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Abstract: In real world scenarios, the data collected by robots in diverse and un-1

predictable environments is crucial for enhancing their models and policies. This2

data is predominantly collected under human supervision, particularly through im-3

itation learning (IL), where robots learn complex tasks by observing human super-4

visors. However, the deployment of multiple robots and supervisors to accelerate5

the learning process often leads to data redundancy and inefficiencies, especially6

as the scale of robot fleets increases. Moreover, the reliance on teleoperation for7

supervision introduces additional challenges due to potential network connectiv-8

ity issues. To address these inefficiencies and the reliability concerns of network-9

dependent supervision, we introduce an adaptive submodular maximization-based10

policy designed for efficient human supervision allocation within multi-robot sys-11

tems under uncertain connectivity. Our approach significantly reduces data re-12

dundancy by balancing the informativeness and diversity of data collection, and is13

capable of accommodating connectivity variances. We evaluated the effectiveness14

of ASA in a simulation environment with 100 robots across four different environ-15

ments and various network settings, including a real-world teleoperation scenario16

over a 5G network. We trained and tested both our and the state-of-the-art policies17

utilizing NVIDIA’s Isaac Gym, and our results show that ASA enhances the return18

on human effort by up to 5.95⇥, outperforming current baselines in all simulated19

scenarios and providing robustness against connectivity disruptions.20

Keywords: Imitation Learning, Submodular Maximization, Fleet Learning21

1 Introduction22

Today, diverse industries deploy robotic fleets for tasks ranging from autonomous driving [1, 2] to23

healthcare [3] and package delivery [4]. These robots are often deployed with policies trained on a24

dataset that is primarily based on simulations, along with a small amount of data collected through25

real-world interactions. While effective within their training contexts, these models often fail to26

adapt to new or evolving real-world scenarios [5], making data collection critical for the success of27

the robotics applications [6, 7].28

A popular approach to collecting such data is through human supervision, where humans directly29

guide the robots to perform the tasks. These data are then used to train the robots via Imitation30

Learning (IL), where the robots are trained to perform tasks by observing the human demonstra-31

tions [8]. Imitation Learning (IL) has been effective in many robotics applications, ranging from32

autonomous driving [9] to robotic manipulation [10, 11]. However, the breadth of scenarios neces-33

sary for effective IL emphasizes the need for continual data collection [12], commonly done with34

numerous robots in parallel. Usually, the number of humans is less than that of deployed robots. For35

instance, a recent autonomous delivery company, Starship Technologies, operates 1700 autonomous36

robots while teleoperating only 1% of this robotic fleet [13, 14]. The scarcity of human supervisors37

necessitates the selection of informative robots for supervision [15, 16].38

Human supervision is often provided through real-time teleoperation over a network, especially39

when supervising fleets of robots distributed across the globe. For example, various companies, in-40

cluding Cruise, utilize human supervisors located in their control centers to teleoperate autonomous41
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Figure 1: Supervisor Allocation Problem: In each time step t, the human supervisors with policy ⇡H can be
allocated to the robots with policy ⇡t

R based on the allocation policy ⇡A. Each robot i has been operating in
different states sti , and the human supervisors are allocated to the robots based on the uncertainty of the robots
and the similarity between the robots. Additionally, the supervision is provided through teleoperation with
probability ci; meaning there is a chance that the connection to robot i might fail. At the end of each time step
t, the data collected by human supervisors Dt

H is added to the dataset Dt to create an updated dataset Dt+1

which is then used to train the robot policy ⇡t+1
R .

vehicles deployed across the world [17, 18]. However, these networks might be susceptible to con-42

nection failures [19], and it is important to be robust against network uncertainties. Combining these43

challenges with selecting informative robots, we formulate the Supervisor Allocation Problem ( Fig.44

1), which involves managing limited human resources to maximize data diversity and quality under45

uncertain network connectivity. Our problem is an extension of the Interactive Fleet Learning (IFL)46

setting introduced by [15]. We extend the IFL setting to account for network elements that play an47

important role in real-world teleoperation scenarios [20].48

We then introduce a novel human supervisor allocation policy called adaptive submodular alloca-49

tion (ASA). ASA distributes human supervisory capacity across a fleet, ensuring a balance of data50

informativeness and diversity to minimize redundancy in data collection. Our allocation policy is51

shown to be robust against network instabilities and is able to adapt to the dynamic nature of data52

collection, which we demonstrate through extensive simulations in diverse network environments,53

including real-world 5G scenarios. We show that ASA improves human supervision efficacy metric54

Return on Human Effort (RoHE) [15] by up to 5.95⇥ compared to existing benchmarks.55

2 Related Work56

Data collection is a critical problem in robotics and machine learning that is essential for continually57

improving the performance of robots [21–25]. It is closely related to active learning [26–30], where58

the goal is to select the most informative samples to label. Although the goal of data collection59

is similar to active learning, the focus is on collecting data samples that are the most informative60

for training the models. In our case, however, the aim is to select the robots that provide the most61

informative data for human supervisors.62

IL is a popular approach in robotic learning, where robots learn policies from human demonstrations63

[31–34]. Despite its potential, the reliance on purely offline data introduces several challenges such64

as distribution shifts [35], which occurs when robots encounter states that were not previously expe-65

rienced by humans. These issues can be alleviated through online data collection methods, including66

Dataset Aggregation (DAgger) [35] and various forms of interactive IL [36, 37]. Most interactive IL67

methods rely on human supervision to decide on when to intervene in the robot’s learning process.68

This presents scalability challenges, especially when applied to extensive robot networks [38] or69

during prolonged learning phases [39]. Robot-initiated interactive IL strategies like EnsembleDAg-70
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ger [40] and ThriftyDAgger [41] have been proposed to mitigate these constraints, enabling robots71

to request human input under specific conditions. However, these methods are designed for single-72

robot task allocation scenarios and do not consider multi-robot scenarios. Closest to our work,73

Fleet-DAgger [42] has been proposed to address the supervisor allocation problem in a multi-robot74

scenario. However, Fleet-DAgger does not consider operational constraints that might limit the al-75

location of human supervisors, such as network connectivity and the potential redundancy from em-76

ploying multiple human supervisors in similar environments. Our work, on the other hand, focuses77

on learning an allocation policy that is adaptable to the operational constraints while minimizing the78

redundancy in the data collection, which is crucial for the system’s scalability [27].79

One popular approach to mitigate redundancy in data collection is using submodular maximization.80

Submodularity refers to the property of the marginal gain of adding an item to a small set being81

higher than adding the same item to a large set. As submodularity is a common trend in data82

collection, it has been widely used in machine learning tasks such as sensor placement [43], active83

learning [27, 30, 44], and summarization [45]. Submodular maximization has also been extended to84

stochastic settings [46, 47], where the goal is to select a subset of items to maximize the expected85

value of a submodular function. Despite its wide use in machine learning, stochastic submodular86

maximization has not been used in the context of IL and multi-robot data collection scenarios. Our87

work is the first to use stochastic submodular maximization in the context of human supervision and88

multi-robot scenarios to address the supervisor allocation problem.89

3 Problem Formulation90

Consider a geo-distributed system of Nrobot robots, I = {1, · · · , Nrobot}. Each robot i operates91

in parallel within an independent Markov Decision Process (MDP) with a different initial state.92

However, all robots operate within the same state and action spaces S and A, respectively. Each93

robot i observes the state of the environment st
i
2 S at time t and selects an action at

i
2 A based on94

a policy ⇡t

R : S! A. The robots share the same policy ⇡t

R that has been trained using the collective95

data Dt accumulated up to time step t. We define the collection of states and actions for all robots as96

st = (st1, . . . , s
t

Nrobot
) 2 SNrobot and at = (at1, . . . , a

t

Nrobot
) 2 ANrobot . These robots can be supervised97

by Nhuman human supervisors with an oracle policy ⇡H : S ! AH , respectively. In addition to the98

robot action space A, the human action space AH includes a reset action R, which can return the99

robot to a safe state.100

Supervisor Allocation and Connectivity: In each time step t, Nhuman human supervisors can be101

assigned to the robots for assistance. However, the connections to the robots are unreliable, with C =102

{c1, · · · , cNrobot} 2 RNrobot denoting independent random variables associated with the connection103

reliability of the robots. ci 2 {0, 1} indicates whether a successful connection with robot i can be104

established (ci = 1) or not (ci = 0). Under this uncertain connectivity, we are interested in finding105

an allocation policy ⇡A : RNrobot ⇥ SNrobot ⇥ ANrobot ⇥ I ! X that selects robots to be supervised106

X ✓ I based on connection reliability C, collection of states st and action spaces at.107

Data Collection and Policy Retraining: Upon allocation, human supervisors contribute data only108

from successful connections, forming the human supervision data Dt

H
. The robot policy ⇡t

R is then109

updated by integrating this new data into the current dataset and retraining:110

Dt+1 = Dt [Dt

H
, Dt

H
= {(si,⇡H(si)) : i 2 X and ci = 1}, (1)

⇡t+1
R = g(⇡t

R,D
t+1). (2)

Objective: Our objective is to develop an allocation policy ⇡A that maximizes the expected Return111

on Human Effort (RoHE) over the connectivity C. RoHE metric was introduced along with Interac-112

tive Fleet Learning setup [15] to set a benchmark in Fleet Learning settings. It is a ratio of the total113

reward obtained by the fleet to the total number of human actions:114

max
⇡A2⌦

EC

"
Nhuman

Nrobot

P
i2I

P
T

t=0 r(s
t

i
, at

i
)

1 +
P

T

t=0 |⇡A(C, st,at, I)|2F

#
. (3)

Here T is the time horizon covering all time steps, r : S⇥A! R is the reward function, |·|F denotes115

the Frobenius norm, and ⌦ refers to a set of all allocation policies. Intuitively, RoHE measures the116

total performance of the robotic fleet normalized by the total number of human interventions.117
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Figure 2: Submodular Maximization Balances Uncertainty
and Diversity: This figure illustrates a toy example of our al-
location problem in a 2D state space. The blue contours in-
dicate the uncertainty levels, with darker shades representing
higher uncertainty. Purple crosses (traditional score-based allo-
cations) and yellow plus signs (our submodularity-based alloca-
tions) mark the positions of selected robots. Unlike score-based
methods that often select highly uncertain but potentially over-
lapping states, our approach strategically picks a more diverse
set of states, effectively balancing between high uncertainty and
coverage, thereby reducing data redundancy and enhancing the
training data’s representatives.

4 A Stochastic Submodular Maximization Approach118

We now present our novel policy, adaptive submodular allocation (ASA), for the problem outlined119

in Eq. 3 and its components. First, we define the stochastic submodular maximization problem,120

which represents the value of robot supervision, and then we define the greedy algorithm, which is121

used to pick the robots to supervise.122

4.1 Submodular Maximization Problem123

To address the optimization problem presented in Eq. 3, we use stochastic submodular maximiza-124

tion. Stochastic submodular maximization is particularly suited to our scenario because it leverages125

the diminishing returns property that naturally reflects the decrease in the marginal gain of super-126

vising additional robots. This aspect is vital for assessing the efficiency of human supervision.127

Furthermore, the method inherently discourages the selection of similar robots, thereby avoiding the128

assignment of humans to robots that offer overlapping information, which decreases the return on129

human effort. Finally, the stochastic submodular maximization accounts for the inherent uncertainty130

of our problem, acknowledging the non-deterministic connections to the robots, which is crucial for131

developing a robust solution across different connectivity patterns.132

We first define a submodular objective function f : 2Nrobot ⇥ {0, 1}Nrobot ! R that quantifies the133

value of supervising a selected set of robots X , considering the allocation reliability outcomes for134

these robots C. We define our objective function based on the facility location problem, a classical135

example of a submodular maximization objective [48], as follows:136

f(X,C) =
X

i2I

max
j2X

cjMj,i. (4)

Here X is the set of robots selected for human supervision, and C indicates whether the connection137

to the robot is successful or not. Mj,i represents the value of supervision of the robot j on the robot138

i, and we consider two factors: the informativeness of the robot i and the similarity between the139

robot j and the robot i. Additionally, our formulation is modular and can be extended to include140

other factors, such as prioritizing the robots that have violated the safety constraints or the robots141

that are in critical states. With all factors combined, we define the value of supervision Mj,i as:142

Mj,i = S(j, i) ⇤ U(i) + C(i). (5)
Here, S(j, i) defines the similarity between the robots i and j, and U(i) is the informativeness of143

the robot i, while C(i) is an indicator of whether the robot i violates the safety constraints or is in144

a critical state. Our definition of Mj,i is modular, and each factor can be defined based on specific145

requirements. For example, the similarity function S can be defined as the cosine similarity, the146

Euclidean distance, or any other similarity metric. The informativeness of the robot U(i) can be147

defined as the entropy of the robot’s policy or the uncertainty of the robot’s state, while the constraint148

function C(i) can be defined based on the safety constraints or the critical states for the robots.149

With the objective function defined, we pose the following maximization problem to optimize our150

allocation policy:151

max
X✓I

EC [f(X,C)] (6)

subject to: |X|  Nhuman,
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where the goal is to identify the subset of robots X that maximizes the expected value of f , con-152

strained by the number of available human supervisors Nhuman.153

4.2 Adaptive Supervisor Allocation (ASA) Policy154

Now, we can present our allocation policy ASA based on a greedy algorithm given in Algorithm155

1. Starting from an empty solution set X (line 1), ASA iteratively selects the robot with the high-156

est marginal gain in expectation over probabilities of connection to the robots C (line 3). Then,157

ASA computes the expected marginal gain of selecting the robot x⇤ (line 4), and if the expected158

marginal gain is below a certain threshold, the algorithm stops the selection process (line 5). This159

threshold ensures that the algorithm avoids using unnecessary human effort by stopping when the160

marginal gain of selecting an additional robot is low. Otherwise, the chosen robot x⇤ is added to161

the solution set X (line 8). Finally, based on the availability of the observation on whether the162

connection to the robot was successful or not, the connection probabilities are updated (line 9).163

Algorithm 1 ASA Policy
Input: connectivities of robots C, set of all robots I
Output: robots selected for supervision X

1: Initialize X  ;
2: for k = 1 to Nhuman do
3: x⇤  argmax

x2I\X EC [f(X,C)]
4: Compute �  EC [f(X [ {x⇤}, C) �

f(X,C)]
5: if � < threshold then
6: break
7: end if
8: X  X [ x⇤

9: If possible, observe whether connection to
robot x⇤ is successful and update connectivities
C

10: end for

164

Based on the availability of the observations165

of the connection probabilities, we define two166

variants of our policy: non-adaptive submod-167

ular allocation (n-ASA) and adaptive sub-168

modular allocation (ASA). In n-ASA, we are169

not able to observe the connection probabili-170

ties, and thus, the allocations are done before-171

hand. In ASA, on the other hand, the robots172

are selected iteratively; based on the success173

of the allocations, the connection probabili-174

ties are updated. To visualize the differences175

between n-ASA and ASA, consider the fol-176

lowing: in both cases, robot 1 is selected for177

supervision in the first iteration. While se-178

lecting the robot to supervise, n-ASA con-179

siders both possibilities (successful and un-180

successful connection to robot 1) and selects181

the second robot that maximizes the expected182

marginal gain over both cases. However, in ASA, after selecting robot 1 for supervision, we observe183

whether the connection was successful or not and select the next robot that maximizes the expected184

marginal gain based on the observation.185

When the marginal threshold parameter is set to zero, ASA is equivalent to the greedy algorithm for186

submodular maximization, which is proven to approximate the optimal solution for the submodular187

maximization problem in Eq. 6 with a factor of 1�1/e [46]. Additionally, n-ASA approximates the188

optimal adaptive policy with a factor of (1� 1/e)2 [46]. To compute selected robots faster, we use189

the lazy greedy algorithm [47]; this has the same time complexity as Algorithm 1, but has a better190

empirical performance.191

5 Experiments192

We consider a fleet of Nrobot = 100 robots that can be supervised by Nhuman = 5 human supervisors.193

The human supervisors are implemented as reinforcement learning agents using the Proximal Policy194

Optimization (PPO) algorithm [49]. We utilize the behavior cloning algorithm to initialize the robot195

policies based on an offline dataset of 5000 state-action pairs and use our allocation policy to collect196

data from the robots and update the models. In all of our experiments, when the robots violate the197

constraints, we perform a hard reset to bring the robots back to a safe state. We set the hard reset198

time tR = 5 timesteps, the minimum intervention time tT = 5 timesteps, and the fleet operation199

time T = 10, 000 timesteps. We average the results over 3 random seeds for each task and network200

configuration. We have chosen these parameters to align with the settings used in the environments201

of the benchmark algorithms [42] for a fair comparison.202

Environments: We consider four different environments in our experiments: (1) Humanoid, where203

the robots focus on bipedal locomotion; (2) ANYmal, where the robots focus on quadruped locomo-204
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Figure 3: Our ASA and n-ASA policies outperform other benchmarks across all environments and net-
work combinations. Here, each row represents a different environment, and each column corresponds to a
different network configuration. ASA and n-ASA performance is affected least by changes in the network con-
figurations because of their stochastic submodular maximization-based policies that can incorporate network
uncertainties. Additionally, the submodular maximization objective improves the performance when there are
no network uncertainties (column 1) due to its ability to cover diverse and informative scenarios.

tion with the ANYmal robot; (3) Allegro Hand, where the robots focus on dexterous manipulation205

tasks; and (4) Ball Balance where the robots focus on balancing a ball on a plate. Each environment206

defines constraint violations specifically similar to [50] requiring human intervention to reset the207

robots to a safe state.208

Network Configurations: We use 4 different network configurations based on various connectivity209

probabilities: (1) Always, where the robots can always be supervised by the human supervisors; (2)210

Mixed-Scarce, where some of the robots have a high probability of connection while others have a211

low; (3) Ookla, where the robots have a varying probability of connection based on cellular network212

performance metrics [51] (4) 5G, which is connectivity data that we collected over a real-world 5G213

network in a university robotics lab.214

Metrics: We evaluate the performance of the allocation policies based on the following metrics:215

(1) Return on Human Effort (RoHE), which was given in Eq. 3 and (2) the cumulative number of216

successfully completed tasks by the entire fleet, which we will refer to as cumulative success. To217

simplify, RoHE measures the fleet performance per human intervention, while cumulative success218

only considers the total successful task completion without considering the number of interventions.219

For example, simply allocating all human supervisors would improve cumulative success but de-220

crease RoHE. An ideal allocation policy should balance the two, as an ideal system would require a221

high total success while using humans as efficiently as possible.222
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Baselines: We compare the following baselines: (1) Random, which randomly selects the robots to223

be supervised by the human supervisors at each time step; (2) Fleet-EnsembleDAgger (FE), which224

utilizes variance for uncertainty estimation, combining it with constraint-based prioritization [40];225

(3) Fleet-ThriftyDAgger (FT), which merges uncertainty and goal-oriented prioritization, adapt-226

ing ThriftyDAgger for fleet setting [41], for environments with a defined goal; (4) Fleet-DAgger227

(FD), which prioritizes the robots violating constraints and selects the robots with the highest un-228

certainty and risk of failure for fleet supervision [42] (5) Non-Adaptive Submodular Allocation229

(n-ASA) and (6) Adaptive Submodular Allocation (ASA), which are the two variants of our pro-230

posed method based on submodular maximization in the absence and presence of the observation of231

the connection to the robots described in Section 4; please see the Appendix for the exact similarity,232

uncertainty and constraint functions we have used in the submodular maximization objective given233

in Eq. 4.234

How do ASA and n-ASA perform under different network configurations?235

We evaluate the performance of our policies, ASA and n-ASA, under different network configura-236

tions for each environment. The RoHE metric for each time step has been shown in Fig. 3, and237

cumulative success values at the final time step have been presented in Fig. 4. In both metrics, we238

can see that our ASA and n-ASA allocation policies are able to outperform other benchmarks. This239

is because our policies can incorporate network uncertainty information into their allocation policy240

through stochastic submodularity. On the other hand, other benchmark policies are not designed241

to incorporate such network uncertainty. We can see that our allocation policy outperforms other242

baselines in terms of the RoHE metric by up to 5.95⇥, 2.03⇥, 1.65⇥, and 2.47⇥ in Humanoid,243

ANYmal, Allegro Hand, and Ball Balance environments, respectively.244

Figure 4: ASA and n-ASA outperform all bench-
marks in cumulative successes metric. We present
a box plot of the normalized cumulative success met-
ric at the final time step in each environment and al-
location policy. ASA and n-ASA can achieve higher
cumulative success values with less standard deviation
thanks to their robustness against network uncertain-
ties and superior robot selection. Interestingly, Random
policy achieves comparable results in the Ball Balance
environment simply by allocating more humans to the
process, sacrificing the return on human metric 3. On
the other hand, ASA and n-ASA achieve higher per-
formance by not allocating more humans but through a
selection of better representative robots.

How do ASA and n-ASA compare when the245

network connectivity is stable?246

To test whether our RoHE gains are only due247

to adaptability to different network configura-248

tions, we have also simulated a network where249

all robots are always reachable. In column 1250

of Fig. 3, we can see that our ASA and n-ASA251

policies still outperform other allocation bench-252

marks thanks to their ability to diversify the se-253

lected robots to cover more states. As we have254

shown in the 2D toy example in Fig. 2, rather255

than only focusing on the states with high un-256

certainty, ASA and n-ASA consider the whole257

state space to collect combined data that is more258

informative.259

How does the availability of observation af-260

fect our allocation policies?261

Although we know that ASA approximates the262

optimal solution with a stricter bound than n-263

ASA, in practice, these allocation policies per-264

form very similarly. Both policies are supe-265

rior to other benchmarks in all configurations266

and have similar RoHE and cumulative success267

metrics. This performance similarity between268

ASA and n-ASA further proves that our perfor-269

mance gains are mainly a result of our stochas-270

tic submodular maximization approach rather271

than the observation of whether the connections272

with the previous robot are successful or not.273

This flexibility enables our policies to be ap-274

plied in various real-world scenarios where the275

observations might be impossible.276

Can ASA and n-ASA improve cumulative success and RoHE metrics at the same time?277
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ALLOCATION
POLICY

ALLEGROHAND ANYMAL BALLBALANCE HUMANOID

ROHE CUMULATIVE
SUCCESS

ROHE CUMULATIVE
SUCCESS

ROHE CUMULATIVE
SUCCESS

ROHE CUMULATIVE
SUCCESS

RANDOM 2.47 228.67 0.36 47.33 2.81 1401.33 0 0
FT 4.75 2131.66 - - 0.69 344.66 - -
FE 3.98 1789.67 1.07 137 3.01 1315 0.37 169.33
FD 5.4 2213 1.40 200 2.75 1209 0.79 319.33
N-ASSA (OURS) 7.66 3705.33 1.61 246.33 7.45 1758.33 1.44 444.33
ASSA (OURS) 7.43 3658 1.63 239.33 6.39 1703.33 1.51 470

Table 1: Our proposed n-ASA and ASA policies outperform other baselines in all environments (columns)
in real-world 5G network data in terms of cumulative success and return on human effort (RoHE). The results
are consistent across all tasks, showing the adaptability of our method to different environments. Additionally,
ASA and n-ASA outperform other baselines in both cumulative success and RoHE, meaning our allocation
policy is both efficient in human effort and achieves higher cumulative success.

We can clearly see in Fig. 3 and Fig. 4 that our ASA and n-ASA policies achieve both the highest278

RoHE and cumulative success in all network configurations. Our policies are able to balance these279

two metrics thanks to their threshold criteria, preventing the allocation of humans to uninformative280

robots. For example, we can see that in the Ball Balance environment, the Random allocation policy281

is able to achieve comparable cumulative success in Fig. 4, but it fails to reach comparable RoHE282

values (see row 2 in Fig. 3). This suggests that Random policy achieved high cumulative success283

values by simply allocating more humans but failed to optimize human efficiency.284

5.1 Physical 5G Network Connectivity Data285

In addition to the simulated network connectivity data, we also evaluate our allocation policies on286

real-world 5G network connectivity data collected in the field. To create such a dataset, we utilize287

a local 5G network dedicated to testing the real-time teleoperation of the robots over a period of288

24 hours. Then, we divide the geographic area into 100 different regions with the same number289

of users (robots) in each region and calculate the average latency and throughput of the network for290

each region. We use this data to create network connectivity where the robots with higher latency and291

lower throughput have a lower probability of establishing a successful connection with the human292

supervisors. Please refer to the Appendix for further details on 5G network data collection and the293

exact setup we used.294

Results: We present our results on the real-world 5G network data in Table 1. The results show295

that our proposed method outperforms other baselines in terms of the RoHE and cumulative success296

metrics by up to 2.47⇥ and 1.67⇥, respectively under the 5G network configuration.297

Limitations: Our work has several limitations. First, it uses only real-world data collected from 5G298

field trials without hardware robotics experiments. Additionally, it assumes that network connectiv-299

ity and robot states and policies are independent across robots, while in real-world scenarios, robots300

might share the same network or physical location, meaning their policies might affect each other.301

6 Conclusion and Future Work302

We present novel supervisor allocation policies, ASA and n-ASA, for assigning human supervi-303

sors to the robotic fleet for data collection. ASA and n-ASA are based on stochastic submodular304

maximization, providing a modular approach to incorporate different allocation objectives, informa-305

tiveness metrics, as well as re-training methods. Our allocation policies beat current benchmarks in306

terms of performance metrics such as RoHE and cumulative success in all environments and net-307

work configurations. These performance gains are thanks to its stochastic submodular maximization308

objective, which incorporates network connectivity in the allocation process while balancing the di-309

versity and informativeness of selected robots. Finally, we collect real-world 5G network data from310

a field dedicated to teleoperated robots and show the applicability of our allocation policy in real-311

world scenarios as well.312

In a future project, we plan to extend our work to include hardware robotics experiments, including313

teleoperation over a 5G network possible in an application such as autonomous driving. We also314

plan to investigate the impact of different imitation learning methods to test the generalizability of315

our allocation policies.316
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