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Abstract

Understanding how the brain adapts to changing sensory environments is a key
challenge in neuroscience, with implications for AI. Neural predictive models are
trained to predict neuronal responses to stimuli from a given stimulus distribution.
Therefore, they cannot account for possible neural adaptations to new sensory
contexts with shifts in the stimulus distribution, thus requiring the models to
be retrained on newly recorded datasets in order to adapt them. In this work,
we propose a zero-shot adaptation approach by leveraging Bayesian theories of
perception and neural representation that suggest that (1) sensory neurons encode
posterior distributions over latent variables in an internal generative model of
the world and (2) that the brain preserves the mapping from latent causes to
observations in its generative model, while adapting the prior distribution to new
contexts. By employing advances in machine learning and generative models, we
validate our approach on synthetic data, demonstrating the performance of our
zero-shot adapted models to models retrained with new neural data. Our work not
only lays the foundation for a normative approach to adapting neural predictive
models to domain shifts, but also paves the way for an empirical method for testing
Bayesian theories of neural representations.

1 Introduction

Efficient adaptability to changing environments is a hallmark of intelligence, and understanding how
neural systems adjust to shifts in sensory context remains a challenge. Previous work has shown that
neuronal responses are influenced not only by the properties of the incident stimuli but also by the
statistics of the broader stimulus distribution [1–4]. Typical machine learning-based neural predictive
models, known as system identification (SI) models, are trained to predict neuronal responses to
stimuli from a given stimulus distribution (“context”) [5–13]. While highly effective, SI models
are not typically capable of accounting for neural adaptations due to shifts in the context, requiring
them to be retrained on neural data recorded under the new contexts. Specifically, once trained on a
given context TA that entails a distribution p (r | x, TA) of neuronal responses r conditioned on a
given stimulus x, their performance would drop when tested on a new context TB that entails a new
response distribution p (r | x, TB) adapted to TB , requiring the SI model to be retrained on newly
recorded neural data from TB .

Here we address this challenge using normative, Bayesian theories on neural coding and advances in
probabilistic machine learning that allows for a zero-shot generalization of neural predictive models
to novel contexts. Our approach assumes that sensory neurons encode posterior distributions over
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latent variables in an internal generative model of the world [14–16]. Specifically we assume that
sensory neuronal responses represent samples from the posterior (a neural sampling code, NSC) [15,
17–24]. Accordingly, in the brain’s generative model, sensory observations x are caused by latent
variables r, and sensory neurons compute the posterior p (r | x), where under NSC, the latent variable
r corresponds to neuronal responses. Under these assumptions, recent work [24] demonstrated that
the brain’s generative model could be learned using maximum likelihood estimation (MLE) from
recorded stimulus-response data from a given context, and the posterior of the learned model acts as
a neural predictive model. Here, we extend the learning of the brain’s generative model to account
for neuronal adaptations to a new context that requires no neural data from the new context. Our
approach rests on a normative hypothesis that the brain preserves the mapping from latent causes
to the observed stimuli (likelihood, “physical mechanism") across contexts, and adapts the latent
variable distribution (prior expectation) to fit new contexts (Fig 1A) [24–26], consequently requiring
us to only learn the prior in the new context thereby also adapting the posterior.

Here, we demonstrate the feasibility of our zero-shot adaptation method on synthetic data generated
from an existing NSC model of primary visual cortex [19] simulating two different stimulus distri-
butions (contexts). Our results show that the adapted model achieves performance close to a fully
retrained system identification model, without requiring any new neural data from the new context.

2 Theory

Background Recent work [24] showed that, given a dataset of recorded stimulus-response pairsD :=
{x(i), r(i)}Ni=1—assuming that the neurons follow NSC—one can learn the brain’s generative model,
parameterized as p (x | r; θL) p (r; θP ) via maximum likelihood estimation (MLE): (θ∗L, θ

∗
P ) =

argmaxθL,θP

[∑N
i=1 log p

(
x(i) | r(i); θL

)
+ log p

(
r(i); θP

)]
, where θL and θP are the parameters

for the likelihood and the prior respectively. From this model, one can obtain an approximate posterior
q (r | x;ϕNSC) with parameters ϕNSC, which serves as a predictive model of neuronal responses (NSC
predictive model). In contrast, SI models—the de-facto neural predictive models—learn the mapping
q (r | x;ϕSI), with parameters ϕSI, directly on D [5–13]. Both the NSC predictive model and the SI
model attempt to capture the underlying true distribution p (r | x). Given that D consists of a fixed
stimulus distribution p (x) (“context”), an NSC predictive model offers no advantage in predictive
power over an SI model [24] 1.

Both SI and NSC predictive models face performance degradation when there are shifts in the
underlying p (r | x). In this work, we focus on adaptations in the neuronal response distribution
to stimuli driven by shifts in the stimulus distribution (new contexts) [1–4]. In order to capture
these neuronal adaptations, SI models would have to be retrained on a newly recorded dataset of
adapted neuronal responses and stimuli under the new context. However, as we show next, under
normative assumptions, the brain’s adaptation to context changes can be attributed to adapting
the prior distribution p(r) only (Fig 1A), yielding a corresponding shift in the posterior p (r | x).
Importantly, this implies that the NSC predictive model—which is the posterior of the learned
generative model of the brain—can be adapted by only relearning the shifted prior distribution while
leaving the likelihood p(x | r) unchanged (Fig 1B).

The brain’s model adaptation and zero-shot generalization of NSC models If the brain maintains
the generative model of the world r −→ x, changes in the stimulus distribution p(x) can be accounted
for either from shifts in the likelihood p(x | r) or the prior p(r). Under the assumption that the latents
r are the result of causal representation learning [25, 26], the likelihood p(x | r) represents invariant
physical mechanisms (i.e., how latent variables like animal identity give rise to observations), while
p(r) reflects how the latents are distributed in a given context (e.g., relative frequency of different
animals). Contextual changes will therefore change the brain’s p(r), while keeping p(x | r) constant
(Fig 1A).[24]). Indeed, this normative assumption is implicitly present in the NSC literature [19].
For example, Haefner, Berkes, and Fiser [19] model tasks with varying contexts to affect the prior
over sensory neural responses in the brain’s generative model p(r) rather than the stimulus likelihood
p(x | r). Consequently neuronal responses under NSC, considering two contexts TA and TB can be

1Apart from possible advantages in terms of inductive biases.
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Figure 1: Context dependence of the brain. A Brain’s internal generative model under contexts
TA and TB . The hypothesis is that the brain retains the likelihood, but adapts prior to fit different
contexts. B Our zero-shot model adaptation procedure. First learn the generative model using neural
responses and images from TA. Second transfer the learned likelihood to TB and learn prior under
TB using only images and no neural data in TB . C Tasks as contexts: “Categorize a noisy image
stimulus into one of two orientation categories.” Each task defines a stimulus distribution (here: via
orientation distribution) (A.4) D synthetic data model, used to simulate neural responses and images
(A.2). The model simulates neural activity r modulated by context (tasks). E Probability distributions
over orientation in TA: 45◦ (red) vs 135◦ (blue) task with uncertainty; overall task prior p (ω) that
modulates neural activity. E Probability distributions over orientation ω for classes 1 and 2. The
distributions vary in mean for a given class. F Activity of the four-r neurons from synthetic data
model, modulated by TA. Each neuron has an orientation preference (x-axis). G & H Same as E & F
but for TB .

expressed as:

rA ∼ p (r | x, TA) ∝ p (x | r) p (r | TA)
rB ∼ p (r | x, TB) ∝ p (x | r) p (r | TB) .

What this implies from a model learning perspective is that once the generative model
p
(
x | r; θA∗

L

)
p
(
r; θA∗

P

)
has been learned on a given task TA, the generative model for task B

only requires learning a new prior, while the likelihood can be transferred: p
(
x | r; θA∗

L

)
p
(
r; θB∗

P

)
.

Crucially, the new prior distribution p
(
r; θBP

)
can be learned solely from stimuli sampled from the

stimulus distribution under the new context p (x | TB) (Fig 1B), by maximizing the log-likelihood of
the sampled stimuli under the generative model:

argmax
θB
P

p({x}Mi=1; θ
B
P ) = argmax

θB
P

M∑
i=1

log

∫
r

p
(
x(i) | r; θA∗

L

)
p
(
r; θBP

)
dr
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In order to evaluate the integral above in practice, we employ Monte-Carlo sampling (find method
summary in Algorithm 1, and full objective derivation in Appendix A.1). Note that the likelihood
function retains learned context TA parameters θA∗

L . Learning θBP completes the adaptation of the
generative model p

(
x, r; θB∗

P , θA∗
L

)
under TB . The posterior under TB can then be approximated via

variational inference [24]. Because only samples from the stimulus distribution, but not neuronal
responses, from context TB are necessary, this constitutes a zero-shot adaptation of the model to TB .

3 Experiments

The goal of this work is to show that this form of zero-shot adaption is feasible. We therefore focus
on synthetic data from classic NSC models.

Synthetic data We generated two datasets (10k image-neuronal response pairs each: {x(i), r(i)}10ki=1)
using an existing model of the brain (synthetic data model) [19] (Fig 1D), implementing NSC in a
classic sparse-coding model [27, 28] in two task contexts, TA and TB (Fig 1C). Both (orientation
discrimination) tasks differ in the to-be-discriminated orientations, with each task T defining a
different stimulus distribution p (x | T ). The different stimulus distributions imply different priors
which influence the firing rate of sensory neurons (features) through feedback signals. For example,
neurons preferring 45◦ and 135◦ orientations exhibit higher a priori activity under TA where stimuli
with oblique orientations are overrepresented, while neurons preferring 0◦ and 90◦ orientations
show increased activity under TB where stimuli with cardinal orienations are overrepresented. The
synthetic data model specifies a true generative model p (x, r | T ) per context T with likelihood
p (x | r) and prior p (x | T ) (more details under A.2 and A.4).

Test of our method The key models that we train in order to test our approach are: an NSC predictive
model for TA (NSC TA), the zero-shot adapted NSC predictive model for TB (NSC Zero-Shot),
and a SI model for TB (SI TB). The NSC predictive models necessitate the training of generative
models, one for TA and one for TB . The TA generative model—consisting of a likelihood and a
prior—is learned using image-response pairs from TA, and the generative model is adapted for TB
by (1) transferring the learned TA likelihood and learning only a new prior using only images and
no responses from TB (following Algorithm 1). We model the likelihood as an isotropic Gaussian
with mean and variance defined by nonlinear functions of the response. The prior is a normalizing
flow with a multivariate normal base distribution and a sequence of invertible transformations. The
approximate posterior distribution is modeled by a factorized Gamma distribution, with parameters
modeled as MLPs. For the system identification models, we utilize the same density function and
model architecture as described for the posterior, differing only in the training objective. Refer to the
appendix (A.3) for detailed descriptions.

Algorithm 1 Zero-Shot Adaptation of NSC Predictive Model to Novel Context TB

Require: TB-stimuli {x}Mi=1 ∼ p (x | TB); learned TA-likelihood p
(
x | r; θA∗

L

)
Learn TB Prior: p

(
r; θBP

)
1: Initialize prior parameters θBP
2: Repeat until convergence:

θBP ← argmaxθB
P

∑M
i=1 LMEK

j=1

{
log p

(
x(i) | r(j); θA∗

L

)}
where {r(j)}Kj=1 ∼ p

(
r; θBP

)
3: Save converged prior parameters θB∗

P

Learn TB Posterior: q
(
r | x;ϕBNSC

)
4: {x′(i), r′(i)}Vi ∼ p

(
x | r; θA∗

L

)
p
(
r; θB∗

P

)
5: ϕB∗

NSC ← argmaxϕB
NSC

∑V
i=1 log q

(
r′(i) | x′(i);ϕBNSC

)
6: Return learned posterior parameters ϕB∗

NSC

3.1 Results

Predictive models under TA We first learned the generative model under TA (A.5), and as a sanity
check, computed the NSC posterior (NSC TA), and compared its log-likelihood performance to a
gold-standard system identification model trained under TA (SI TA). We found that the performance
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Figure 2: Zero-shot adaptation to novel context TB A
Performance of predictive models on TA, trained on TA data:
Prior model serves as the baseline; NSC TA is the posterior
model learned via variational inference on the TA generative
model; SI TA is the system identification model trained to
predict TA responses to TA images.

B Subplots show response distribu-
tions for single neurons rj under
TB , with orange representing response
distribution, green line the density
learned by the flow prior using only TB
images, without response data, ψr the
orientation preference of the rj and λ
its mean. C Performance of predictive
models on TB , demonstrating zero-
shot generalization of the NSC poste-
rior. NSC TA and SI TA are baselines
trained on data under TA; NSC Zero-
Shot shows the posterior learned from
the generative model adapted to TB
using our proposed method using only
TB images, and no neural data (Algo-
rithm 1); SI TB is the system identi-
fication model trained on TB . D Left
column shows the presented stimulus;
right shows mean predictions from the
NSC predictive and SI models under
TA and TB for neurons with their ori-
entation preference on the x-axis. La-
bels TA and TB here refer to the con-
text of the predictive model. Note that
task TA places higher prior on 45◦

and 135◦ and context TB places higher
prior on 0◦ and 90◦ (see Fig 1E—H).

of the two match in neural predictive performance, supporting that the generative model was captured
well (Fig 2D).

Generalization to TB Under TB , only the prior was relearned while keeping the likelihood learned
from TA fixed (Fig 2B). The new prior is learned without using any neural responses but only
on stimuli from TB (Algorithm 1). We then compute the posterior model under TB using the
newly learned prior, and evaluate its log-likelihood performance on the adapted neuronal responses
conditioned on images under TB . Importantly, we also train a system identification model directly
on image-response pairs on TB as the gold-standard performance. As baselines, we also evaluate
the performance of the predictive models fit only on data from TA. We find that our adapted model
(NSC-Zero-Shot) yields promising results (Fig 2C): it significantly outperforms the baseline models
(NSC-TA, SI-TA), moving closer to the performance of the system identification model (SI-TB)
which was trained explicitly on neural data from TB , demonstrating the capabilities of our zero-shot
generalization to novel context.

Lastly, we tested whether the predictive models provide predictions that match our intuition, such as
reflecting the prior of the tasks, and the tuning properties of neurons. We find the predictive models
indeed: (1) predict a relatively higher activation for a neuron whose preferred orientation is present in
the stimulus, and (2) reflect the task specific prior (e.g. firing rate of 0◦ neuron in TB is higher than
in TA) (Fig 2D).

4 Discussion

In this work, we have proposed a novel approach based on Bayesian inference by neural sampling
(NSC) to achieve zero-shot generalization of neural predictive models across distributional shifts over
the input stimuli.

While our method demonstrates promising results on zero-shot adaptation of neural predictive models,
it opens up a few key areas for further investigation. First, we observed that as we increase the
dimensionality of our datasets, the Monte-Carlo approximation for prior learning suffered from
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high variance, making training challenging. Second, we observed a notable gap still present in
the performance between NSC Zero-Shot prediction and the system identification model, that can
be attributed to the approximate nature of the zero-shot prior. These issues may all be potentially
addressed by employing other approximation methods such as importance-weighted variational
inference [29] to evaluate the integral for prior learning. Furthermore, once the prior is learned,
computing the posterior of generative models that differ in the priors falls under Bayesian model
reduction (BMR) [30–32]. Given that we parameterize our priors and posteriors flexibly using
normalizing flows and deep neural networks, we used generic scalable variational inference relying
on gradient descent and backpropagation [33, 34] to learn the posterior. However, following advances
from BMR would likely improve the performance of our adapted posteriors.

Furthermore, while our approach assumes that neurons follow NSC, we note that NSC is only one—
albeit prominent—implementation of neurons encoding the posterior. Future work can explore how
to generalize the adaptation methodology to assume neurons to encode an aspect or function of the
posterior—such as encoding its sufficient statistics—and our work paves the way for this direction.

Finally, a crucial avenue for future work is applying our method on empirical data. This would
meaningfully extend the learning of generative models from cortical networks [24, 35, 36] to
predicting responses in new sensory contexts.

Overall, our method not only proposes a novel normative approach to achieving zero-shot general-
ization of predictive models of neural activity in response to stimulus distribution shifts, but also
presents a rigorous test—once fitted and tested on experimentally recorded neuronal response data—
of whether the empirically observed neural adaptations align with the Bayesian Brain hypothesis or
reflect alternative mechanisms.
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A Appendix

A.1 Novel context prior learning

In this work, we learn a new prior distribution p
(
r; θBP

)
under context TB solely from stimuli sampled

from the stimulus distribution from the new context p (x | TB) (Fig 1B, Algorithm 1). Here we derive
the corresponding log-likelihood maximization objective:

argmax
θB
P

p({x}Mi=1; θ
B
P )

= argmax
θB
P

log p({x}Mi=1; θ
B
P )

= argmax
θB
P

M∑
i=1

log p
(
x(i); θBP

)
= argmax

θB
P

M∑
i=1

log

∫
p
(
x(i) | z; θA∗

L

)
p
(
z; θBP

)
dz

≈ argmax
θB
P

M∑
i=1

log
1

S

K∑
j=1

p
(
x(i) | z(j); θA∗

L

)
, where

{
z(j)
}K

j=1
∼ p

(
z; θBP

)

≈ argmax
θB
P

M∑
i=1

log

K∑
j=1

exp
(
log p

(
x(i) | z(j); θA∗

L

))
− logK


≈ argmax

θB
P

M∑
i=1

{
LSE

j=1,...,K
log p

(
x(i) | z(j); θA∗

L

)
− logK

}

≈ argmax
θB
P

M∑
i=1

{
LME

j=1,...,K
log p

(
x(i) | z(j); θA∗

L

)}
,

where in the integral in step 4 has been converted into a Monte-Carlo sum in step 5; "LSE" in step
7 stands for the Log-Sum-Exp operator that evaluates expression in step 6 with better numerical
stability; "LME" in step 8 stands equivalently for Log-Mean-Exp operator, a short hand for expression
in step 7.

A.2 Synthetic data model

Here we describe the NSC model we use to generate synthetic data. The model was introduced
by Haefner, Berkes, and Fiser [19].

The model assumes that sensory neurons r represent the presence of oriented Gabor features, and
higher-level cortical areas encode the task-relevant grating variables (g) and decision variable D
associated with the orientation discrimination task. The brain’s goal is to infer both the local sensory
features (r), oriented "objects" (g) and the decision variable D using posterior inference given an
incident stimulus x, i.e., compute p (D,g, r | x).
The model assumes the brain has learned two choices in an orientation discrimination task: D = 1
and D = 2, corresponding to different stimulus orientations. The choices are equally probable:

pD(D = 1) = pD(D = 2) = 0.5.

The brain learns task-relevant orientations ψ1 and ψ2 with uncertainty, modeled by a circular Gaussian
(von Mises) distribution:

gi | D ∼ Bernoulli
{

1

ngl0(κ)
exp

[
κ cos 2

(
ψ
(g)
i − ψD

)]}
,

9



where gi is a binary variable indicating the presence of a grating of orientation ψ(g)
i , ψD corresponds

to the target orientation for decision D, κ represents the concentration or sharpness of the orientation
tuning in the von Mises (circular Gaussian) distribution (κ = 0 reflects no knowledge about task-
relevant orientations, while κ→∞ indicates perfect knowledge of these orientations).

Sensory responses, represented by r, are modeled as:

τi = E[ri | g] = 1 + δ

ng∑
k=1

gk exp
[
λ cos 2

(
ψ
(x)
i − ψ(g)

k

)]
,

where ψx
i is the orientation preference of ri, λ controls the strength of the relationship between a

grating variable gk (representing a task-relevant orientation) and a Gabor-shaped feature xi (it adjusts
how much the similarity between the grating’s orientation and the sensory feature influences the
expected response of the sensory neuron), and δ modulates the overall strength of the task-related
influence on the sensory responses in the model.

The probability of the sensory input ri given the grating g is:

p(ri | g) =
1

τi
exp

(
−ri
τi

)
,

where τi is the expected value of ri. Finally, the likelihood of the image x given r is:

p(x | r) = N

(
x |

nr∑
i=1

PFiri, σ
2
xI

)
.

where PFi contains the projective fields for each ri, which is a Gabor filter with orientation ϕ(x)i , and
nr denotes the number of sensory neurons.

The image presented to the subject/used here as the observation is a noisy version of the linear
combination of these projective fields, weighted by the sensory responses (latents) r.

A.2.1 Parameter values used for data generation

In our synthetic data model, the prior probability for each decision, pc, is set to 0.5. The task-relevant
orientations, ψ1 and ψ2, are defined as π

4 and 3π
4 for task TA, and 0 and π

2 for task TB , respectively.
The concentration parameter for the von Mises distribution, κ, is set to 10.0, indicating strong
orientation tuning. We set ψ(g)t to 9 equally spaced orientation angles between 0 and π. The strength
of the interaction between the sensory responses and the grating orientations, λ, is set to 10.0, and
task modulation feedback strength, δ, is set to 5. The sensory neurons are assumed have PFs with
orientations ψ(x) = {0, π4 ,

π
2 ,

3π
4 }. The observation noise, σx, is 0.1, and the image size is set to

12 × 12 pixels. We use 10, 000 samples for each task, with a fixed random seed of 42 to ensure
reproducibility, with a 0.7:0.2:0.1 train:validation:test split.

A.3 Detailed description of models

Our models mostly mirror those used in [24], and describe them in detail here.

We model the likelihood as an isotropic Gaussian distribution p
(
x | r(i)

)
= N

(
x | µ(i),σ2(i) · I

)
,

where the parameters mean, µ(i) ∈ R|x| and variance, σ(i) ∈ R|x|
>0 are functions of response, r(i),

and |x| is the number of dimensions of x. We consider a nonlinear function µ = wµMLP(r(i)) + bµ

and σ = expwσMLP(r(i))+bσ , where MLP(·) stands for multi-layer perceptron, where choosing a
linear mapping was left as a hyperparameter.

We model the prior as a normalizing flow: p(r; θP ) = pbase(T
−1(r; θP ))· | ∂ T−1(r;θP )

∂r |, where
we choose pbase to be a full-covariance multivariate normal distribution (not factorized as in [24],
and hence our flow learns dependencies among neurons), and T−1 represents the following series
of invertible mappings with learnable parameters θP : [affine, tanh, affine, tanh, affine, softplus−1],
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Figure 3: Experimenter’s task model that creates the two different stimulus distributions (contexts).

where softplus−1(y) = log(ey−1), affine(y) = ay+b with learnable parameters a and b. softplus−1

ensures that the support of r is non-negative, since the prior is modeling the distribution of (non-
negative) firing rates. Each dimension (i.e., neuron r) after the correlated base distribution is treated
independently, with the affine layers applied per dimension and restricted to be diagonal.

We model the posterior distribution of responses conditioned on images as a factorized Gamma
distribution, following state-of-the-art (SOTA) work in system identification [37]: p

(
r | x(i)

)
=∏S

j=1 pΓ
(
rj | α(i),β(i)

)
, where x(i) is the ith image, rj is the jth neuron out of | r |= S total

neurons, and the parameters concentration, α(i) and rate, β(i) are functions of the image, x(i),
modeled as an MLP.

We split the 10k datapoints in our simulated datasets into 7k for train, 2k for validation and 1k for
testing. We train all models using backpropagation and gradient descent, implemented using the
PyTorch library [38].

A.4 Orientation discrimination task

We identified a change in the stimulus distributions as part of specific tasks. We assume a two-
alternative forced choice (2AFC) task design, where subjects are trained on two separate orientation
classification tasks, Tasks 1 and 2 (Fig 1C). In each trial, the subject is shown an oriented Gabor patch
(angle ω), drawn from one of two classes—C = 1 or C = 2—each described by a circular Gaussian
probability distribution (von-Mises distribution). The two tasks differ in mean orientations (see the
two task distributions in Fig 1E and G) but share the same variability (κ = 1) [4]. For both tasks, the
class was randomly chosen with equal probability, meaning p (C = 1) = p (C = 2) = 0.5 for every
trial. The stimulus orientation was then drawn from the task-specific distribution p (ω | C, T ).
The exact generative model used to define the relevant probability distributions in the task in presented
in Fig 3 as the experimenter’s task generative model.

For our simulated data, we had two contexts or tasks T = TA and T = TB . For TA, we chose mean
orientations to be 45◦ and 135◦ (Fig 1E), and for TB we chose 0◦ and 90◦ (Fig 1G).

This framework is conceptualized with monkeys as subjects and recordings from monkey V1, but
the general approach and underlying principles, including the experimental design, are more broadly
applicable.

A.5 Learning generative model under TA

Evaluating the generative model p
(
x, r; θAL , θ

A
P

)
requires evaluating the learned prior p

(
r; θAP

)
and the likelihood p

(
x | r; θAL

)
. For the synthetic data model, computing p (r) is computationally

expensive since it involves computing the sum p(r) =
∑

C

∑
g p(r | g)p(g | C, T )p(C) , and

consequently we evaluate the model qualitatively by examining the learned densities (Fig 4A).
Our flow prior model shows a promising fit to the data distribution. For neurons with 0◦ and 90◦

orientation preferences, where the average firing rate is relatively low (λ ≈ 1), the model achieves
a near-perfect fit, whereas for other cases (λ > 3), we observe a slight mismatch, likely due to
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Figure 4: A Subplots show response distributions for single neurons rj under TA, with the green line
representing the density learned by the flow prior via MLE on TA responses, ψr denotes orientation
preference and λ the avg firing rate. B PFs learned by the MLP likelihood model compared to the
true PFs. C Image scale parameter learned by the likelihood model.

fitting via MLE on observed data with high variance. The likelihood p
(
x | r; θAL

)
models the true

distribution p(x | r) = N
(
x | µx =

∑nr

i=1 PFiri, σ
2
xI
)
, where nr is the number of neurons, and

PFi represents the oriented Gabor-based projective field of neuron rj . The MLP-based likelihood
effectively captures this distribution, achieving accurate PF reconstruction (µx) (Fig 4B) as well
the scale (σ2

x) (Fig 4C). This strong performance is critical for generalizing the model to adapted
responses under the shifted stimulus distribution (TB), as we transfer the likelihood model without
re-learning it for TB .
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