32 64 128 256 512
vqa score 47.67 48.38 48.26 48.52 47.77
Number of Clusters 200 300 400 500 600
vqa score 48.80 48.12 49.01 48.78 48.84

Table 4: Hyperparameters ablation experiments.

A.3 Analysis on Hyperparameters.

We performed ablation study on hyperparameters
on the OK-VQA training set with varied choices
for PCA reduction dimension and the number of
Kmeans clusters. The results are presented in Ta-
ble 4. Notably, our methods is insensitivity to
changes in PCA reduction dimension and the num-
ber of Kmeans clusters.

A.4 Instruction and Demonstration

The instruction and demonstration are critical for
guiding the LLM to generate desired data for-
mat, which is especially important in knowledge
based VQA benchmarks where the answers are
usually one word. To ensure the diversity of gener-
ated question types, we introduce question prefixes
such as ["What’, "How’, "Where’, "Who’, "Why’,
’Is’ ] We provide the complete instruction for OK-
VQA dataset as follow: Generate a question based
on captions of an image. Provide the possible
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answer candidates and correct answer. Ensure
that the generated question demonstrates a strong
connection with the provided caption. Emphasize
that the question should be informative and require
knowledge within the LLM to answer. For instance,
instruct the model to inquire about specific details
mentioned in the caption, demanding comprehen-
sion of external knowledge to respond accurately.

For the demonstrations, we manually write 8 OK-
VQA style VQA sample and use the corresponding
captions from MSCOCO. To get the answer candi-
dates, we use ChatGPT to generate the reasonable
answer candidates. The complete demonstration
are presented as follow:

Caption: A large white, yellow and red bus driving
down a street. A white, red and yellow transit bus
is making its way through a town. A red, white and
yellow bus on a street. A Victory Liner bus driv-
ing down a street. A red, yellow and white transit
bus travelling down a street. Question: Is this a
privately or publically owned vehicle? Candidates
in a single word or phrase: public private govern-
ment commercial Correct Answer in a single word
or phrase: private

Caption: A person standing on a tennis court hold-
ing a racket. A person holding a tennis racket at
a tennis court. a little kid that has a racket in his
hand. A young man holding a tennis racquet on
top of a tennis court. There is a group of people
playing tennis on a court. Question: Which type
of tennis is being played? Candidates in a single
word or phrase: single mixed team double Correct
Answer in a single word or phrase: double

Caption: A collection of pictures showing the be-
fore and after of a bathroom remodel. a bathroom



slowly getting remodeld with different pics. Three
different photos of a bathroom being remodeled.
The room was remodeled and the bathtub was re-
moved. Three images of the process of a bathroom
remodel. Question: What material is the bath-
tub made out of? Candidates in a single word or
phrase: porcelain marble ceramic acrylic Correct
Answer in a single word or phrase: ceramic

Caption: A brown horse standing next to a building
wearing a blanket. A horse inside of a barn getting
a bath. A horse tied to a stable wearing a pink and
blue blanket. a horse wearing something tethered
to a wall. A horse stands near the stalls wearing
a blanket. Question: Where is this photo taken?
Candidates in a single word or phrase: barn stable
farm ranch Correct Answer in a single word or
phrase: stable

Caption: A group of livestock are grazing in bright
green grass. A group of dogs are roaming around
a bright green field. A green pasture with cattle
spread around it. Cows and horses graze in a
wide open green field. Cattle and horses grazing
in a green pasture. Question: Are these different
animals in this picture or all they all the same
animal? Candidates in a single word or phrase:
same different mixed varied Correct Answer in a
single word or phrase: different

Caption: Beach umbrellas provide shade at the
beach as people walk the shoreline. People at the
beach with several umbrellas scattered around. A
beach scene with several colorful bathers umbrel-
las. People spending time on a beach during the
summer. some people at a beach with rainbow
colored umbrellas. Question: Who invented the
colorful objects in the image? Candidates in a
single word or phrase: samuel fox mary anderson
george sage john w. dickinson Correct Answer in a
single word or phrase: samuel fox

Caption: Two teams’ coaches shake hands on a
baseball field. A picture of three people talking to
each other. A man in black pants and a white shirt
holds a baseball and a man in a baseball uniform
stands next to a man with sunglasses and a blue t-
shirt. Baseball player and manager meeting before
the game. A friendly chat on the field at a baseball
game. Question: When you fill a glass to the top
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you are also referring to which part of the headgear
worn here? Candidates in a single word or phrase:
brim crown visor strap Correct Answer in a single
word or phrase: brim

Caption: A two-person vanity is below a mirror in
the bathroom. A double-sink vanity is in front of
a wide mirror with side lighting in this rest room.
An elegant bathroom has a light up mirror, marble
counter tops and dual sinks. A nice marble tile
sink with his and her. A lighted mirror illuminates
two tidy bathroom sinks. Question: What is that
counter top made of? Candidates in a single word
or phrase: granite quartz marble ceramic Correct
Answer in a single word or phrase: marble
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