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Abstract: In real-world scenarios, the data collected by robots in diverse and un-
predictable environments is crucial for enhancing their perception and decision-
making models. This data is predominantly collected under human supervision,
particularly through imitation learning (IL), where robots learn complex tasks by
observing human supervisors. However, the deployment of multiple robots and
supervisors to accelerate the learning process often leads to data redundancy and
inefficiencies, especially as the scale of robot fleets increases. Moreover, the re-
liance on teleoperation for supervision introduces additional challenges due to
potential network connectivity issues. To address these issues in data collection,
we introduce an Adaptive Submodular Allocation policy, ASA, designed for ef-
ficient human supervision allocation within multi-robot systems under uncertain
connectivity conditions. Our approach reduces data redundancy by balancing the
informativeness and diversity of data collection, and is capable of accommodat-
ing connectivity variances. We evaluate the effectiveness of ASA in simulations
with 100 robots across four different environments and various network settings,
including a real-world teleoperation scenario over a 5G network. We train and test
our policy, ASA, and state-of-the-art policies utilizing NVIDIA’s Isaac Gym. Our
results show that ASA enhances the return on human effort by up to 3.37×, out-
performing current baselines in all simulated scenarios and providing robustness
against connectivity disruptions.
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1 Introduction

Today, diverse industries deploy robotic fleets for tasks ranging from autonomous driving [1, 2] to
healthcare [3] and package delivery [4]. These robots are often deployed with policies trained on a
dataset that is primarily based on simulations, along with a small amount of data collected through
real-world interactions. While effective within their training contexts, these models often fail to
adapt to new or evolving real-world scenarios [5], making data collection critical for the success of
the robotics applications [6, 7].

A popular approach to collecting such data is through human supervision, where humans directly
guide the robots to perform the tasks. These data are then used to train the robots via Imitation
Learning (IL), where the robots learn to perform tasks by imitating the human demonstrations [8].
Imitation Learning (IL) has been effective in many robotics applications, ranging from autonomous
driving [9] to robotic manipulation [10, 11]. However, the breadth of scenarios necessary for ef-
fective IL emphasizes the need for continual data collection [12], commonly done with numerous
robots in parallel. Usually, the number of humans is less than that of deployed robots. For in-
stance, a recent autonomous delivery company, Starship Technologies, operates 1700 autonomous
robots while teleoperating only 1% of this robotic fleet [13, 14]. The scarcity of human supervisors
necessitates the selection of informative robots for supervision [15, 16].

Human supervision is often provided through real-time teleoperation over a network, especially
when supervising fleets of robots distributed across the globe. For example, various companies, in-
cluding Cruise, utilize human supervisors located in their control centers to teleoperate autonomous

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.



𝝅𝑯

⋯

𝝅𝑹
𝒕

⋯

𝒔𝟏
𝒕 𝒔𝟐

𝒕 𝒔𝟑
𝒕

=∪

𝑫 
𝒕 𝑫 

𝒕+𝟏

𝝅𝑹
𝒕+𝟏

𝑫𝑯
𝒕𝝅𝑨

Retrain

Cloud

𝑪𝟏
𝒕 𝑪𝟐

𝒕 𝑪𝟑
𝒕 𝑪𝑵𝒓𝒐𝒃𝒐𝒕

𝒕

𝒔𝑵𝒓𝒐𝒃𝒐𝒕

𝒕

Figure 1: Supervisor Allocation Problem. At each time step t, the human supervisors with policy πH are
allocated to the robots with policy πt

R based on the allocation policy πA. Each robot i operates in a different
state sti , and the human supervisors are allocated to the robots based on the uncertainty of the robots and the
similarity between the robots. Additionally, the connections to the robots may not be stable, which is indicated
by the connection random variable, Ct

i , of each robot i. At the end of each time step t, the data collected by
human supervisors Dt

H is added to the dataset Dt to create an updated dataset Dt+1, which is then used to
train the robot policy πt+1

R .

vehicles deployed across the world [17, 18]. However, these networks might be susceptible to con-
nection failures [19], and it is important to be robust against network uncertainties. Combining these
challenges with selecting informative robots, we formulate the Supervisor Allocation Problem ( Fig.
1), which involves managing the limited human resources to maximize data diversity and quality
under uncertain network connectivity. Our problem is an extension of the Interactive Fleet Learning
(IFL) setting introduced by [15]. We extend the IFL setting to account for network elements that
play an important role in real-world teleoperation scenarios [20].

We then introduce a novel human supervisor allocation policy called Adaptive Submodular Allo-
cation (ASA). ASA distributes human supervisory capacity across a fleet, ensuring a balance of
data informativeness and diversity to minimize redundancy in data collection. Our allocation pol-
icy is shown to be robust against network instabilities and is able to adapt to the dynamic nature
of data collection, which we demonstrate through extensive simulations in diverse network environ-
ments, including real-world 5G scenarios. We show that ASA improves the Return on Human Effort
(RoHE) [15], which is a human supervision efficacy metric, by up to 3.37× compared to existing
benchmarks.

2 Related Work

Data collection is a critical problem in robotics and machine learning that is essential for continually
improving the performance of robots [21–25]. It is closely related to active learning [26–30], where
the goal is to select the most informative samples to label. Although the goal of data collection
is similar to active learning, the focus is on collecting data samples that are the most informative
for training the models. In our case, however, the aim is to select the robots that provide the most
informative data for human supervisors.

IL is a popular approach in robotic learning, where robots learn policies from human demonstrations
[31–34]. Despite its potential, the reliance on purely offline data introduces several challenges, such
as distribution shifts [35], which occur when robots encounter states that were not previously expe-
rienced by humans. These issues can be alleviated through online data collection methods, such as
Dataset Aggregation (DAgger) [35] and various forms of interactive IL [36, 37]. Most interactive IL
methods rely on human supervision to decide when to intervene in the robot’s learning process. This
presents scalability challenges, especially when applied to extensive robot networks [38] or during
prolonged learning phases [39]. Robot-initiated interactive IL strategies like EnsembleDAgger [40]
and ThriftyDAgger [41] have been proposed to mitigate these constraints, enabling robots to request
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human input under specific conditions. However, these methods are designed for single-robot task
allocation scenarios and do not consider multi-robot scenarios. Closest to our work, Fleet-DAgger
[15] has been proposed to address the supervisor allocation problem in a multi-robot scenario. How-
ever, Fleet-DAgger does not consider operational constraints that might limit the allocation of human
supervisors, such as network connectivity and the potential redundancy from employing multiple
human supervisors in similar environments. Our work, on the other hand, focuses on learning an
allocation policy that is adaptable to the operational constraints while minimizing the redundancy in
the data collection, which is crucial for the system’s scalability [27].

One popular approach to mitigate redundancy in data collection is using submodular maximization.
Submodularity refers to the property of the marginal gain of adding an item to a small set being
higher than adding the same item to a large set. As submodularity is a common trend in data
collection, it has been widely used in machine learning tasks, such as sensor placement [42], active
learning [27, 30, 43], and summarization [44]. Submodular maximization has also been extended to
stochastic settings [45, 46], where the goal is to select a subset of items to maximize the expected
value of a submodular function. Despite its wide use in machine learning, stochastic submodular
maximization has not been used in the context of IL and multi-robot data collection scenarios. Our
work is the first to use stochastic submodular maximization in the context of human supervision and
multi-robot scenarios to address the supervisor allocation problem.

3 Problem Formulation

Consider a geo-distributed system of Nrobot robots, I = {1, · · · , Nrobot}. Each robot i operates
in parallel within an independent Markov Decision Process (MDP) with a different initial state.
However, all robots operate within the same state and action spaces S and A, respectively. Each
robot i observes the state of the environment sti ∈ S at time t and selects an action ati ∈ A based on
a policy πt

R : S→ A. The robots share the same policy πt
R that has been trained using the collective

data Dt accumulated up to time step t. We define the collection of states and actions for all robots as
st = (st1, . . . , s

t
Nrobot

) ∈ SNrobot and at = (at1, . . . , a
t
Nrobot

) ∈ ANrobot . These robots can be supervised
by Nhuman human supervisors with an oracle policy πH : S → AH , respectively. In addition to the
robot action space A, the human action space AH includes a reset action, which can return the robot
to a safe state. Only robots supervised by humans operate with human policy πH while the rest of
the robots operate with the robot policy πt

R.

Supervisor Allocation and Connectivity: In each time step t, Nhuman human supervisors can be
assigned to the robots for assistance. However, the connections to the robots are unreliable, with
Ct = {Ct

1, · · · , Ct
Nrobot
} ∈ {0, 1}Nrobot denoting independent random variables associated with the

connection reliability of the robots. Ct
i ∈ {0, 1} indicates whether a successful connection with

robot i can be established (Ct
i = 1) or not (Ct

i = 0) at time t. Under this uncertain connectivity,
we are interested in finding an allocation policy πA : {0, 1}Nrobot × SNrobot ×ANrobot × I → 2I that
selects robots to be supervised X ⊆ I based on connection reliability Ct, collection of states st and
actions at. Our setting extends the Interactive Fleet Learning setting [15] by incorporating imperfect
time-varying network connectivity.

Data Collection and Policy Retraining: Upon allocation, human supervisors contribute data only
from successful connections, forming the human supervision data Dt

H . This new data is integrated
into the current dataset and the robot policy πt

R is retrained using a retraining function g:

Dt+1 = Dt ∪Dt
H , Dt

H = {(sti, πH(s
t
i)) : i ∈ X and Ct

i = 1}, (1)

πt+1
R = g(πt

R,D
t+1). (2)

Objective: Our objective is to develop an allocation policy πA that maximizes the expected Return
on Human Effort (RoHE) over the connectivity Ct. RoHE metric was introduced along with Inter-
active Fleet Learning setup [15] to set a benchmark in Fleet Learning settings. It is a ratio of the
total reward obtained by the fleet to the total number of human actions. Formally, the objective is to
maximize the expected RoHE over the connection probabilities:

max
πA∈Ω

EC

[
Nhuman

Nrobot

∑
i∈I

∑T
t=0 r(s

t
i, a

t
i)

1 +
∑T

t=0 |πA(Ct, st,at, I)|2F

]
. (3)
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Figure 2: Submodular maximization balances uncertainty
and diversity. This figure illustrates a toy example of our alloca-
tion problem in a 2D state space. The blue contours indicate the
uncertainty levels, with darker shades representing higher uncer-
tainty. Purple crosses (traditional score-based allocations) and
yellow plus signs (our submodularity-based allocations) mark
the positions of selected robots. Unlike score-based methods that
often select highly uncertain but potentially overlapping states,
our approach strategically picks a more diverse set of states, ef-
fectively balancing the trade-off between high uncertainty and
coverage, thereby reducing data redundancy and enhancing the
training data’s representativeness.

Here, C = {C0, . . . , CT } represents the set of all connection random variables from time 0 to time
horizon T . The function r : S ×A → R is the reward function, | · |F denotes the Frobenius norm,
and Ω refers to a set of all allocation policies. Intuitively, RoHE measures the overall performance
of the robotic fleet, normalized by the total number of human interventions.

4 A Stochastic Submodular Maximization Approach

We now present our novel policy, adaptive submodular allocation (ASA), for the problem outlined
in Eq. 3. First, we define the stochastic submodular maximization problem, which represents the
value of robot supervision, and then we define the greedy algorithm, which is used to pick the robots
to supervise.

4.1 Submodular Maximization Problem

To address the optimization problem presented in Eq. 3, we use stochastic submodular maximiza-
tion. Stochastic submodular maximization is particularly suited to our scenario because it leverages
the diminishing returns property that naturally reflects the decrease in the marginal gain of super-
vising additional robots. Furthermore, the method inherently discourages the selection of similar
robots, thereby avoiding the assignment of humans to robots that offer overlapping information,
which decreases the return on human effort. Finally, stochastic submodular maximization accounts
for the inherent network uncertainty in our problem by acknowledging the non-deterministic con-
nections to the robots. This is crucial for developing a robust solution across different connectivity
patterns.

We first define a submodular objective function fCt : 2Nrobot → R that quantifies the value of
supervising a selected set of robots X , considering the allocation reliability outcomes for these
robots Ct. We define our objective function based on the facility location problem, a classic example
of a submodular maximization objective [42], as follows:

fCt(X) =
∑
i∈I

max
j∈X

Ct
jM

t
j,i. (4)

Here, X is the set of robots selected for human supervision, and Ct
j indicates whether the connection

to the robot j is successful or not. M t
j,i represents the value of supervision of the robot j on the robot

i at time t, and we consider two factors: the informativeness of the robot i and the similarity between
the robot j and the robot i. Additionally, our formulation is modular and can be extended to include
other factors, such as prioritizing the robots that have violated the safety constraints or those in
critical states. With all factors combined, we define the value of supervision M t

j,i as:

M t
j,i = St(j, i) ∗ U t(i) +Kt(i). (5)

Here, St(j, i) defines the similarity between the robots i and j at time t, and U t(i) is the informative-
ness of the robot i, while Kt(i) is an indicator of whether the robot i violates the safety constraints
or is in a critical state. Our definition of M t

j,i is modular, and each factor can be defined based on
specific requirements. For example, the similarity function St can be defined as the cosine similar-
ity, the Euclidean distance, or any other similarity metric. The informativeness of the robot U t(i)
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can be defined as the entropy of the robot’s policy or the uncertainty of the robot’s state, while the
constraint function Kt(i) can be defined based on the safety constraints or the critical states for the
robots, similar to previous works [15, 47]. For the exact definitions of similarity, informativeness,
and constraint functions, please refer to the Appendix. With the objective function defined, we pose
the following maximization problem to optimize our allocation policy:

max
X⊆I

F (X), (6)

subject to: |X| ≤ Nhuman,

where the goal is to identify the subset of robots X that maximizes the expected value of fCt ,
denoted as F (X) = ECt [fCt(X)] over all possible connection outcomes Ct. The constraint |X| ≤
Nhuman ensures that the number of selected robots is limited by the number of available human
supervisors Nhuman.

4.2 Adaptive Submodular Allocation (ASA) Policy

Now, we can present our allocation policy ASA based on a greedy algorithm given in Algorithm 1.
Starting from an empty solution set X (line 1), ASA iteratively selects the robot with the highest
marginal gain based on the estimated expected value function F̂ (line 3), which estimates the ex-
pected value of the submodular objective function f . Then, ASA computes the expected marginal
gain of selecting the robot x∗ (line 4), and if the expected marginal gain is below a certain threshold,
the algorithm stops the selection process (line 5). This threshold ensures that the algorithm avoids
using unnecessary human effort by stopping when the marginal gain of selecting an additional robot
is low. Otherwise, the chosen robot x∗ is added to the solution set X (line 8). Finally, if there is
an observation on whether the connection to the robot was successful or not, the estimated expected
value function F̂ is updated (line 9).

The estimated expected value function F̂ is an important factor in our allocation policy and can be
defined as:

F̂ (X) =
∑
ξ

fξ(X)p̂ξ =
∑
ξ

fξ(X)
∏
i∈I

p̂ξi . (7)

Here, the function fξ denotes the value of supervising the set of robots X for a specific realization
ξ of the connection random variable Ct. p̂ξ represents the estimated connection probability of the
realization ξ, whereas p̂ξi denotes the estimated connection probability for the robot i within the
realization ξ. Initially, p̂ξi values are set to the actual initial connection probabilities p̂ξi ← P (ξi =
C0

i ) for all robots i. Then, if an observation on the success of supervisor allocation is made, the
connection probability estimate p̂ξi is updated for the selected robot i: p̂ξi ← P (ξi = Ct

i ).

Algorithm 1 ASA Policy
Input: Estimated expected value of submodular objec-
tive function F̂ , set of all robots I
Output: robots selected for supervision X

1: Initialize X ← ∅
2: for k = 1 to Nhuman do
3: x∗ ← argmaxx∈I\X F̂ (X ∪ {x})
4: Compute ∆← F̂ (X ∪ {x∗})− F̂ (X))
5: if ∆ < threshold then
6: break
7: end if
8: X ← X ∪ x∗

9: if ASA then
10: Observe whether connection to robot x∗ is

successful and update F̂
11: end if
12: end for

Another important factor in the allocation
policy is the marginal threshold parameter,
which determines the trade-off between
the cost of additional supervision and the
incremental benefit derived from including
an additional robot in the supervision set.
In practice, this threshold can be set to 0
if all human supervisors want to be allo-
cated to maximize the amount of data col-
lected. Then, the threshold can be gradu-
ally increased to optimize the efficiency of
human supervision.

Based on the availability of the obser-
vations of the connection probabilities,
we define two variants of our policy:
non-Adaptive Submodular Allocation (n-
ASA) and Adaptive Submodular Alloca-
tion (ASA). In n-ASA, we are not able to
observe the connection probabilities, and
thus, the allocations are done beforehand. In ASA, on the other hand, the robots are selected it-
eratively based on the success of the allocations, and the connection probability estimates p̂ξ are
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updated. To visualize the differences between n-ASA and ASA, consider the following: in both
cases, robot 1 is selected for supervision in the first iteration. While selecting the robot to supervise,
n-ASA considers both possibilities (successful and unsuccessful connection to robot 1) and selects
the second robot that maximizes the expected marginal gain over both cases. However, in ASA, after
selecting robot 1 for supervision, we observe whether the connection was successful or not and select
the next robot that maximizes the expected marginal gain based on the observation. We then update
the connection probability estimate of the robot 1 with its actual probability: p̂ξ1 ← P (ξ1 = Ct

1).

When the marginal threshold parameter is set to zero and the estimated expected value function F̂ is
equal to the actual expected value of supervision F , ASA is equivalent to the greedy algorithm for
submodular maximization, which is proven to approximate the optimal solution for the submodular
maximization problem in Eq. 6 with a factor of 1−1/e [45]. Additionally, n-ASA approximates the
optimal adaptive policy with a factor of (1− 1/e)2 [45]. To compute selected robots faster, we use
the lazy greedy algorithm [46]; this has the same time complexity as Algorithm 1 but has a better
empirical performance.

5 Experiments

We consider a fleet of Nrobot = 100 robots that can be supervised by Nhuman = 5 human supervisors.
The human supervisors are implemented as reinforcement learning agents using the Proximal Policy
Optimization (PPO) algorithm [48]. We utilize the behavior cloning algorithm to initialize the robot
policies based on an offline dataset of 5000 state-action pairs and use our allocation policy to collect
data from the robots and update the models. In all of our experiments, when the robots violate
the constraints, we perform a hard reset to bring the robots back to a safe state. We set the hard
reset time to tR = 5 timesteps, the minimum intervention time to tT = 5 timesteps, and the fleet
operation time to T = 10, 000 timesteps. We average the results over 3 random seeds for each task
and network configuration. We have chosen these parameters to align with the settings used in the
environments of the benchmark algorithms [15] for a fair comparison.

Environments: We consider four different environments in our experiments. First is Humanoid,
where the robots focus on bipedal locomotion. Second is ANYmal, which involves quadruped
locomotion using the ANYmal robot. Third is Allegro Hand, focusing on dexterous manipulation
tasks. The last environment is Ball Balance and it requires the robots to balance a ball on a plate.

Network Configurations: We use five different network configurations based on various connec-
tivity probabilities. Always allows robots to always be supervised by human supervisors. In Mixed-
Scarce, some robots have a high connection probability, while others have a low probability. Ookla
features varying connection probabilities according to cellular network performance metrics [49].
5G uses real-world connectivity data, including latency and throughput, collected from a university
robotics lab (further details in the Appendix). Finally, Changing-Scarce starts with the same con-
nection probabilities as Mixed-Scarce but evolves over time. It is important to note that while the
first four configurations maintain stationary network connectivity, the Changing-Scarce configura-
tion introduces dynamic network connectivity that changes over time.

Metrics: We evaluate the performance of the allocation policies based on the following metrics:
(1) Return on Human Effort (RoHE), which is given in Eq. 3 and (2) the cumulative number of
successfully completed tasks by the entire fleet, which we will refer to as cumulative success. To
simplify, RoHE measures the fleet performance per human intervention, while cumulative success
only considers the total successful task completion without considering the number of interventions.
For example, simply allocating all human supervisors would improve cumulative success but de-
crease RoHE. An ideal allocation policy should balance the two, as an ideal system would require a
high total success while using humans as efficiently as possible.

Allocation Policies: We compare our proposed Adaptive Submodular Allocation (ASA) and non-
Adaptive Submodular Allocation (n-ASA) policies with several baselines. The ASA policy uses
the observed connection information to update the network connection probabilities, while the n-
ASA policy does not use this information. The Random baseline simply selects robots for su-
pervision randomly. Fleet-EnsembleDAgger (FE) uses variance for uncertainty estimation, com-
bined with constraint-based prioritization [40]. Fleet-ThriftyDAgger (FT) integrates uncertainty
and goal-oriented prioritization, adapting ThriftyDAgger for fleet settings in goal-oriented environ-
ments [41]. Fleet-DAgger (FD) prioritizes robots violating constraints and selects those with the
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Figure 3: Our ASA and n-ASA policies outperform other benchmarks across all environments and
network combinations. Here, each row represents a different network configuration, and each column corre-
sponds to a different environment. Compared to other policies, ASA and n-ASA are affected less by changes in
the network configurations because of their stochastic submodular maximization-based policies that can incor-
porate network uncertainties. The submodular maximization objective improves the performance when there
are no network uncertainties (row 1) due to its ability to cover diverse and informative scenarios. Additionally,
ASA outperforms n-ASA in the Changing-Scarce network configuration (row 5) due to its adaptive nature to
network connectivity changes.

highest uncertainty and risk of failure [15]. Lastly, n-Fleet-DAgger (n-FD) adapts Fleet-DAgger to
network uncertainties by filtering out robots with low connection probabilities.

How do ASA and n-ASA perform under different network configurations?

We evaluate the performance of our policies, ASA and n-ASA, under different network configura-
tions for each environment. The RoHE metric for each time step has been shown in Fig. 3, and
cumulative success values at the final time step have been presented in Table 1. In both metrics,
we can see that our ASA and n-ASA policies are able to outperform other benchmarks. This is
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ALLOCATION
POLICY

ALLEGRO HAND ANYMAL BALL BALANCE HUMANOID

ROHE CUMULATIVE
SUCCESS

ROHE CUMULATIVE
SUCCESS

ROHE CUMULATIVE
SUCCESS

ROHE CUMULATIVE
SUCCESS

RANDOM 5.34 387.94 1.04 92.66 2.90 1448.73 0 0
FT 6.49 2119.53 - - 1.77 956.53 - -
FE 5.80 1774.47 1.44 115.47 4.46 1153.20 0.44 150.27
FD 7.23 2251.06 1.77 171.60 4.28 1175.2 0.76 266.80
N-FD 9.02 3723.80 1.07 195.40 3.05 1035.53 0.87 329.07
N-ASA (OURS) 9.75 3729.50 2.31 232.47 5.10 1167.27 1.61 408.07
ASA (OURS) 11.29 4217.70 2.30 234.27 8.15 1636.53 2.93 478.6

Table 1: Average RoHE and cumulative success of different allocation policies. As shown by the RoHE
and cumulative success values averaged over all network configurations, our ASA and n-ASA policies outper-
form other baselines in all environments (columns). This shows the adaptability of our methods to different
environments and network configurations in terms of efficient use of human effort and high task completion.

because our policies can incorporate network uncertainty information into their allocation algorithm
through stochastic submodularity. On the other hand, other benchmark policies, except n-FD, are
not designed to incorporate such network uncertainty. The n-FD policy is able to incorporate net-
work uncertainties and outperforms our policies in the 5G network for the Allegro Hand task, but it
fails to generalize to other network configurations and tasks. We can see that our allocation policy
outperforms other baselines in terms of the RoHE metric by up to 1.25×, 1.31×, 1.83×, and 3.37×
in Allegro Hand, ANYmal, Ball Balance, and Humanoid environments, respectively.

How do ASA and n-ASA compare when the network connectivity is stable?

To test whether our RoHE gains are only due to adaptability to different network configurations, we
have also simulated a network where all robots are always reachable. In row 1 of Fig. 3, we can see
that our ASA and n-ASA policies still outperform other allocation benchmarks due to their ability
to diversify the selected robots to cover more states. As we have shown in the 2D toy example in
Fig. 2, rather than only focusing on the states with high uncertainty, ASA and n-ASA consider the
whole state space to collect combined data that is more informative.

How do ASA and n-ASA compare to benchmarks with time-varying connection probabilities?

To test the adaptability of our allocation policies to network connectivities varying over time, we
have run experiments on the Changing-Scarce network scenario. We can see in row 5 of Fig. 3 that
the ASA policy consistently outperforms n-ASA, n-FD, and FD, due to its ability to dynamically
update the network connection estimates based on the observations on whether the connection to
each robot is successful or not. This adaptability is particularly important in scenarios where network
conditions are unpredictable and can change over time, such as mobile robotics applications.

Limitations: Our work has several limitations. First, it uses only real-world data collected from
5G network without hardware robotics experiments and is tested only in NVIDIA’s Isaac Gym en-
vironment like previous benchmarks. Additionally, it assumes that network connectivity and robot
states and policies are independent across robots, while in real-world scenarios, robots might share
the same network or physical location, meaning their policies might affect each other.

6 Conclusion and Future Work

We present two novel supervisor allocation policies, ASA and n-ASA, for assigning human super-
visors to a robotic fleet for data collection. These policies, based on stochastic submodular maxi-
mization, offer a modular approach for incorporating diverse allocation objectives, informativeness
metrics, and retraining methods. Our allocation policies beat current benchmarks in RoHE and cu-
mulative success metrics across most environments and network configurations. These performance
gains are thanks to their stochastic submodular maximization objective, which incorporates network
connectivity while balancing the diversity and informativeness of selected robots. Finally, we collect
real-world 5G network data from a field dedicated to teleoperated robots and show the applicability
of our allocation policy in real-world scenarios as well.

In a future project, we plan to extend our work to include hardware robotics experiments and other
simulation environments, including teleoperation over a 5G network, which would be possible in an
application such as autonomous driving. We also plan to investigate the impact of different imitation
learning methods to test the generalizability of our allocation policies.
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A Appendix

Code Availability: The code and related materials can be found in the following code repository:

https://github.com/UTAustin-SwarmLab/Fleet-Supervisor-Allocation.git

The organization of the appendix is as follows:

1. Subsection A.1 describes the details of the submodular maximization function we have used in our
experiments.

2. Subsection A.2 describes the details of the theoretical bounds of our allocation algorithm.

3. Subsection A.3 presents the environment setups and exact parameters we have used for our simula-
tions.

4. Subsection A.4 provides the exact details for the network configurations used in our experiments.

5. Subsection A.5 presents all the simulation results for all tasks and network configurations as well as
additional metrics providing an insight into why our methods outperform other benchmarks.

6. Subsection A.6 provides ablation studies over the hyperparameters and simulation parameters.

7. Subsection A.7 presents the complexity analysis of our allocation policies.

8. Subsection A.8 presents our 5G network data collection setup.

A.1 Submodular Maximization Parameters

This section provides the exact parameters and functions used in the submodular maximization method given
in Section 4.

A.1.1 Informativeness Function

The informativeness function U t measures the informativeness of each robot i in the fleet at time t. To measure
the informativeness of the robots, we use a weighted combination of two functions. The first function measures
the uncertainty of the robot policy πt

R in the environment, and the second function measures the risk of the
robot i violating the constraints K. Then, the informativeness function can be defined as follows:

U t(i) = αUU t
unc(i) + (1− αU )U t

risk(i). (8)

Here, αU is a hyperparameter that controls the weight of the uncertainty in the overall informativeness measure,
and U t

unc(i) and U t
risk(i) are the uncertainty and risk functions of the robot i at time t, respectively. When the

robot is taking discrete actions, the uncertainty function U t
unc(i) is defined as the entropy of the robot policy πt

R,
and when the robot is taking continuous actions, the uncertainty function is defined as the ensemble variance
of the robot policy πt

R [40]. The risk function U t
risk(i) is defined as the likelihood of the robot i exiting the

constraint space K [15].

For both uncertainty and risk functions, if the value of the function for the robot i is below a certain threshold,
we set it to zero. We define this threshold parameter as U thres

unc and U thres
risk for uncertainty and risk functions,

respectively. We present specific U thres
unc and U thres

risk parameters for the experiments in Table 2.

A.1.2 Similarity Function

The similarity function St measures the similarity between two robots i and j in the fleet at time t. In our
experiments, we utilize both the similarity between the states and the similarity between the actions taken by
the robots. More formally, the similarity function is defined as follows:

St(i, j) = αS
sti · stj

∥sti∥∥stj∥
+ (1− αS)

at
i · at

j

∥at
i∥∥at

j∥
, (9)

where sti and stj are the states of the robots i and j, respectively; at
i and at

j are the actions taken by the robots
i and j, respectively, at time t. αS is a hyperparameter that controls the weight of the state similarity in the
overall similarity measure.

A.1.3 Constraint Violation Function

The constraint violation function Kt(i) measures whether robot i violates the constraints at time t. In our
experiments, we used the constraint violation as an indicator function that returns αK if the constraint is violated
and 0 otherwise. The αK is a parameter that controls the relative importance of the constraint violation in the
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overall objective function. In our experiments, we set αK = 10000 to prioritize the robots with constraint
violations. The constraint violation function is defined as follows:

Kt(i) =

{
αK if sti /∈ K,

0 otherwise.
(10)

Here, the K refers to the safe states that the robot can operate without any human intervention. As the constraint
function causes the system to prioritize the robots violating the constraints, in initial time steps, we set the
αK = −10000 to ensure that the robots violating the constraints are not prioritized. This is because, in the
initial steps, the robots explore the environment, and collecting more informative data is more critical than
the constraint violations. We control the length of this period in which the constraint-violating robots are not
prioritized by the tW parameter.

A.2 Theoretical Bounds

Here, we provide the definitions and necessary theorems to show the optimality bound of our proposed ASA and
n-ASA policies. We first define submodular and monotone functions and then provide the necessary theorems
to show the optimality bounds of our proposed policies.

Definition 1 (Submodular Function). A set function f : 2V → R is submodular for all A ⊆ B ⊆ V and
e ∈ V \B, we have:

f(A ∪ {e})− f(A) ≥ f(B ∪ {e})− f(B).

Definition 2 (Monotone Function). A set function f : 2V → R is monotone if for all A ⊆ B ⊆ V , we have:

f(A) ≤ f(B).

Definition 3 (Facility Location Problem). The facility location problem is a combinatorial optimization prob-
lem where the goal is to select a subset of facilities from a set of candidate locations to minimize the cost of
serving the demand points. The objective function of the facility location problem is defined as follows:

f(A) =

n∑
i=1

min
j∈A

M̂ij ,

where A is the set of selected facilities, M̂ij is the cost of serving demand point i from facility j, and n is the
number of demand points.

Corollary 1 (Facility Location Problem is submodular for non-negative M̂ij .). The facility location problem
is submodular and monotone if the cost matrix M̂ij is non-negative. Please refer to [50] for the detailed proof.

Exactly following that corollary, we can show that the facility location problem presented in Equation 4 is
submodular and monotone, as the cost matrix M̂ij is non-negative and C is a binary random variable.

Definition 4 (Greedy Policy). The greedy policy is a sequential optimization method that selects the element
with the maximum marginal gain at each step. The greedy policy that selects k elements is defined in Algorithm
2.

Algorithm 2 Greedy Policy

1: A← ∅
2: for i = 1 to k do
3: xi ← argmaxx∈V \A f(A ∪ {x})− f(A)

4: A← A ∪ {xi}
5: end for
6: return A

Theorem 1 (Adaptive Greedy Policy Optimality Bound). Consider the adaptive greedy policy selecting ele-
ments with the maximum marginal value, conditioned on the realized value of the previously chosen elements.
The approximation ratio of the adaptive greedy policy with respect to the optimal adaptive policy is 1− 1

e
. For

the detailed proof of this theorem, please refer to [45].

In our work, once we are able to observe whether the connectivity to robots is established or not (Alg. 1, line
8), our policy becomes adaptive. Additionally, when the F̂ and F functions match, and the marginal threshold
parameter is set to 0, Theorem 1 can be applied to show the optimality bound of our proposed policies.
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Theorem 2 (Non-Adaptive Greedy Policy Optimality Bound ). Consider the non-adaptive greedy policy that,
at each step, chooses the element with the maximum marginal increase in value. The approximation ratio of this
policy with respect to the optimal adaptive policy is at least (1 − 1

e
)2. For the detailed proof of this theorem,

please refer to [45].

Unlike ASA policy, our n-ASA policy is not able to observe whether a connection to robot i has been established
or not, so it is non-adaptive. Under the same conditions as the ASA policy, when the F̂ and F functions match,
and the marginal threshold parameter is set to 0, Theorem 2 can be applied to show the optimality bound of our
proposed n-ASA policy.

A.3 Experimental Setups and Parameters

As stated previously, we run simulations using four different environments: ANYmal, Allegro Hand, Hu-
manoid, and Ball Balance. Each environment has its own defined tasks, success criteria, and constraint viola-
tions. For the ANYmal robot, a constraint violation occurs when there is excessive force on the robot’s knees,
indicating that the robot has fallen on its knees, or when no force is exerted on the bottom of its toes, indicating
that the robot has fallen on its torso. For the Ball Balance environment, a constraint violation occurs when the
ball is no longer on the plate. In the Allegro Hand environment, a constraint violation happens when the cube
is no longer in the robot’s hand. For the Humanoid environment, a constraint violation occurs when the robot’s
position is below the termination height, indicating that the Humanoid has fallen down.

The definition of success is specific to each task. For instance, in locomotion tasks, success is achieved if the
robot does not violate constraints and reaches a reward amount that exceeds a predefined reward threshold.
For goal-specific tasks such as Ball Balance and Allegro Hand, success corresponds to reaching the goal state
without violating constraints. For Ball Balance, a goal state may be one where the ball on the plate is moving
within a radius smaller than the plate’s radius, indicating that the robot successfully managed to control and
balance the ball. For Allegro Hand, the goal state may be defined as holding the cube stable after rotating it so
that the red surface faces up. That is how a single success corresponds to different achievements depending on
the specific tasks assigned to each robot.

For all experiments, the key parameters are fixed and do not depend on the allocation policies: Nhuman = 5,
Nrobot = 100, T = 10, 000 time steps, tR = 5 time steps and tT = 5 time steps. The hyperparameters that
vary depending on the task, along with the values that yielded the best performances, are provided below in
Table 2. |S| and |A| are the dimensionalities of the state and action spaces, respectively, U thres

unc and U thres
risk are

the uncertainty and risk threshold values below which the uncertainty and risk are treated as zero, tW is the
period during which constraints are not prioritized, allowing the robot policies to be improved by selecting
informative robots rather than resetting failing robots in the first tW time steps, threshold is the marginal
increase threshold below which the robots are not prioritized, αS is the parameter which controls the weight
of the state similarity in the overall similarity measure, and αU is the parameter that controls the weight of the
uncertainty in the overall informativeness measure.

Task |S| |A| U thres
unc U thres

risk tW threshold αS αU

AllegroHand 88 21 0.53 0.12 1250 0.04 0.37 0.53

AnyMAL 48 12 0.19 0.49 1000 0.69 0.72 0.05

BallBalance 24 3 0.47 0.21 1750 0.51 0.98 0.46

Humanoid 108 21 0.18 0.20 2500 0.23 0.50 0.10

Table 2: Simulation environment hyperparameters for each task.

A.4 Network Configurations

Here, we explain the details of the network configurations used in our experiments. We have used four different
network configurations to evaluate the adaptability of the allocation algorithms in different network conditions.
Additionally, we show the connection probabilities in each network configuration in Figure 4. The network
configurations are as follows:

Always: Always is a simple network configuration where the probability of connection to all the robots is
set to 1. In this network configuration, our supervisor allocation problem is equivalent to the Interactive Fleet
Learning (IFL) problem presented in [15], where the supervisor can connect to all the robots at all times.
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Mixed-Scarce: Mixed-Scarce is a network configuration where the probability of connection to robots can
be set to two different values. In this network configuration, we first divided the robots into two groups with
ratios of 0.7 and 0.3. We then set the probability of connection to the robots in the first group to 0.9 and the
probability of connection to the robots in the second group to 0.1. This network configuration is used to evaluate
the adaptability of allocation algorithms when the connectivity to the robots is heterogeneous. Ideally, the
supervisor should allocate more resources to the robots with higher connectivity to maximize the performance
of the fleet.

Ookla: Ookla is a network configuration where the probability of connection to the robots is set based on the
Ookla cellular network performance data [49]. This dataset includes the download speed, upload speed, and
latency of the cellular network in different locations. We use the download speed as the metric to determine
the probability of connection to the robots. We first divided the data collection points into a grid of 10 × 10
cells. We then calculated the average download speed of the data collection points in each cell. After that, we
log-normalize the average download speed of each cell to be in the range of [0.5, 1]. We have set the lower
bound to 0.5 to ensure that the robots in the cell with the lowest download speed have a non-zero probability
of connection. We then set the probability of connection to the robots in each cell to be the normalized average
download speed of the cell. This network configuration is used to evaluate the adaptability of allocation algo-
rithms when the connectivity to the robots is based on real-world cellular network performance data, which is
heterogeneous and has a more complex structure than the Mixed-Scarce network configuration.

5G: 5G is a network configuration where the probability of connection to the robots is set based on the real-
world 5G network performance data. Please refer to Section A.8 for more details on the data collection process.
The collected data was divided into 100 groups, with average latency and throughput calculated for each group
and normalized to a value between 0.015 and 1. A lower bound of 0.015 ensures a non-zero connection
probability for robots with the lowest throughput and highest latency. Robots in groups with throughput below
0.4 and latency above 0.6 were assigned a normalized value of 0.015. The connection probability for each group
corresponds to the normalized average throughput and latency. This configuration evaluates the adaptability of
allocation algorithms to realistic, heterogeneous connectivity based on real-world 5G network performance,
which is more complex than other network configurations.

Changing-Scarce: Changing-Scarce is a network configuration where the probability of connection to robots
is first set as in the Mixed-Scarce network configuration. Then, over time, the probability of connection to the
robots in the first group is decreased from 0.9 to 0.1, and the probability of connection to the robots in the second
group is increased from 0.1 to 0.9 linearly. This network configuration is used to evaluate the adaptability of
allocation algorithms when the connectivity to the robots changes over time. Ideally, the supervisor should
adapt the allocation of human supervisors to the robots based on the changes in connectivity to maximize the
performance of the fleet.

A.5 Numerical Results and Additional Metrics

In this section, we present the numerical values for all allocation policies and for all tasks under each network
configuration to demonstrate that our method outperforms the baseline algorithms in all simulated scenarios,
providing a novel approach to the supervisor allocation problem. We also present the percentage performance
differences between our methods (ASA and n-ASA) and other methods. We present all numerical results
recorded in the final timestep (t = 10, 000) in Table 3 and the percentage differences in Figure 5.

In addition to the presented metrics in the main paper, we also provide the following metrics to evaluate the
performance of our method against the baselines: (1) cumulative human actions, which measures the total
number of time-steps humans supervised the robots, (2) cumulative idle time, which is the total duration that
robots remain in the constraint violating states while awaiting hard resets, (3) cumulative hard resets, which
records the total number of hard resets performed by the human supervisors, (4) cumulative reward, which is
the total reward accumulated by the all robots in the fleet, and (5) cumulative success, which is the total number
of tasks successfully completed by the entire fleet. We present the these metrics in Figures 6, 7, 8, 9, and 10
respectively.

In Figures 6, 7 and 8, we can observe that the ASA and n-ASA methods use fewer human actions and are
able to reduce idle time and hard resets compared to the other benchmarks. This is due to the fact that our
method prioritizes the robots with higher connectivity to reset and supervise, wasting less human resources on
robots with low connectivity, unlike the other method possibly trying to reset the robots with low connectivity.
Additionally, in Figures 9 and 10, we can see that our ASA and n-ASA methods are among the top-performing
methods in terms of cumulative reward and cumulative success in all network configurations and tasks, proving
that our method is much more efficient in terms of human resource utilization.
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Figure 4: Connection probabilities for each network configuration. This figure shows the connection
probabilities of the robots in the fleet for each network configuration. For easier visualization, we have grouped
100 robots into 10 groups of 10 robots each and presented the average connection probability for each group. As
we go from the Always network to the Changing-Scarce network, the connection probabilities of the robots get
more heterogeneous. This heterogeneity in the connection probabilities is crucial for evaluating the adaptability
of the allocation algorithms in different network configurations.

A.6 Ablation Studies

In this section, we conduct further experiments using our adaptive submodular allocation, ASA, policy to ex-
plore the following: (1) the sensitivity of the system to the ratio of the number of robots Nrobot to the number
of humans Nhuman (Figure 11), (2) the impact of varying the minimum intervention time tT (Figure 12), and
(3) the impact of changing the hard reset time tR (Figure 13). Each experiment is averaged over three different
random seeds, and the shaded regions correspond to one standard deviation. We plotted four different metrics:
(1) cumulative success, (2) RoHE, (3) cumulative hard resets, and (4) cumulative idle time. Cumulative hard
resets represent the total number of hard resets performed by human supervisors when the robots violate con-
straints. Cumulative idle time is the total time, in time steps, that robots remain idle while waiting for a hard
reset.

Number of Human Supervisors: We tested the ASA policy to evaluate its sensitivity to different numbers
of human supervisors (Fig. 11). Keeping the number of robots constant, we simulated scenarios with 1, 5,
10, 25, and 50 human supervisors. In all simulated tasks, as the number of human supervisors increases, idle
time decreases because more human resources are available, resulting in shorter idle periods before robots
are teleoperated and reset. However, despite the cumulative success values rising with more supervisors, the
RoHE values tend to decrease. This happens because allocating more humans doesn’t always lead to a higher
return on human effort. The most informative and important robots are already being selected, so adding
more supervisors doesn’t necessarily result in a significant marginal gain. Therefore, a low number of human
supervisors is insufficient as robots remain idle for long periods and violate constraints more frequently, while
a large number of supervisors creates a surplus and decreases efficiency.

Minimum Intervention Time: While keeping other hyperparameters fixed, we varied the minimum interven-
tion time and ran our policy. We observed that when the minimum intervention time is long, such as 100 or
500 time steps, the robot fleet performance significantly decreases. This is because human supervisors spend
a lot of time teleoperating a single robot, which results in lower RoHE and cumulative success values, and a
substantial increase in idle time. Conversely, when the minimum intervention time is very short, such as 1 time
step, performance improves in terms of both RoHE and cumulative success for most tasks. This is because each
human supervisor spends less time on a single robot and can attend to more robots within 10,000 time steps,
thus enhancing overall fleet performance as the minimum intervention time decreases.
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NETWORK
ALLOCATION

POLICY
ALLEGROHAND ANYMAL BALLBALANCE HUMANOID

ROHE CUMULATIVE
SUCCESS

ROHE CUMULATIVE
SUCCESS

ROHE CUMULATIVE
SUCCESS

ROHE CUMULATIVE
SUCCESS

ALWAYS

RANDOM 10.48 649.7 2.18 160.0 3.61 1796.0 0.01 1.67
FT 11.10 2751.0 - - 2.87 1437.0 - -
FE 10.03 2021.67 2.81 127.33 6.82 1185.0 1.04 296.67
FD 13.48 3352.33 3.12 189 7.92 1499.67 1.93 424.67
N-FD 13.48 3352.33 3.12 189 7.92 1499.67 1.93 424.67
N-ASA (OURS) 16.30 5094.67 3.76 246.33 10.67 1802.67 2.22 503.33
ASA (OURS) 14.87 5064.33 3.41 241.0 10.87 1785.67 2.28 530.0

MIXED-SCARCE

RANDOM 3.39 302.0 0.65 79.33 2.64 1319.0 0.00 0.67
FT 4.05 1713.0 - - 1.98 988.0 - -
FE 3.69 1616.33 0.89 110.33 3.54 1327.67 0.09 45.0
FD 4.94 2031.0 1.29 180 3.32 1253.33 0.33 159.33
N-FD 5.86 2370.66 0.27 137.66 1.07 534.33 0.37 184.67
N-ASA (OURS) 8.15 3850.67 2.46 244.33 5.85 1580.67 1.95 499.67
ASA (OURS) 8.16 3817.33 2.29 235.33 7.27 1621.0 1.85 491.0

OOKLA

RANDOM 8.45 576.33 1.97 164.67 3.57 1782.33 0.01 1.67
FT 9.37 2583.33 - - 2.77 1383.33 - -
FE 8.34 2072.33 2.22 126.0 7.46 1301.33 0.70 235.33
FD 10.65 2986.33 2.76 186.67 6.45 1443.33 1.47 392.33
N-FD 12.38 6191.33 0.55 275.33 2.98 1491.67 1.03 517.33
N-ASA(OURS) 13.99 4694.33 3.20 240.0 10.96 1791.67 2.25 506.67
ASA (OURS) 13.75 4936.0 3.11 225.67 11.41 1741.33 2.15 510.33

5G

RANDOM 2.47 228.67 0.36 47.33 2.81 1401.33 0.00 0.00
FT 4.75 2131.67 - - 0.69 344.67 - -
FE 3.98 1789.67 1.07 137.0 3.01 1315.0 0.37 169.33
FD 5.40 2213.0 1.40 200 2.75 1209.0 0.79 319.33
N-FD 12.01 6009 0.52 259.33 2.86 1433 0.96 479.67
N-ASA (OURS) 7.66 3705.33 1.61 246.33 7.45 1758.33 1.44 444.33
ASA (OURS) 7.43 3658.0 1.63 239.33 6.39 1703.33 1.51 470.0

CHANGING-SCARCE

RANDOM 1.9 183 0.08 12 1.89 945 0 0
FT 3.17 1418.66 - - 0.54 270.66 - -
FE 2.70 1222.33 0.21 76.67 1.48 637 0.01 5
FD 1.66 672.66 0.27 102.33 0.98 470.66 0.07 35.33
N-FD 1.39 695.66 0.23 115.66 0.43 219 0.07 39
N-ASA(OURS) 2.65 1302.64 0.52 185.34 1.51 661.33 0.19 86.33
ASA (OURS) 12.23 3612.33 1.04 230 4.81 1328.33 1.01 391.66

Table 3: Numerical results for all network and task simulations. We present RoHE and cumulative success
values in the final timestep (t = 10, 000) for 4 different environments under 4 different network configurations.

Hard Reset Time: Finally, we ran the ASA policy with different hard reset times. We observed that as the hard
reset time increases, the fleet performance decreases. This is because it takes longer for human supervisors to
reset the robots, resulting in fewer hard resets within 10,000 time steps. Consequently, the idle time increases,
reducing the overall performance of the robot fleet.

A.7 Complexity Analysis and Optimality Bounds for Allocation Algorithms

Here, we present the complexity analysis and optimality bounds for our allocation algorithms.

A.7.1 Complexity Analysis

We now explain the complexity of our allocation algorithms in terms of the number of robots Nrobot and the
number of humans Nhuman in the system and function evaluations. As we have discussed in Section 4, our
allocation algorithm is based on a greedy algorithm that selects the robots based on the stochastic submodular
maximization objective. It is a well-known result that the number of function evaluations for the greedy algo-
rithm is O(NrobotNhuman). As both of our algorithms are based on the greedy algorithm, the computational and
time complexities of our algorithms, ASA and n-ASA, are both O(NrobotNhuman).

A.8 Real World 5G Network Data

In addition to the simulated network connectivity data, we also evaluate our allocation policies using real-
world 5G network connectivity data collected via setup detailed in [51]. This setup includes two hardware
components: a mobile edge device and a local server. The edge device, which can be a robot, a mobile phone,
or a computer, acts as the connection client. The local server functions as the cloud. In our scenario, we consider
the edge device to be the robot and the local server to be the cloud or the server from which human supervisors
connect to the robots. The local server sends packets to the edge device, and the edge device responds with
packets to confirm receipt. During this process, the local server calculates latency and throughput, saving this
data to a local file. This continues for a predetermined data collection period of 24 hours. Two key aspects
of this setup are: (1) the edge device is connected to a 5G cellular network, specifically 5G cellular provided
by AT&T, and (2) it is mobile. This allows us to collect data anywhere, whether moving or stationary, for any
desired period. To obtain data that realistically simulates human teleoperation connectivity, we collected data in
a building where actual teleoperation and robotic tasks are conducted. After collecting the data, we divided and
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Figure 5: Performance gains of ASA and n-ASA policies over baseline methods across different envi-
ronments and network combinations. The top two rows show the percentage difference in RoHE, while the
bottom two rows depict the percentage difference in cumulative success compared to the best baseline methods.
Notably, as highlighted in the bottom right figure, our policies outperform the baseline methods, particularly
when averaged across different network combinations, demonstrating the robustness and effectiveness of our
approach.

clustered it into 100 different groups. This division helps correlate the data with our fleet learning simulation
environment, which has 100 robots in different locations. For each group, we calculated the average latency
and throughput. We normalized the average values between 0 and 1, such that groups with high latency and low
throughput values have a connection probability closer to 0, and groups with low latency and high throughput
values have a connection probability closer to 1. Now that we have 100 different connection probability values,
we randomly assigned them to 100 simulated robots. We illustrate the data collection setup in Figure 14.
Additionally, we present the average throughput and latency for each group in Figure 15.
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Figure 6: Cumulative human actions for different network configurations in different environments.
This figure shows cumulative human actions, which is the sum of the total number of teleoperation/supervision
attempts of the human supervisors, for different network configurations in different environments. The x-axis
represents the time steps, and the y-axis represents the cumulative human actions.
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Figure 7: Cumulative idle time for different network configurations in different environments. The plots
show the cumulative idle time, which is the sum of the total duration that robots remain in the constraint-
violating states while awaiting hard resets, in different environments and network configurations. The x-axis
represents the time steps, and the y-axis represents the cumulative idle time.
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Figure 8: Cumulative hard resets for different network configurations in different environments. The
plots show the total number of hard resets performed by the human supervisors in different environments and
network configurations. The x-axis represents the time steps, and the y-axis represents the cumulative hard
resets.
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Figure 9: Cumulative reward for different network configurations in different environments. The plots
show the cumulative reward, which is the sum of the total reward accumulated by all robots in the fleet, for
different network configurations in different environments. The x-axis represents the time steps, and the y-axis
represents the cumulative reward.
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Figure 10: Cumulative success for different network configurations in different environments. The plots
show the cumulative success, which is the sum of the total number of successful tasks completed by all robots
in the fleet, for different network configurations in different environments. The x-axis represents the time steps,
and the y-axis represents the cumulative success.
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Figure 11: Simulation results with varying numbers of human supervisors. The figure shows the simula-
tion results of the ASA policy for each task under the Always network configuration, with the number of robots
Nrobot fixed at 100, while the number of human supervisors Nhuman varies.
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Figure 12: Simulation results with varying minimum intervention times. The figure shows the simulation
results of the ASA policy for each task under the Always network configuration over T = 10, 000 time steps,
with the number of robots Nrobot fixed at 100, the number of human supervisors Nhuman fixed at 5, and the
minimum intervention time tT varying.
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Figure 13: Simulation results with varying hard reset times. The figure shows the simulation results of the
ASA policy for each task under the Always network configuration, with the number of robots Nrobot fixed at
100, the number of human supervisors Nhuman fixed at 5, and the hard reset time tR varying.

27



Data Collection Field Connection Setup

5G Network

Human
Supervisor Robot

Figure 14: Data collection setup for 5G network. We collected 5G network connectivity data from a real-
world robotics laboratory floor. An example of the floor plan is shown in the left figure. In this floor plan, the
red devices represent the locations of the robots on the laboratory floor. Our data collection setup is shown in
the right figure. For each location, we established a connection between a human supervisor using a 5G-enabled
smartphone and a robot server through a 5G base station and a 5G modem. We have collected various network
parameters including throughput, latency, and signal strength for each location. We then processed this data to
obtain the network connectivity information for the robots in our experiments.

Figure 15: 5G network performance metrics. This figure shows the key performance metrics of the 5G
network data collected from the real world. Here, on the left, we show the average throughput for each group
of robots. The throughput is normalized between 0 and 1, where 0 represents low throughput and 1 represents
high throughput. On the right, we show the average latency for each group of robots, where the latency is
normalized between 0 and 1, where 0 represents low latency, and 1 represents high latency. We then use these
metrics to determine the probability of connection to the robots in our experiments.
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