© © N o o~ W N =

24

25
26
27
28
29
30
31
32
33
34
35
36
37
38

Instruction-Tuned Video-Audio Models Elucidate
Functional Specialization in the Brain

Anonymous Author(s)
Affiliation
Address
email

Abstract

Recent voxel-wise multimodal brain encoding studies have shown that multimodal
large language models (MLLMs) exhibit a higher degree of brain alignment com-
pared to unimodal models in both unimodal and multimodal stimulus settings.
More recently, instruction-tuned multimodal models have shown to generate task-
specific representations that align strongly with brain activity. However, prior work
evaluating the brain alignment of MLLMs has primarily focused on unimodal
settings or relied on non-instruction-tuned multimodal models for multimodal
stimuli. To address this gap, we investigated brain alignment, that is, measur-
ing the degree of predictivity of neural activity recorded while participants were
watching naturalistic movies (video along with audio) with representations derived
from MLLMs. We utilized instruction-specific embeddings from six video and
two audio instruction-tuned MLLMs. Experiments with 13 video task-specific
instructions show that instruction-tuned video MLLMSs significantly outperform
non-instruction-tuned multimodal (by ~15%) and unimodal models (by ~20%).
Our evaluation of MLLMs for both video and audio tasks using language-guided
instructions shows clear disentanglement in task-specific representations from
MLLMs, leading to precise differentiation of multimodal functional processing in
the brain. We also find that MLLM layers align hierarchically with the brain, with
early sensory areas showing strong alignment with early layers, while higher-level
visual and language regions align more with middle to late layers. These findings
provide clear evidence for the role of task-specific instructions in improving the
alignment between brain activity and MLLMs, and open new avenues for mapping
joint information processing in both the systems.

1 Introduction

The alignment between internal representations of multimodal Transformer models and cortical
activation patterns obtained from naturalistic stimuli has emerged as a key focus in the study of
brain-model correspondence. Recent research has demonstrated that multimodal models in brain
encoding can be broadly categorized into two settings (see Appendix [A] Table {): (i) multimodal
models evaluated with unimodal stimuli (Doerig et al., 2022 [Wang et al., 2023} |Oota et al., 2022b;
Popham et al., [2021; [Tang et al., 2024} Oota et al., 2025a), and (ii) multimodal models evaluated
with multimodal stimuli (Nakagi et al., |2024; [Subramaniam et al.l [2024; Dong & Toneva, [2023a;
Oota et al., |2025b; Sartzetaki et al., 2024). In the former setting, brain recordings are obtained from
unimodal image stimuli, but representations from multimodal models, which integrate modalities
such as vision and language, achieve a higher degree of brain alignment compared to vision-only
models (Doerig et al.l 2022; |Wang et al.l 2023} |Oota et al.| 2022b; |[Popham et al., [2021). This
observation holds true to the new class of instruction-tuned multimodal large language models
(MLLMs), especially when prompted with natural instructions (Oota et al., 2025a). In the latter
setting, where brain recordings are obtained from multimodal stimuli (e.g., watching movies with
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Figure 1: Leveraging instruction-tuned multimodal video and audio models for brain encoding
with a diverse set of instructions. For the given movie clip, we can obtain different multimodal
representations using instructions that ask the model to (i) generate the caption of the video, (ii)
identify whether temporal events are present, (iii) determine the primary colors dominant in the
video, etc. Using instruction-specific representations, we estimate the alignment using a simple linear
function f (ridge regression), which maps MLLM representations to brain recordings.

both visual and auditory stimuli), studies show that multimodal models exhibit higher degree of brain
alignment over unimodal models (Dong & Toneval 2023a;|Oota et al., [2025b). While prior studies
have examined brain alignment with instruction-tuned MLLMs, they have largely been limited to
unimodal stimuli, or have used non-instruction-tuned models in the context of multimodal stimuli.
In this work, we bridge this gap by systematically investigating instruction-tuned MLLMSs in the
presence of rich multimodal stimuli. Specifically, we assess how well representations elicited through
naturalistic, task-specific instructions involving both video and audio align with brain activity across
the cortical hierarchy, from early sensory regions to higher-order cognitive areas.

Several unimodal studies report that task-specific fine-tuned Transformer models better align with
brain activity during language (Oota et al., [2022a; Aw & Toneval, 2023} |Sun & Moens), 2023} (Oota
et al.,[2024b), speech (Oota et al., [2023}; [Tuckute et al.,[2023} [Oota et al.| 2024a), and vision (Wang
et al.,2019; (Conwell et al., |2022)) processing, outperforming pretrained models in brain predictivity.
However, these models are task-specific, limiting generalization, requiring separate data and training
per task. Instruction-tuning (Xu et al., 2023; Dai et al.| [2023}; [Liu et al.| 2024) offers a scalable alter-
native, fine-tuning a single LLM across diverse NLP tasks and surpassing task-specific models (Taori
et al., 2023} [Touvron et al.l 2023} Jiang et al.| 2023 |Abdin et al., 2024; Dubey et al.| 2024), while
showing stronger brain alignment (Sun et al., [2023; Sun & Moens)} |2023; |[Loong Aw et al., [2024)
(see Appendix [B] for more.) Building on this, recent work aligns instruction-tuned MLLMs with
brain data for text (Benara et al., 2024) and images (Oota et al., [2025a)), though limited to unimodal
stimuli. Motivated by advances in multimodal MLLMs for video and audio tasks, we ask: Do
instruction-tuned video/audio MLLMs prompted with natural language yield better brain alignment
than their non-instruction-tuned counterparts and distinguish task-specific representations? To our
knowledge, this is the first study to use such MLLMs to model fMRI responses across video and
audio tasks (workflow in Fig. [I).

Using brain recordings from participants watching several popular movies with audio (St-Laurent
et al.}[2023), we investigate the brain alignment of instruction-tuned MLLMs. Specifically, we evaluate
six instruction-tuned video MLLMs, two instruction-tuned audio MLLMs, one non-instruction-tuned
multimodal model (video+audio), and one unimodal model each for video and audio. These models
are probed with 13 video task-specific instructions, and 5 audio task-specific instructions. Overall,
this study addresses the following research questions:

1. How do different task-specific instructions influence the degree of brain alignment in
instruction-tuned video and audio MLLMs?

2. Do instruction-tuned video MLLMs exhibit better brain alignment than their audio counter-
parts when exposed to multimodal stimuli?

3. Do instruction-tuned MLLMs produce functionally distinct representations that map onto
different brain regions, offering a data-driven alternative to traditional experimental stimuli?

4. How do task instructions related to semantic categories (e.g., narrative understanding, spatial
reasoning) explain differential activation across language, auditory, and visual brain regions?

To further quantify how instruction-tuned MLLMs capture shared and distinct neural processes across
tasks, we use a variance partitioning approach. This analysis reveals the unique and overlapping con-
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tributions of individual task-specific representations to brain responses, enhancing our understanding
of the brain’s functional organization in processing rich, naturalistic multimodal information.

Our analysis of instruction-tuned MLLMs and brain alignment with multimodal stimuli reveals several
key conclusions: (i) Video-based instruction-tuned MLLMs show significantly higher brain alignment
compared to audio-based instruction-tuned MLLMs, non-instruction-tuned multimodal models,
unimodal video and audio models. This holds across the whole brain, as well as within language,
visual and auditory regions. (ii) On the other hand, Audio MLLMs outperform both non-instruction-
tuned multimodal and unimodal models only in the auditory cortex (AC) and middle frontal gyrus
(MFG) language regions, while exhibiting comparable performance in other language-related areas.
(iii) Surprisingly, both video and audio MLLMs generate task-specific representations based on
task-instructions and effectively differentiate functional processing across brain regions. For example,
audio understanding and captioning tasks show stronger alignment with language areas, while sound
event detection aligns with the auditory cortex and temporal lobe. (iv) Grouping 13 video tasks into
5 semantic categories reveals strong alignment of MLLM representations with brain sub-regions
in line with the existing literature. Tasks involving language and narrative understanding exhibit
stronger alignment in language-related sub-regions such as angular gyrus and lateral temporal regions,
consistent with prior findings on event structure representation in naturalistic stimuli (Baldassano
et al.2017). Similarly, spatial understanding tasks preferentially engage the dorsal parietal cortex,
part of the dorsal visual pathway. Overall, our analysis reveals that instruction-tuned MLLMs capture
both hierarchical and task-specific brain representations, making them powerful tools for studying
functional specialization and bridging cognitive modeling with neuroscience. We will upload our
code as part of the supplementary material.

2 Dataset and Models

2.1 Brain Imaging Dataset

We experiment with MovielO (St-Laurent et al., 2023), a multimodal naturalistic fMRI dataset,
obtained from the Courtois NeuroMod databank. This dataset was collected while four human
subjects (s1, s2, s3, s5; data for s4 and s6 is not public) passively watched four different movies: The
Bourne supremacy (~100 mins), The wolf of wall street (~170 mins), Hidden figures (~120 mins)
and Life (~50 mins). Among these, Hidden figures and Life are repeated twice, with the repeats used
for testing and the remaining movies for training. In this work, we use Life movies for testing where
we average the two repetitions to reduce noise in brain data. This dataset is one of the largest publicly
available multimodal fMRI datasets in terms of the number of samples per participant. It includes
4024 TRs (Time Repetitions) of The Bourne supremacy and 6993 TRs of The wolf of wall street for
training and 2013 TRs of Life as test data. We build encoding models where the train and test sets are
totally disjoint. The fMRI data is collected every 1.49 seconds (= 1 TR).

The dataset is already preprocessed and projected onto the surface space (“fsaverage6”). We use the
multimodal parcellation of the human cerebral cortex based on the Glasser Atlas (which consists
of 180 regions of interest in each hemisphere) to report the ROI (region of interest) analysis for the
brain maps (Glasser et al.,[2016). This includes four visual processing regions (early visual cortex
(EVC), object-related areas (LOC), face-related areas (OFA) and scene-related areas (PPA)), one early
auditory area (AC), and eight language-relevant regions, encompassing broader language regions:
angular gyrus (AG), anterior temporal lobe (ATL), posterior temporal lobe (PTL), inferior frontal
gyrus (IFG), inferior frontal gyrus orbital IFGOrb), middle frontal gyrus (MFG), posterior cingulate
cortex (PCC) and dorsal medium prefrontal cortex (dmPFC), based on the Fedorenko lab’s language
parcels (Milton et al., [2021; |Desai et al., [2023). We show the flatmap with these labeled ROIs in
Appendix Fig.|6|and list the detailed sub-ROIs of these ROIs in Appendix [C]

Estimating cross-subject prediction accuracy. To account for the intrinsic noise in biological
measurements, we adapt Schrimpf et al.| (2021))’s method to estimate the cross-subject prediction
accuracy for a model’s performance for the Moviel0 fMRI dataset. For each subject s € ([1,4]) is
chosen as the prediction target and the other three are used to predict this target, we use a voxel-wise
encoding model (see Sec. [3) to predict one participant’s response from others. The detailed approach
is described in Appendix [D] Note that the estimated cross-subject prediction accuracy is based on
the assumption of a perfect model, which might differ from real-world scenarios, yet offers valuable
insights into model’s performance. We estimate cross-subject prediction accuracy by training on the
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Table 1: Pretrained MLLMs for video, audio vs. mul- Table 2: Instructions for various multi-

timodal, unimodal models (IT: Instruction-tuned). modal audio tasks.
Model Name IT | #Layers | Modality
InstructBLIPVideo v 33 Video+Text Tosk 5 T
Video-LLaVA v 33 Video+Text asx . escription A
LLaVa-NeXT-Video | v 33 Video+Text Audio Understanding Can you det%crlbe the audio con-
Qwen-2.5-VL v 29 Video+Text , ‘ tent in detail? -
Videochat-R1 v/ 29 Video+Text Audio Comprehension What are people doing in the
LLaVA-OneVision v 28 Video+Text _ _ audlg? _
Qwen-2.5-Audio 7 79 Audio+Text Audio Captioning Caption the audio in a short sen-
Kimi-Audio v 29 Audio+Text i tence.
TVLT X 2 VideotAudio Sound Event Detection | Identify and label the sound
VideoMAE 4 24 Video events occurring in the audio.
AST X 24 Audio Speaker Identification ‘Who is speaking in the audio?

combined brain data from The Bourne supremacy and The wolf of wall street and testing on the brain
data from the movie Life. We present the cross-subject prediction accuracy across voxels for the
Moviel0 fMRI dataset for each of the four participants in Appendix D] The plots show that across all
participants higher activity is observed in the language and visual regions with a max correlation up
to 0.4 implying that data has low noise and low cross-subject variability.

2.2 Instruction-tuned Multimodal Models for Video and Audio

To investigate whether instruction-tuned MLLMs models, when prompted using natural language-
guided instructions, align with the way humans process multimodal information in the brain, we
consider six popular modern instruction-tuned video MLLMs (InstructBLIPVideo (Dai et al., 2023),
Video-LLaVA (Lin et al., 2023), LLaVA-Next-Video (Zhang et al., 2024)), Qwen-2.5-VL (Wang
et al.,[2024), Videochat-R1 (Li et al., 2025)), LLaVA-OneVision (Li et al.,[2025)) and two instruction-
tuned audio MLLMs (Qwen-2.5-Audio (Chu et al.} [2024)), Kimi-Audio (Kimi Team), [2024)). We
also experiment with one non-instruction-tuned multimodal (TVLT (Tang et al.| 2022))), one video
unimodal (VideoMAE (Tong et al.,2022)) and one audio unimodal (AST (Baade et al.,|2022))) model.
Details for these models are reported in Table[T]

2.3 Natural Language Instructions and Feature Extraction from Instruction-Tuned MLLMs

Video-specific tasks. To ensure the diversity of task-specific instructions while considering videos
as input, we consider 13 instructions, as shown in Table [3] and extract the language-guided rep-
resentations from multimodal instruction-tuned video models. This set of 13 tasks are inspired
from Videolnstruct100K dataset (Maaz et al.,2024). We borrowed those tasks, which are generally
applicable to any video regardless of the contents in the image frames. We provide a sample of
generated outputs for all the six video MLLMs in Tables[5][6] [7] [8] [0]and [I0]in Appendix[E].

To extract instruction-specific representations from multimodal instruction-tuned video models for
the brain encoding task, we input a video and task instruction to obtain the embeddings for the
language-guided instruction. For TVLT, we input video and audio. For VideoMAE we input video
only. We perform zero-shot inference on these models. For all multimodal instruction-tuned video
models, we use the pretrained Transformer weights, which generate hidden state representations at
each layer. We then average these hidden state representations at layer level of output generated
tokens to obtain final embedding at each layer for each video with respect to task instruction.

Audio-specific tasks. Similar to video tasks, we consider five natural instructions while considering
audio as input, as shown in Table[2] and extract the language-guided representations from multimodal
instruction-tuned audio model. We provide a sample of generated outputs for one of the instruction-
tuned audio models across the five tasks in Table [IT]and [I2]in Appendix [E]

Similar to instruction-tuned video models, to extract instruction-specific representations from the
multimodal instruction-tuned audio model for the brain encoding task, we input a audio and task
instruction to obtain the embeddings for the language-guided instruction. For AST we input audio only.
We follow the similar feature extraction method as video-tasks to extract audio task representations.

3 Methodology

Voxel-wise encoding model. We train banded ridge regression based voxel-wise encoding mod-
els (la Tour et al.|; 2022) to predict the fMRI brain activity associated with the stimulus representations
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Table 3: Instructions for various multimodal video tasks.

Task Description

Action Recognition What are the main events captured in the video?

Video Understanding Can you describe the video content in detail?

Visual Question Answering How many people are in the video, and what are they doing?

Video Captioning Caption the video in a short sentence.

Object and Scene Recognition | What are the main objects and people visible in the video? Describe each one briefly.

Commonsense Reasoning Why did the character take this action? What could have motivated them to do this?

Spatial Understanding Where is this video taken from? What place/landmark is shown in the video?

Temporal Ordering Step-by-step describe the activity shown in the video.

Video reasoning What is unusual about this video?

Narrative Understanding Summarize the main storyline of the movie. What is the central conflict, and how is it resolved?
Emotion and Sentiment Analysis | What emotions do the characters express during the video? How does the video make you feel overall?
Global Appearance Describe changes in characters’ appearances throughout the video, including any noticeable outfit changes.
Linking Events Explain how an early event in the video influences later developments.

obtained from 13 task-specific instructions from multimodal instruction-tuned video models. Banded
ridge regression optimizes a different regularization hyperparameter per feature space, and decom-
poses the explained variance over feature spaces. This decomposition helps in identifying which
task-specific instruction contributes most to the explainable variance in different brain regions.
Overall, banded ridge regression helps to accurately identify the contribution of each task-specific
instruction, leading to better prediction accuracy and better interpretability. We employ z-score
thresholding separately for both input stimulus representations and brain recordings for training and
test datasets. For each subject, we account for the delay in the hemodynamic response by modeling
hemodynamic response function using a finite response filter (FIR) per voxel with 5 temporal delays
(TRs) corresponding to ~7.5 seconds (Huth et al., 2022). Formally, at each time step ¢, we encode
the stimuli as X; € RP and brain region voxels Y; € RV, where D denotes the dimension of the
concatenation of delayed 5 TRs, and V' denotes the number of voxels. Overall, with N such TRs, we
obtain NV training examples. Detailed hyper-parameter settings are in Appendix [F}

Evaluation metrics. We evaluate our models using Pearson Correlation (PC), which is a standard
metric for evaluating brain alignment (Jain & Huth|, 2018} |Schrimpf et al.,|2021};|Goldstein et al.| 2022).

Let TR be the number of time repetitions in the test set. Let Y = {Y;}758 and Y = {V;}7% denote
the actual and predicted value vectors for a single voxel, respectively. Thus, Y and Y € RT%. We use

PC to compute the correlation function, corr (Y, Y) The final measure of a model’s performance is
obtained by calculating Pearson’s correlation between the model’s predictions and neural recordings.
To quantify the model predictions, the resulting model prediction correlations are divided by the
estimated cross-subject prediction accuracy; and averaged across voxels, regions, and participants,
resulting in a standardized measure of performance referred to as normalized brain alignment. For
calculating normalized alignment, we select the voxels with cross-subject prediction accuracy > 0.05.

4 Results

4.1 Representations From Instruction-tuned Video MLLMs Align Well With Human Brain
Activity Across Whole Brain, Language, Visual And Auditory Regions

First, we examine the brain alignment by measuring the degree of brain predictivity using rep-
resentations extracted from instruction-tuned video MLLMs, focusing on whole brain, language,
visual and auditory regions. For each instruction-tuned MLLM, we calculate the average normalized
brain alignment across 13 tasks, multiple subjects, and best MLLM layer, using the Moviel0 fMRI
dataset. Similarly, for instruction-tuned Audio MLLMs, we calculate the average normalized brain
alignment across five tasks, multiple subjects, and best MLLM layer. Additionally, we report the
brain alignment performance of non-instruction-tuned multimodal model (TVLT) and unimodal
video model (VideoMAE) and unimodal audio model (AST). We treat the non-instruction-tuned
multimodal models and unimodal models (audio and video) as the baselines when comparing against
the instruction-tuned MLLMs.

Whole brain analysis. Fig.[2|(a) shows the results for whole brain analysis. We make the following
observations: (i) At the whole-brain level, the Wilcoxon signed-rank test reveals that the differences in
brain alignment between instruction-tuned video MLLMs and the non-instruction-tuned multimodal
and unimodal models are statistically significant. In particular, all instruction-tuned video MLLMs
achieve over 15% improvement in brain alignment compared to the baselines. This contrasts with prior
findings on instruction-tuned image-based MLLMs, which demonstrated comparable performance
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Figure 2: Average normalized brain alignment of instruction-tuned video MLLMs vs instruction-
tuned audio MLLMs vs multimodal and unimodal models across whole brain, language, visual and
auditory regions. Error bars indicate the standard error of the mean across participants. * implies that
instruction-tuned MLLM embeddings are significantly better than multimodal models and A means
that instruction-tuned MLLM embeddings are significantly better unimodal models with p< 0.05.

(b) Language

to multimodal models when evaluated on unimodal image stimuli (Oota et al., |2025a), suggesting
that instruction-tuned video MLLMs are more effective at capturing brain-relevant representations.
(i1) The instruction-tuned audio MLLM embeddings are not significant and shown less alignment
compared to non instruction-tuned multimodal and unimodal video models. These findings imply that
instruction-tuned video MLLM models capture brain-relevant representations and contain additional
information beyond the non-instruction-tuned multimodal and unimodal models.

Language, visual and auditory region analysis. We also present the average normalized brain
alignment across language, visual and auditory regions in Fig. [2] (b, ¢ and d). The results from
Wilcoxon signed-rank test is consistent with whole-brain performance both in the language and visual
regions i.e instruction-tuned video MLLM embeddings exhibit significantly higher alignment in
both language and visual regions compared to non-instruction-tuned multimodal, unimodal video,
and audio models. On the other hand, instruction-tuned audio MLLM embeddings show significant
alignment primarily in the auditory cortex and the middle frontal gyrus (MFG); when compared to
non-instruction-tuned multimodal and unimodal models. Results for detailed language, visual and
auditory sub-regions are shown in Fig.[8]and [9]in Appendix

These results suggest that instruction-tuned video MLLMs more effectively capture brain-relevant
multimodal representations, particularly when processing naturalistic multimodal stimuli.

Additionally, we present contrast of brainmaps to display the average normalized brain alignment
across voxels for the instruction-tuned video MLLMs versus the non-instruction-tuned multimodal
TVLT in Figs.[TI0][TT}[T2] and [I3]in Appendix|[} The results show that instruction-tuned video MLLMs
consistently achieve significantly higher alignment across all brain voxels. However, Figs.[T4]and [I3]
in Appendix [[reveal clear differences between audio MLLMs and multimodal models: the prediction
performance of audio MLLMs lacks brain-relevant semantic information compared to multimodal
models.

4.2 Instruction-tuned Video And Audio MLLMs Successfully Differentiate Task-specific
Instructions

To investigate which instructions are more effective in predicting brain activity and whether
instruction-tuned MLLMs differentiate task-specific representations and provide clear separation in
brain regions, we analyze the voxels as follows. For each voxel, we select the instruction that results
in the highest normalized brain alignment and apply the instruction-specific color code to the voxel.

Instruction-tuned video MLLMs. Fig. 3| (left) shows brain maps for Qwen-2.5-VL for video tasks
for average normalized brain predictivity across subjects where the voxel color codes are projected
onto the flattened cortical surface of the ‘fsaverage’ subject. The color-scheme corresponding to each
instruction is also reported. We make the following observations: (i) Video understanding exhibits
the strongest alignment across the whole brain. (ii) Tasks such as spatial understanding, narrative
understanding, and visual question answering show higher alignment in language-related regions,
including the angular gyrus, posterior temporal lobe, and visual regions. (iii) Higher-order language
regions in the frontal cortex are predominantly identified by the video understanding task, with a
smaller proportion of voxels also activated by video reasoning and temporal ordering tasks.

These findings suggest that instruction-tuned video MLLMs not only capture modality-specific
representations (e.g., visual, linguistic), but also encode task-specific instructions involving semantic
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Figure 3: Each voxel is color-coded with the instruction that led to the highest normalized brain
alignment. The color bar highlights color codes for each instruction. The voxels are projected onto
the flattened cortical surface of the ‘fsaverage’ subject. (Left): video MLLM (Qwen-2.5-VL). (Right):
audio MLLM (Qwen-2.5-Audio).
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integration and event structure (like video understanding). This highlights that these models can
encode complex neural patterns. We observe similar performance gains in other instruction-tuned
video MLLMs, flatmaps showing task-specific encoding performance for average of subjects are
shown in Figs.[T6and [I7]in Appendix ]}

Instruction-tuned audio MLLMs. Fig. [3] (right) shows brainmap for audio instruction-tuned MLLM
(Qwen-2.5-Audio) where the predictions are average across subjects. Here, the voxel color codes
are projected onto the flattened cortical surface of the ‘fsaverage’ subject. The figure shows a clear
distinction between different audio tasks. Audio captioning and sound detection are mainly aligned
with the auditory cortex (AC), while audio understanding activates higher-level regions like the
inferior temporal (IT) cortex and inferior frontal gyrus (IFG). In contrast, speaker identification shows
very sparse and scattered alignment, with some unexpected activation in the primary visual cortex
(V1), suggesting it does not strongly reflect brain-relevant semantic processing. Fig.[I8]in Appendix [J]
shows similar brainmap for Kimi-Audio.

Instruction-tuned MLLMs capture layer-wise cortical hierarchy. Inspired from previous literature
(Namburi et al, 2023}, Mitchell et al.} [2022)) which shows that Transformers process information
differently across layers, we examine whether instruction-tuned MLLMs reflect the brain’s hierarchy
of information processing across layers by analyzing the voxels as follows. For each voxel, we
select the layer that results in the highest normalized brain alignment and apply a color code for the
29/33 layers for each MLLM. Fig. ] presents brain maps for the Qwen-2.5-VL & Qwen-2.5-Audio,
where the voxels with their corresponding color codes are projected onto the flattened cortical surface
of the ‘fsaverage’ subject. We make the following observations: (i) Early sensory areas-including
early visual regions and early auditory cortex-are best aligned with the lower layers of the model,
suggesting that shallow model representations capture low-level sensory features. (ii) High-level
visual areas such as the lateral occipital complex (LOC) and parahippocampal place area (PPA), as
well as language-related regions like the superior temporal sulcus and angular gyrus, show stronger
alignment with the middle to deeper layers of the model. This reflects the model’s progression toward
more abstract and semantically rich representations. (iii) Notably, language-related areas such as
the inferior frontal gyrus (IFG), anterior temporal lobe (ATL), and angular gyrus show strongest
alignment with the deepest layers of the model. These results indicate that instruction-tuned MLLMs
naturally develop a layered structure that maps well onto the brain’s own representational hierarchy.
Similar brain maps for the remaining models are provided in Fig.[T9]in Appendix[K}

4.3 Representations from instruction-tuned video MLLMs for semantic task groups reveal
distinct cognitive and neural profiles

To further examine how instruction-tuned video MLLMs generate task-specific representations and
reveal functional specialization in the brain, we group the 13 video tasks into 5 cognitively grounded
categories: Perceptual visual processing, Cognitive reasoning and integration, Spatiotemporal un-
derstanding, Language and narrative understanding, and Social and affective understanding. Fig.[3]
illustrates that this grouping captures meaningful distinctions.

Tasks in the Language and narrative understanding group show broader and denser cortical engage-
ment, particularly across the temporal and parietal cortices, compared to visual and frontal regions.
In particular, we observe strong activity in the bilateral temporal lobes for narrative understanding, as
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Figure 4: (a) Qwen-2.5-VL and (b) Qwen-2.5-Audio (layer-wise alignment): Each voxel is color
coded with the MLLM layer number (out of 29) that led to the highest normalized brain alignment.
The color bar highlights color codes for each layer. The voxels are projected onto the flattened cortical
surface of average across subjects on ‘fsaverage’ surface.
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Figure 5: Semantic Task Group Analysis: Each voxel is color coded with the task instruction that led
to the highest normalized brain alignment. The color bar highlights color codes for each instruction.
The voxels are projected onto the flattened cortical surface averaged across all subjects for video
MLLM (Qwen-2.5-VL). While this plot shows brain maps for 3 groups, brain maps for remaining 2
task groups are in Fig. [20]in Appendix [[]

well as in the angular gyrus, posterior superior temporal sulcus (pSTS), and posterior cingulate cortex
(PCC) regions known to support multimodal integration, which is critical for narrative comprehension.

This is aligned with previous work (Mar], 2011}, Baldassano et al.,[2017).

Spatiotemporal understanding. Temporal ordering elicits more widespread activation in the angular
gyrus and posterior temporal lobe, whereas spatial understanding shows stronger engagement in
the dorsal parietal cortex and anterior temporal lobe (Zacks et al.} 2007} Baldassano et al.,[2017).
Additionally, we observe that early visual areas are more active during the spatial understanding task,
whereas early auditory cortex shows higher activity in the temporal ordering task, likely due to its role
in processing sound-based events 2000). However, the brain does not strictly separate
spatial and temporal processing. These representations often co-exist, particularly in narrative and
event-based cognition.

Cognitive Reasoning. Commonsense reasoning elicits widespread activation in the temporal cortex,
angular gyrus, and higher-order visual regions, reflecting its reliance on semantic processing and
world knowledge. In contrast, video reasoning shows strong alignment with early visual areas (V1,
V2, V3), indicating a greater dependence on visual perception and motion processing. Linking events
tasks activate the early auditory cortex and show more distributed engagement of anterior temporal
lobe (involved in word-level semantics), inferior frontal gyrus, and angular gyrus, highlighting the
integration of temporal, linguistic, and episodic information necessary for narrative comprehension.
These results demonstrate that different forms of higher-order reasoning highlights the brain’s flexible
organization for supporting diverse reasoning demands across modalities and timescales.

Similarly, we observe task-specific differences in brain regions for perceptual visual processing, and
affective social processing (Appendix [C). These patterns underscore the ability of instruction-tuned
MLLMs to modulate their representations based on distinct cognitive demands reflected in the brain.

4.4 Partitioning explained shared and unique variance between task-specific instructions

While the previous analysis reveals that task-specific instructions from MLLMs modulate their
representations based on distinct cognitive demands, we further examine the representations of task-
specific instructions to measure the overlap in brain variance explained by MLLMs. To accomplish
this we use variance partitioning approach discussed in Appendix [M]

Fig.22]presents Venn diagrams for the whole brain, language and visual regions, depicting shared
and unique variance across these regions between narrative understanding and other task instructions.
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Similarly, we performed this analysis for all pairs from the 13 tasks and show results in Table [I3]in
Appendix M| Across nearly all task pairs, the whole brain region consistently exhibits the highest
shared variance. Tasks that are conceptually or functionally related exhibit high shared variance in
all regions, indicating similar cognitive processing demands. Higher-level semantic and reasoning
tasks (e.g., Narrative Understanding, Commonsense Reasoning, Temporal Ordering) show increased
unique variance in the language network, indicating language-specific processing distinct from visual
features. High visual load tasks (e.g., Action Recognition, Object and Scene Recognition, Global
Appearance) contribute more uniquely in visual cortex, especially when paired with non-visual tasks.

5 Discussion and Conclusion

Using instruction-tuned representations from both video and audio MLLMs for various task-specific
instructions, we evaluated how well these representations predict fMRI brain activity when partici-
pants viewed naturalistic movies (video included with audio). Additionally, we compared different
video and audio MLLMs’ representations, assessing their alignment with each instruction across
whole brain, language, visual and auditory regions. We show that instruction-tuned video MLLMs
exhibit significantly better brain alignment than audio MLLMs, vision-only, audio-only, and non-
instruction-tuned multimodal models.

Our study on instruction-tuned MLLMs and their alignment with multimodal stimuli yields several
key findings: (1) Although instruction-tuned video MLLMs demonstrate strong brain alignment
across the whole brain (including language, visual, and auditory regions) audio MLLMs show
effective alignment primarily in auditory and language-related areas such as the middle frontal gyrus
(MFG). This highlights the potential of instruction-tuned audio MLLMs to capture different features
relevant to auditory processing, providing information on the function of the auditory cortex similar to
those observed in previous studies (Oota et al., 2024a,[2025b). However, their performance remains
comparable to non-instruction-tuned multimodal models, indicating that further improvements are
needed for instruction-tuned audio MLLMs to fully capture brain-relevant representations — an
effort that aligns with recent work on inducing brain-relevant biases in model design (Moussa et al.|
2025; [Vattikonda et al., 2025). (2) The surprising effectiveness of task-specific instructions in
predicting multimodal brain activity across different regions points out that both video and audio
MLLMs generate distinct task-specific representations. These representations enable the models to
effectively differentiate functional processing across brain regions, unlike prior work by Oota et al.
(2025a)), which did not observe such differentiation when using unimodal stimuli (e.g., static images).
Specifically, certain audio instructions, such as audio captioning and audio understanding, show
stronger alignment with language-related regions, while tasks such as sound event detection better
align with the auditory cortex and temporal lobe. These findings imply that instruction-tuned MLLMs
offer a powerful framework for designing controlled stimuli by a systematic manipulation of task
goals through instructions, allowing researchers to isolate and examine task-specific brain responses
using the same input. (3) By grouping task-specific instructions into functional categories, we find that
narrative understanding consistently engages the bilateral temporal lobes, angular gyrus, and posterior
cingulate cortex which are regions known for multimodal integration. Temporal ordering tasks elicit
stronger responses in the angular gyrus and posterior temporal lobe, while spatial understanding
activates the dorsal parietal cortex. These findings highlight the potential of instruction-tuned video
MLLMs as powerful tools for probing functional specialization in the brain, offering a structured and
interpretable framework for mapping high-level cognitive processes to specific neural substrates. (4)
The observed correspondence between instruction-tuned MLLM layers and the brain’s functional
hierarchy suggests that these models inherently develop structured, brain-like representations, ranging
from early sensory information processing in shallow layers to abstract semantic processing in
deeper layers. This layered alignment not only enhances their interpretability but also highlights
their potential as tools for investigating how the brain encodes and organizes complex, task-driven
information.

Our findings also clearly show that despite the growing popularity of instruction-tuned video and
audio MLLMs in handling generic task instructions, we are still far from fully interpreting how
language-based instructions guide information flow through model layers and how fine-grained
details are processed across layers to achieve brain-like representations. Future work should focus
on leveraging the alignment strengths of these models using more fine-grained instruction-driven
prompts, similar to controlled stimulus paradigms in neuroscience, to deepen our understanding of
functional specialization in the brain. Lastly, we discuss limitations of our work in Appendix [N]
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Section[d] presents results supporting all claims made in abstract and introduc-
tion.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Section[Nldiscuss limitations of this current work.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper do not introduce any theortical proofs or formulas.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Appendix Section [F] provides complete details about GPU configurations used,
model parameters used in voxelwise encoding model.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:

Justification: We will release our code upon publication of this paper. We do not create any
new dataset and used publicly available opensoure dataset.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section[3]and Appendix Sec [F]provide complete details about train-test setup,
model hyperparamters.

Guidelines:

* The answer NA means that the paper does not include experiments.
» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Appendix Section [G]presents detailed statistical analysis and also Section 5.1
reports all results using Wilcoxon test.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix Section [F provides complete details about GPU configurations used,
each GPU memory size, and time for extracting representations.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in this paper fully conforms with the NeurIPS Code of
Ethics in every respect.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper explores how the advancements and applications of our findings
could benefit society in terms of computational neuroscience research by specifically inves-
tigating the effectiveness of the current state-of-the-art instruction-tuned video and audio
MLLM:s in encoding multimodal brain activity.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our research does not pose any risks for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have explicitly cited the datasets, code and models used.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We will try to opensource the code and provide complete documentation for
our assets upon acceptance.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not collect or annotate any new dataset in this paper.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not collect any new data in this paper, and we use publicly available
opensoure dataset as discussed in Section [2.1]

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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897 * For initial submissions, do not include any information that would break anonymity (if

898 applicable), such as the institution conducting the review.

899 16. Declaration of LLM usage

900 Question: Does the paper describe the usage of LLMs if it is an important, original, or
901 non-standard component of the core methods in this research? Note that if the LLM is used
902 only for writing, editing, or formatting purposes and does not impact the core methodology,
903 scientific rigorousness, or originality of the research, declaration is not required.

904 Answer: [Yes]

905 Justification: We have used LLM only for grammar correction.

906 Guidelines:

907 * The answer NA means that the core method development in this research does not
908 involve LLMs as any important, original, or non-standard components.

909 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
910 for what should or should not be described.
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Overview of Appendix Sections

* Appendix[A} Overview of multimodal model evaluation settings in brain encoding studies
 Appendix [B} Related work
* Appendix [C} Detailed sub-ROISs of language, visual and auditory regions

* Appendix [D} Cross-subject prediction accuracy

* Appendix [E} Model generated outputs across instructions

* Appendix [F} Implementation details for reproducibility
* Appendix[G} Statistical Significance
* Appendix [Ht Effectiveness of instruction-tuned video MLLMSs vs audio MLLMs vs multi-

modal vs unimodal representations for various brain regions

* Appendix[[} Contrasting Instruction-tuned video MLLMs with non-instruction-tuned multi-

modal

* Appendix[J} Brain Maps for Task-specific instructions

* Appendix [K} Brain Maps showing Layer-wise Details for Video Instruction-based MLLMs
* Appendix[[} Details of Semantic Task Group Analysis
* Appendix [M} Details of explained variance partitioning
* Appendix [N} Limitations

A Overview of multimodal model evaluation settings in brain encoding

studies

Table 4: Overview of multimodal model evaluation settings in brain encoding studies.

Study Model Type Stimulus Modality Brain Dataset Instruction-Tuned
Data
Doerig et al.|(2022) Vision-Language (CLIP) Unimodal (Images) fMRI NSD X
[[Wang et al[(2023) Vision-Language (CLIP) Unimodal (Images) fMRI NSD X
[|Oota et al(2022b) Vision-Language (CLIP, Vi-|Unimodal (Images) fMRI BOLDS5000 X
sualBERT, LXMERT)
Popham et al.|(2021) Vision-Only CNNs  vs.|Unimodal (Silent Videos) [fMRI Gallant lab short X
Vision-Language video clips
Tang et al.{(2022) non-instruction-tuned multi- Unimodal (Silent Videos),|fMRI Gallant lab short X
modal model (BridgeTower)| Unimodal (listening stories) video clips
Oota et al.{(2025a) Instruction-tuned Im-| Unimodal (Images) fMRI NSD v
age+Text MLLMs
Sartzetaki et al.|(2024) |Image Recognition models,|Unimodal (Visual) fMRI Bold Moments X
Action recognition models Dataset
Nakagi et al.|(2024) Language models (BERT,|Multimodal (Videos with au-{fMRI 8.3 hours of video X
GPT-2, Lllama2, OPT) dio) dataset
Subramaniam et _al.|non-instruction-tuned multi-{Image  frame-text pairs| SEEG AMMT X
(2024) modal models (SLIP-CLIP,|(Movies)
SimCLR, BLIP, BEIT)
Dong & Toneva|(2023a) |non-instruction-tuned mul-|Multimodal (Movies: Videos|fMRI Neuromod Friends X
timodal models (Merlore-|with audio) dataset
serve)
Oota et al.| (2025b) non-instruction-tuned multi- Multimodal (Movies: Videos|fMRI Neuromod MovielO X
modal models (TVLT and|with audio)
ImageBind)
Our study instruction-tuned video and|Multimodal (Movies: Videos|fMRI Neuromod Moviel0 v
audio MLLMs with audio)

B Related work

Brain encoding using multimodal models. Our work is closely related to that of Conwell et al.
(2022); [Wang et al.| (2023); |Doerig et al.| (2022); Tang et al.| (2024); Nakagi et al.| (2024); Dong
& Toneval (2023b)); |Oota et al.| (2025b), who proposed using multimodal model representations to
study the contribution of brain alignment in unimodal and multimodal stimuli. The majority of
brain encoding studies in using multimodal models focused on a single modality of input — vision
alone (Conwell et al.l [2022; Wang et al., 2023} |Doerig et al., 2022} |Wang et al., [2023; Tang et al.,
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[2024}; [Nakagi et al.| [2024). Recently, Dong & Toneval (2023b)); [Oota et al| (2022b)) interpreted

the effectiveness of multimodal Transformer language models in multimodal naturalistic stimuli.
However, these studies focus on pretrained multimodal models which are not generic to tasks and
lack the investigation of recent instruction-tuned models.

Task-based brain alignment. Our work is also closely related to that of[(Wang et al.|(2019);Oota et al.
(20224));[Aw & Toneval (2023)); [Sun et al.| (2023) and [Aw et al.| (2023), who propose using task-specific
model representations to study the contribution of individual tasks to brain alignment. Wang et al.
(2019) investigated 21 computer vision tasks to explore which vision tasks are more aligned with
the brain while subjects engaged in viewing passive images. Similarly, Oota et al.| (2022a)) and [Sun|
(2023)) explored 10 GLUE NLP tasks to study which NLP tasks are more brain-aligned during
reading and listening to stories. More recent work by uses instruction-tuned LLMs
to investigate the effect of natural language instruction model representations on brain alignment
across layers for language comprehension. Further, (2025a)) use instruction-tuned MLLMs
(image+text), using natural language instructions across diverse vision tasks to analyze their alignment
with brain activity across layers during visual processing. However, these studies primarily focused
on unimodal stimuli and thus do not fully capture the capabilities of multimodal instruction-tuned
models under multimodal conditions. We complement these works by examining the impact of a
wide range of instruction-tuned MLLMs—spanning video and audio-based models with text-based
prompts—on their alignment with brain activity from multimodal stimuli.

C Detailed sub-ROIs of language, visual and auditory regions

The data covers seven brain regions of interest (ROIs) in the human brain with the following sub-
divisions: (i) early visual (EV: V1, V2, V3, V3B, and V4); (ii) object-related areas (LO1 and LO2);
(iii) face-related areas (OFA), (iv) scene-related areas (PPA), (v) middle temporal (MT: MT, MST,
LO3, FST and V3CD), (vi) late language regions, encompassing broader language regions: angular
gyrus (AG: PFm, PGs, PGi, TPOJ2, TPOJ3), lateral temporal cortex (LTC: STSda, STSva, STGa,
TEla, TE2a, TGv, TGd, AS, STSdp, STSvp, PSL, STV, TPOIJ1), inferior frontal gyrus (IFG: 44, 45,
IFJa, IFSp) and middle frontal gyrus (MFG: 55b) (Baker et al} 2018}, [Milton et al., 2021}, [Desai et al}

Figure 6: Flattened cortical surfaces for language-, visual- and auditory-selective regions displayed
on the ‘fsaverage’ surface, used as the mask for all participants.

D Cross-subject prediction accuracy

We follow the method introduced by [Schrimpf et al.| (2021) to estimate how well brain activity in
one individual can be predicted from others, using the Moviel0 fMRI dataset. Starting with data
from n participants (e.g., n = 4), for each subject s € ([1,4]) is chosen as the prediction target and
the other three are used to predict this target, we use a voxel-wise encoding model (see Sec. [3) to
predict one participant’s response from others. For every combination, one participant was randomly
chosen as the target, and the model was trained to predict their brain responses using data from
the remaining s — 1 participants. This gave us an average prediction score (correlation) for each
voxel at each participant. To extrapolate to infinitely many humans and thus to obtain the highest
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possible (most conservative) estimate, as suggested by [Schrimpf et al.| (2020), we fit the equation
v =1y X (1 — ef%) where z is each subsample’s number of participants, v is each subsample’s

correlation score and vy and 7y are the fitted parameters. This fitting was performed for each sensor
independently with 100 bootstraps each to estimate the variance where each bootstrap draws x and v
with replacement. The final ceiling value was the median of the per-voxel ceilings vg.

Fig.[7shows the estimated cross-subject prediction accuracy for all four participants for the naturalistic
movie watching. Pearson correlation scores for each voxel in each subject are projected onto the
subject’s flattened cortical surface. The plots show that across all subjects higher activity is observed
in the language and visual regions with a max correlation up to 0.4 implying that data has low noise
and low cross-subject variability.

(b) Subject-03

(c) Subject-05

Figure 7: Estimated cross-subject prediction accuracy for all four participants for the naturalistic
movie watching. Pearson correlation scores for each voxel in each subject are projected onto the
subject’s flattened cortical surface.
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E Model generated outputs across instructions

Tables 5} [6} [71 [8] P and [T0] show model generated outputs for a sample video from the Moviel0 dataset
using InstructBLIPVideo, Qwen-2.5-VL, Video-LLaVA, LLaVa-NeXT-Video, LLaVA-OneVision
and VideoChat-R1 models, respectively. Similarly, Tables[IT|and [I2] show model generated outputs
for a sample video from the Moviel0 dataset using Qwen-2.5 Audio and Kimi-Audio models.

Table 5: Outputs from InstructBLIPVideo for a sample clip from the Moviel0 dataset.

W A N N . .
Frame 1 Frame 3 Frame 8 Frame 13 Frame 16
Instruction Model Output
Action Recognition The main event captured in the video is a man sitting at a bar with a glass of beer, engaging in

conversation with another man. The man is wearing glasses and is sitting in a dining area, surrounded
by other people, possibly in a bar or restaurant. The scene also features a man wearing a towel, which
is wrapped around his neck.

Video Understanding In the scene, a man is sitting in a bar with a beer in his hand, engrossed in a conversation with another
man. The two men are sitting at a table, with one of them holding a glass of wine. There are multiple
bottles of beer visible in the background, placed on a table and around the bar area. A few other
people can also be seen in the scene, possibly patrons or other bar visitors, scattered around the bar and
interacting with the two main characters. The scene is set in a dimly lit environment with some lighting,
providing a relaxed atmosphere for the men’s conversation.

Visual Question Answering There are two people in the scene, one man and one woman. They are having a conversation at a bar,
sitting at a table, and drinking.
Video Captioning A man with glasses sitting at a table talking with another man.

Object and Scene Recognition  |In the scene, there is a man wearing glasses sitting in a bar, talking to another person, who is also sitting
in a chair next to him. The man is holding a glass of beer, while the other person is holding a cup.
Commonsense Reasoning The man is sitting in a bar with a glass of wine, engaging in conversation with another man, possibly
discussing something. This action could have motivated the man to take this step for various reasons.
It could be that he is seeking to socialize, share his thoughts or ideas, or simply engage in casual
conversation with a friend or acquaintance.

Spatial Understanding Restaurant

Temporal Ordering The scene depicted in the video shows a man sitting at a bar, engaging in a conversation with another
man. The man is wearing glasses and is holding a glass in his hand, which suggests that he is drinking
or holding a drink. They appear to be having a casual conversation, possibly discussing something of
interest or sharing a story.

Video reasoning In this video, there is an unusual scene where a man with glasses is having a conversation with another
man in a bar, and they are both holding glasses. This is an unusual scene because it is not a typical
social setting for two men to be having a conversation in a bar. They are sitting in a dark, dimly lit
environment, which adds to the unusual nature of their interaction.

Narrative Understanding The central conflict in the movie is the man sitting in a bar talking to another man, who is wearing
glasses. The man in the bar is having a conversation with another man, possibly discussing something
of interest. It is not specified what the topic of their conversation is, but it is likely related to the movie’s
storyline.

Emotion and Sentiment Analysis|The video shows a man sitting at a bar with a friend, talking and having a conversation, which suggests
a social and relaxed atmosphere. The man is wearing glasses, and the scene is set in a dimly lit bar,
which creates a more intimate and cozy atmosphere.

Global Appearance Man with glasses and a towel

Linking Events The scene depicted in the image shows a man wearing glasses sitting at a bar, talking to another person,
possibly a friend, while holding a glass of beer. This early event sets the stage for the later development
of a story or a situation that may unfold in the video.

F Implementation details for reproducibility

All feature extraction experiments were conducted on a machine equipped with an NVIDIA A100
GPU with 80 GB of GPU RAM, partitioned into two devices of 40 GB each. The voxelwise encoding
models were trained on NVIDIA GeForce RTX 3050 GPU with 4GB of GPU RAM. We used banded
ridge-regression with the following parameters: MSE loss function; L2-decay (\) varied from 107!
to 103; the best A was chosen by tuning on validation data that comprised a randomly chosen 10%
subset from the train set used only for hyper-parameter tuning.
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Table 6: Outputs from Qwen-2.5-VL for a sample video from the Moviel0 dataset.

Frame 1

Frame 3 Frame 8 Frame 13 Frame 16

Instruction

Model Output

Action Recognition

The video appears to be a still from a movie or a scene from a film. It shows two individuals engaged in
a conversation in what looks like a dimly lit bar or restaurant setting. The person on the left is wearing a
suit and tie, holding a drink, and seems to be listening intently. The person on the right is gesturing with
their hand, possibly emphasizing a point during the conversation. The atmosphere suggests a serious or
intense discussion.

Video Understanding

The video depicts a scene from a movie or TV show, featuring two characters engaged in a conversation.
The character on the left is dressed in a formal gray suit with a patterned tie and is holding a cigarette in
his right hand. He appears to be listening intently to the other character, who is partially visible from
behind. The setting seems to be an indoor environment, possibly a bar or a similar establishment, as
suggested by the background elements such as a mirror and what looks like a bar counter.

Visual Question Answering

There are two people in the scene. One person is sitting at a table, wearing a suit with a patterned tie,
and appears to be engaged in a conversation or interaction with another person who is partially visible
from behind. The second person is facing away from the camera, and their attire includes a plaid shirt.
The setting seems to be indoors, possibly in a bar or restaurant, given the background elements like the
glassware and the dim lighting.

Video Captioning

A man in a suit is engaged in a conversation with another person in a dimly lit bar setting.

Object and Scene Recognition

In the video, there are two main individuals and several objects: 1. The Man in the Suit: He is wearing
a brown suit with a white shirt and a red paisley tie. He has dark hair styled neatly and is holding a
glass of what appears to be a drink in his left hand. His expression seems serious or contemplative as
he looks at the other person. 2. The Other Person: Only the back of this individual’s head is visible,
suggesting they are facing away.

Commonsense Reasoning

In the video, the character on the left appears to be in a conversation with another person whose back is
turned to the camera. The character’s hand is extended towards the other person, possibly gesturing
or pointing at something. This action could be motivated by several reasons: 1. Clarification or
Explanation: The character might be trying to explain something important or clarify a point in their
conversation. 2. Empk The gesture could be used to emphasize a particular point they are making.

Spatial Understanding

The video appears to be from the movie “The Wolf of Wall Street”, directed by Martin Scorsese and
released in 2013. The setting looks like a bar or a lounge, which is consistent with the film’s depiction
of the characters’ activities in the financial world. However, there are no specific landmarks visible in
the image that would definitively identify the exact location within the movie. The scene is set in New
York City, as the film is based on the real-life events.

Temporal Ordering

The image depicts a scene from a movie where two characters are engaged in a conversation. Here
is a step-by-step description of the activity shown: 1. Setting: The setting appears to be an indoor
environment, possibly a bar or a restaurant, given the presence of a glass and what looks like a menu
board in the background. 2. Characters: - The character on the left is wearing a suit with a patterned
tie and is holding a glass in his hand.

Video reasoning

The video appears to be from a scene in a movie or TV show, featuring two characters engaged in
a conversation. The setting looks like a bar or a similar social environment, with dim lighting and a
relaxed atmosphere. What might be considered unusual is the character on the right, who seems to be
gesturing with their hand while holding a drink, which could indicate they are explaining something or
making a point during the conversation. However, without additional context, it’s difficult to determine
if there is anything particularly.

Narrative Understanding

The movie depicted in the video is “The Wolf of Wall Street,” directed by Martin Scorsese and starring
Leonardo DiCaprio as Jordan Belfort. The film is based on the memoir of the same name by Belfort
himself. Main Storyline: The story follows Jordan Belfort, a young stockbroker who rises to become
one of the most successful and corrupt figures in the financial world during the late 1980s and early
1990s.

Emotion and Sentiment Analysis

The video depicts two individuals in what appears to be a dimly lit, possibly upscale setting, such as a
bar or restaurant. The person on the left is dressed in a suit and tie, suggesting a formal or professional
demeanor, while the person on the right is wearing a plaid shirt, which might indicate a more casual or
relaxed attitude.

Global Appearance

In the video provided, there is no indication of significant changes in the characters’ appearances or
outfit changes. The man on the left appears to be wearing a brown suit with a patterned tie and a white
shirt. He has dark hair styled neatly. The person on the right is seen from behind, wearing a plaid shirt
with a blue and red pattern. There are no visible changes in their attire or appearance within this single
frame.

Linking Events

In the video provided, we see a scene from the movie “The Wolf of Wall Street,” where Leonardo
DiCaprio’s character, Jordan Belfort, is engaged in a conversation with another character. The setting
appears to be a dimly lit bar or lounge, which is typical for scenes involving discussions about business
deals or personal matters. An early event that could influence later developments in this scene might
involve a previous interaction between Jordan and his current interlocutor.

G

To determine if normalized predictivity scores are significantly higher than chance, we run a per-
mutation test using blocks of 10 contiguous fMRI TRs (considering the slowness of hemodynamic
response) rather than individual TRs. By permuting predictions 5000 times, we create an empirical

Statistical Significance
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Table 7: Outputs from Video-LLaVA for a sample clip from the Moviel0 dataset.

Frame 1

Frame 3 Frame 8 Frame 13 Frame 16

Instruction
Action Recognition

Model Output
The main events in the video include a man sitting at a bar, holding a beer, and talking to another man.
The man holding the beer is wearing a plaid shirt and glasses.

Video Understanding

The video features a man sitting at a bar with a drink in his hand. He appears to be enjoying the drink
and is engaged in conversation with someone else at the bar. The man is wearing glasses and a plaid
shirt, giving him a casual and relaxed demeanor. The bar is well-lit, with a variety of bottles and glasses
on display, indicating a lively and bustling atmosphere. In the background, there are other patrons.

Visual Question Answering

There are three people in the scene. Two of them are sitting down, while the third man is standing up
and holding a beer glass.

Video Captioning

A man in a blue and plaid shirt drinking beer at a bar.

Object and Scene Recognition

In the scene, the main objects visible are a man sitting at a bar with a beverage in a glass and another
man sitting next to him. There are also two other men sitting at the bar, and a woman standing nearby.
The bar is well-stocked with various bottles and cups. The man sitting at the bar is wearing glasses, a
blue plaid shirt, and a beige blanket.

Commonsense Reasoning

The character in the image is holding a beer glass and appears to be in a bar or a similar setting. The
motivation for the character to take this action could be due to various reasons, such as relaxation,
socialization, or simply enjoying a beverage during leisure time. The character may have chosen to
have a beer to unwind after a long day, to connect with others in a social setting, or simply to indulge in
a favorite beverage.

Spatial Understanding

The video is taken from a bar, as indicated by the presence of multiple bottles on the bar and a man
holding a beer glass. The video also shows the man standing in front of a bar, suggesting the location of
the video is a bar or similar establishment.

Temporal Ordering

The video depicts a man sitting at a bar, holding a beer in his hand. He is wearing a plaid shirt and
glasses. The scene is set in a dark room, and there are other people in the background. The man is seen
drinking from the beer glass, which is placed on the bar counter. The camera captures the man’s facial
expressions and body language, highlighting his relaxed and social atmosphere.

Video reasoning

The unusual aspect of this video is that it features a man in a plaid shirt and glasses, who is sitting in a
bar and drinking a beer. The man is also wearing a beige scarf, which adds a distinctive touch to his
appearance. However, the most striking feature of this video is that the man is not only drinking a beer,
but he is also holding a cell phone.

Narrative Understanding

The central conflict in the movie is a man’s desire for a drink at a bar, but he is unable to get one due to
a bartender’s refusal. The man’s frustration and disappointment lead to him making a scene and causing
a commotion at the bar. The conflict is ultimately resolved when the man is given a drink, and he leaves
the bar with a smile.

Emotion and Sentiment Analysis

In the video, the man in the blue shirt and the woman are seen laughing and smiling while enjoying
drinks and conversation. The man in the plaid shirt is seen drinking beer and looking down, while the
man in the blue shirt is holding a beer glass. The video conveys a sense of relaxation, camaraderie, and
enjoyment among the characters.

Global Appearance

In the video, the main character, a man with a beard, is seen wearing a plaid shirt and a scarf. He is
also seen wearing a different outfit in one of the scenes, which is not specified in the given information.
The other man in the scene is wearing a dark shirt and glasses. There are also two other men in the
background, one wearing a dark jacket and the other wearing a dark shirt.

Linking Events

The early event in the video is the man in the blue and white checkered shirt sitting at the bar with a
beer in his hand. This scene introduces the setting and the man’s presence at the bar, setting the stage
for later developments. The man’s interaction with other patrons, the woman, and the man in glasses
adds depth and complexity to the narrative.

distribution for chance performance, from which we estimate p-value of the actual performance. The
choice of these specific permutation test configurations is based on established methodologies in previ-
ous research (Deniz et al.,[2019;[Reddy & Wehbel [2021};|Oota et al.,|2024a)). To estimate the statistical
significance of performance differences, such as between the model’s predictions and chance or
residual predictions and chance, we utilized the Wilcoxon signed-rank test (Conover, |1999), applying
it to the mean normalized predictivity for the participants. Finally, the Benjamini-Hochberg False
Discovery Rate (FDR) correction for multiple comparisons (Benjamini & Hochberg| [1995) is used
for all the tests (appropriate because fMRI data is considered to have positive dependence (Genovesel,

2000)).

H Effectiveness of instruction-tuned video MLLMs vs audio MLLMs vs

multimodal vs

Fig.[§]show average normalized brain alignment of instruction-tuned video MLLMs vs instruction-
tuned audio MLLMs vs multimodal and unimodal models across several ROIs (AG, ATL, PTL, IFG,
MFG, IFGOrb, PCC and dmPFC) of language region. Fig.[0]show the same for visual, auditory and

motor regions.

unimodal representations for various brain regions
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Table 8: Outputs from LLaVA-NeXT-Video for a sample clip from the Moviel0 dataset.

Frame 1 Frame 3 Frame 8 Frame 13 Frame 16

Instruction Model Output
Action Recognition The main event captured in the video is a conversation between two men at a bar, where one of them is

wearing a red and white checkered shirt and glasses, while the other man is wearing a dark suit and tie.
They are discussing a topic, possibly related to a movie, as suggested by the context. There are also
other patrons in the background, and a bartender is visible in the foreground.

Video Understanding The video features a scene from the movie The Hangoverfeaturing actors Zach Galifianakis and Bradley
Cooper. In the scene, Zach Galifianakis, portraying a character named Chip Baskin, is sitting at a bar
with a group of people. He is seen holding a beer and appears to be in a state of disbelief as he looks on
at the camera.

Visual Question Answering There are several people in the scene. The man with glasses is sitting at a bar, holding a drink, and
appears to be in a conversation with someone. Another man is standing at the bar, and there is a woman
sitting nearby. There is a bartender standing at the bar, and a person in the background who is partially
visible, but it’s unclear what their role is in the scene.

Video Captioning Two men are seen having a conversation in a bar, with the man in the plaid shirt appearing confused or
disbelieving the man in the suit.

Object and Scene Recognition  |In the scene, we can see a man in a suit sitting at a table with a woman and a bartender. There’s also a
man in a suit standing at a bar, a woman sitting at a table with a man, a woman standing at a bar, a man
standing at a bar, and a man sitting at a table with a woman.

Commonsense Reasoning In the video you provided, the character is seen holding up a beer bottle and making a face, which could
be interpreted as a playful or humorous gesture, possibly to amuse others or to express a lighthearted or
jovial moment. This action might be motivated by a desire to entertain, bond with others, or to simply
enjoy a casual and relaxed moment.

Spatial Understanding The video appears to have been taken from a scene in a movie, specifically “Goodfellas” featuring
Robert De Niro. The scene is set in a bar, and the background includes a sign that says “The Goodfella’s.”
This is a reference to the character Robert De Niro’s character, who is a bartender in the movie. The
specific setting and the sign are consistent with the movie’s depiction of the bar.

Temporal Ordering The video depicts two men sitting at a bar, engaged in a conversation. One man is wearing a suit, while
the other is dressed in a plaid shirt. They are both holding drinks and appear to be having a casual
conversation. The setting suggests they might be at a social event, such as a bar or a party, where people
gather to relax and enjoy drinks.

Video reasoning In the video, there is a scene where a man is seen sitting at a bar with another man. The man in glasses
appears to be engaged in a conversation with someone off-camera, but the camera is focused on the
other man, who is not the focus of the scene. The man with glasses is holding a beer and appears to be
in the middle of a discussion, but his face is not shown in the shot.

Narrative Understanding The movie “The Big Short™ is a biographical comedy-drama film about the life of stockbroker Michael
Burry, who predicts the financial crisis of 20008. The central conflict of the story is the housing bubble
and the subprime mortgage market, which Burry sees as unsustainable and warns his colleagues about,
but they dismiss his ideas as unrealistic.

Emotion and Sentiment Analysis| The characters in the video express a range of emotions, from surprise and shock to amusement and
even a bit of confusion. The video itself is quite humorous, with the man in a suit and tie appearing to
be in a state of disbelief or shock as the other man, who is wearing a plaid shirt and a hoodie, is seen
drinking from his beer bottle.

Global Appearance In the video, we can see a man with a beard who is wearing a suit at the beginning, but he is later seen
in a more casual outfit with a plaid shirt. There are also other people in the scene, including a man with
glasses and a red shirt, a man with a beard and a red shirt, and a woman in a red dress.

Linking Events In the scene you’ve described, a man is shown sitting in a bar with a drink in front of him, looking at a
TV. The TV shows a news segment about a man who has died, which is later revealed to be the man
himself. This early event in the video influences the later developments because it sets up the narrative
of the story, introducing the main character and establishing his presence in the scene.

I Contrasting Instruction-tuned video MLLMs with non-instruction-tuned
multimodal

We present contrast of brainmaps to display the average normalized brain alignment across voxels
for the instruction-tuned video MLLMs versus the non-instruction-tuned multimodal TVLT in
Figures [I0] [TT} [T2} and [I3] The results show that instruction-tuned video MLLMs consistently
achieve significantly higher alignment across all brain voxels. However, Figures[I4] and[15]reveal
clear differences between audio MLLMs and multimodal models: the prediction performance of
audio MLLMs lacks brain-relevant semantic information compared to multimodal models.

J Brain Maps for Task-specific instructions

Figures and |17|show brain maps for InstructBLIPVideo, Video-LLaVA, LLaVA-NeXT-Video,
LLaVA-OneVision and VideoChat-R1 for video tasks for average normalized brain predictivity
across subjects where the voxel color codes are projected onto the flattened cortical surface of the
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Table 9: Outputs from LLaVA-OneVision Video for a sample clip from the Moviel0 dataset.

Frame 1 Frame 3 Frame 13 Frame 16

Frame 8
Instruction Model Output
Action Recognition The video captures a conversation between two individuals at a bar, with one person gesturing and
speaking while the other listens.
Video Understanding The video takes place in a lively bar setting, creating a warm and inviting atmosphere. The background

features a well-lit bar counter adorned with various bottles and glasses, and several people can be seen
in the background, adding to the bustling ambiance. In the foreground, two individuals are seated at a
table. One person is dressed in a gray suit with a red and white patterned tie, while the other is wearing
a blue and red plaid shirt with a yellow jacket draped over their shoulders.

Visual Question Answering There are two people in the scene, engaged in a conversation.
Video Captioning A man with curly hair and glasses sits at a table in a bar, holding a glass of beer, and engages in a
conversation.

Object and Scene Recognition  |The main objects and people visible in the scene are two men sitting at a table in a dimly lit, bustling
bar or restaurant. One man is dressed in a gray suit and tie, and the other is wearing a plaid shirt with a
beige sweater over it, holding a drink. The background features a bar with various bottles and glasses,
and other patrons are visible in the distance.

Commonsense Reasoning The character took this action to emphasize their point in the conversation, which could have been
motivated by the seriousness of the discussion or the need to convey a specific message.

Spatial Understanding The video is taken from a movie scene, and it shows a bar.

Temporal Ordering The video takes place in a dimly lit bar with a lively background filled with people and bottles on

shelves. Two individuals are seated at a table, engaged in a conversation. The person on the left is
dressed in a gray suit with a red and white patterned tie and is gesturing with their hand, while the
person on the right, wearing a blue and red plaid shirt with a yellow sweater draped over their shoulders
and holding a glass of beer, listens attentively.

Video reasoning The unusual aspect is that the scene remains static with minimal changes in the individuals’ expressions
and the background, suggesting a continuous conversation or interaction.
Narrative Understanding The central conflict involves two characters in a bar, with the character in the plaid shirt and yellow

sweater being advised or persuaded by the other character. The conflict is resolved through a conversa-
tion, leading to a change in the character’s demeanor and posture.

Emotion and Sentiment Analysis|The characters express a range of emotions, including surprise, concern, and contemplation. The video
creates a sense of intrigue and emotional depth, drawing the viewer into the characters’ conversation.

Global Appearance The character on the right initially has curly hair and is wearing a blue plaid shirt with a beige sweater,
but later, the character’s hair appears straight and they are dressed in a dark suit with a red tie.
Linking Events The man in the plaid shirt and glasses is seen holding a glass of beer and engaged in a conversation

with the man in the gray suit, which sets the stage for the unfolding dialogue and interaction.

‘fsaverage’ subject. The color-scheme corresponding to each instruction is also reported. We make
the following observations: (i) Video understanding exhibits the strongest alignment across the whole
brain. (ii) Tasks such as spatial understanding, narrative understanding, and visual question answering
show higher alignment in language-related regions, including the angular gyrus, posterior temporal
lobe, and visual regions. (iii) Higher-order language regions in the frontal cortex are predominantly
identified by the video understanding task, with a smaller proportion of voxels also activated by video
reasoning and temporal ordering tasks.

Fig.[I8]shows brainmap for audio instruction-tuned MLLM (Kimi-Audio) where the predictions are
average across subjects. Here, the voxel color codes are projected onto the flattened cortical surface
of the ‘fsaverage’ subject. The figure shows a clear distinction between different audio tasks.

K Brain Maps showing Layer-wise Details for Video Instruction-based
MLLMs

To examine whether instruction-tuned MLLMs reflect the brain’s hierarchy of information processing
across layers, we analyze the voxels as follows. For each voxel, we select the layer that results
in the highest normalized brain alignment and apply a color code for the 29/33 layers across the
various MLLMs. Fig.[I9] presents brain maps for four video MLLMs, where the voxels with their
corresponding color codes are projected onto the flattened cortical surface of the ‘fsaverage’ subject.

L Details of Semantic Task Group Analysis
To further examine how instruction-tuned video MLLMs generate task-specific representations and re-

veal functional specialization in the brain, we group the 13 video tasks into five cognitively grounded
categories: Perceptual visual processing, Cognitive reasoning and integration, Spatiotemporal under-
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Table 10: Outputs from VideoChat-R1 for a sample clip from the Moviel0 dataset.

Frame 1 Frame 3 Frame 8 Frame 13 Frame 16

Instruction Model Output
Action Recognition The video captures a scene from what appears to be a social setting, possibly a bar or restaurant. Two

individuals are engaged in conversation. One person is wearing a plaid shirt and has a blanket draped
over their shoulders, suggesting they might be cold or seeking comfort. The other individual is dressed
in a suit and tie, indicating a more formal attire. The background shows other patrons and bar stools,
contributing to the ambiance of a casual gathering.

Video Understanding The video depicts a scene from what appears to be a movie or TV show, set in a dimly lit bar or lounge.
Two individuals are seated at a table, engaged in conversation. The person on the left is wearing a dark
suit and tie, while the individual on the right is dressed in a plaid shirt with a yellow scarf draped over
their shoulders. Both appear to be holding drinks, suggesting they might be enjoying a casual evening
out.

Visual Question Answering There are two people in the scene. They appear to be engaged in a conversation at a bar or restaurant.
One person is wearing a plaid shirt and has a blanket draped over their shoulders, while the other person
is dressed in a suit. The setting suggests a casual social interaction.

Video Captioning Two individuals engage in conversation at a bar, surrounded by dim lighting and patrons.

Object and Scene Recognition | The video shows two individuals seated at a bar, engaged in conversation. The person on the left is
wearing a dark suit and appears to be listening attentively. The person on the right is wearing a plaid
shirt with a yellowish blanket draped over their shoulders and is holding a drink. The background
features a bar setting with various bottles and glasses, indicating a social or casual environment. The
lighting suggests an indoor setting, likely during the evening.

Commonsense Reasoning In the video, one character appears to be engaged in a conversation with another character at what
looks like a bar or a similar social setting. The character on the right seems to be leaning forward
slightly, which might indicate that they are listening intently or trying to emphasize a point during their
conversation. The motivation for this action could be: 1. Engagement: The character might be trying
to show interest or engagement in the conversation by leaning closer.

Spatial Understanding The video appears to be from a movie or TV show set in a bar or restaurant. The setting includes a bar
counter with bottles and glasses, suggesting it could be a scene from a film or series that takes place in
a social or dining establishment. However, without additional context or recognizable landmarks, it’s
difficult to pinpoint the exact location or landmark shown in the video. It could be from a variety of
films or shows that feature such settings.

Temporal Ordering The video depicts two individuals seated at a bar, engaged in conversation. The person on the left is
wearing a suit and appears to be listening attentively. The individual on the right is dressed casually
in a plaid shirt with a blanket draped over their shoulders, suggesting they might be cold or seeking
comfort. They both have drinks in front of them, indicating they are likely enjoying a social setting. The
background shows other patrons and bar stools, contributing to the ambiance of a lively bar environment.
Video reasoning The video appears to be from a scene in a movie or TV show, likely set in a bar or similar social
setting. The unusual aspect here is the presence of a large, animated hand with a glove that resembles a
cartoonish character, which seems out of place in a real-world setting like a bar. This suggests it might
be a special effect or a prop used for comedic or dramatic purposes within the context of the film.
Narrative Understanding The video appears to be from a scene in the movie “The Hangover," where the characters are at a bar,
seemingly engaged in a conversation. The central conflict in this movie revolves around a group of
friends who go on a bachelor party to Las Vegas but end up getting lost and having various mishaps.
Emotion and Sentiment Analysis|The video depicts two individuals engaged in what appears to be an intense conversation at a bar. The
person on the right seems to be speaking with a sense of urgency or concern, as indicated by their open
mouth and expressive eyes. The other individual is listening attentively, suggesting a moment of serious
discussion. Overall, the scene conveys a sense of tension and engagement. The setting, with its dim
lighting and crowded bar, adds to the atmosphere of a private yet public interaction.

Global Appearance The video shows two characters sitting at a bar. The character on the left is wearing a dark suit and
tie, while the character on the right is wearing a plaid shirt with a yellow blanket draped over their
shoulders. There are no significant changes in their appearances or outfits throughout the video; they
remain in these respective outfits for the duration of the frames provided.

Linking Events In the video, two individuals are seated at a bar, engaged in conversation. The setting suggests a casual
and possibly intimate interaction, which could imply that they are discussing something personal or
significant. This early event of them sitting together and talking could influence later developments
by establishing a foundation for their relationship or the context of their conversation. For instance, if
this is part of a larger narrative, the initial interaction might set up themes such as friendship, trust, or
conflict that will unfold in subsequent scenes.

standing, High-level language and narrative understanding, and Social and affective understanding.
This categorization allows us to disentangle the functional specificity of brain regions engaged by
different task types. The visualizations in Fig.[5|in Section[.3]in the main paper and Fig. 20| illustrate
that this grouping captures meaningful distinctions.

M Details of explained variance partitioning

Variance partitioning. To disentangle task-specific instruction representations from multimodal
instruction-tuned models, we used a variance partitioning approach (de Heer et al., 2017; [LeBel

30



1055
1056
1057
1058
1059
1060
1061
1062
1063

1064

1065
1066

1067
1068

1069
1070
1071
1072

1073

1074
1075
1076
1077
1078

Table 11: Outputs from Qwen-2.5 Audio for a sample audio from the Moviel0 dataset (Wolf of
wallstreet).

Spectrogrrn

Instruction Model Output

Audio Understanding |There’s a male singing in English with an angry mood, saying *And she grew up hot.

Audio Comprehension |They are talking and laughing.

Audio Captioning The audio is about someone’s upbringing.

Sound Event Detection | There are no background sounds or music, only speech. A male voice speaks in English with the phrase
’And she grew up hot.

Speaker Identification |A man speaking in English with an angry mood said ’And she grew up hot, you know?

Table 12: Outputs from Kimi-Audio for a sample audio from the Moviel0 dataset (Wolf of wallstreet)

Instruction Model Output

Audio Understanding |The audio contains a speech where kids are talking by the door in English with a female voice and a
neutral mood.

Audio Comprehension |The people are talking and there is music playing in the background.

Audio Captioning A man is speaking loudly and aggressive.

Sound Event Detection |There is no speech in this audio.

Speaker Identification |The speaker in the audio is a Mandarin-speaking male, aged between 16-25 years old, with an angry
mood.

2021). This method measures the overlap in brain variance explained by different task-specific
instruction representations. Specifically, variance partitioning separates the brain response variance
fhat can be attributed to two models based on their unique and overlapping contributions
let all 2022} Deniz et all, 2019). To perform this, for every pair of instruction representations,
we fit separate encoding models for each space as well as a joint encoding model, obtained by
concatenating the features. Using set arithmetic, we can then derive the size of the intersection
(NBA)I"2=(NBA)!+(NBA)2-(NBA)L“2, where NBA refers to normalized brain alignment, v
refers to a specific voxel, (NBA)} denotes alignment of model 1, (NBA)? denotes alignment of
model 2 and (N BA)LY? denotes alignment of the joint model. Similarly, the unique contribution of

model 1’s feature space is computed as (NBA),l,\zz(NBA)},-(NBA)%m.

Shared and Unique Variance between Narrative Understanding and Remaining Task Instruc-
tions

Fig. 2T]shows the shared variance of the 13 video tasks. The voxels are projected onto the flattened
cortical surface of a representative subject (S1) for the Qwen-2.5-VL video MLLM.

Table T3] presents shared and unique variance explained by pairs of video tasks using brain-informed
models across three neural regions: whole brain, visual cortex, and language network. The results
are averaged across subjects and show how well representations from each task pair align with brain
activity in specific regions.

Key Observations are as follows.

* Whole Brain Shows Dominant Shared Variance: Across nearly all task pairs, the whole brain
region consistently exhibits the highest shared variance (often >80% in early task pairs). For
example, the pair Action Recognition and Video Understanding (1-2) shows 90.69% shared
variance, with very little unique variance from either task. This suggests high redundancy
and common processing across tasks when considering global brain activity.
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Figure 8: Average normalized brain alignment of instruction-tuned video MLLMs vs instruction-
tuned audio MLLMs vs multimodal and unimodal models across several ROIs (AG, ATL, PTL, IFG,
MFG, IFGOrb, PCC and dmPFC) of language region. Error bars indicate the standard error of the
mean across participants. * implies that instruction-tuned MLLM embeddings are significantly better
than multimodal models and A means that instruction-tuned MLLM embeddings are significantly
better unimodal models with p< 0.05.

* Visual and Language Regions Yield More Balanced Partitioning: In contrast, visual and
language-selective voxels exhibit lower shared variance and comparatively higher unique
contributions from individual tasks. For the same task pair (1-2), shared variance in visual
is 72.05%, and in language it is 77.46%, with higher unique components (~10-14%). This
suggests that fine-grained processing differences are more pronounced in modality-specific
regions.

» Task Similarity Reflects in Shared Variance: Tasks that are conceptually or functionally
related (e.g., Narrative Understanding-Linking Events (10-13) or Emotion and Sentiment
Analysis-Linking Events (11-13)) exhibit high shared variance in all regions, indicating
similar cognitive processing demands. Conversely, task pairs with less conceptual overlap
(e.g., Object Recognition-Commonsense Reasoning (5-6) or Visual QA-Object Recognition
(3-5)) show lower shared variance and higher unique variance, especially in language and
visual regions.

* Language Regions Show Selectivity for High-Level Tasks: Higher-level semantic and
reasoning tasks (e.g., Narrative Understanding, Commonsense Reasoning, Temporal Order-
ing) show increased unique variance in the language network, indicating language-specific
processing distinct from visual features. For instance, pair 6-13 (Commonsense Reasoning-
Linking Events) yields 16.75% unique variance for Linking Events in the language network.
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Figure 9: Average normalized brain alignment of instruction-tuned video MLLMs vs instruction-
tuned audio MLLMs vs multimodal and unimodal models across several ROIs of visual cortex (PPA,
OFA, LOC, MT), Auditory cortex (AC), and Motor Area (PMA and SMA). Error bars indicate the
standard error of the mean across participants. * implies that instruction-tuned MLLM embeddings are
significantly better than multimodal models and A means that instruction-tuned MLLM embeddings
are significantly better unimodal models with p< 0.05.

* Visual Cortex Captures Scene and Action Differentiation: Tasks with high visual load (e.g.,
Action Recognition, Object and Scene Recognition, Global Appearance) contribute more
uniquely in the visual cortex, especially when paired with non-visual tasks.

N Limitations

One possible limitation of our study lies in interpreting the differences in brain alignment between
instruction-tuned video and audio MLLMs. The models we evaluate differ in several aspects,
including the amount of training data and the specific objective functions used during training.
To address this concern, we evaluated multiple models of each type, spanning a range of training
objectives and dataset sizes, and found that our key results generalize within both video and audio
MLLM categories. Still, it is possible that some of the differences in brain alignment may still be
influenced by confounding factors related to model architecture, training objectives, or data scale.
Future work should explore these questions using models that are more tightly controlled across these
dimensions.
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(a) Subject-01

(b) Subject-02

(d) Subject-05

Figure 10: Qwen-2.5-VL vs. TVLT: Contrast of estimated cross-subject prediction accuracy for
all participants for the naturalistic movie watching. Pearson correlation scores for each voxel in
each subject are projected onto the subject’s flattened cortical surface. Blue and Red voxels depict
higher prediction accuracy estimates during instruction-tuned video MLLM and multimodal TVLT,
respectively. Voxels that have similar cross-subject prediction accuracy appear white. Here, middle
frontal gyrus (MFQG), inferior frontal gyrus (IFG), inferior frontal gyrus orbital IFGOrb), angular
gyrus (AG), and lateral temporal cortex (LTC) are late language regions, EVC denotes early visual
cortex and AC denotes auditory cortex.
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(d) Subject-05

Figure 11: InstructBLIPVideo vs. TVLT: Contrast of estimated cross-subject prediction accuracy
for all participants for the naturalistic movie watching. Pearson correlation scores for each voxel in
each subject are projected onto the subject’s flattened cortical surface. Blue and Red voxels depict
higher prediction accuracy estimates during instruction-tuned video MLLM and multimodal TVLT,
respectively. Voxels that have similar cross-subject prediction accuracy appear white.
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(d) Subject-05

Figure 12: Video-LLaVA vs. TVLT: Contrast of estimated cross-subject prediction accuracy for
all participants for the naturalistic movie watching. Pearson correlation scores for each voxel in
each subject are projected onto the subject’s flattened cortical surface. Blue and Red voxels depict
higher prediction accuracy estimates during instruction-tuned video MLLM and multimodal TVLT,
respectively. Voxels that have similar cross-subject prediction accuracy appear white.
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(d) Subject-05

Figure 13: LLaVA-NeXT-Video vs. TVLT: Contrast of estimated cross-subject prediction accuracy
for all participants for the naturalistic movie watching. Pearson correlation scores for each voxel in
each subject are projected onto the subject’s flattened cortical surface. Blue and Red voxels depict
higher prediction accuracy estimates during instruction-tuned video MLLM and multimodal TVLT,
respectively. Voxels that have similar cross-subject prediction accuracy appear white.
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(d) Subject-05

Figure 14: Qwen-Audio vs. TVLT: Contrast of estimated cross-subject prediction accuracy for
all participants for the naturalistic movie watching. Pearson correlation scores for each voxel in
each subject are projected onto the subject’s flattened cortical surface. Blue and Red voxels depict
higher prediction accuracy estimates during instruction-tuned audio MLLM and multimodal TVLT,
respectively. Voxels that have similar cross-subject prediction accuracy appear white. Here, middle
frontal gyrus (MFG), inferior frontal gyrus (IFG), inferior frontal gyrus orbital (IFGOrb), angular
gyrus (AG), and lateral temporal cortex (LTC) are late language regions, EVC denotes early visual
cortex and AC denotes auditory cortex.
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(d) Subject-05

Figure 15: Kimi-Audio vs. TVLT: Contrast of estimated cross-subject prediction accuracy for
all participants for the naturalistic movie watching. Pearson correlation scores for each voxel in
each subject are projected onto the subject’s flattened cortical surface. Blue and Red voxels depict
higher prediction accuracy estimates during instruction-tuned audio MLLM and multimodal TVLT,
respectively. Voxels that have similar cross-subject prediction accuracy appear white. Here, middle
frontal gyrus (MFQG), inferior frontal gyrus (IFG), inferior frontal gyrus orbital IFGOrb), angular
gyrus (AG), and lateral temporal cortex (LTC) are late language regions, EVC denotes early visual
cortex and AC denotes auditory cortex.
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Figure 16: Each voxel is color coded with the instruction (out of 13) that led to the highest nor-
malized brain alignment. The color bar highlights color codes for each instruction. The voxels
are projected onto the flattened cortical surface averaged across all 4 subjects for 3 video MLLM
(InstructBLIPVideo, Video-LLaVA and LLaVA-NeXT-Video).
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(b) VideoChat-R1

Figure 17: Each voxel is color coded with the instruction (out of 13) that led to the highest normalized
brain alignment. The color bar highlights color codes for each instruction. The voxels are projected
onto the flattened cortical surface averaged across all 4 subjects for 2 video MLLM (LLaVA-

OneVision, VideoChat-R1).
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Figure 18: Kimi-Audio: Each voxel is color-coded with the instruction (out of 5) that led to the
highest normalized brain alignment. The color bar highlights color codes for each instruction. The
voxels are projected onto the flattened cortical surface of average across subjects on ‘fsaverage’
surface.
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Figure 19: Each voxel is color coded with the video MLLM layer number (out of 33) that led to the
highest normalized brain alignment. The color bar highlights color codes for each layer. The voxels

are projected onto the flattened cortical surface of average across all 4 subjects on ‘fsaverage’ surface
for four MLLM:s.
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Figure 20: Semantic Task Group Analysis: Each voxel is color coded with the task instruction that led
to the highest normalized brain alignment. The color bar highlights color codes for each instruction.
The voxels are projected onto the flattened cortical surface averaged across all subjects for video
MLLM (Qwen-2.5-VL). While this plot shows brain maps for 2 groups, brain maps for remaining 3
task groups are in Fig.[5]in Section[4.3]in the main paper.
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Figure 21: Share variance of video tasks: The voxels are projected onto the flattened cortical surface
of a representative subject (S1) for the Qwen-2.5-VL video MLLM.
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Figure 22: Shared and Unique Variance: Narrative Understanding vs. Linking Events Dark orange
(left) shows variance unique to Narrative Understanding, indigo (right) shows variance unique to
Linking Events, and the overlap indicates shared variance between both tasks.
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Table 13: Variance partitioning for all the 13 video tasks averaged across all subjects for whole brain,
visual and language regions with Qwen-2.5-VL model. Tasks are as follows: (1) Action Recognition
(2) Video Understanding (3) Visual Question Answering (4) Video Captioning (5) Object and Scene
Recognition (6) Commonsense Reasoning (7) Spatial Understanding (8) Temporal Ordering (9)
Video reasoning (10) Narrative Understanding (11) Emotion and Sentiment Analysis (12) Global
Appearance (13) Linking Events.
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