
Instruction-Tuned Video-Audio Models Elucidate
Functional Specialization in the Brain

Anonymous Author(s)
Affiliation
Address
email

Abstract

Recent voxel-wise multimodal brain encoding studies have shown that multimodal1

large language models (MLLMs) exhibit a higher degree of brain alignment com-2

pared to unimodal models in both unimodal and multimodal stimulus settings.3

More recently, instruction-tuned multimodal models have shown to generate task-4

specific representations that align strongly with brain activity. However, prior work5

evaluating the brain alignment of MLLMs has primarily focused on unimodal6

settings or relied on non-instruction-tuned multimodal models for multimodal7

stimuli. To address this gap, we investigated brain alignment, that is, measur-8

ing the degree of predictivity of neural activity recorded while participants were9

watching naturalistic movies (video along with audio) with representations derived10

from MLLMs. We utilized instruction-specific embeddings from six video and11

two audio instruction-tuned MLLMs. Experiments with 13 video task-specific12

instructions show that instruction-tuned video MLLMs significantly outperform13

non-instruction-tuned multimodal (by ∼15%) and unimodal models (by ∼20%).14

Our evaluation of MLLMs for both video and audio tasks using language-guided15

instructions shows clear disentanglement in task-specific representations from16

MLLMs, leading to precise differentiation of multimodal functional processing in17

the brain. We also find that MLLM layers align hierarchically with the brain, with18

early sensory areas showing strong alignment with early layers, while higher-level19

visual and language regions align more with middle to late layers. These findings20

provide clear evidence for the role of task-specific instructions in improving the21

alignment between brain activity and MLLMs, and open new avenues for mapping22

joint information processing in both the systems.23

1 Introduction24

The alignment between internal representations of multimodal Transformer models and cortical25

activation patterns obtained from naturalistic stimuli has emerged as a key focus in the study of26

brain-model correspondence. Recent research has demonstrated that multimodal models in brain27

encoding can be broadly categorized into two settings (see Appendix A Table 4): (i) multimodal28

models evaluated with unimodal stimuli (Doerig et al., 2022; Wang et al., 2023; Oota et al., 2022b;29

Popham et al., 2021; Tang et al., 2024; Oota et al., 2025a), and (ii) multimodal models evaluated30

with multimodal stimuli (Nakagi et al., 2024; Subramaniam et al., 2024; Dong & Toneva, 2023a;31

Oota et al., 2025b; Sartzetaki et al., 2024). In the former setting, brain recordings are obtained from32

unimodal image stimuli, but representations from multimodal models, which integrate modalities33

such as vision and language, achieve a higher degree of brain alignment compared to vision-only34

models (Doerig et al., 2022; Wang et al., 2023; Oota et al., 2022b; Popham et al., 2021). This35

observation holds true to the new class of instruction-tuned multimodal large language models36

(MLLMs), especially when prompted with natural instructions (Oota et al., 2025a). In the latter37

setting, where brain recordings are obtained from multimodal stimuli (e.g., watching movies with38
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Figure 1: Leveraging instruction-tuned multimodal video and audio models for brain encoding
with a diverse set of instructions. For the given movie clip, we can obtain different multimodal
representations using instructions that ask the model to (i) generate the caption of the video, (ii)
identify whether temporal events are present, (iii) determine the primary colors dominant in the
video, etc. Using instruction-specific representations, we estimate the alignment using a simple linear
function f (ridge regression), which maps MLLM representations to brain recordings.

both visual and auditory stimuli), studies show that multimodal models exhibit higher degree of brain39

alignment over unimodal models (Dong & Toneva, 2023a; Oota et al., 2025b). While prior studies40

have examined brain alignment with instruction-tuned MLLMs, they have largely been limited to41

unimodal stimuli, or have used non-instruction-tuned models in the context of multimodal stimuli.42

In this work, we bridge this gap by systematically investigating instruction-tuned MLLMs in the43

presence of rich multimodal stimuli. Specifically, we assess how well representations elicited through44

naturalistic, task-specific instructions involving both video and audio align with brain activity across45

the cortical hierarchy, from early sensory regions to higher-order cognitive areas.46

Several unimodal studies report that task-specific fine-tuned Transformer models better align with47

brain activity during language (Oota et al., 2022a; Aw & Toneva, 2023; Sun & Moens, 2023; Oota48

et al., 2024b), speech (Oota et al., 2023; Tuckute et al., 2023; Oota et al., 2024a), and vision (Wang49

et al., 2019; Conwell et al., 2022) processing, outperforming pretrained models in brain predictivity.50

However, these models are task-specific, limiting generalization, requiring separate data and training51

per task. Instruction-tuning (Xu et al., 2023; Dai et al., 2023; Liu et al., 2024) offers a scalable alter-52

native, fine-tuning a single LLM across diverse NLP tasks and surpassing task-specific models (Taori53

et al., 2023; Touvron et al., 2023; Jiang et al., 2023; Abdin et al., 2024; Dubey et al., 2024), while54

showing stronger brain alignment (Sun et al., 2023; Sun & Moens, 2023; Loong Aw et al., 2024)55

(see Appendix B for more.) Building on this, recent work aligns instruction-tuned MLLMs with56

brain data for text (Benara et al., 2024) and images (Oota et al., 2025a), though limited to unimodal57

stimuli. Motivated by advances in multimodal MLLMs for video and audio tasks, we ask: Do58

instruction-tuned video/audio MLLMs prompted with natural language yield better brain alignment59

than their non-instruction-tuned counterparts and distinguish task-specific representations? To our60

knowledge, this is the first study to use such MLLMs to model fMRI responses across video and61

audio tasks (workflow in Fig. 1).62

Using brain recordings from participants watching several popular movies with audio (St-Laurent63

et al., 2023), we investigate the brain alignment of instruction-tuned MLLMs. Specifically, we evaluate64

six instruction-tuned video MLLMs, two instruction-tuned audio MLLMs, one non-instruction-tuned65

multimodal model (video+audio), and one unimodal model each for video and audio. These models66

are probed with 13 video task-specific instructions, and 5 audio task-specific instructions. Overall,67

this study addresses the following research questions:68

1. How do different task-specific instructions influence the degree of brain alignment in69

instruction-tuned video and audio MLLMs?70

2. Do instruction-tuned video MLLMs exhibit better brain alignment than their audio counter-71

parts when exposed to multimodal stimuli?72

3. Do instruction-tuned MLLMs produce functionally distinct representations that map onto73

different brain regions, offering a data-driven alternative to traditional experimental stimuli?74

4. How do task instructions related to semantic categories (e.g., narrative understanding, spatial75

reasoning) explain differential activation across language, auditory, and visual brain regions?76

To further quantify how instruction-tuned MLLMs capture shared and distinct neural processes across77

tasks, we use a variance partitioning approach. This analysis reveals the unique and overlapping con-78
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tributions of individual task-specific representations to brain responses, enhancing our understanding79

of the brain’s functional organization in processing rich, naturalistic multimodal information.80

Our analysis of instruction-tuned MLLMs and brain alignment with multimodal stimuli reveals several81

key conclusions: (i) Video-based instruction-tuned MLLMs show significantly higher brain alignment82

compared to audio-based instruction-tuned MLLMs, non-instruction-tuned multimodal models,83

unimodal video and audio models. This holds across the whole brain, as well as within language,84

visual and auditory regions. (ii) On the other hand, Audio MLLMs outperform both non-instruction-85

tuned multimodal and unimodal models only in the auditory cortex (AC) and middle frontal gyrus86

(MFG) language regions, while exhibiting comparable performance in other language-related areas.87

(iii) Surprisingly, both video and audio MLLMs generate task-specific representations based on88

task-instructions and effectively differentiate functional processing across brain regions. For example,89

audio understanding and captioning tasks show stronger alignment with language areas, while sound90

event detection aligns with the auditory cortex and temporal lobe. (iv) Grouping 13 video tasks into91

5 semantic categories reveals strong alignment of MLLM representations with brain sub-regions92

in line with the existing literature. Tasks involving language and narrative understanding exhibit93

stronger alignment in language-related sub-regions such as angular gyrus and lateral temporal regions,94

consistent with prior findings on event structure representation in naturalistic stimuli (Baldassano95

et al., 2017). Similarly, spatial understanding tasks preferentially engage the dorsal parietal cortex,96

part of the dorsal visual pathway. Overall, our analysis reveals that instruction-tuned MLLMs capture97

both hierarchical and task-specific brain representations, making them powerful tools for studying98

functional specialization and bridging cognitive modeling with neuroscience. We will upload our99

code as part of the supplementary material.100

2 Dataset and Models101

2.1 Brain Imaging Dataset102

We experiment with Movie10 (St-Laurent et al., 2023), a multimodal naturalistic fMRI dataset,103

obtained from the Courtois NeuroMod databank. This dataset was collected while four human104

subjects (s1, s2, s3, s5; data for s4 and s6 is not public) passively watched four different movies: The105

Bourne supremacy (∼100 mins), The wolf of wall street (∼170 mins), Hidden figures (∼120 mins)106

and Life (∼50 mins). Among these, Hidden figures and Life are repeated twice, with the repeats used107

for testing and the remaining movies for training. In this work, we use Life movies for testing where108

we average the two repetitions to reduce noise in brain data. This dataset is one of the largest publicly109

available multimodal fMRI datasets in terms of the number of samples per participant. It includes110

4024 TRs (Time Repetitions) of The Bourne supremacy and 6993 TRs of The wolf of wall street for111

training and 2013 TRs of Life as test data. We build encoding models where the train and test sets are112

totally disjoint. The fMRI data is collected every 1.49 seconds (= 1 TR).113

The dataset is already preprocessed and projected onto the surface space (“fsaverage6”). We use the114

multimodal parcellation of the human cerebral cortex based on the Glasser Atlas (which consists115

of 180 regions of interest in each hemisphere) to report the ROI (region of interest) analysis for the116

brain maps (Glasser et al., 2016). This includes four visual processing regions (early visual cortex117

(EVC), object-related areas (LOC), face-related areas (OFA) and scene-related areas (PPA)), one early118

auditory area (AC), and eight language-relevant regions, encompassing broader language regions:119

angular gyrus (AG), anterior temporal lobe (ATL), posterior temporal lobe (PTL), inferior frontal120

gyrus (IFG), inferior frontal gyrus orbital (IFGOrb), middle frontal gyrus (MFG), posterior cingulate121

cortex (PCC) and dorsal medium prefrontal cortex (dmPFC), based on the Fedorenko lab’s language122

parcels (Milton et al., 2021; Desai et al., 2023). We show the flatmap with these labeled ROIs in123

Appendix Fig. 6 and list the detailed sub-ROIs of these ROIs in Appendix C.124

Estimating cross-subject prediction accuracy. To account for the intrinsic noise in biological125

measurements, we adapt Schrimpf et al. (2021)’s method to estimate the cross-subject prediction126

accuracy for a model’s performance for the Movie10 fMRI dataset. For each subject s ∈ ([1,4]) is127

chosen as the prediction target and the other three are used to predict this target, we use a voxel-wise128

encoding model (see Sec. 3) to predict one participant’s response from others. The detailed approach129

is described in Appendix D. Note that the estimated cross-subject prediction accuracy is based on130

the assumption of a perfect model, which might differ from real-world scenarios, yet offers valuable131

insights into model’s performance. We estimate cross-subject prediction accuracy by training on the132
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Table 1: Pretrained MLLMs for video, audio vs. mul-
timodal, unimodal models (IT: Instruction-tuned).

Model Name IT #Layers Modality
InstructBLIPVideo ✓ 33 Video+Text
Video-LLaVA ✓ 33 Video+Text
LLaVa-NeXT-Video ✓ 33 Video+Text
Qwen-2.5-VL ✓ 29 Video+Text
Videochat-R1 ✓ 29 Video+Text
LLaVA-OneVision ✓ 28 Video+Text
Qwen-2.5-Audio ✓ 29 Audio+Text
Kimi-Audio ✓ 29 Audio+Text
TVLT ✕ 12 Video+Audio
VideoMAE ✕ 24 Video
AST ✕ 24 Audio

Table 2: Instructions for various multi-
modal audio tasks.

Task Description
Audio Understanding Can you describe the audio con-

tent in detail?
Audio Comprehension What are people doing in the

audio?
Audio Captioning Caption the audio in a short sen-

tence.
Sound Event Detection Identify and label the sound

events occurring in the audio.
Speaker Identification Who is speaking in the audio?

combined brain data from The Bourne supremacy and The wolf of wall street and testing on the brain133

data from the movie Life. We present the cross-subject prediction accuracy across voxels for the134

Movie10 fMRI dataset for each of the four participants in Appendix D. The plots show that across all135

participants higher activity is observed in the language and visual regions with a max correlation up136

to 0.4 implying that data has low noise and low cross-subject variability.137

2.2 Instruction-tuned Multimodal Models for Video and Audio138

To investigate whether instruction-tuned MLLMs models, when prompted using natural language-139

guided instructions, align with the way humans process multimodal information in the brain, we140

consider six popular modern instruction-tuned video MLLMs (InstructBLIPVideo (Dai et al., 2023),141

Video-LLaVA (Lin et al., 2023), LLaVA-Next-Video (Zhang et al., 2024), Qwen-2.5-VL (Wang142

et al., 2024), Videochat-R1 (Li et al., 2025), LLaVA-OneVision (Li et al., 2025)) and two instruction-143

tuned audio MLLMs (Qwen-2.5-Audio (Chu et al., 2024), Kimi-Audio (Kimi Team, 2024)). We144

also experiment with one non-instruction-tuned multimodal (TVLT (Tang et al., 2022)), one video145

unimodal (VideoMAE (Tong et al., 2022)) and one audio unimodal (AST (Baade et al., 2022)) model.146

Details for these models are reported in Table 1.147

2.3 Natural Language Instructions and Feature Extraction from Instruction-Tuned MLLMs148

Video-specific tasks. To ensure the diversity of task-specific instructions while considering videos149

as input, we consider 13 instructions, as shown in Table 3, and extract the language-guided rep-150

resentations from multimodal instruction-tuned video models. This set of 13 tasks are inspired151

from VideoInstruct100K dataset (Maaz et al., 2024). We borrowed those tasks, which are generally152

applicable to any video regardless of the contents in the image frames. We provide a sample of153

generated outputs for all the six video MLLMs in Tables 5, 6, 7, 8, 9 and 10 in Appendix E .154

To extract instruction-specific representations from multimodal instruction-tuned video models for155

the brain encoding task, we input a video and task instruction to obtain the embeddings for the156

language-guided instruction. For TVLT, we input video and audio. For VideoMAE we input video157

only. We perform zero-shot inference on these models. For all multimodal instruction-tuned video158

models, we use the pretrained Transformer weights, which generate hidden state representations at159

each layer. We then average these hidden state representations at layer level of output generated160

tokens to obtain final embedding at each layer for each video with respect to task instruction.161

Audio-specific tasks. Similar to video tasks, we consider five natural instructions while considering162

audio as input, as shown in Table 2, and extract the language-guided representations from multimodal163

instruction-tuned audio model. We provide a sample of generated outputs for one of the instruction-164

tuned audio models across the five tasks in Table 11 and 12 in Appendix E.165

Similar to instruction-tuned video models, to extract instruction-specific representations from the166

multimodal instruction-tuned audio model for the brain encoding task, we input a audio and task167

instruction to obtain the embeddings for the language-guided instruction. For AST we input audio only.168

We follow the similar feature extraction method as video-tasks to extract audio task representations.169

3 Methodology170

Voxel-wise encoding model. We train banded ridge regression based voxel-wise encoding mod-171

els (la Tour et al., 2022) to predict the fMRI brain activity associated with the stimulus representations172
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Table 3: Instructions for various multimodal video tasks.
Task Description
Action Recognition What are the main events captured in the video?
Video Understanding Can you describe the video content in detail?
Visual Question Answering How many people are in the video, and what are they doing?
Video Captioning Caption the video in a short sentence.
Object and Scene Recognition What are the main objects and people visible in the video? Describe each one briefly.
Commonsense Reasoning Why did the character take this action? What could have motivated them to do this?
Spatial Understanding Where is this video taken from? What place/landmark is shown in the video?
Temporal Ordering Step-by-step describe the activity shown in the video.
Video reasoning What is unusual about this video?
Narrative Understanding Summarize the main storyline of the movie. What is the central conflict, and how is it resolved?
Emotion and Sentiment Analysis What emotions do the characters express during the video? How does the video make you feel overall?
Global Appearance Describe changes in characters’ appearances throughout the video, including any noticeable outfit changes.
Linking Events Explain how an early event in the video influences later developments.

obtained from 13 task-specific instructions from multimodal instruction-tuned video models. Banded173

ridge regression optimizes a different regularization hyperparameter per feature space, and decom-174

poses the explained variance over feature spaces. This decomposition helps in identifying which175

task-specific instruction contributes most to the explainable variance in different brain regions.176

Overall, banded ridge regression helps to accurately identify the contribution of each task-specific177

instruction, leading to better prediction accuracy and better interpretability. We employ z-score178

thresholding separately for both input stimulus representations and brain recordings for training and179

test datasets. For each subject, we account for the delay in the hemodynamic response by modeling180

hemodynamic response function using a finite response filter (FIR) per voxel with 5 temporal delays181

(TRs) corresponding to ∼7.5 seconds (Huth et al., 2022). Formally, at each time step t, we encode182

the stimuli as Xt ∈ RD and brain region voxels Yt ∈ RV , where D denotes the dimension of the183

concatenation of delayed 5 TRs, and V denotes the number of voxels. Overall, with N such TRs, we184

obtain N training examples. Detailed hyper-parameter settings are in Appendix F.185

Evaluation metrics. We evaluate our models using Pearson Correlation (PC), which is a standard186

metric for evaluating brain alignment (Jain & Huth, 2018; Schrimpf et al., 2021; Goldstein et al., 2022).187

Let TR be the number of time repetitions in the test set. Let Y = {Yi}TR
i=1 and Ŷ = {Ŷi}TR

i=1 denote188

the actual and predicted value vectors for a single voxel, respectively. Thus, Y and Ŷ ∈ RTR. We use189

PC to compute the correlation function, corr(Y, Ŷ ). The final measure of a model’s performance is190

obtained by calculating Pearson’s correlation between the model’s predictions and neural recordings.191

To quantify the model predictions, the resulting model prediction correlations are divided by the192

estimated cross-subject prediction accuracy; and averaged across voxels, regions, and participants,193

resulting in a standardized measure of performance referred to as normalized brain alignment. For194

calculating normalized alignment, we select the voxels with cross-subject prediction accuracy ≥ 0.05.195

4 Results196

4.1 Representations From Instruction-tuned Video MLLMs Align Well With Human Brain197

Activity Across Whole Brain, Language, Visual And Auditory Regions198

First, we examine the brain alignment by measuring the degree of brain predictivity using rep-199

resentations extracted from instruction-tuned video MLLMs, focusing on whole brain, language,200

visual and auditory regions. For each instruction-tuned MLLM, we calculate the average normalized201

brain alignment across 13 tasks, multiple subjects, and best MLLM layer, using the Movie10 fMRI202

dataset. Similarly, for instruction-tuned Audio MLLMs, we calculate the average normalized brain203

alignment across five tasks, multiple subjects, and best MLLM layer. Additionally, we report the204

brain alignment performance of non-instruction-tuned multimodal model (TVLT) and unimodal205

video model (VideoMAE) and unimodal audio model (AST). We treat the non-instruction-tuned206

multimodal models and unimodal models (audio and video) as the baselines when comparing against207

the instruction-tuned MLLMs.208

Whole brain analysis. Fig. 2 (a) shows the results for whole brain analysis. We make the following209

observations: (i) At the whole-brain level, the Wilcoxon signed-rank test reveals that the differences in210

brain alignment between instruction-tuned video MLLMs and the non-instruction-tuned multimodal211

and unimodal models are statistically significant. In particular, all instruction-tuned video MLLMs212

achieve over 15% improvement in brain alignment compared to the baselines. This contrasts with prior213

findings on instruction-tuned image-based MLLMs, which demonstrated comparable performance214
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Figure 2: Average normalized brain alignment of instruction-tuned video MLLMs vs instruction-
tuned audio MLLMs vs multimodal and unimodal models across whole brain, language, visual and
auditory regions. Error bars indicate the standard error of the mean across participants. ∗ implies that
instruction-tuned MLLM embeddings are significantly better than multimodal models and ∧ means
that instruction-tuned MLLM embeddings are significantly better unimodal models with p≤ 0.05.

to multimodal models when evaluated on unimodal image stimuli (Oota et al., 2025a), suggesting215

that instruction-tuned video MLLMs are more effective at capturing brain-relevant representations.216

(ii) The instruction-tuned audio MLLM embeddings are not significant and shown less alignment217

compared to non instruction-tuned multimodal and unimodal video models. These findings imply that218

instruction-tuned video MLLM models capture brain-relevant representations and contain additional219

information beyond the non-instruction-tuned multimodal and unimodal models.220

Language, visual and auditory region analysis. We also present the average normalized brain221

alignment across language, visual and auditory regions in Fig. 2 (b, c and d). The results from222

Wilcoxon signed-rank test is consistent with whole-brain performance both in the language and visual223

regions i.e instruction-tuned video MLLM embeddings exhibit significantly higher alignment in224

both language and visual regions compared to non-instruction-tuned multimodal, unimodal video,225

and audio models. On the other hand, instruction-tuned audio MLLM embeddings show significant226

alignment primarily in the auditory cortex and the middle frontal gyrus (MFG); when compared to227

non-instruction-tuned multimodal and unimodal models. Results for detailed language, visual and228

auditory sub-regions are shown in Fig. 8 and 9 in Appendix H.229

These results suggest that instruction-tuned video MLLMs more effectively capture brain-relevant230

multimodal representations, particularly when processing naturalistic multimodal stimuli.231

Additionally, we present contrast of brainmaps to display the average normalized brain alignment232

across voxels for the instruction-tuned video MLLMs versus the non-instruction-tuned multimodal233

TVLT in Figs. 10, 11, 12, and 13 in Appendix I. The results show that instruction-tuned video MLLMs234

consistently achieve significantly higher alignment across all brain voxels. However, Figs. 14 and 15235

in Appendix I reveal clear differences between audio MLLMs and multimodal models: the prediction236

performance of audio MLLMs lacks brain-relevant semantic information compared to multimodal237

models.238

4.2 Instruction-tuned Video And Audio MLLMs Successfully Differentiate Task-specific239

Instructions240

To investigate which instructions are more effective in predicting brain activity and whether241

instruction-tuned MLLMs differentiate task-specific representations and provide clear separation in242

brain regions, we analyze the voxels as follows. For each voxel, we select the instruction that results243

in the highest normalized brain alignment and apply the instruction-specific color code to the voxel.244

Instruction-tuned video MLLMs. Fig. 3 (left) shows brain maps for Qwen-2.5-VL for video tasks245

for average normalized brain predictivity across subjects where the voxel color codes are projected246

onto the flattened cortical surface of the ‘fsaverage’ subject. The color-scheme corresponding to each247

instruction is also reported. We make the following observations: (i) Video understanding exhibits248

the strongest alignment across the whole brain. (ii) Tasks such as spatial understanding, narrative249

understanding, and visual question answering show higher alignment in language-related regions,250

including the angular gyrus, posterior temporal lobe, and visual regions. (iii) Higher-order language251

regions in the frontal cortex are predominantly identified by the video understanding task, with a252

smaller proportion of voxels also activated by video reasoning and temporal ordering tasks.253

These findings suggest that instruction-tuned video MLLMs not only capture modality-specific254

representations (e.g., visual, linguistic), but also encode task-specific instructions involving semantic255
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Figure 3: Each voxel is color-coded with the instruction that led to the highest normalized brain
alignment. The color bar highlights color codes for each instruction. The voxels are projected onto
the flattened cortical surface of the ‘fsaverage’ subject. (Left): video MLLM (Qwen-2.5-VL). (Right):
audio MLLM (Qwen-2.5-Audio).

integration and event structure (like video understanding). This highlights that these models can256

encode complex neural patterns. We observe similar performance gains in other instruction-tuned257

video MLLMs, flatmaps showing task-specific encoding performance for average of subjects are258

shown in Figs. 16 and 17 in Appendix J.259

Instruction-tuned audio MLLMs. Fig. 3 (right) shows brainmap for audio instruction-tuned MLLM260

(Qwen-2.5-Audio) where the predictions are average across subjects. Here, the voxel color codes261

are projected onto the flattened cortical surface of the ‘fsaverage’ subject. The figure shows a clear262

distinction between different audio tasks. Audio captioning and sound detection are mainly aligned263

with the auditory cortex (AC), while audio understanding activates higher-level regions like the264

inferior temporal (IT) cortex and inferior frontal gyrus (IFG). In contrast, speaker identification shows265

very sparse and scattered alignment, with some unexpected activation in the primary visual cortex266

(V1), suggesting it does not strongly reflect brain-relevant semantic processing. Fig. 18 in Appendix J267

shows similar brainmap for Kimi-Audio.268

Instruction-tuned MLLMs capture layer-wise cortical hierarchy. Inspired from previous literature269

(Namburi et al., 2023; Mitchell et al., 2022) which shows that Transformers process information270

differently across layers, we examine whether instruction-tuned MLLMs reflect the brain’s hierarchy271

of information processing across layers by analyzing the voxels as follows. For each voxel, we272

select the layer that results in the highest normalized brain alignment and apply a color code for the273

29/33 layers for each MLLM. Fig. 4 presents brain maps for the Qwen-2.5-VL & Qwen-2.5-Audio,274

where the voxels with their corresponding color codes are projected onto the flattened cortical surface275

of the ‘fsaverage’ subject. We make the following observations: (i) Early sensory areas-including276

early visual regions and early auditory cortex-are best aligned with the lower layers of the model,277

suggesting that shallow model representations capture low-level sensory features. (ii) High-level278

visual areas such as the lateral occipital complex (LOC) and parahippocampal place area (PPA), as279

well as language-related regions like the superior temporal sulcus and angular gyrus, show stronger280

alignment with the middle to deeper layers of the model. This reflects the model’s progression toward281

more abstract and semantically rich representations. (iii) Notably, language-related areas such as282

the inferior frontal gyrus (IFG), anterior temporal lobe (ATL), and angular gyrus show strongest283

alignment with the deepest layers of the model. These results indicate that instruction-tuned MLLMs284

naturally develop a layered structure that maps well onto the brain’s own representational hierarchy.285

Similar brain maps for the remaining models are provided in Fig. 19 in Appendix K.286

4.3 Representations from instruction-tuned video MLLMs for semantic task groups reveal287

distinct cognitive and neural profiles288

To further examine how instruction-tuned video MLLMs generate task-specific representations and289

reveal functional specialization in the brain, we group the 13 video tasks into 5 cognitively grounded290

categories: Perceptual visual processing, Cognitive reasoning and integration, Spatiotemporal un-291

derstanding, Language and narrative understanding, and Social and affective understanding. Fig. 5292

illustrates that this grouping captures meaningful distinctions.293

Tasks in the Language and narrative understanding group show broader and denser cortical engage-294

ment, particularly across the temporal and parietal cortices, compared to visual and frontal regions.295

In particular, we observe strong activity in the bilateral temporal lobes for narrative understanding, as296
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(a) Qwen-2.5-VL (b) Qwen-2.5-Audio
Figure 4: (a) Qwen-2.5-VL and (b) Qwen-2.5-Audio (layer-wise alignment): Each voxel is color
coded with the MLLM layer number (out of 29) that led to the highest normalized brain alignment.
The color bar highlights color codes for each layer. The voxels are projected onto the flattened cortical
surface of average across subjects on ‘fsaverage’ surface.

Figure 5: Semantic Task Group Analysis: Each voxel is color coded with the task instruction that led
to the highest normalized brain alignment. The color bar highlights color codes for each instruction.
The voxels are projected onto the flattened cortical surface averaged across all subjects for video
MLLM (Qwen-2.5-VL). While this plot shows brain maps for 3 groups, brain maps for remaining 2
task groups are in Fig. 20 in Appendix L.

well as in the angular gyrus, posterior superior temporal sulcus (pSTS), and posterior cingulate cortex297

(PCC) regions known to support multimodal integration, which is critical for narrative comprehension.298

This is aligned with previous work (Mar, 2011; Baldassano et al., 2017).299

Spatiotemporal understanding. Temporal ordering elicits more widespread activation in the angular300

gyrus and posterior temporal lobe, whereas spatial understanding shows stronger engagement in301

the dorsal parietal cortex and anterior temporal lobe (Zacks et al., 2007; Baldassano et al., 2017).302

Additionally, we observe that early visual areas are more active during the spatial understanding task,303

whereas early auditory cortex shows higher activity in the temporal ordering task, likely due to its role304

in processing sound-based events (Belin et al., 2000). However, the brain does not strictly separate305

spatial and temporal processing. These representations often co-exist, particularly in narrative and306

event-based cognition.307

Cognitive Reasoning. Commonsense reasoning elicits widespread activation in the temporal cortex,308

angular gyrus, and higher-order visual regions, reflecting its reliance on semantic processing and309

world knowledge. In contrast, video reasoning shows strong alignment with early visual areas (V1,310

V2, V3), indicating a greater dependence on visual perception and motion processing. Linking events311

tasks activate the early auditory cortex and show more distributed engagement of anterior temporal312

lobe (involved in word-level semantics), inferior frontal gyrus, and angular gyrus, highlighting the313

integration of temporal, linguistic, and episodic information necessary for narrative comprehension.314

These results demonstrate that different forms of higher-order reasoning highlights the brain’s flexible315

organization for supporting diverse reasoning demands across modalities and timescales.316

Similarly, we observe task-specific differences in brain regions for perceptual visual processing, and317

affective social processing (Appendix L). These patterns underscore the ability of instruction-tuned318

MLLMs to modulate their representations based on distinct cognitive demands reflected in the brain.319

4.4 Partitioning explained shared and unique variance between task-specific instructions320

While the previous analysis reveals that task-specific instructions from MLLMs modulate their321

representations based on distinct cognitive demands, we further examine the representations of task-322

specific instructions to measure the overlap in brain variance explained by MLLMs. To accomplish323

this we use variance partitioning approach discussed in Appendix M.324

Fig. 22 presents Venn diagrams for the whole brain, language and visual regions, depicting shared325

and unique variance across these regions between narrative understanding and other task instructions.326
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Similarly, we performed this analysis for all pairs from the 13 tasks and show results in Table 13 in327

Appendix M. Across nearly all task pairs, the whole brain region consistently exhibits the highest328

shared variance. Tasks that are conceptually or functionally related exhibit high shared variance in329

all regions, indicating similar cognitive processing demands. Higher-level semantic and reasoning330

tasks (e.g., Narrative Understanding, Commonsense Reasoning, Temporal Ordering) show increased331

unique variance in the language network, indicating language-specific processing distinct from visual332

features. High visual load tasks (e.g., Action Recognition, Object and Scene Recognition, Global333

Appearance) contribute more uniquely in visual cortex, especially when paired with non-visual tasks.334

5 Discussion and Conclusion335

Using instruction-tuned representations from both video and audio MLLMs for various task-specific336

instructions, we evaluated how well these representations predict fMRI brain activity when partici-337

pants viewed naturalistic movies (video included with audio). Additionally, we compared different338

video and audio MLLMs’ representations, assessing their alignment with each instruction across339

whole brain, language, visual and auditory regions. We show that instruction-tuned video MLLMs340

exhibit significantly better brain alignment than audio MLLMs, vision-only, audio-only, and non-341

instruction-tuned multimodal models.342

Our study on instruction-tuned MLLMs and their alignment with multimodal stimuli yields several343

key findings: (1) Although instruction-tuned video MLLMs demonstrate strong brain alignment344

across the whole brain (including language, visual, and auditory regions) audio MLLMs show345

effective alignment primarily in auditory and language-related areas such as the middle frontal gyrus346

(MFG). This highlights the potential of instruction-tuned audio MLLMs to capture different features347

relevant to auditory processing, providing information on the function of the auditory cortex similar to348

those observed in previous studies (Oota et al., 2024a, 2025b). However, their performance remains349

comparable to non-instruction-tuned multimodal models, indicating that further improvements are350

needed for instruction-tuned audio MLLMs to fully capture brain-relevant representations – an351

effort that aligns with recent work on inducing brain-relevant biases in model design (Moussa et al.,352

2025; Vattikonda et al., 2025). (2) The surprising effectiveness of task-specific instructions in353

predicting multimodal brain activity across different regions points out that both video and audio354

MLLMs generate distinct task-specific representations. These representations enable the models to355

effectively differentiate functional processing across brain regions, unlike prior work by Oota et al.356

(2025a), which did not observe such differentiation when using unimodal stimuli (e.g., static images).357

Specifically, certain audio instructions, such as audio captioning and audio understanding, show358

stronger alignment with language-related regions, while tasks such as sound event detection better359

align with the auditory cortex and temporal lobe. These findings imply that instruction-tuned MLLMs360

offer a powerful framework for designing controlled stimuli by a systematic manipulation of task361

goals through instructions, allowing researchers to isolate and examine task-specific brain responses362

using the same input. (3) By grouping task-specific instructions into functional categories, we find that363

narrative understanding consistently engages the bilateral temporal lobes, angular gyrus, and posterior364

cingulate cortex which are regions known for multimodal integration. Temporal ordering tasks elicit365

stronger responses in the angular gyrus and posterior temporal lobe, while spatial understanding366

activates the dorsal parietal cortex. These findings highlight the potential of instruction-tuned video367

MLLMs as powerful tools for probing functional specialization in the brain, offering a structured and368

interpretable framework for mapping high-level cognitive processes to specific neural substrates. (4)369

The observed correspondence between instruction-tuned MLLM layers and the brain’s functional370

hierarchy suggests that these models inherently develop structured, brain-like representations, ranging371

from early sensory information processing in shallow layers to abstract semantic processing in372

deeper layers. This layered alignment not only enhances their interpretability but also highlights373

their potential as tools for investigating how the brain encodes and organizes complex, task-driven374

information.375

Our findings also clearly show that despite the growing popularity of instruction-tuned video and376

audio MLLMs in handling generic task instructions, we are still far from fully interpreting how377

language-based instructions guide information flow through model layers and how fine-grained378

details are processed across layers to achieve brain-like representations. Future work should focus379

on leveraging the alignment strengths of these models using more fine-grained instruction-driven380

prompts, similar to controlled stimulus paradigms in neuroscience, to deepen our understanding of381

functional specialization in the brain. Lastly, we discuss limitations of our work in Appendix N.382
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reviewers as grounds for rejection, a worse outcome might be that reviewers discover624

limitations that aren’t acknowledged in the paper. The authors should use their best625

judgment and recognize that individual actions in favor of transparency play an impor-626

tant role in developing norms that preserve the integrity of the community. Reviewers627

will be specifically instructed to not penalize honesty concerning limitations.628

3. Theory assumptions and proofs629

Question: For each theoretical result, does the paper provide the full set of assumptions and630

a complete (and correct) proof?631

Answer: [NA]632
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Justification: This paper do not introduce any theortical proofs or formulas.633

Guidelines:634

• The answer NA means that the paper does not include theoretical results.635

• All the theorems, formulas, and proofs in the paper should be numbered and cross-636

referenced.637

• All assumptions should be clearly stated or referenced in the statement of any theorems.638

• The proofs can either appear in the main paper or the supplemental material, but if639

they appear in the supplemental material, the authors are encouraged to provide a short640

proof sketch to provide intuition.641

• Inversely, any informal proof provided in the core of the paper should be complemented642

by formal proofs provided in appendix or supplemental material.643

• Theorems and Lemmas that the proof relies upon should be properly referenced.644

4. Experimental result reproducibility645

Question: Does the paper fully disclose all the information needed to reproduce the main ex-646

perimental results of the paper to the extent that it affects the main claims and/or conclusions647

of the paper (regardless of whether the code and data are provided or not)?648

Answer: [Yes]649

Justification: Appendix Section F provides complete details about GPU configurations used,650

model parameters used in voxelwise encoding model.651

Guidelines:652

• The answer NA means that the paper does not include experiments.653

• If the paper includes experiments, a No answer to this question will not be perceived654

well by the reviewers: Making the paper reproducible is important, regardless of655

whether the code and data are provided or not.656

• If the contribution is a dataset and/or model, the authors should describe the steps taken657

to make their results reproducible or verifiable.658

• Depending on the contribution, reproducibility can be accomplished in various ways.659

For example, if the contribution is a novel architecture, describing the architecture fully660

might suffice, or if the contribution is a specific model and empirical evaluation, it may661

be necessary to either make it possible for others to replicate the model with the same662

dataset, or provide access to the model. In general. releasing code and data is often663

one good way to accomplish this, but reproducibility can also be provided via detailed664

instructions for how to replicate the results, access to a hosted model (e.g., in the case665

of a large language model), releasing of a model checkpoint, or other means that are666

appropriate to the research performed.667

• While NeurIPS does not require releasing code, the conference does require all submis-668

sions to provide some reasonable avenue for reproducibility, which may depend on the669

nature of the contribution. For example670

(a) If the contribution is primarily a new algorithm, the paper should make it clear how671

to reproduce that algorithm.672

(b) If the contribution is primarily a new model architecture, the paper should describe673

the architecture clearly and fully.674

(c) If the contribution is a new model (e.g., a large language model), then there should675

either be a way to access this model for reproducing the results or a way to reproduce676

the model (e.g., with an open-source dataset or instructions for how to construct677

the dataset).678

(d) We recognize that reproducibility may be tricky in some cases, in which case679

authors are welcome to describe the particular way they provide for reproducibility.680

In the case of closed-source models, it may be that access to the model is limited in681

some way (e.g., to registered users), but it should be possible for other researchers682

to have some path to reproducing or verifying the results.683

5. Open access to data and code684

Question: Does the paper provide open access to the data and code, with sufficient instruc-685

tions to faithfully reproduce the main experimental results, as described in supplemental686

material?687
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Answer: [No]688

Justification: We will release our code upon publication of this paper. We do not create any689

new dataset and used publicly available opensoure dataset.690

Guidelines:691

• The answer NA means that paper does not include experiments requiring code.692

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/693

public/guides/CodeSubmissionPolicy) for more details.694

• While we encourage the release of code and data, we understand that this might not be695

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not696

including code, unless this is central to the contribution (e.g., for a new open-source697

benchmark).698

• The instructions should contain the exact command and environment needed to run to699

reproduce the results. See the NeurIPS code and data submission guidelines (https:700

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.701

• The authors should provide instructions on data access and preparation, including how702

to access the raw data, preprocessed data, intermediate data, and generated data, etc.703

• The authors should provide scripts to reproduce all experimental results for the new704

proposed method and baselines. If only a subset of experiments are reproducible, they705

should state which ones are omitted from the script and why.706

• At submission time, to preserve anonymity, the authors should release anonymized707

versions (if applicable).708

• Providing as much information as possible in supplemental material (appended to the709

paper) is recommended, but including URLs to data and code is permitted.710

6. Experimental setting/details711

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-712

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the713

results?714

Answer: [Yes]715

Justification: Section 3 and Appendix Sec F provide complete details about train-test setup,716

model hyperparamters.717

Guidelines:718

• The answer NA means that the paper does not include experiments.719

• The experimental setting should be presented in the core of the paper to a level of detail720

that is necessary to appreciate the results and make sense of them.721

• The full details can be provided either with the code, in appendix, or as supplemental722

material.723

7. Experiment statistical significance724

Question: Does the paper report error bars suitably and correctly defined or other appropriate725

information about the statistical significance of the experiments?726

Answer: [Yes]727

Justification: Appendix Section G presents detailed statistical analysis and also Section 5.1728

reports all results using Wilcoxon test.729

Guidelines:730

• The answer NA means that the paper does not include experiments.731

• The authors should answer "Yes" if the results are accompanied by error bars, confi-732

dence intervals, or statistical significance tests, at least for the experiments that support733

the main claims of the paper.734

• The factors of variability that the error bars are capturing should be clearly stated (for735

example, train/test split, initialization, random drawing of some parameter, or overall736

run with given experimental conditions).737

• The method for calculating the error bars should be explained (closed form formula,738

call to a library function, bootstrap, etc.)739
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• The assumptions made should be given (e.g., Normally distributed errors).740

• It should be clear whether the error bar is the standard deviation or the standard error741

of the mean.742

• It is OK to report 1-sigma error bars, but one should state it. The authors should743

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis744

of Normality of errors is not verified.745

• For asymmetric distributions, the authors should be careful not to show in tables or746

figures symmetric error bars that would yield results that are out of range (e.g. negative747

error rates).748

• If error bars are reported in tables or plots, The authors should explain in the text how749

they were calculated and reference the corresponding figures or tables in the text.750

8. Experiments compute resources751

Question: For each experiment, does the paper provide sufficient information on the com-752

puter resources (type of compute workers, memory, time of execution) needed to reproduce753

the experiments?754

Answer: [Yes]755

Justification: Appendix Section F provides complete details about GPU configurations used,756

each GPU memory size, and time for extracting representations.757

Guidelines:758

• The answer NA means that the paper does not include experiments.759

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,760

or cloud provider, including relevant memory and storage.761

• The paper should provide the amount of compute required for each of the individual762

experimental runs as well as estimate the total compute.763

• The paper should disclose whether the full research project required more compute764

than the experiments reported in the paper (e.g., preliminary or failed experiments that765

didn’t make it into the paper).766

9. Code of ethics767

Question: Does the research conducted in the paper conform, in every respect, with the768

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?769

Answer: [Yes]770

Justification: The research conducted in this paper fully conforms with the NeurIPS Code of771

Ethics in every respect.772

Guidelines:773

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.774

• If the authors answer No, they should explain the special circumstances that require a775

deviation from the Code of Ethics.776

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-777

eration due to laws or regulations in their jurisdiction).778

10. Broader impacts779

Question: Does the paper discuss both potential positive societal impacts and negative780

societal impacts of the work performed?781

Answer: [Yes]782

Justification: The paper explores how the advancements and applications of our findings783

could benefit society in terms of computational neuroscience research by specifically inves-784

tigating the effectiveness of the current state-of-the-art instruction-tuned video and audio785

MLLMs in encoding multimodal brain activity.786

Guidelines:787

• The answer NA means that there is no societal impact of the work performed.788

• If the authors answer NA or No, they should explain why their work has no societal789

impact or why the paper does not address societal impact.790
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• Examples of negative societal impacts include potential malicious or unintended uses791

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations792

(e.g., deployment of technologies that could make decisions that unfairly impact specific793

groups), privacy considerations, and security considerations.794

• The conference expects that many papers will be foundational research and not tied795

to particular applications, let alone deployments. However, if there is a direct path to796

any negative applications, the authors should point it out. For example, it is legitimate797

to point out that an improvement in the quality of generative models could be used to798

generate deepfakes for disinformation. On the other hand, it is not needed to point out799

that a generic algorithm for optimizing neural networks could enable people to train800

models that generate Deepfakes faster.801

• The authors should consider possible harms that could arise when the technology is802

being used as intended and functioning correctly, harms that could arise when the803

technology is being used as intended but gives incorrect results, and harms following804

from (intentional or unintentional) misuse of the technology.805

• If there are negative societal impacts, the authors could also discuss possible mitigation806

strategies (e.g., gated release of models, providing defenses in addition to attacks,807

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from808

feedback over time, improving the efficiency and accessibility of ML).809

11. Safeguards810

Question: Does the paper describe safeguards that have been put in place for responsible811

release of data or models that have a high risk for misuse (e.g., pretrained language models,812

image generators, or scraped datasets)?813

Answer: [NA]814

Justification: Our research does not pose any risks for misuse.815

Guidelines:816

• The answer NA means that the paper poses no such risks.817

• Released models that have a high risk for misuse or dual-use should be released with818

necessary safeguards to allow for controlled use of the model, for example by requiring819

that users adhere to usage guidelines or restrictions to access the model or implementing820

safety filters.821

• Datasets that have been scraped from the Internet could pose safety risks. The authors822

should describe how they avoided releasing unsafe images.823

• We recognize that providing effective safeguards is challenging, and many papers do824

not require this, but we encourage authors to take this into account and make a best825

faith effort.826

12. Licenses for existing assets827

Question: Are the creators or original owners of assets (e.g., code, data, models), used in828

the paper, properly credited and are the license and terms of use explicitly mentioned and829

properly respected?830

Answer: [Yes]831

Justification: We have explicitly cited the datasets, code and models used.832

Guidelines:833

• The answer NA means that the paper does not use existing assets.834

• The authors should cite the original paper that produced the code package or dataset.835

• The authors should state which version of the asset is used and, if possible, include a836

URL.837

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.838

• For scraped data from a particular source (e.g., website), the copyright and terms of839

service of that source should be provided.840

• If assets are released, the license, copyright information, and terms of use in the841

package should be provided. For popular datasets, paperswithcode.com/datasets842

has curated licenses for some datasets. Their licensing guide can help determine the843

license of a dataset.844
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• For existing datasets that are re-packaged, both the original license and the license of845

the derived asset (if it has changed) should be provided.846

• If this information is not available online, the authors are encouraged to reach out to847

the asset’s creators.848

13. New assets849

Question: Are new assets introduced in the paper well documented and is the documentation850

provided alongside the assets?851

Answer: [NA]852

Justification: We will try to opensource the code and provide complete documentation for853

our assets upon acceptance.854

Guidelines:855

• The answer NA means that the paper does not release new assets.856

• Researchers should communicate the details of the dataset/code/model as part of their857

submissions via structured templates. This includes details about training, license,858

limitations, etc.859

• The paper should discuss whether and how consent was obtained from people whose860

asset is used.861

• At submission time, remember to anonymize your assets (if applicable). You can either862

create an anonymized URL or include an anonymized zip file.863

14. Crowdsourcing and research with human subjects864

Question: For crowdsourcing experiments and research with human subjects, does the paper865

include the full text of instructions given to participants and screenshots, if applicable, as866

well as details about compensation (if any)?867

Answer: [NA]868

Justification: We do not collect or annotate any new dataset in this paper.869

Guidelines:870

• The answer NA means that the paper does not involve crowdsourcing nor research with871

human subjects.872

• Including this information in the supplemental material is fine, but if the main contribu-873

tion of the paper involves human subjects, then as much detail as possible should be874

included in the main paper.875

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,876

or other labor should be paid at least the minimum wage in the country of the data877

collector.878

15. Institutional review board (IRB) approvals or equivalent for research with human879

subjects880

Question: Does the paper describe potential risks incurred by study participants, whether881

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)882

approvals (or an equivalent approval/review based on the requirements of your country or883

institution) were obtained?884

Answer: [NA]885

Justification: We do not collect any new data in this paper, and we use publicly available886

opensoure dataset as discussed in Section 2.1.887

Guidelines:888

• The answer NA means that the paper does not involve crowdsourcing nor research with889

human subjects.890

• Depending on the country in which research is conducted, IRB approval (or equivalent)891

may be required for any human subjects research. If you obtained IRB approval, you892

should clearly state this in the paper.893

• We recognize that the procedures for this may vary significantly between institutions894

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the895

guidelines for their institution.896
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• For initial submissions, do not include any information that would break anonymity (if897

applicable), such as the institution conducting the review.898

16. Declaration of LLM usage899

Question: Does the paper describe the usage of LLMs if it is an important, original, or900

non-standard component of the core methods in this research? Note that if the LLM is used901

only for writing, editing, or formatting purposes and does not impact the core methodology,902

scientific rigorousness, or originality of the research, declaration is not required.903

Answer: [Yes]904

Justification: We have used LLM only for grammar correction.905

Guidelines:906

• The answer NA means that the core method development in this research does not907

involve LLMs as any important, original, or non-standard components.908

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)909

for what should or should not be described.910
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Overview of Appendix Sections911

• Appendix A: Overview of multimodal model evaluation settings in brain encoding studies912

• Appendix B: Related work913

• Appendix C: Detailed sub-ROIs of language, visual and auditory regions914

• Appendix D: Cross-subject prediction accuracy915

• Appendix E: Model generated outputs across instructions916

• Appendix F: Implementation details for reproducibility917

• Appendix G: Statistical Significance918

• Appendix H: Effectiveness of instruction-tuned video MLLMs vs audio MLLMs vs multi-919

modal vs unimodal representations for various brain regions920

• Appendix I: Contrasting Instruction-tuned video MLLMs with non-instruction-tuned multi-921

modal922

• Appendix J: Brain Maps for Task-specific instructions923

• Appendix K: Brain Maps showing Layer-wise Details for Video Instruction-based MLLMs924

• Appendix L: Details of Semantic Task Group Analysis925

• Appendix M: Details of explained variance partitioning926

• Appendix N: Limitations927

A Overview of multimodal model evaluation settings in brain encoding928

studies929

Table 4: Overview of multimodal model evaluation settings in brain encoding studies.

Study Model Type Stimulus Modality Brain
Data

Dataset Instruction-Tuned

Doerig et al. (2022) Vision-Language (CLIP) Unimodal (Images) fMRI NSD ✗
Wang et al. (2023) Vision-Language (CLIP) Unimodal (Images) fMRI NSD ✗
Oota et al. (2022b) Vision-Language (CLIP, Vi-

sualBERT, LXMERT)
Unimodal (Images) fMRI BOLD5000 ✗

Popham et al. (2021) Vision-Only CNNs vs.
Vision-Language

Unimodal (Silent Videos) fMRI Gallant lab short
video clips

✗

Tang et al. (2022) non-instruction-tuned multi-
modal model (BridgeTower)

Unimodal (Silent Videos),
Unimodal (listening stories)

fMRI Gallant lab short
video clips

✗

Oota et al. (2025a) Instruction-tuned Im-
age+Text MLLMs

Unimodal (Images) fMRI NSD ✓

Sartzetaki et al. (2024) Image Recognition models,
Action recognition models

Unimodal (Visual) fMRI Bold Moments
Dataset

✗

Nakagi et al. (2024) Language models (BERT,
GPT-2, Lllama2, OPT)

Multimodal (Videos with au-
dio)

fMRI 8.3 hours of video
dataset

✗

Subramaniam et al.
(2024)

non-instruction-tuned multi-
modal models (SLIP-CLIP,
SimCLR, BLIP, BEIT)

Image frame-text pairs
(Movies)

SEEG AMMT ✗

Dong & Toneva (2023a) non-instruction-tuned mul-
timodal models (Merlore-
serve)

Multimodal (Movies: Videos
with audio)

fMRI Neuromod Friends
dataset

✗

Oota et al. (2025b) non-instruction-tuned multi-
modal models (TVLT and
ImageBind)

Multimodal (Movies: Videos
with audio)

fMRI Neuromod Movie10 ✗

Our study instruction-tuned video and
audio MLLMs

Multimodal (Movies: Videos
with audio)

fMRI Neuromod Movie10 ✓

B Related work930

Brain encoding using multimodal models. Our work is closely related to that of Conwell et al.931

(2022); Wang et al. (2023); Doerig et al. (2022); Tang et al. (2024); Nakagi et al. (2024); Dong932

& Toneva (2023b); Oota et al. (2025b), who proposed using multimodal model representations to933

study the contribution of brain alignment in unimodal and multimodal stimuli. The majority of934

brain encoding studies in using multimodal models focused on a single modality of input – vision935

alone (Conwell et al., 2022; Wang et al., 2023; Doerig et al., 2022; Wang et al., 2023; Tang et al.,936
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2024; Nakagi et al., 2024). Recently, Dong & Toneva (2023b); Oota et al. (2022b) interpreted937

the effectiveness of multimodal Transformer language models in multimodal naturalistic stimuli.938

However, these studies focus on pretrained multimodal models which are not generic to tasks and939

lack the investigation of recent instruction-tuned models.940

Task-based brain alignment. Our work is also closely related to that of Wang et al. (2019); Oota et al.941

(2022a); Aw & Toneva (2023); Sun et al. (2023) and Aw et al. (2023), who propose using task-specific942

model representations to study the contribution of individual tasks to brain alignment. Wang et al.943

(2019) investigated 21 computer vision tasks to explore which vision tasks are more aligned with944

the brain while subjects engaged in viewing passive images. Similarly, Oota et al. (2022a) and Sun945

et al. (2023) explored 10 GLUE NLP tasks to study which NLP tasks are more brain-aligned during946

reading and listening to stories. More recent work by Aw et al. (2023) uses instruction-tuned LLMs947

to investigate the effect of natural language instruction model representations on brain alignment948

across layers for language comprehension. Further, Oota et al. (2025a) use instruction-tuned MLLMs949

(image+text), using natural language instructions across diverse vision tasks to analyze their alignment950

with brain activity across layers during visual processing. However, these studies primarily focused951

on unimodal stimuli and thus do not fully capture the capabilities of multimodal instruction-tuned952

models under multimodal conditions. We complement these works by examining the impact of a953

wide range of instruction-tuned MLLMs—spanning video and audio-based models with text-based954

prompts—on their alignment with brain activity from multimodal stimuli.955

C Detailed sub-ROIs of language, visual and auditory regions956

The data covers seven brain regions of interest (ROIs) in the human brain with the following sub-957

divisions: (i) early visual (EV: V1, V2, V3, V3B, and V4); (ii) object-related areas (LO1 and LO2);958

(iii) face-related areas (OFA), (iv) scene-related areas (PPA), (v) middle temporal (MT: MT, MST,959

LO3, FST and V3CD), (vi) late language regions, encompassing broader language regions: angular960

gyrus (AG: PFm, PGs, PGi, TPOJ2, TPOJ3), lateral temporal cortex (LTC: STSda, STSva, STGa,961

TE1a, TE2a, TGv, TGd, A5, STSdp, STSvp, PSL, STV, TPOJ1), inferior frontal gyrus (IFG: 44, 45,962

IFJa, IFSp) and middle frontal gyrus (MFG: 55b) (Baker et al., 2018; Milton et al., 2021; Desai et al.,963

2023).964

Figure 6: Flattened cortical surfaces for language-, visual- and auditory-selective regions displayed
on the ‘fsaverage’ surface, used as the mask for all participants.

D Cross-subject prediction accuracy965

We follow the method introduced by Schrimpf et al. (2021) to estimate how well brain activity in966

one individual can be predicted from others, using the Movie10 fMRI dataset. Starting with data967

from n participants (e.g., n = 4), for each subject s ∈ ([1,4]) is chosen as the prediction target and968

the other three are used to predict this target, we use a voxel-wise encoding model (see Sec. 3) to969

predict one participant’s response from others. For every combination, one participant was randomly970

chosen as the target, and the model was trained to predict their brain responses using data from971

the remaining s − 1 participants. This gave us an average prediction score (correlation) for each972

voxel at each participant. To extrapolate to infinitely many humans and thus to obtain the highest973
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possible (most conservative) estimate, as suggested by Schrimpf et al. (2020), we fit the equation974

v = v0 ×
(
1− e−

x
τ0

)
where x is each subsample’s number of participants, v is each subsample’s975

correlation score and v0 and τ0 are the fitted parameters. This fitting was performed for each sensor976

independently with 100 bootstraps each to estimate the variance where each bootstrap draws x and v977

with replacement. The final ceiling value was the median of the per-voxel ceilings v0.978

Fig. 7 shows the estimated cross-subject prediction accuracy for all four participants for the naturalistic979

movie watching. Pearson correlation scores for each voxel in each subject are projected onto the980

subject’s flattened cortical surface. The plots show that across all subjects higher activity is observed981

in the language and visual regions with a max correlation up to 0.4 implying that data has low noise982

and low cross-subject variability.983

(a) Subject-01

(a) Subject-02

(b) Subject-03

(c) Subject-05

Figure 7: Estimated cross-subject prediction accuracy for all four participants for the naturalistic
movie watching. Pearson correlation scores for each voxel in each subject are projected onto the
subject’s flattened cortical surface.
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E Model generated outputs across instructions984

Tables 5, 6, 7, 8, 9 and 10 show model generated outputs for a sample video from the Movie10 dataset985

using InstructBLIPVideo, Qwen-2.5-VL, Video-LLaVA, LLaVa-NeXT-Video, LLaVA-OneVision986

and VideoChat-R1 models, respectively. Similarly, Tables 11 and 12 show model generated outputs987

for a sample video from the Movie10 dataset using Qwen-2.5 Audio and Kimi-Audio models.988

Table 5: Outputs from InstructBLIPVideo for a sample clip from the Movie10 dataset.

Frame 1 Frame 3 Frame 8 Frame 13 Frame 16
Instruction Model Output
Action Recognition The main event captured in the video is a man sitting at a bar with a glass of beer, engaging in

conversation with another man. The man is wearing glasses and is sitting in a dining area, surrounded
by other people, possibly in a bar or restaurant. The scene also features a man wearing a towel, which
is wrapped around his neck.

Video Understanding In the scene, a man is sitting in a bar with a beer in his hand, engrossed in a conversation with another
man. The two men are sitting at a table, with one of them holding a glass of wine. There are multiple
bottles of beer visible in the background, placed on a table and around the bar area. A few other
people can also be seen in the scene, possibly patrons or other bar visitors, scattered around the bar and
interacting with the two main characters. The scene is set in a dimly lit environment with some lighting,
providing a relaxed atmosphere for the men’s conversation.

Visual Question Answering There are two people in the scene, one man and one woman. They are having a conversation at a bar,
sitting at a table, and drinking.

Video Captioning A man with glasses sitting at a table talking with another man.
Object and Scene Recognition In the scene, there is a man wearing glasses sitting in a bar, talking to another person, who is also sitting

in a chair next to him. The man is holding a glass of beer, while the other person is holding a cup.
Commonsense Reasoning The man is sitting in a bar with a glass of wine, engaging in conversation with another man, possibly

discussing something. This action could have motivated the man to take this step for various reasons.
It could be that he is seeking to socialize, share his thoughts or ideas, or simply engage in casual
conversation with a friend or acquaintance.

Spatial Understanding Restaurant
Temporal Ordering The scene depicted in the video shows a man sitting at a bar, engaging in a conversation with another

man. The man is wearing glasses and is holding a glass in his hand, which suggests that he is drinking
or holding a drink. They appear to be having a casual conversation, possibly discussing something of
interest or sharing a story.

Video reasoning In this video, there is an unusual scene where a man with glasses is having a conversation with another
man in a bar, and they are both holding glasses. This is an unusual scene because it is not a typical
social setting for two men to be having a conversation in a bar. They are sitting in a dark, dimly lit
environment, which adds to the unusual nature of their interaction.

Narrative Understanding The central conflict in the movie is the man sitting in a bar talking to another man, who is wearing
glasses. The man in the bar is having a conversation with another man, possibly discussing something
of interest. It is not specified what the topic of their conversation is, but it is likely related to the movie’s
storyline.

Emotion and Sentiment Analysis The video shows a man sitting at a bar with a friend, talking and having a conversation, which suggests
a social and relaxed atmosphere. The man is wearing glasses, and the scene is set in a dimly lit bar,
which creates a more intimate and cozy atmosphere.

Global Appearance Man with glasses and a towel
Linking Events The scene depicted in the image shows a man wearing glasses sitting at a bar, talking to another person,

possibly a friend, while holding a glass of beer. This early event sets the stage for the later development
of a story or a situation that may unfold in the video.

F Implementation details for reproducibility989

All feature extraction experiments were conducted on a machine equipped with an NVIDIA A100990

GPU with 80 GB of GPU RAM, partitioned into two devices of 40 GB each. The voxelwise encoding991

models were trained on NVIDIA GeForce RTX 3050 GPU with 4GB of GPU RAM. We used banded992

ridge-regression with the following parameters: MSE loss function; L2-decay (λ) varied from 10−1993

to 103; the best λ was chosen by tuning on validation data that comprised a randomly chosen 10%994

subset from the train set used only for hyper-parameter tuning.995
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Table 6: Outputs from Qwen-2.5-VL for a sample video from the Movie10 dataset.

Frame 1 Frame 3 Frame 8 Frame 13 Frame 16
Instruction Model Output
Action Recognition The video appears to be a still from a movie or a scene from a film. It shows two individuals engaged in

a conversation in what looks like a dimly lit bar or restaurant setting. The person on the left is wearing a
suit and tie, holding a drink, and seems to be listening intently. The person on the right is gesturing with
their hand, possibly emphasizing a point during the conversation. The atmosphere suggests a serious or
intense discussion.

Video Understanding The video depicts a scene from a movie or TV show, featuring two characters engaged in a conversation.
The character on the left is dressed in a formal gray suit with a patterned tie and is holding a cigarette in
his right hand. He appears to be listening intently to the other character, who is partially visible from
behind. The setting seems to be an indoor environment, possibly a bar or a similar establishment, as
suggested by the background elements such as a mirror and what looks like a bar counter.

Visual Question Answering There are two people in the scene. One person is sitting at a table, wearing a suit with a patterned tie,
and appears to be engaged in a conversation or interaction with another person who is partially visible
from behind. The second person is facing away from the camera, and their attire includes a plaid shirt.
The setting seems to be indoors, possibly in a bar or restaurant, given the background elements like the
glassware and the dim lighting.

Video Captioning A man in a suit is engaged in a conversation with another person in a dimly lit bar setting.
Object and Scene Recognition In the video, there are two main individuals and several objects: 1. The Man in the Suit: He is wearing

a brown suit with a white shirt and a red paisley tie. He has dark hair styled neatly and is holding a
glass of what appears to be a drink in his left hand. His expression seems serious or contemplative as
he looks at the other person. 2. The Other Person: Only the back of this individual’s head is visible,
suggesting they are facing away.

Commonsense Reasoning In the video, the character on the left appears to be in a conversation with another person whose back is
turned to the camera. The character’s hand is extended towards the other person, possibly gesturing
or pointing at something. This action could be motivated by several reasons: 1. Clarification or
Explanation: The character might be trying to explain something important or clarify a point in their
conversation. 2. Emphasis: The gesture could be used to emphasize a particular point they are making.

Spatial Understanding The video appears to be from the movie “The Wolf of Wall Street”, directed by Martin Scorsese and
released in 2013. The setting looks like a bar or a lounge, which is consistent with the film’s depiction
of the characters’ activities in the financial world. However, there are no specific landmarks visible in
the image that would definitively identify the exact location within the movie. The scene is set in New
York City, as the film is based on the real-life events.

Temporal Ordering The image depicts a scene from a movie where two characters are engaged in a conversation. Here
is a step-by-step description of the activity shown: 1. Setting: The setting appears to be an indoor
environment, possibly a bar or a restaurant, given the presence of a glass and what looks like a menu
board in the background. 2. Characters: - The character on the left is wearing a suit with a patterned
tie and is holding a glass in his hand.

Video reasoning The video appears to be from a scene in a movie or TV show, featuring two characters engaged in
a conversation. The setting looks like a bar or a similar social environment, with dim lighting and a
relaxed atmosphere. What might be considered unusual is the character on the right, who seems to be
gesturing with their hand while holding a drink, which could indicate they are explaining something or
making a point during the conversation. However, without additional context, it’s difficult to determine
if there is anything particularly.

Narrative Understanding The movie depicted in the video is “The Wolf of Wall Street,” directed by Martin Scorsese and starring
Leonardo DiCaprio as Jordan Belfort. The film is based on the memoir of the same name by Belfort
himself. Main Storyline: The story follows Jordan Belfort, a young stockbroker who rises to become
one of the most successful and corrupt figures in the financial world during the late 1980s and early
1990s.

Emotion and Sentiment Analysis The video depicts two individuals in what appears to be a dimly lit, possibly upscale setting, such as a
bar or restaurant. The person on the left is dressed in a suit and tie, suggesting a formal or professional
demeanor, while the person on the right is wearing a plaid shirt, which might indicate a more casual or
relaxed attitude.

Global Appearance In the video provided, there is no indication of significant changes in the characters’ appearances or
outfit changes. The man on the left appears to be wearing a brown suit with a patterned tie and a white
shirt. He has dark hair styled neatly. The person on the right is seen from behind, wearing a plaid shirt
with a blue and red pattern. There are no visible changes in their attire or appearance within this single
frame.

Linking Events In the video provided, we see a scene from the movie “The Wolf of Wall Street,” where Leonardo
DiCaprio’s character, Jordan Belfort, is engaged in a conversation with another character. The setting
appears to be a dimly lit bar or lounge, which is typical for scenes involving discussions about business
deals or personal matters. An early event that could influence later developments in this scene might
involve a previous interaction between Jordan and his current interlocutor.

G Statistical Significance996

To determine if normalized predictivity scores are significantly higher than chance, we run a per-997

mutation test using blocks of 10 contiguous fMRI TRs (considering the slowness of hemodynamic998

response) rather than individual TRs. By permuting predictions 5000 times, we create an empirical999
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Table 7: Outputs from Video-LLaVA for a sample clip from the Movie10 dataset.

Frame 1 Frame 3 Frame 8 Frame 13 Frame 16
Instruction Model Output
Action Recognition The main events in the video include a man sitting at a bar, holding a beer, and talking to another man.

The man holding the beer is wearing a plaid shirt and glasses.
Video Understanding The video features a man sitting at a bar with a drink in his hand. He appears to be enjoying the drink

and is engaged in conversation with someone else at the bar. The man is wearing glasses and a plaid
shirt, giving him a casual and relaxed demeanor. The bar is well-lit, with a variety of bottles and glasses
on display, indicating a lively and bustling atmosphere. In the background, there are other patrons.

Visual Question Answering There are three people in the scene. Two of them are sitting down, while the third man is standing up
and holding a beer glass.

Video Captioning A man in a blue and plaid shirt drinking beer at a bar.
Object and Scene Recognition In the scene, the main objects visible are a man sitting at a bar with a beverage in a glass and another

man sitting next to him. There are also two other men sitting at the bar, and a woman standing nearby.
The bar is well-stocked with various bottles and cups. The man sitting at the bar is wearing glasses, a
blue plaid shirt, and a beige blanket.

Commonsense Reasoning The character in the image is holding a beer glass and appears to be in a bar or a similar setting. The
motivation for the character to take this action could be due to various reasons, such as relaxation,
socialization, or simply enjoying a beverage during leisure time. The character may have chosen to
have a beer to unwind after a long day, to connect with others in a social setting, or simply to indulge in
a favorite beverage.

Spatial Understanding The video is taken from a bar, as indicated by the presence of multiple bottles on the bar and a man
holding a beer glass. The video also shows the man standing in front of a bar, suggesting the location of
the video is a bar or similar establishment.

Temporal Ordering The video depicts a man sitting at a bar, holding a beer in his hand. He is wearing a plaid shirt and
glasses. The scene is set in a dark room, and there are other people in the background. The man is seen
drinking from the beer glass, which is placed on the bar counter. The camera captures the man’s facial
expressions and body language, highlighting his relaxed and social atmosphere.

Video reasoning The unusual aspect of this video is that it features a man in a plaid shirt and glasses, who is sitting in a
bar and drinking a beer. The man is also wearing a beige scarf, which adds a distinctive touch to his
appearance. However, the most striking feature of this video is that the man is not only drinking a beer,
but he is also holding a cell phone.

Narrative Understanding The central conflict in the movie is a man’s desire for a drink at a bar, but he is unable to get one due to
a bartender’s refusal. The man’s frustration and disappointment lead to him making a scene and causing
a commotion at the bar. The conflict is ultimately resolved when the man is given a drink, and he leaves
the bar with a smile.

Emotion and Sentiment Analysis In the video, the man in the blue shirt and the woman are seen laughing and smiling while enjoying
drinks and conversation. The man in the plaid shirt is seen drinking beer and looking down, while the
man in the blue shirt is holding a beer glass. The video conveys a sense of relaxation, camaraderie, and
enjoyment among the characters.

Global Appearance In the video, the main character, a man with a beard, is seen wearing a plaid shirt and a scarf. He is
also seen wearing a different outfit in one of the scenes, which is not specified in the given information.
The other man in the scene is wearing a dark shirt and glasses. There are also two other men in the
background, one wearing a dark jacket and the other wearing a dark shirt.

Linking Events The early event in the video is the man in the blue and white checkered shirt sitting at the bar with a
beer in his hand. This scene introduces the setting and the man’s presence at the bar, setting the stage
for later developments. The man’s interaction with other patrons, the woman, and the man in glasses
adds depth and complexity to the narrative.

distribution for chance performance, from which we estimate p-value of the actual performance. The1000

choice of these specific permutation test configurations is based on established methodologies in previ-1001

ous research (Deniz et al., 2019; Reddy & Wehbe, 2021; Oota et al., 2024a). To estimate the statistical1002

significance of performance differences, such as between the model’s predictions and chance or1003

residual predictions and chance, we utilized the Wilcoxon signed-rank test (Conover, 1999), applying1004

it to the mean normalized predictivity for the participants. Finally, the Benjamini-Hochberg False1005

Discovery Rate (FDR) correction for multiple comparisons (Benjamini & Hochberg, 1995) is used1006

for all the tests (appropriate because fMRI data is considered to have positive dependence (Genovese,1007

2000)).1008

H Effectiveness of instruction-tuned video MLLMs vs audio MLLMs vs1009

multimodal vs unimodal representations for various brain regions1010

Fig. 8 show average normalized brain alignment of instruction-tuned video MLLMs vs instruction-1011

tuned audio MLLMs vs multimodal and unimodal models across several ROIs (AG, ATL, PTL, IFG,1012

MFG, IFGOrb, PCC and dmPFC) of language region. Fig. 9 show the same for visual, auditory and1013

motor regions.1014

27



Table 8: Outputs from LLaVA-NeXT-Video for a sample clip from the Movie10 dataset.

Frame 1 Frame 3 Frame 8 Frame 13 Frame 16
Instruction Model Output
Action Recognition The main event captured in the video is a conversation between two men at a bar, where one of them is

wearing a red and white checkered shirt and glasses, while the other man is wearing a dark suit and tie.
They are discussing a topic, possibly related to a movie, as suggested by the context. There are also
other patrons in the background, and a bartender is visible in the foreground.

Video Understanding The video features a scene from the movie T̈he Hangoverf̈eaturing actors Zach Galifianakis and Bradley
Cooper. In the scene, Zach Galifianakis, portraying a character named Chip Baskin, is sitting at a bar
with a group of people. He is seen holding a beer and appears to be in a state of disbelief as he looks on
at the camera.

Visual Question Answering There are several people in the scene. The man with glasses is sitting at a bar, holding a drink, and
appears to be in a conversation with someone. Another man is standing at the bar, and there is a woman
sitting nearby. There is a bartender standing at the bar, and a person in the background who is partially
visible, but it’s unclear what their role is in the scene.

Video Captioning Two men are seen having a conversation in a bar, with the man in the plaid shirt appearing confused or
disbelieving the man in the suit.

Object and Scene Recognition In the scene, we can see a man in a suit sitting at a table with a woman and a bartender. There’s also a
man in a suit standing at a bar, a woman sitting at a table with a man, a woman standing at a bar, a man
standing at a bar, and a man sitting at a table with a woman.

Commonsense Reasoning In the video you provided, the character is seen holding up a beer bottle and making a face, which could
be interpreted as a playful or humorous gesture, possibly to amuse others or to express a lighthearted or
jovial moment. This action might be motivated by a desire to entertain, bond with others, or to simply
enjoy a casual and relaxed moment.

Spatial Understanding The video appears to have been taken from a scene in a movie, specifically “Goodfellas” featuring
Robert De Niro. The scene is set in a bar, and the background includes a sign that says “The Goodfella’s.”
This is a reference to the character Robert De Niro’s character, who is a bartender in the movie. The
specific setting and the sign are consistent with the movie’s depiction of the bar.

Temporal Ordering The video depicts two men sitting at a bar, engaged in a conversation. One man is wearing a suit, while
the other is dressed in a plaid shirt. They are both holding drinks and appear to be having a casual
conversation. The setting suggests they might be at a social event, such as a bar or a party, where people
gather to relax and enjoy drinks.

Video reasoning In the video, there is a scene where a man is seen sitting at a bar with another man. The man in glasses
appears to be engaged in a conversation with someone off-camera, but the camera is focused on the
other man, who is not the focus of the scene. The man with glasses is holding a beer and appears to be
in the middle of a discussion, but his face is not shown in the shot.

Narrative Understanding The movie “The Big Short” is a biographical comedy-drama film about the life of stockbroker Michael
Burry, who predicts the financial crisis of 20008. The central conflict of the story is the housing bubble
and the subprime mortgage market, which Burry sees as unsustainable and warns his colleagues about,
but they dismiss his ideas as unrealistic.

Emotion and Sentiment Analysis The characters in the video express a range of emotions, from surprise and shock to amusement and
even a bit of confusion. The video itself is quite humorous, with the man in a suit and tie appearing to
be in a state of disbelief or shock as the other man, who is wearing a plaid shirt and a hoodie, is seen
drinking from his beer bottle.

Global Appearance In the video, we can see a man with a beard who is wearing a suit at the beginning, but he is later seen
in a more casual outfit with a plaid shirt. There are also other people in the scene, including a man with
glasses and a red shirt, a man with a beard and a red shirt, and a woman in a red dress.

Linking Events In the scene you’ve described, a man is shown sitting in a bar with a drink in front of him, looking at a
TV. The TV shows a news segment about a man who has died, which is later revealed to be the man
himself. This early event in the video influences the later developments because it sets up the narrative
of the story, introducing the main character and establishing his presence in the scene.

I Contrasting Instruction-tuned video MLLMs with non-instruction-tuned1015

multimodal1016

We present contrast of brainmaps to display the average normalized brain alignment across voxels1017

for the instruction-tuned video MLLMs versus the non-instruction-tuned multimodal TVLT in1018

Figures 10, 11, 12, and 13. The results show that instruction-tuned video MLLMs consistently1019

achieve significantly higher alignment across all brain voxels. However, Figures 14 and 15 reveal1020

clear differences between audio MLLMs and multimodal models: the prediction performance of1021

audio MLLMs lacks brain-relevant semantic information compared to multimodal models.1022

J Brain Maps for Task-specific instructions1023

Figures 16 and 17 show brain maps for InstructBLIPVideo, Video-LLaVA, LLaVA-NeXT-Video,1024

LLaVA-OneVision and VideoChat-R1 for video tasks for average normalized brain predictivity1025

across subjects where the voxel color codes are projected onto the flattened cortical surface of the1026
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Table 9: Outputs from LLaVA-OneVision Video for a sample clip from the Movie10 dataset.

Frame 1 Frame 3 Frame 8 Frame 13 Frame 16
Instruction Model Output
Action Recognition The video captures a conversation between two individuals at a bar, with one person gesturing and

speaking while the other listens.
Video Understanding The video takes place in a lively bar setting, creating a warm and inviting atmosphere. The background

features a well-lit bar counter adorned with various bottles and glasses, and several people can be seen
in the background, adding to the bustling ambiance. In the foreground, two individuals are seated at a
table. One person is dressed in a gray suit with a red and white patterned tie, while the other is wearing
a blue and red plaid shirt with a yellow jacket draped over their shoulders.

Visual Question Answering There are two people in the scene, engaged in a conversation.
Video Captioning A man with curly hair and glasses sits at a table in a bar, holding a glass of beer, and engages in a

conversation.
Object and Scene Recognition The main objects and people visible in the scene are two men sitting at a table in a dimly lit, bustling

bar or restaurant. One man is dressed in a gray suit and tie, and the other is wearing a plaid shirt with a
beige sweater over it, holding a drink. The background features a bar with various bottles and glasses,
and other patrons are visible in the distance.

Commonsense Reasoning The character took this action to emphasize their point in the conversation, which could have been
motivated by the seriousness of the discussion or the need to convey a specific message.

Spatial Understanding The video is taken from a movie scene, and it shows a bar.
Temporal Ordering The video takes place in a dimly lit bar with a lively background filled with people and bottles on

shelves. Two individuals are seated at a table, engaged in a conversation. The person on the left is
dressed in a gray suit with a red and white patterned tie and is gesturing with their hand, while the
person on the right, wearing a blue and red plaid shirt with a yellow sweater draped over their shoulders
and holding a glass of beer, listens attentively.

Video reasoning The unusual aspect is that the scene remains static with minimal changes in the individuals’ expressions
and the background, suggesting a continuous conversation or interaction.

Narrative Understanding The central conflict involves two characters in a bar, with the character in the plaid shirt and yellow
sweater being advised or persuaded by the other character. The conflict is resolved through a conversa-
tion, leading to a change in the character’s demeanor and posture.

Emotion and Sentiment Analysis The characters express a range of emotions, including surprise, concern, and contemplation. The video
creates a sense of intrigue and emotional depth, drawing the viewer into the characters’ conversation.

Global Appearance The character on the right initially has curly hair and is wearing a blue plaid shirt with a beige sweater,
but later, the character’s hair appears straight and they are dressed in a dark suit with a red tie.

Linking Events The man in the plaid shirt and glasses is seen holding a glass of beer and engaged in a conversation
with the man in the gray suit, which sets the stage for the unfolding dialogue and interaction.

‘fsaverage’ subject. The color-scheme corresponding to each instruction is also reported. We make1027

the following observations: (i) Video understanding exhibits the strongest alignment across the whole1028

brain. (ii) Tasks such as spatial understanding, narrative understanding, and visual question answering1029

show higher alignment in language-related regions, including the angular gyrus, posterior temporal1030

lobe, and visual regions. (iii) Higher-order language regions in the frontal cortex are predominantly1031

identified by the video understanding task, with a smaller proportion of voxels also activated by video1032

reasoning and temporal ordering tasks.1033

Fig. 18 shows brainmap for audio instruction-tuned MLLM (Kimi-Audio) where the predictions are1034

average across subjects. Here, the voxel color codes are projected onto the flattened cortical surface1035

of the ‘fsaverage’ subject. The figure shows a clear distinction between different audio tasks.1036

K Brain Maps showing Layer-wise Details for Video Instruction-based1037

MLLMs1038

To examine whether instruction-tuned MLLMs reflect the brain’s hierarchy of information processing1039

across layers, we analyze the voxels as follows. For each voxel, we select the layer that results1040

in the highest normalized brain alignment and apply a color code for the 29/33 layers across the1041

various MLLMs. Fig. 19 presents brain maps for four video MLLMs, where the voxels with their1042

corresponding color codes are projected onto the flattened cortical surface of the ‘fsaverage’ subject.1043

L Details of Semantic Task Group Analysis1044

To further examine how instruction-tuned video MLLMs generate task-specific representations and re-1045

veal functional specialization in the brain, we group the 13 video tasks into five cognitively grounded1046

categories: Perceptual visual processing, Cognitive reasoning and integration, Spatiotemporal under-1047
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Table 10: Outputs from VideoChat-R1 for a sample clip from the Movie10 dataset.

Frame 1 Frame 3 Frame 8 Frame 13 Frame 16
Instruction Model Output
Action Recognition The video captures a scene from what appears to be a social setting, possibly a bar or restaurant. Two

individuals are engaged in conversation. One person is wearing a plaid shirt and has a blanket draped
over their shoulders, suggesting they might be cold or seeking comfort. The other individual is dressed
in a suit and tie, indicating a more formal attire. The background shows other patrons and bar stools,
contributing to the ambiance of a casual gathering.

Video Understanding The video depicts a scene from what appears to be a movie or TV show, set in a dimly lit bar or lounge.
Two individuals are seated at a table, engaged in conversation. The person on the left is wearing a dark
suit and tie, while the individual on the right is dressed in a plaid shirt with a yellow scarf draped over
their shoulders. Both appear to be holding drinks, suggesting they might be enjoying a casual evening
out.

Visual Question Answering There are two people in the scene. They appear to be engaged in a conversation at a bar or restaurant.
One person is wearing a plaid shirt and has a blanket draped over their shoulders, while the other person
is dressed in a suit. The setting suggests a casual social interaction.

Video Captioning Two individuals engage in conversation at a bar, surrounded by dim lighting and patrons.
Object and Scene Recognition The video shows two individuals seated at a bar, engaged in conversation. The person on the left is

wearing a dark suit and appears to be listening attentively. The person on the right is wearing a plaid
shirt with a yellowish blanket draped over their shoulders and is holding a drink. The background
features a bar setting with various bottles and glasses, indicating a social or casual environment. The
lighting suggests an indoor setting, likely during the evening.

Commonsense Reasoning In the video, one character appears to be engaged in a conversation with another character at what
looks like a bar or a similar social setting. The character on the right seems to be leaning forward
slightly, which might indicate that they are listening intently or trying to emphasize a point during their
conversation. The motivation for this action could be: 1. Engagement: The character might be trying
to show interest or engagement in the conversation by leaning closer.

Spatial Understanding The video appears to be from a movie or TV show set in a bar or restaurant. The setting includes a bar
counter with bottles and glasses, suggesting it could be a scene from a film or series that takes place in
a social or dining establishment. However, without additional context or recognizable landmarks, it’s
difficult to pinpoint the exact location or landmark shown in the video. It could be from a variety of
films or shows that feature such settings.

Temporal Ordering The video depicts two individuals seated at a bar, engaged in conversation. The person on the left is
wearing a suit and appears to be listening attentively. The individual on the right is dressed casually
in a plaid shirt with a blanket draped over their shoulders, suggesting they might be cold or seeking
comfort. They both have drinks in front of them, indicating they are likely enjoying a social setting. The
background shows other patrons and bar stools, contributing to the ambiance of a lively bar environment.

Video reasoning The video appears to be from a scene in a movie or TV show, likely set in a bar or similar social
setting. The unusual aspect here is the presence of a large, animated hand with a glove that resembles a
cartoonish character, which seems out of place in a real-world setting like a bar. This suggests it might
be a special effect or a prop used for comedic or dramatic purposes within the context of the film.

Narrative Understanding The video appears to be from a scene in the movie “The Hangover," where the characters are at a bar,
seemingly engaged in a conversation. The central conflict in this movie revolves around a group of
friends who go on a bachelor party to Las Vegas but end up getting lost and having various mishaps.

Emotion and Sentiment Analysis The video depicts two individuals engaged in what appears to be an intense conversation at a bar. The
person on the right seems to be speaking with a sense of urgency or concern, as indicated by their open
mouth and expressive eyes. The other individual is listening attentively, suggesting a moment of serious
discussion. Overall, the scene conveys a sense of tension and engagement. The setting, with its dim
lighting and crowded bar, adds to the atmosphere of a private yet public interaction.

Global Appearance The video shows two characters sitting at a bar. The character on the left is wearing a dark suit and
tie, while the character on the right is wearing a plaid shirt with a yellow blanket draped over their
shoulders. There are no significant changes in their appearances or outfits throughout the video; they
remain in these respective outfits for the duration of the frames provided.

Linking Events In the video, two individuals are seated at a bar, engaged in conversation. The setting suggests a casual
and possibly intimate interaction, which could imply that they are discussing something personal or
significant. This early event of them sitting together and talking could influence later developments
by establishing a foundation for their relationship or the context of their conversation. For instance, if
this is part of a larger narrative, the initial interaction might set up themes such as friendship, trust, or
conflict that will unfold in subsequent scenes.

standing, High-level language and narrative understanding, and Social and affective understanding.1048

This categorization allows us to disentangle the functional specificity of brain regions engaged by1049

different task types. The visualizations in Fig. 5 in Section 4.3 in the main paper and Fig. 20 illustrate1050

that this grouping captures meaningful distinctions.1051

M Details of explained variance partitioning1052

Variance partitioning. To disentangle task-specific instruction representations from multimodal1053

instruction-tuned models, we used a variance partitioning approach (de Heer et al., 2017; LeBel1054
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Table 11: Outputs from Qwen-2.5 Audio for a sample audio from the Movie10 dataset (Wolf of
wallstreet).

Spectrogram
Instruction Model Output
Audio Understanding There’s a male singing in English with an angry mood, saying ’And she grew up hot.
Audio Comprehension They are talking and laughing.
Audio Captioning The audio is about someone’s upbringing.
Sound Event Detection There are no background sounds or music, only speech. A male voice speaks in English with the phrase

’And she grew up hot.
Speaker Identification A man speaking in English with an angry mood said ’And she grew up hot, you know?

Table 12: Outputs from Kimi-Audio for a sample audio from the Movie10 dataset (Wolf of wallstreet)

Spectrogram
Instruction Model Output
Audio Understanding The audio contains a speech where kids are talking by the door in English with a female voice and a

neutral mood.
Audio Comprehension The people are talking and there is music playing in the background.
Audio Captioning A man is speaking loudly and aggressive.
Sound Event Detection There is no speech in this audio.
Speaker Identification The speaker in the audio is a Mandarin-speaking male, aged between 16-25 years old, with an angry

mood.

et al., 2021). This method measures the overlap in brain variance explained by different task-specific1055

instruction representations. Specifically, variance partitioning separates the brain response variance1056

that can be attributed to two models based on their unique and overlapping contributions (Vaidya1057

et al., 2022; Deniz et al., 2019). To perform this, for every pair of instruction representations,1058

we fit separate encoding models for each space as well as a joint encoding model, obtained by1059

concatenating the features. Using set arithmetic, we can then derive the size of the intersection1060

(NBA)1∩2
v =(NBA)1v+(NBA)2v-(NBA)1∪2

v , where NBA refers to normalized brain alignment, v1061

refers to a specific voxel, (NBA)1v denotes alignment of model 1, (NBA)2v denotes alignment of1062

model 2 and (NBA)1∪2
v denotes alignment of the joint model. Similarly, the unique contribution of1063

model 1’s feature space is computed as (NBA)
1\2
v =(NBA)1v-(NBA)1∩2

v .1064

Shared and Unique Variance between Narrative Understanding and Remaining Task Instruc-1065

tions1066

Fig. 21 shows the shared variance of the 13 video tasks. The voxels are projected onto the flattened1067

cortical surface of a representative subject (S1) for the Qwen-2.5-VL video MLLM.1068

Table 13 presents shared and unique variance explained by pairs of video tasks using brain-informed1069

models across three neural regions: whole brain, visual cortex, and language network. The results1070

are averaged across subjects and show how well representations from each task pair align with brain1071

activity in specific regions.1072

Key Observations are as follows.1073

• Whole Brain Shows Dominant Shared Variance: Across nearly all task pairs, the whole brain1074

region consistently exhibits the highest shared variance (often >80% in early task pairs). For1075

example, the pair Action Recognition and Video Understanding (1–2) shows 90.69% shared1076

variance, with very little unique variance from either task. This suggests high redundancy1077

and common processing across tasks when considering global brain activity.1078
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Figure 8: Average normalized brain alignment of instruction-tuned video MLLMs vs instruction-
tuned audio MLLMs vs multimodal and unimodal models across several ROIs (AG, ATL, PTL, IFG,
MFG, IFGOrb, PCC and dmPFC) of language region. Error bars indicate the standard error of the
mean across participants. ∗ implies that instruction-tuned MLLM embeddings are significantly better
than multimodal models and ∧ means that instruction-tuned MLLM embeddings are significantly
better unimodal models with p≤ 0.05.

• Visual and Language Regions Yield More Balanced Partitioning: In contrast, visual and1079

language-selective voxels exhibit lower shared variance and comparatively higher unique1080

contributions from individual tasks. For the same task pair (1–2), shared variance in visual1081

is 72.05%, and in language it is 77.46%, with higher unique components (∼10-14%). This1082

suggests that fine-grained processing differences are more pronounced in modality-specific1083

regions.1084

• Task Similarity Reflects in Shared Variance: Tasks that are conceptually or functionally1085

related (e.g., Narrative Understanding-Linking Events (10-13) or Emotion and Sentiment1086

Analysis-Linking Events (11-13)) exhibit high shared variance in all regions, indicating1087

similar cognitive processing demands. Conversely, task pairs with less conceptual overlap1088

(e.g., Object Recognition-Commonsense Reasoning (5-6) or Visual QA-Object Recognition1089

(3-5)) show lower shared variance and higher unique variance, especially in language and1090

visual regions.1091

• Language Regions Show Selectivity for High-Level Tasks: Higher-level semantic and1092

reasoning tasks (e.g., Narrative Understanding, Commonsense Reasoning, Temporal Order-1093

ing) show increased unique variance in the language network, indicating language-specific1094

processing distinct from visual features. For instance, pair 6-13 (Commonsense Reasoning-1095

Linking Events) yields 16.75% unique variance for Linking Events in the language network.1096
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Figure 9: Average normalized brain alignment of instruction-tuned video MLLMs vs instruction-
tuned audio MLLMs vs multimodal and unimodal models across several ROIs of visual cortex (PPA,
OFA, LOC, MT), Auditory cortex (AC), and Motor Area (PMA and SMA). Error bars indicate the
standard error of the mean across participants. ∗ implies that instruction-tuned MLLM embeddings are
significantly better than multimodal models and ∧ means that instruction-tuned MLLM embeddings
are significantly better unimodal models with p≤ 0.05.

• Visual Cortex Captures Scene and Action Differentiation: Tasks with high visual load (e.g.,1097

Action Recognition, Object and Scene Recognition, Global Appearance) contribute more1098

uniquely in the visual cortex, especially when paired with non-visual tasks.1099

N Limitations1100

One possible limitation of our study lies in interpreting the differences in brain alignment between1101

instruction-tuned video and audio MLLMs. The models we evaluate differ in several aspects,1102

including the amount of training data and the specific objective functions used during training.1103

To address this concern, we evaluated multiple models of each type, spanning a range of training1104

objectives and dataset sizes, and found that our key results generalize within both video and audio1105

MLLM categories. Still, it is possible that some of the differences in brain alignment may still be1106

influenced by confounding factors related to model architecture, training objectives, or data scale.1107

Future work should explore these questions using models that are more tightly controlled across these1108

dimensions.1109
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(a) Subject-01

(b) Subject-02

(c) Subject-03

(d) Subject-05

Figure 10: Qwen-2.5-VL vs. TVLT: Contrast of estimated cross-subject prediction accuracy for
all participants for the naturalistic movie watching. Pearson correlation scores for each voxel in
each subject are projected onto the subject’s flattened cortical surface. Blue and Red voxels depict
higher prediction accuracy estimates during instruction-tuned video MLLM and multimodal TVLT,
respectively. Voxels that have similar cross-subject prediction accuracy appear white. Here, middle
frontal gyrus (MFG), inferior frontal gyrus (IFG), inferior frontal gyrus orbital (IFGOrb), angular
gyrus (AG), and lateral temporal cortex (LTC) are late language regions, EVC denotes early visual
cortex and AC denotes auditory cortex.
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(a) Subject-01

(b) Subject-02

(c) Subject-03

(d) Subject-05

Figure 11: InstructBLIPVideo vs. TVLT: Contrast of estimated cross-subject prediction accuracy
for all participants for the naturalistic movie watching. Pearson correlation scores for each voxel in
each subject are projected onto the subject’s flattened cortical surface. Blue and Red voxels depict
higher prediction accuracy estimates during instruction-tuned video MLLM and multimodal TVLT,
respectively. Voxels that have similar cross-subject prediction accuracy appear white.
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(a) Subject-01

(b) Subject-02

(c) Subject-03

(d) Subject-05

Figure 12: Video-LLaVA vs. TVLT: Contrast of estimated cross-subject prediction accuracy for
all participants for the naturalistic movie watching. Pearson correlation scores for each voxel in
each subject are projected onto the subject’s flattened cortical surface. Blue and Red voxels depict
higher prediction accuracy estimates during instruction-tuned video MLLM and multimodal TVLT,
respectively. Voxels that have similar cross-subject prediction accuracy appear white.
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(a) Subject-01

(c) Subject-02

(c) Subject-03

(d) Subject-05

Figure 13: LLaVA-NeXT-Video vs. TVLT: Contrast of estimated cross-subject prediction accuracy
for all participants for the naturalistic movie watching. Pearson correlation scores for each voxel in
each subject are projected onto the subject’s flattened cortical surface. Blue and Red voxels depict
higher prediction accuracy estimates during instruction-tuned video MLLM and multimodal TVLT,
respectively. Voxels that have similar cross-subject prediction accuracy appear white.
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(a) Subject-01

(c) Subject-02

(c) Subject-03

(d) Subject-05

Figure 14: Qwen-Audio vs. TVLT: Contrast of estimated cross-subject prediction accuracy for
all participants for the naturalistic movie watching. Pearson correlation scores for each voxel in
each subject are projected onto the subject’s flattened cortical surface. Blue and Red voxels depict
higher prediction accuracy estimates during instruction-tuned audio MLLM and multimodal TVLT,
respectively. Voxels that have similar cross-subject prediction accuracy appear white. Here, middle
frontal gyrus (MFG), inferior frontal gyrus (IFG), inferior frontal gyrus orbital (IFGOrb), angular
gyrus (AG), and lateral temporal cortex (LTC) are late language regions, EVC denotes early visual
cortex and AC denotes auditory cortex.
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(a) Subject-01

(c) Subject-02

(c) Subject-03

(d) Subject-05

Figure 15: Kimi-Audio vs. TVLT: Contrast of estimated cross-subject prediction accuracy for
all participants for the naturalistic movie watching. Pearson correlation scores for each voxel in
each subject are projected onto the subject’s flattened cortical surface. Blue and Red voxels depict
higher prediction accuracy estimates during instruction-tuned audio MLLM and multimodal TVLT,
respectively. Voxels that have similar cross-subject prediction accuracy appear white. Here, middle
frontal gyrus (MFG), inferior frontal gyrus (IFG), inferior frontal gyrus orbital (IFGOrb), angular
gyrus (AG), and lateral temporal cortex (LTC) are late language regions, EVC denotes early visual
cortex and AC denotes auditory cortex.
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(a) InstructBLIPVideo

(b) Video-LLaVA

(c) LLaVA-NeXT-Video

Figure 16: Each voxel is color coded with the instruction (out of 13) that led to the highest nor-
malized brain alignment. The color bar highlights color codes for each instruction. The voxels
are projected onto the flattened cortical surface averaged across all 4 subjects for 3 video MLLM
(InstructBLIPVideo, Video-LLaVA and LLaVA-NeXT-Video).

40



(a) LLaVA-OneVision

(b) VideoChat-R1

Figure 17: Each voxel is color coded with the instruction (out of 13) that led to the highest normalized
brain alignment. The color bar highlights color codes for each instruction. The voxels are projected
onto the flattened cortical surface averaged across all 4 subjects for 2 video MLLM (LLaVA-
OneVision, VideoChat-R1).
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Figure 18: Kimi-Audio: Each voxel is color-coded with the instruction (out of 5) that led to the
highest normalized brain alignment. The color bar highlights color codes for each instruction. The
voxels are projected onto the flattened cortical surface of average across subjects on ‘fsaverage’
surface.
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(a) InstructBLIPVideo

(b) Video-LLaVA

(c) LLaVa-NeXT-Video

(d) LLaVA-OneVision

Figure 19: Each voxel is color coded with the video MLLM layer number (out of 33) that led to the
highest normalized brain alignment. The color bar highlights color codes for each layer. The voxels
are projected onto the flattened cortical surface of average across all 4 subjects on ‘fsaverage’ surface
for four MLLMs.
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Figure 20: Semantic Task Group Analysis: Each voxel is color coded with the task instruction that led
to the highest normalized brain alignment. The color bar highlights color codes for each instruction.
The voxels are projected onto the flattened cortical surface averaged across all subjects for video
MLLM (Qwen-2.5-VL). While this plot shows brain maps for 2 groups, brain maps for remaining 3
task groups are in Fig. 5 in Section 4.3 in the main paper.
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Figure 21: Share variance of video tasks: The voxels are projected onto the flattened cortical surface
of a representative subject (S1) for the Qwen-2.5-VL video MLLM.
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Figure 22: Shared and Unique Variance: Narrative Understanding vs. Linking Events Dark orange
(left) shows variance unique to Narrative Understanding, indigo (right) shows variance unique to
Linking Events, and the overlap indicates shared variance between both tasks.
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Whole Brain Visual Language
Task1 Task2 Shared Uniq1 Uniq2 Shared Uniq1 Uniq2 Shared Uniq1 Uniq2

1 2 90.69 5.26 4.05 72.05 13.91 14.04 77.46 12.07 10.47
1 3 83.53 10.05 6.42 73.67 10.28 16.05 77.05 10.72 12.23
1 4 84.51 9.65 5.84 71.87 13.82 14.31 75.97 12.27 11.76
1 5 79.16 13.51 7.33 66.82 14.35 18.83 73.47 13.07 13.46
1 6 81.48 13.34 5.18 68.44 17.28 14.28 73.59 15.37 11.04
1 7 83.07 10.44 6.49 71.99 11.88 16.13 75.20 12.30 12.50
1 8 81.25 14.18 4.57 69.82 17.63 12.54 75.87 14.83 9.30
1 9 86.94 7.57 5.50 73.42 10.25 16.34 78.27 9.05 12.68
1 10 84.55 9.06 6.39 73.46 10.59 15.95 76.42 10.32 13.26
1 11 85.44 8.51 6.05 74.92 11.12 13.96 76.56 10.96 12.48
1 12 82.46 11.66 5.88 72.88 12.75 14.37 76.02 12.50 11.48
1 13 91.81 4.20 3.99 74.92 11.82 13.26 80.06 10.00 9.94
2 3 83.59 9.72 6.69 73.14 11.39 15.47 74.15 12.80 13.05
2 4 86.25 7.40 6.36 73.32 13.52 13.16 74.41 12.14 13.45
2 5 77.09 14.33 8.58 64.55 17.14 18.31 70.20 15.08 14.72
2 6 79.86 13.99 6.15 69.43 17.86 12.71 73.10 14.96 11.94
2 7 83.62 9.46 6.92 72.53 12.65 14.82 71.61 14.43 13.95
2 8 81.30 13.10 5.60 67.98 18.96 13.05 72.05 16.07 11.88
2 9 86.64 7.42 5.93 73.55 12.35 14.11 75.55 10.62 13.83
2 10 85.25 7.97 6.78 72.98 12.28 14.73 73.28 12.51 14.21
2 11 84.70 8.31 7.00 73.27 12.25 14.48 72.48 13.27 14.25
2 12 82.97 11.16 5.88 73.06 14.41 12.54 72.99 14.99 12.02
2 13 91.78 3.66 4.55 74.89 12.59 12.52 78.19 9.77 12.03
3 4 68.68 13.67 17.64 68.53 18.38 13.09 71.98 14.19 13.83
3 5 50.07 24.61 25.32 52.60 24.08 23.32 60.68 17.79 21.53
3 6 61.39 21.67 16.94 61.59 22.97 15.44 65.21 18.68 16.12
3 7 65.21 17.99 16.80 64.73 20.33 14.94 66.85 17.80 15.35
3 8 66.30 20.20 13.49 61.04 23.96 15.00 62.43 21.86 15.71
3 9 70.23 13.71 16.06 70.07 16.68 13.25 72.20 12.52 15.28
3 10 66.99 13.00 20.01 68.60 15.97 15.42 64.43 15.79 19.78
3 11 68.07 14.39 17.54 66.84 17.50 15.66 66.97 16.85 16.18
3 12 61.81 19.24 18.95 65.81 19.69 14.50 67.09 17.92 14.99
3 13 83.92 6.44 9.64 71.83 16.87 11.31 76.76 12.86 10.38
4 5 55.03 24.36 20.61 53.05 20.94 26.00 59.06 18.82 22.13
4 6 61.72 25.66 12.62 59.66 24.72 15.62 63.75 21.99 14.26
4 7 69.00 17.62 13.38 66.08 17.45 16.47 67.89 17.50 14.61
4 8 63.88 21.85 14.27 60.24 23.59 16.17 65.25 19.95 14.80
4 9 71.16 16.55 12.28 65.51 18.15 16.34 68.66 16.14 15.19
4 10 66.37 18.11 15.53 63.85 17.11 19.04 57.73 20.94 21.33
4 11 72.37 13.56 14.07 70.00 13.01 16.99 70.64 13.35 16.02
4 12 66.38 18.76 14.86 64.80 17.67 17.53 67.94 17.21 14.85
4 13 86.69 6.09 7.23 71.23 16.28 12.49 76.56 13.87 9.57
5 6 50.13 27.24 22.63 51.63 27.81 20.56 58.56 23.05 18.39
5 7 49.08 24.63 26.29 53.55 25.15 21.30 55.77 24.66 19.57
5 8 47.03 27.55 25.43 53.22 28.86 17.93 53.88 26.92 19.21
5 9 55.06 21.61 23.34 56.84 24.75 18.42 62.62 19.24 18.15
5 10 47.76 23.54 28.70 55.84 22.99 21.17 54.52 22.48 23.00
5 11 52.17 22.58 25.25 57.44 22.32 20.24 57.94 22.48 19.58
5 12 47.50 26.51 25.99 56.38 25.48 18.15 58.21 23.50 18.29
5 13 79.36 6.98 13.67 66.31 16.96 16.74 71.80 12.91 15.29
6 7 60.01 17.04 22.96 59.05 17.09 23.86 61.14 18.01 20.84
6 8 54.31 21.48 24.22 57.44 21.55 21.01 62.62 18.13 19.25
6 9 64.33 13.06 22.61 60.10 16.20 23.69 64.68 13.72 21.60
6 10 57.84 16.91 25.25 61.41 14.59 24.00 61.01 16.15 22.84
6 11 62.94 14.26 22.81 62.17 15.15 22.68 63.32 15.40 21.28
6 12 55.82 19.64 24.54 60.18 17.37 22.45 60.36 18.93 20.71
6 13 81.42 5.21 13.37 67.46 13.51 19.02 71.93 11.31 16.75
7 8 58.19 23.15 18.65 60.58 23.47 15.95 61.00 20.86 18.13
7 9 70.87 14.02 15.11 70.43 15.05 14.51 71.25 12.70 16.05
7 10 68.57 12.51 18.92 67.67 13.27 19.06 63.76 14.39 21.84
7 11 60.77 18.94 20.29 58.79 21.23 19.98 55.14 21.77 23.09
7 12 66.57 17.86 15.57 67.97 17.05 14.98 67.18 17.38 15.44
7 13 85.27 6.01 8.72 72.66 15.56 11.78 74.88 13.08 12.03
8 9 62.84 15.99 21.18 63.11 15.66 21.22 68.03 13.67 18.31
8 10 60.10 17.38 22.52 59.39 16.80 23.81 60.46 16.80 22.74
8 11 60.31 14.63 25.07 61.67 13.24 25.09 61.38 15.64 22.98
8 12 60.04 18.69 21.28 62.31 17.41 20.28 65.74 16.70 17.56
8 13 81.06 5.66 13.27 68.01 14.38 17.61 74.50 11.65 13.85
9 10 69.21 14.34 16.44 68.83 12.98 18.19 67.69 15.88 16.44
9 11 70.80 13.15 16.05 69.96 14.08 15.96 70.82 14.04 15.15
9 12 69.68 16.60 13.72 70.09 14.45 15.46 70.62 16.10 13.29
9 13 87.40 5.23 7.37 72.02 15.46 12.53 77.48 12.70 9.82

10 11 68.63 16.35 15.02 67.96 16.43 15.61 64.85 19.12 16.04
10 12 65.06 20.66 14.27 63.79 21.85 14.36 61.84 23.65 14.50
10 13 85.63 6.39 7.99 72.34 16.92 10.73 75.85 14.09 10.06
11 12 61.95 22.51 15.54 65.60 19.55 14.85 63.80 21.51 14.69
11 13 86.42 6.00 7.58 74.60 14.29 11.11 76.83 12.89 10.28
12 13 83.82 5.77 10.41 71.56 15.38 13.06 75.37 12.20 12.43

Table 13: Variance partitioning for all the 13 video tasks averaged across all subjects for whole brain,
visual and language regions with Qwen-2.5-VL model. Tasks are as follows: (1) Action Recognition
(2) Video Understanding (3) Visual Question Answering (4) Video Captioning (5) Object and Scene
Recognition (6) Commonsense Reasoning (7) Spatial Understanding (8) Temporal Ordering (9)
Video reasoning (10) Narrative Understanding (11) Emotion and Sentiment Analysis (12) Global
Appearance (13) Linking Events.
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