
DenoiseRotator: Enhance Pruning Robustness for
LLMs via Importance Concentration

Tianteng Gu∗

Shanghai Jiao Tong University
995999277@sjtu.edu.cn

Bei Liu∗

HKUST
beiliu@ust.hk

Bo Xiao
Meituan

xiaobo09@meituan.com

Ke Zeng
Meituan

zengke02@meituan.com

Jiacheng Liu
HKUST

jiachengliu@ust.hk

Yanmin Qian†

Shanghai Jiao Tong University
yanminqian@sjtu.edu.cn

Abstract

Pruning is a widely used technique to compress large language models (LLMs) by
removing unimportant weights, but it often suffers from significant performance
degradation—especially under semi-structured sparsity constraints. Existing prun-
ing methods primarily focus on estimating the importance of individual weights,
which limits their ability to preserve critical capabilities of the model. In this
work, we propose a new perspective: rather than merely selecting which weights
to prune, we first redistribute parameter importance to make the model inherently
more amenable to pruning. By minimizing the information entropy of normal-
ized importance scores, our approach concentrates importance onto a smaller
subset of weights, thereby enhancing pruning robustness. We instantiate this idea
through DenoiseRotator, which applies learnable orthogonal transformations to the
model’s weight matrices. Our method can be seamlessly integrated with existing
pruning techniques such as Magnitude, SparseGPT, and Wanda. Evaluated on
LLaMA3, Qwen2.5, and Mistral models under 50% unstructured and 2:4 semi-
structured sparsity, DenoiseRotator consistently improves perplexity and zero-shot
accuracy. For instance, on LLaMA3-70B pruned with SparseGPT at 2:4 semi-
structured sparsity, DenoiseRotator reduces the perplexity gap to the dense model
by 58%, narrowing the degradation from 8.1 to 3.4 points. Codes are available at
https://github.com/Axel-gu/DenoiseRotator.

1 Introduction

Recent advancements in large language models (LLMs) [33, 10, 1, 16] have significantly improved
their performance in complex reasoning, multimodal processing, and extended context handling.
However, their substantial model sizes and computational demands present practical challenges
for deployment and inference efficiency. To mitigate these issues, a variety of model compression
techniques have been explored, including quantization [14, 29, 3, 39, 40, 28], knowledge distillation
[20], and pruning [31, 18, 13, 38, 37].

Among these, pruning stands out as an effective method for reducing parameter count and com-
putational cost by eliminating less important weights. Traditional pruning methods [18] rely on
importance score metrics—such as weight magnitude or output sensitivity—to rank parameters
and prune those with the lowest scores. Notably, recent methods like SparseGPT [13] and Wanda

∗Equal contribution
†Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/Axel-gu/DenoiseRotator

[38] estimate the impact of removing individual parameters using Taylor approximations, justifying
pruning parameters with minimal estimated impact and approximates the output deviation of the
layer by summing the importance scores of the pruned parameters.

Despite their effectiveness, these methods operate within the fixed parameter space of pretrained
models and focus solely on selecting which weights to prune. This paradigm does not modify the un-
derlying distribution of parameter importance, which limits its flexibility and robustness—particularly
under semi-structured (e.g., 2:4) sparsity constraints where pruning choices are restricted.

To overcome this limitation, we propose a fundamentally different perspective. Rather than merely
selecting weights to prune, we aim to reshape the distribution of importance score prior to
pruning. Specifically, we instantiate this idea through DenoiseRotator, a framework that applies
learnable orthogonal transformations to reparameterize weight matrices, leveraging the computational
invariance [2] of Transformer architectures. As illustrated in Figure 2, these transformations are
trained to rotate the weight matrices in a way that concentrates the importance scores into a smaller
subset of parameters, thereby enhancing pruning robustness.

The term Denoise reflects the principle that minimizing the information entropy of normalized
importance scores—viewed as a discrete probability distribution—provides a theoretically grounded,
differentiable, and permutation-invariant objective for importance concentration. Moreover, the
norm-preserving property of orthogonal transformations ensures that the total importance of each
layer remains invariant, allowing importance to be redistributed across parameters without being
artificially introduced or lost. This property contributes to the overall stability of the algorithm.

Our key contributions are summarized as follows:

Entropy-Guided Importance Concentration: We propose enhancing pruning robustness by con-
centrating parameter importance into a small subset through minimizing information entropy of a
discrete distribution consisting of normalized parameter importance.

DenoiseRotator Framework: We introduce DenoiseRotator, a concrete instantiation of our im-
portance concentration idea, implemented via learnable orthogonal transformations that leverage the
computational invariance [2] of Transformer [41] architectures.

Plug-and-Play Compatibility: DenoiseRotator decouples the importance concentration process
from the actual pruning step. The learnable transformations are optimized independently prior to
pruning, and can be plugged into any existing pruning pipeline.

Extensive Empirical Evaluation: We demonstrate the effectiveness of DenoiseRotator on a range of
open-source LLMs, including Mistral (7B) [24], LLaMA3 (8B, 70B) [17], and Qwen2.5 (7B, 14B,
32B, 72B) [42]. Our method consistently and significantly improves pruning performance across
unstructured and semi-structured sparsity patterns, reducing perplexity and improving accuracy
compared to baseline pruning methods.

By combining entropy-guided importance concentration with orthogonal transformations, Denois-
eRotator offers a novel and principled direction for robust model pruning.

2 Background

Neural network pruning is a widely used model compression technique that reduces model size
and computational cost by eliminating parameters deemed less important. Existing approaches can
be broadly categorized into two paradigms. The first class relies on heuristic metrics to estimate
parameter importance and prunes those ranked lowest [31, 18, 13, 38, 44, 9, 26, 19, 45, 11]. The
second class formulates pruning as a continuous optimization problem by relaxing the binary pruning
mask into a differentiable form, allowing end-to-end training at the cost of significantly increased
computational overhead [30, 12].

Computational invariance refers to the property of transformer architecture proposed in SliceGPT
[2] that allows certain orthogonal transformations to be applied to their weight matrices without
altering the model’s output. Building upon this principle, QuaRot [3] and SpinQuant [29] apply
orthogonal rotations to weight matrices and activations to facilitate low-bit quantization by redis-
tributing outlier values more evenly. RotPruner [7] attempts to leverage this property for pruning and

2

Figure 1: Overview of the DenoiseRotator framework. The top row illustrates a Transformer [41]
layer architecture—used in mainstream models such as LLaMA [17], Mistral [24], and Qwen
[42]—that consists of RMSNorm, attention, and feed-forward blocks. In the middle, learnable
orthogonal matrices are inserted to rotate the weight matrices, concentrating parameter importance
before pruning. The rotated weights are then merged and pruned in the bottom row. In this illustration,
linear layers are represented in the Y = XW format.

reports promising empirical results; however, it lacks theoretical analysis or formal justification for
why rotation improves pruning robustness.

3 Method

In this section, we present the motivation and formulation of our proposed framework. We begin by
formalizing the problem setting and introducing the concept of enhancing pruning robustness through
concentrating parameter importance. Next, we describe how reducing the information entropy of
normalized importance scores naturally leads to such concentration. Finally, we introduce a practical
instantiation of this idea, termed DenoiseRotator, which implements entropy-based importance
concentration using learnable orthogonal transformations.

3.1 Enhance pruning robustness via parameter importance concentration

Pruning aims to reduce model size and computational requirements by removing parameters deemed
less important. A critical aspect of effective pruning is accurately estimating the importance of each
parameter. As mentioned earlier, recent methods such as SparseGPT [13] and Wanda [38] leverage
Taylor series to approximate the change in a linear layer output when a parameter is removed, serving
as importance metrics to identify and eliminate the least significant parameters.

For instance, the Wanda method computes the importance score SWanda
ij for each weight Wij of a

linear layer parameterized by W ∈ Rdout×din by considering both the weight’s magnitude and the
corresponding input activation norm:

SWanda
ij = |Wij | · ∥Xj∥2 (1)

This metric is equivalent to applying the Optimal Brain Damage (OBD) [26] approach to the
optimization problem of pruned weight Ŵ to minimize the change in the linear layer’s output after

3

(a) (b)

(c) (d)

Figure 2: Visualization of OBD importance in Eq 2 for the output projection in the first layer of
LLaMA-3-8B before and after orthogonal rotation. (a) and (b) show the 3D heatmaps of importance
scores of the weight matrix before and after applying DenoiseRotator, respectively. (c) and (d) display
the corresponding importance distributions, highlighting parameters before pruning (in blue) and after
pruning (in orange) by the Wanda method. After rotation, importance becomes more concentrated.

pruning. The OBD importance score is the second-order term of Taylor approximation:

min
Ŵ
∥WX − ŴX∥2 ⇒ SOBD

ij = |Wij |2 · (XX⊤)j,j (2)

Consequently, optimizing the change caused by pruning could be approximated by minimizing the
sum of importance scores over the pruned parameters whose index is in P , defined as the set of
indices corresponding to weights selected for removal, according to Talyor approximation property:

min
Ŵ
∥WX − ŴX∥2 ≈ min

P

∑
(i,j)∈P

SOBD
ij (3)

This insight motivates minimizing the total importance of the pruned parameters, which underlies
the algorithmic design of existing methods — sorting and removing the weights with the lowest
importance scores. However, reducing this sum is not limited to selecting the least important
parameters—we can also reshape the distribution of importance itself, offering a new perspective for
enhancing pruning robustness.

To this end, we propose applying transformations to minimize total importance score of pruned
weight. Formally, the optimization objective can be expressed as:

min
Ŵ ,TW ,TX

∥∥∥TW (W)TX(X)− TW (Ŵ)TX(X)
∥∥∥2 ≈ min

P,TS

∑
(i,j)∈P

TS(S)ij (4)

where (TW , TX) is a pair of transformation applied to the layer’s weight and input (e.g., orthogonal
transformation), and TS is the corresponding transformation applied to the importance scores Sij .
Here, we omit the specific form of the OBD score to emphasize that our method is compatible with
pruning metrics based on heuristic importance estimation, where parameters with lower estimated
importance are removed.

4

By decreasing the total importance of pruned weights, the deviation in the linear layer’s output is
minimized, thus preserving model performance and enhancing robustness against degradation caused
by pruning. Furthermore, reducing the magnitude of importance score of pruned weights improves
the accuracy of Taylor-series-based importance approximations, leading to more precise importance
estimation and compensation strategies, such as those used in SparseGPT [13].

3.2 Reducing information entropy of normalized importance score

Although the objective in Equation 4 provides a principled formulation for importance concentration,
it is generally difficult to optimize in practice. On the left-hand side, the selection of the pruning
indices P is a combinatorial problem and is known to be NP-hard [6]. On the right-hand side, sorting-
based strategies—commonly used to identify low-importance parameters—are non-differentiable and
thus incompatible with gradient-based optimization.

To tackle these challenges, we propose optimizing a learnable transformation to minimize the
information entropy of the normalized importance distribution prior to pruning as a surrogate objective
for concentrating parameter importance. Given that importance scores are non-negative, they can
be normalized to form a valid probability distribution, facilitating a probabilistic interpretation
of parameter importance. Entropy, being permutation-invariant, remains unaffected by the index
ordering of parameters. Furthermore, as a concave function over the probability simplex, entropy,
when minimized, naturally promotes sparsity by concentrating mass onto fewer elements. This
strategy independently addresses importance redistribution, separate from the pruning process itself,
allowing enhanced flexibility across various pruning metrics and sparsity patterns.

Formally, let S = {Sij} denote the importance scores, and TS be a learnable transformation (e.g.,
orthogonal rotation applied indirectly through weight and input transformation) that reshapes the
distribution of importance. We first compute transformed scores S′ = TS(S), and normalize them
over a specified group G ⊆ {(i, j)} (such as a row, column, or the entire matrix):

pij =
TS(S)ij∑

(i,j)∈G TS(S)ij
, H(P) = −

∑
(i,j)∈G

pij log pij (5)

where P = {pij} denotes the normalized importance scores computed within group G, which could
be seen as a discrete probability distribution, its entropyH(P) is then given by the above formula.

Our objective is to learn a shared transformation TS that minimizes the entropy across all normaliza-
tion groups:

min
TS

∑
G
H (P) (6)

The summation is taken over all groups that share the same transformation TS . By reducing the
entropy of the transformed importance distribution, we effectively transfer importance toward a
smaller subset of parameters. This results in a more skewed and robust importance profile, making
the model inherently more amenable to pruning.

3.3 DenoiseRotator

In this section, we introduce DenoiseRotator, a practical instantiation of the entropy-based im-
portance concentration framework described earlier. DenoiseRotator implements the learnable
transformation TS using orthogonal matrices, enabling a lightweight yet effective mechanism to
reshape importance distributions without altering the model’s functionality.

DenoiseRotator is designed to be modular and can be easily combined with existing pruning pipelines.
The following pseudocode outlines an example workflow of integrating DenoiseRotator (highlighted
in blue) with layer-wise pruning methods:

5

Algorithm 1 DenoiseRotator Integration Pipeline

Require: Dense model M, pruning method P, calibration data Dcal
Ensure: Pruned model M′

Merge RMSNorm’s weight into adjacent linear layers
Compute Hessian for pruning H ← XX⊤ {X is from Dcal}
Integrate and train orthogonal matrices R1, R2

Merge orthogonal matrices R1, R2

Apply pruning method P to convert M into M′

return Pruned model M′

3.3.1 Integration of orthogonal matrices

As shown in Figure 1, DenoiseRotator integrates two pairs of learnable orthogonal matrices into each
Transformer layer.

Layer-Level Rotations (R1): A pair of orthogonal matrices, R1 and R⊤
1 of shape (dhidden, dhidden),

are applied at the beginning and end of each Transformer layer, respectively. Specifically, R1 is
inserted before the RMS normalization and residual addition, and R⊤

1 is applied after these operations.
R1 effectively maps activations and weights into rotated spaces, allowing the network to redistribute
parameter importance. Since orthogonal transformations preserve vector norms and inner products,
the inputs to non-linear functions remain consistent. Thus, the model’s output remains invariant.

Attention-Level Rotations (R2): Within the self-attention, another pair of orthogonal matrices R2

and R⊤
2 are applied to the Value (V) and Output (O) projections. These rotations adjust the internal

representations, further concentrating importance and enhancing the model’s resilience to pruning.

To elucidate the effect of these transformations, consider the Output (O) projection as an example. Let
W denote its weight matrix of shape (dhidden, dhidden) and X its input of shape (dhidden, len× bsz)
before transformation. After applying the orthogonal transformations, the weight and input are
transformed as follows:

W ′ = TW (W) = R⊤
1 WR2, X ′ = TX(X) = R⊤

2 X, W ′X ′ = R⊤
1 WX (7)

The corresponding transformation of the OBD importance score in Equation 2 can be expressed as:

S′
ij = TS(S)ij = |W ′

ij |2 · (X ′X ′⊤)jj = |(R⊤
1 WR2)ij |2 ·

(
R⊤

2 XX⊤R2

)
jj

(8)

This formulation reveals how importance scores are indirectly redistributed through orthogonal
transformations applied to inputs and weights. Detailed transformation for other linear layer and
pruning method could be found in Appendix A.

After training, the orthogonal matrices, except for those at the beginning and end of the Transformer
layer, are merged into the model’s weight matrices as illustrated in Figure 1. Pruning is then applied
to the merged weight matrices.

This integration leverages structural properties of the Transformer architecture—specifically, the pres-
ence of residual connections, layer normalization (which could be transformed to RMS normalization
[2]), and attention mechanisms—and is suitable for any model that exhibits similar characteristics.

3.3.2 Invariance of total importance

Orthogonal transformations preserve the total importance of a linear layer’s weights due to their
property of maintaining vector norms, i.e., ∥Rx∥ = ∥x∥. Formally, this implies

∑
TS(S) =

∑
S,

where TS denotes the orthogonal transformation applied to the importance scores. This invariance
ensures that importance is redistributed among parameters without being artificially introduced or
eliminated, thereby making the algorithm stable. For a full derivation and proof of the invariance
property under orthogonal transformation, see Appendix B.

To align the importance concentration mechanism with invariance, normalization in the entropy
computation 5 is performed based on the position of the orthogonal matrix relative to the weight

6

matrix. Specifically, if the orthogonal matrix is applied on the right side (e.g., WR), normalization is
conducted over each row. Conversely, if the orthogonal matrix is applied on the left side (e.g., RW),
normalization is performed over each column. In cases where orthogonal matrices are applied on
both sides (e.g., R1WR2), both row-wise and column-wise entropies are calculated and their sum is
used. This means that the normalization group is determined by the position of the orthogonal matrix.

3.3.3 Optimization of the orthogonal matrix

During training, only the orthogonal matrices are optimized, while the weights of the original model
and input features are kept frozen, thus the hessian matrix H = XX⊤ for pruning could be reused.
Each orthogonal matrix is initialized as the identity matrix to ensure that the model’s behavior remains
unchanged at the start of training.

Since all linear layers within a Transformer layer share the same set of orthogonal transformations R1

and R2, the overall training objective within a Transformer layer is defined as the sum of the entropy
values across all normalization groups from all affected linear layers. The total loss is:

Loss(R1,i, R2,i) =
∑
ℓ∈Li

∑
G∈ℓ

H(PG) (9)

where Li denotes the set of all linear layers within the i-th Transformer layer, and G indexes the
normalization groups within each linear layer. Note that we do not apply any additional weighting
to the entropy of each group. This is because the number of normalization groups per linear layer
is inherently tied to the weight’s shape (e.g., rows or columns), and the value of discrete entropy
naturally scales with the number of categories.

Maintaining the orthogonality of matrices R1 and R2 during backpropagation can be challenging,
as direct gradient descent on these matrices does not inherently preserve orthogonality. To address
this issue, we employ a reparameterization strategy using QR decomposition. For each orthogonal
matrix, we define an unconstrained matrix A and compute its QR decomposition: A = QR, where Q
is an orthogonal matrix and R is an upper triangular matrix. During training, only the orthogonal
component Q is utilized in the forward pass, while gradients are applied to the underlying matrix A.
The theoretical justification for the feasibility of this method is provided in Appendix C.

4 Experiment

Models and Tasks We evaluate our method on several recent open-source large language models,
including Mistral 7B [24], LLaMA 3 (8B and 70B) [17], and Qwen2.5 (7B, 14B, 32B, and 72B) [42].
Our evaluation encompasses both language generation, measured by perplexity on the WikiText-2
dataset [32], and five widely-used zero-shot tasks: PIQA [5], WinoGrande [36], HellaSwag [43],
ARC-e, and ARC-c [8]. Following established practices, we utilize the LM Evaluation Harness [15]
with default settings for all evaluations.

Baselines We integrate DenoiseRotator with three pruning methods: the classic Magnitude pruning
and two advanced techniques, Wanda and SparseGPT. Both Wanda and SparseGPT require calibration
data to estimate input statistics. For consistency, we use the same calibration dataset as in prior work,
consisting of 128 sequences with a context length of 2048 tokens, sampled from the C4 training set
[35]. We apply a uniform sparsity level across all decoder layers and evaluate two types of sparsity:
unstructured 50% sparsity and semi-structured 2:4 sparsity.

Setup We trained the orthogonal matrices of DenoiseRotator using the Adam optimizer with a
learning rate of 0.01 over 2000 steps. All computations, except for QR decomposition, were performed
in torch.bfloat16 precision to enhance efficiency. The computation resource cost scales linearly with
the number of model parameters. For instance, training on LLaMA 3 70B with SparseGPT took
approximately 28 hours and utilized around 30 GB of GPU memory on a single NVIDIA A100
GPU. Notably, the training duration is independent of the calibration dataset size, as the optimization
process reuse the hessian matrix for pruning. No recovery finetuning was performed after pruning.

7

4.1 Main result

In Table 1, we evaluate the generation capabilities of both dense and pruned models—with and
without the integration of DenoiseRotator—using perplexity on the WikiText-2 validation set. Under
both unstructured (50%) and semi-structured (2:4) sparsity settings, DenoiseRotator consistently and
significantly reduces perplexity across all model families and scales.

Table 1: Perplexity ↓ results on WikiText-2 of various models under different sparsity settings.
Mistral LLaMA3 Qwen2.5

Sparsity Method 7B 8B 70B 7B 14B 32B 72B

0% Dense 5.95 6.14 2.86 6.85 5.29 5.02 3.88

50%

Magnitude 30.39 30.39 10.58 198.88 22.94 19.22 734.04
+DenoiseRotator 7.30 14.43 7.00 9.27 8.78 6.97 5.37
Wanda 6.92 9.86 5.80 8.61 7.31 6.30 5.22
+DenoiseRotator 6.52 7.82 4.73 7.93 6.72 5.99 4.94
SparseGPT 6.94 9.57 5.99 8.46 7.27 6.35 4.94
+DenoiseRotator 6.38 7.60 4.61 7.60 6.51 5.86 4.78

2:4

Magnitude 141.96 141.96 18.17 559.87 58.93 24.27 287.70
+DenoiseRotator 9.52 75.23 11.53 11.97 13.51 8.61 8.81
Wanda 10.18 25.19 9.39 15.01 11.66 8.08 6.69
+DenoiseRotator 7.80 11.41 6.60 10.13 8.71 7.90 6.16
SparseGPT 9.71 17.67 10.97 11.35 10.20 7.92 7.19
+DenoiseRotator 7.30 10.01 6.25 8.88 7.86 6.75 5.85

We report zero-shot task results for dense and pruned models in Table 2. Across both unstructured
(50%) and semi-structured (2:4) sparsity settings, DenoiseRotator consistently improves zero-shot
accuracy, often recovering performance close to or surpassing the dense model, especially on larger
models like Qwen2.5-72B and LLaMA3-70B.

Table 2: Average zero-shot accuracy (%) ↑ on five benchmark tasks (PIQA, WinoGrande, HellaSwag,
ARC-e, ARC-c).

Mistral LLaMA3 Qwen2.5

Sparsity Method 7B 8B 70B 7B 14B 32B 72B

0% Dense 74.21 72.72 80.05 72.18 75.81 75.12 78.69

50%

Magnitude 57.78 57.78 64.05 39.09 57.52 63.81 41.27
+DenoiseRotator 69.79 60.44 70.37 66.83 62.45 69.19 75.54
Wanda 71.21 65.77 76.23 67.28 73.36 73.82 78.04
+DenoiseRotator 72.66 69.28 78.37 71.35 75.18 76.39 78.32
SparseGPT 71.76 66.88 76.66 68.95 74.00 74.06 78.25
+DenoiseRotator 73.46 69.58 78.54 72.18 75.71 76.02 78.42

2:4

Magnitude 48.04 48.04 59.04 40.51 53.89 59.79 41.41
+DenoiseRotator 60.57 41.10 61.94 62.41 58.89 66.45 69.42
Wanda 63.28 51.03 70.09 61.24 64.66 71.09 74.94
+DenoiseRotator 69.61 64.22 75.74 67.85 70.23 73.37 77.66
SparseGPT 66.18 55.95 69.16 64.67 66.76 71.10 75.43
+DenoiseRotator 70.98 66.11 76.37 69.56 72.38 73.25 77.16

Although we do not explicitly optimize for the 2:4 semi-structured sparsity constraint, DenoiseRotator
still performs remarkably well—even making previously unusable models viable under this constraint.
This is likely because the orthogonal matrices act as a form of random permutation, increasing the
chance that crucial weights align with the semi-structured sparsity pattern.

8

The impact of rotation is illustrated in Figure 2, which visualizes the OBD importance for the output
projection in the first layer of LLaMA-3-8B before and after applying DenoiseRotator, revealing how
importance becomes more concentrated after transformation.

For detailed performance results (including the LLaMA 1 and 2 families), please refer to Appendix G.

4.2 Effectiveness of Entropy Reduction on Pruning Robustness

Table 3: Impact of entropy reduction on pruning robustness.
Results are reported on LLaMA-3-8B with SparseGPT (un-
structured 50% sparsity) calibrated by 128 sequences of 2048
tokens sampled from C4 training set.

Step Entropy Time (s) Zero-shot (%) ↑ Wikitext2 PPL ↓
0 457280 1181 66.88 9.567

100 396992 1603 70.54 7.701
400 387904 2760 70.12 7.619

2000 384128 9120 69.58 7.597

To validate the efficacy of entropy re-
duction in enhancing pruning robust-
ness, we conduct an ablation study on
LLaMA-3-8B using SparseGPT with
a 50% unstructured sparsity calibrated
by 128 sequences of 2048 tokens sam-
pled from C4 training set (generation
task). We record model performance
at various entropy reduction steps of
DenoiseRotator. Table 3 presents the
average entropy value per layer, time
consumed, average zero-shot accuracy, and perplexity on the WikiText2 validation set over different
optimization steps. 0 step refers to the SparseGPT baseline.

As shown in Table 3, reducing the entropy of the normalized importance distribution significantly
improves model’s performance. At step 100, where average entropy per layer is reduced by 13%,
we observe a substantial boost in zero-shot accuracy from 66.88% to 70.54%, along with a decrease
in perplexity from 9.567 to 7.701. Further optimization continues to reduce entropy and improve
perplexity. A comprehensive hyperparameter analysis, detailing optimization steps and learning rates,
is available in Appendix D.

These results empirically support our hypothesis: concentrating importance via entropy reduction
enables more robust pruning, leading to reduced performance degradation.

4.3 Inference speedup and overhead analysis

DenoiseRotator introduces a pair of orthogonal matrices at the beginning and end of each layer. Since
the orthogonal matrices of adjacent layers can be merged, the actual overhead is limited to storing
an additional shape matrix (hidden_size, hidden_size) per layer, along with a matrix multiplication
during inference. For example, in LLaMA-3-8B, this results in approximately 0.5 billion additional
parameters (i.e., 4096 × 4096 × 32). This overhead is relatively small, accounting for only about
6.7% of the original model size. To further address overhead concerns, we explore the potential of
block diagonal orthogonal matrices as a reduction strategy in Appendix E.

Table 4: Average inference time and speedup per layer on LLaMA3-8B for 32 sequences of length
2048 on A100 GPU

Configuration Dense Layer 2:4 Sparse Layer + Orthogonal Matrix
Time (ms) 5.80 4.37 4.69
Speedup (%) 1.00× (baseline) 1.33× 1.24×

We evaluate the average inference time of a single Transformer layer in LLaMA3-8B on 32 sequences
of length 2048 using an NVIDIA A100 GPU. The batch size is set to 1, and we utilize PyTorch’s semi-
structured sparsity framework, specifically the torch.sparse.to_sparse_semi_structured
function. Timing measurements are conducted using torch.utils.benchmark.Timer. As shown
in Table 4, a dense layer takes 5.80 ms on average, while a 2:4 semi-structured sparse layer reduces
this to 4.37 ms—achieving a 1.33× speedup. The additional cost introduced by DenoiseRotator’s
orthogonal matrix is only 0.32 ms per layer, which is minor compared to the overall computation
time and maintains practical efficiency for deployment.

9

5 Conclusion

This paper introduces DenoiseRotator, a plug-and-play framework that improves the robustness of
model pruning through importance concentration. By applying learnable orthogonal transformations
optimized via entropy reduction, DenoiseRotator reshapes the importance landscape to ensure critical
informations and abilities are preserved during pruning. Our theoretical analysis and empirical
studies validate the effectiveness of this strategy: concentrating importance distributions results in
more informative retained parameters and enhances the model’s robustness to pruning. Extensive
evaluations on multiple LLMs show consistent gains across perplexity and zero-shot accuracy
under both unstructured and semi-structured sparsity. Moreover, DenoiseRotator achieves these
improvements with minimal overhead and without modifying the original pruning pipeline. These
results demonstrate the promise of entropy-guided importance reshaping as a general principle for
robust and efficient model sparsification. While our experiments focus on post-training pruning, the
underlying idea of concentrating parameter importance may also benefit other stages of the model
lifecycle, such as being integrated into pretraining or continual training.

6 Limitations

Semi-structured sparsity patterns offer hardware acceleration benefits but also impose structural
constraints. Future work is needed to explore how such constraints can be explicitly integrated into
the learnable transformation’s optimization process.

10

7 Acknowledgements

This work was supported by the China STI 2030-Major Projects under Grant No. 2021ZD0201500,
and it was also supported in part by the Beijing Nova Program.

References

[1] anthropic. Claude 3.7 sonnet and claude code, Feburary 2025.

[2] Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and
James Hensman. SliceGPT: Compress large language models by deleting rows and columns. In
The Twelfth International Conference on Learning Representations, 2024.

[3] Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L. Croci, Bo Li, Pashmina Cameron,
Martin Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit
inference in rotated LLMs. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

[4] Gary Bécigneul and Octavian-Eugen Ganea. Riemannian adaptive optimization methods. arXiv
preprint arXiv:1810.00760, 2018.

[5] Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: reasoning
about physical commonsense in natural language. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 7432–7439.
AAAI Press, 2020.

[6] Thomas Blumensath and Mike E Davies. Iterative thresholding for sparse approximations.
Journal of Fourier Analysis and Applications, 14(5-6):629–654, 2008.

[7] Haoxian Chen and Limin Wang. Rotpruner: Large language model pruning in rotated space,
2025.

[8] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv:1803.05457v1, 2018.

[9] Rocktim Jyoti Das, Liqun Ma, and Zhiqiang Shen. Beyond size: How gradients shape pruning
decisions in large language models, 2024.

[10] DeepSeek-AI, Daya Guo, Dejian Yang, et al. Deepseek-r1: Incentivizing reasoning capability
in llms via reinforcement learning, 2025.

[11] Peijie Dong, Lujun Li, Zhenheng Tang, Xiang Liu, Xinglin Pan, Qiang Wang, and Xiaowen
Chu. Pruner-zero: Evolving symbolic pruning metric from scratch for large language models.
In Forty-first International Conference on Machine Learning, 2024.

[12] Gongfan Fang, Hongxu Yin, Saurav Muralidharan, Greg Heinrich, Jeff Pool, Jan Kautz, Pavlo
Molchanov, and Xinchao Wang. MaskLLM: Learnable semi-structured sparsity for large
language models. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024.

[13] Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned
in one-shot. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett, editors, International Conference on Machine Learning, ICML
2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, pages 10323–10337. PMLR, 2023.

[14] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: Accurate post-training
compression for generative pretrained transformers. arXiv preprint arXiv:2210.17323, 2022.

[15] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles
Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas
Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron,
Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 07 2024.

11

[16] Google. Gemini 2.5: Our most intelligent ai model, March 2025.
[17] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, et al. The llama 3 herd of models, 2024.
[18] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural

networks with pruning, trained quantization and huffman coding, 2016.
[19] Babak Hassibi, David G. Stork, and Gregory J. Wolff. Optimal brain surgeon: Extensions and

performance comparison. In Jack D. Cowan, Gerald Tesauro, and Joshua Alspector, editors,
Advances in Neural Information Processing Systems 6, [7th NIPS Conference, Denver, Colorado,
USA, 1993], pages 263–270. Morgan Kaufmann, 1993.

[20] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural
network. CoRR, abs/1503.02531, 2015.

[21] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In
International Conference on Learning Representations, 2022.

[22] Xing Hu, Yuan Cheng, Dawei Yang, Zhixuan Chen, Zukang Xu, JiangyongYu, XUCHEN, Zhi-
hang Yuan, Zhe jiang, and Sifan Zhou. OSTQuant: Refining large language model quantization
with orthogonal and scaling transformations for better distribution fitting. In The Thirteenth
International Conference on Learning Representations, 2025.

[23] Ioan Mackenzie James. The topology of Stiefel manifolds, volume 24. Cambridge University
Press, 1976.

[24] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

[25] Max Kochurov, Rasul Karimov, and Serge Kozlukov. Geoopt: Riemannian optimization in
pytorch, 2020.

[26] Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. In D. Touretzky, editor,
Advances in Neural Information Processing Systems, volume 2. Morgan-Kaufmann, 1989.

[27] Jun Li, Fuxin Li, and Sinisa Todorovic. Efficient riemannian optimization on the stiefel manifold
via the cayley transform. In International Conference on Learning Representations, 2020.

[28] Yifei Liu, Jicheng Wen, Yang Wang, Shengyu Ye, Li Lyna Zhang, Ting Cao, Cheng Li, and
Mao Yang. Vptq: Extreme low-bit vector post-training quantization for large language models.
In The 2024 Conference on Empirical Methods in Natural Language Processing, 2024.

[29] Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman
Krishnamoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: LLM
quantization with learned rotations. In The Thirteenth International Conference on Learning
Representations, 2025.

[30] Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural networks
through l0 regularization. In International Conference on Learning Representations, 2018.

[31] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. In Advances in Neural Information Processing Systems, 2023.

[32] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In International Conference on Learning Representations, 2017.

[33] OpenAI, Josh Achiam, Steven Adler, et al. Gpt-4 technical report, 2024.
[34] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pages 8024–8035, 2019.

[35] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020.

12

[36] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. In The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 8732–8740.
AAAI Press, 2020.

[37] Hang Shao, Bei Liu, and Yanmin Qian. One-shot sensitivity-aware mixed sparsity pruning for
large language models. In ICASSP 2024 - 2024 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 11296–11300, 2024.

[38] Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning
approach for large language models. In The Twelfth International Conference on Learning
Representations, 2024.

[39] Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. QuIP$\#$:
Even better LLM quantization with hadamard incoherence and lattice codebooks. In Forty-first
International Conference on Machine Learning, 2024.

[40] Albert Tseng, Qingyao Sun, David Hou, and Christopher De Sa. QTIP: Quantization with
trellises and incoherence processing. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems 30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, pages 5998–6008, 2017.

[42] An Yang, Baosong Yang, Beichen Zhang, et al. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

[43] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? In Anna Korhonen, David R. Traum, and Lluís Màrquez,
editors, Proceedings of the 57th Conference of the Association for Computational Linguistics,
ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pages 4791–4800.
Association for Computational Linguistics, 2019.

[44] Mingyang Zhang, Hao Chen, Chunhua Shen, Zhen Yang, Linlin Ou, Xinyi Yu, and Bohan
Zhuang. Pruning meets low-rank parameter-efficient fine-tuning, 2023.

[45] Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao, Lu Hou, and Carlo Vittorio Cannistraci.
Plug-and-play: An efficient post-training pruning method for large language models. In The
Twelfth International Conference on Learning Representations, 2024.

13

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately reflect the paper’s scope and con-
tributions, including the proposal of entropy-guided importance concentration, the design
of DenoiseRotator, and its compatibility and effectiveness across pruning methods. These
claims are supported by both theoretical analysis and experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations in terms of the additional training cost
and overhead introduced by learnable orthogonal transformations and the lack of explicit
adaptation to semi-structured sparsity patterns like 2:4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

14

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification:The paper provides clearly stated mathematical formulations and
proof—particularly for the entropy-based importance concentration and invariance of total
importance—with all assumptions explicitly described and derivations validated through
ablation studies and empirical evidence.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides detailed descriptions of model settings, datasets, pruning
methods, training configurations, and evaluation metrics. It also outlines a reproducible
workflow and presents a full integration pseudocode for the DenoiseRotator framework,
facilitating reproduction of the main results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

15

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The model and data used in this paper are open source, and the code has been
submitted to ensure faithful reproduction of the main experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides detailed experimental settings including model types,
sparsity configurations, pruning methods, and evaluation datasets. Other implementation
details such as the number of calibration samples and training steps for DenoiseRotator are
also described in the main text and appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Justification: The paper reports consistent improvements across a wide range of models
and tasks, but it does not include error bars or formal statistical significance tests. Future
revisions may include these to strengthen empirical claims.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper specifies the number of calibration tokens, training steps, and
runtime for entropy optimization.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This work adheres to the NeurIPS Code of Ethics. It does not involve human
subjects or sensitive data.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

17

https://neurips.cc/public/EthicsGuidelines

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper proposes a general-purpose model compression technique focused
on enhancing the robustness of pruning algorithms for large language models. The method
operates at the algorithmic level without targeting specific applications or domains, and thus
does not raise direct societal impact concerns such as fairness, privacy, or misuse. As a
result, the broader societal impact is minimal and not explicitly addressed in the paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not release any data or pretrained models that pose a high
risk of misuse. It focuses on a general pruning framework applicable to existing models
without introducing new datasets or deployable systems. Therefore, no specific safeguards
are necessary.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

18

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All third-party assets used in this paper—including pretrained language
models (LLaMA-3, Qwen2.5, Mistral), datasets (WikiText-2, C4), and pruning baselines
(SparseGPT, Wanda, Magnitude)—are properly cited and credited in the main paper. Their
usage complies with the licenses and terms specified by the original authors.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces new assets, including implementation code.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve any crowdsourcing or research with human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

19

paperswithcode.com/datasets

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve any research with human subjects or crowdsourcing,
and therefore no IRB approval is required.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Large language models were not used as a core or original component in the
methodology of this research; their use was limited to standard writing assistance and does
not impact the scientific contributions of the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Details of Orthogonal Transformations and Importance Score
Formulations

In this section, we present how orthogonal transformations affect the importance scores under three
commonly used pruning methods: Magnitude pruning, Wanda, and SparseGPT. We also show how
we modify the importance formulas to maintain the Taylor expansion property under transformation.

Throughout this discussion, we denote the original weight matrix as W ∈ Rdout×din , the input matrix
as X ∈ Rdin×n, and approximate the Hessian as H = XX⊤. The output of a linear layer is given by
Y = WX .

Depending on which sides the orthogonal transformations are applied, three typical cases arise:

Case 1: Right-side rotated weight and left side rotated input (e.g., Q, K, Up, Gate).

For layers such as Query (Q), Key (K), Up, and Gate, the weight is rotated on the right side and the
input on the left. Specifically, the transformed weights and inputs are given by W ′ = WR1 and
X ′ = R⊤

1 X , respectively. The corresponding changes in importance scores under different pruning
methods are summarized below:

Table 5: Right-side rotated weight and left-side rotated input (e.g., Q, K, Up, Gate)
Method Original Importance Score Sij Transformed Importance Score TS(Sij)

Magnitude |Wij | (WR1)
2
ij

Wanda |Wij | · ∥Xj∥2 (WR1)
2
ij · (R⊤

1 HR1)jj
SparseGPT W 2

ij / H
−1
jj (WR1)

2
ij / (R⊤

1 H
−1R1)jj

Case 2: Left-side rotated weight and unrotated input (e.g., Down)

For layers like Down, only a left-side rotation is applied to the weights, while the inputs remain
unrotated. In this case, W ′ = R⊤

1 W and X ′ = X . The modified importance scores are given by:

Table 6: Left-side rotated weights and unrotated inputs (e.g., Down)
Method Original Importance Score Sij Transformed Importance Score TS(Sij)

Magnitude |Wij | (R⊤
1 W)2ij

Wanda |Wij | · ∥Xj∥2 (R⊤
1 W)2ij ·Hjj

SparseGPT W 2
ij / H

−1
jj (R⊤

1 W)2ij / H−1
jj

Case 3: Two-side rotated weight and left-side rotated input (e.g., O, V)

For components like Output (O) and Value (V) projections in the self-attention mechanism, rotations
are applied on both sides.

For Output (O): W ′ = R⊤
2 WR1 and X ′ = R⊤

1 X . The transformed importance scores are:

Table 7: Transformation for Output (O)
Method Original Importance Score Sij Transformed Importance Score TS(Sij)

Magnitude |Wij | (R⊤
2 WR1)

2
ij

Wanda |Wij | · ∥Xj∥2 (R⊤
2 WR1)

2
ij · (R⊤

1 HR1)jj
SparseGPT W 2

ij / H
−1
jj (R⊤

2 WR1)
2
ij / (R⊤

1 H
−1R1)jj

For Value (V): W ′ = R⊤
1 WR2 and X ′ = R⊤

2 X . The corresponding transformation is similar to that
of Output (O).

21

B Proof of invariance of total importance

As established in Equation 3, the total importance of parameters can be approximated by the Frobenius
norm of the layer output, corresponding to the scenario where all weights are pruned (set to zero).
Specifically, according to optimal brain damage [26], we have:∑

i,j

(
Sij +O(|Wij |3)

)
= ∥WX∥2 ⇒

∑
S ≈ ∥WX∥2 (10)

Since the magnitudes of |Wij | are very small, this approximation is highly accurate.

Case 1: Right side rotated weights and left side rotated inputs (e.g., Q, K, Up, Gate).

When both the weight matrix and the input are transformed via orthogonal matrices:

ΣTS(S) ≈ ∥TW (W)TX(X)∥ = ∥WR1R
⊤
1 X∥ = ∥WX∥ ≈ ΣS (11)

Case 2: Left side rotated Weights and unrotated input (e.g., Down).

When only the weight is rotated:

ΣTS(S) ≈ ∥TW (W)TX(X)∥ = ∥R⊤
1 WX∥ = tr(W⊤X⊤R1R

⊤
1 WX) = ∥WX∥ ≈ ΣS (12)

This equality holds because orthogonal matrices satisfy R⊤ = R−1, and hence preserve both vector
norms and inner products.

Case 3: Two side rotated weight and left side rotated input (e.g., O, V).

Components such as O and V , which are affected by both left and right orthogonal transformations,
can be viewed as a combination of the two cases above. Thus, their total importance is also preserved.

C QR decomposition reparameterization

Figure 3: Illustration of the QR decomposition reparameterization process. The diagram shows
how an unconstrained matrix A is optimized indirectly to achieve constrained optimization of the
orthogonal matrix Q, while interfacing with the loss function during forward and backward passes.
The process leverages QR decomposition to preserve orthogonality and integrate seamlessly into
gradient-based optimization methods.

Standard gradient descent algorithms and their variants encounter significant challenges when dealing
with the orthogonality constraint of matrices. In conventional settings, these algorithms directly update
matrix parameters without ensuring that the orthogonality condition is preserved post-update. This can
lead to a loss of orthogonality, compromising model integrity and stability. To address this, previous
research [29, 22, 7] has frequently adopted Stiefel manifold optimization techniques [23, 27, 4, 25].
These methods are specifically tailored to handle the complex geometric constraints associated with
orthogonal matrices, necessitating specialized optimizers and additional computational resources.

22

QR decomposition provides an elegant solution to this problem by exploiting the properties of linear
algebra to indirectly parameterize orthogonal matrices. This approach sidesteps the orthogonality
constraint by using the QR decomposition, thus enabling the use of conventional gradient descent
methods for optimization tasks without requiring complex manifold optimizers. As a result, QR
decomposition not only maintains the orthogonality of matrices but also simplifies the optimization
process, effectively mitigating the difficulties posed by orthogonality constraints.

In Figure 3, we start with an unconstrained matrix A. During the forward pass of the neural network,
a QR decomposition is performed, splitting A into two matrices: an orthogonal matrix Q and an
upper triangular matrix R. The orthogonal matrix Q becomes the immediate subject of optimization
in the loss function, even though we never directly modify Q itself. Instead, we focus on optimizing
the unconstrained matrix A, which indirectly alters Q due to the nature of QR decomposition.

The process of QR decomposition is composed of basic matrix operations like dot products, vector
normalization, and projection. These are mathematically smooth operations, meaning they can be
differentiated, which is key for gradient-based optimization. Each step in QR decomposition involves
operations that smoothly vary, making it possible to calculate how small changes in the input A affect
the output Q and R.

Because of these properties, QR decomposition can seamlessly integrate into the computation graph
used by automatic differentiation tools. PyTorch [34] provides automatic differentiation support for
QR factorization through torch.qr. When QR decomposition is performed, PyTorch automatically
manages and propagates gradients with respect to the input matrix A. This capability enables
gradient-based methods, such as gradient descent, to efficiently update A, automatically respecting
the orthogonality constraint imposed on Q.

QR decomposition reparameterization therefore transcends the limitations of direct parameterization
by introducing a flexible and effective mechanism to handle orthogonality in optimization tasks. As
the network trains, the orthogonal matrix Q adapts continuously to minimize the loss function, while
the underlying matrix A undergoes refinement through regular gradient-based updates.

D Hyperparameter Sensitivity Analysis

A thorough analysis of hyperparameter sensitivity is essential for understanding how different
hyperparameter choices impact the final performance of a model. In the main paper, we relied
on a fixed set of hyperparameters, such as using 2000 steps in the rotation training process. To
enhance the rigor and reproducibility of our research, we conducted comprehensive experiments on
the LLaMA-3-8B model, exploring the effects of various hyperparameter configurations on the final
results.

In our experiments, each row presents the perplexity and average zero-shot accuracy corresponding
to different learning rates and training steps. The setup involves utilizing SparseGPT with 50%
unstructured pruning, using a calibration dataset consisting of 128 samples of length 2048 from the
C4 dataset. All experiments were performed on an A100 80G GPU.

Table 8: Results across various learning rates and training steps
Steps 0.1 0.01 0.001 0.0001

Perplexity Zero-shot Perplexity Zero-shot Perplexity Zero-shot Perplexity Zero-shot
100 7.75 69.52 7.70 70.54 7.96 69.95 8.52 67.83
200 7.70 70.31 7.64 68.93 7.82 70.04 8.30 68.59
400 7.63 69.84 7.62 70.12 7.66 70.31 8.16 69.37
800 7.61 70.25 7.61 70.21 7.72 69.55 7.94 70.77
2000 7.64 69.82 7.60 69.58 7.67 70.36 7.85 70.11
4000 7.60 70.46 7.60 69.59 7.63 70.37 7.78 69.59

These results indicate: 1. When the learning rate is less than or equal to 0.001, the efficiency is low
due to the small learning rate. 2. With a learning rate of 0.01, training converges around 2000 steps,
and excessive steps increase training costs. 3. Compared to the baseline without the importance
concentration mechanism, all configurations show significant improvements as training progresses. 4.
Zero-shot task accuracy fluctuates around 70%, with a variation of approximately 1%, not showing a
clear linear relationship with perplexity.

23

E Trade-off with Block Diagonal Orthogonal Matrices

Block diagonal orthogonal matrices provide an effective approach to reduce both training and
inference overhead of DenoiseRotator. By leveraging the structural efficiency of block diagonal
matrices, this method achieves a balanced optimization of performance and resource utilization.

In our experiments with the LLaMA-3-8B model, we evaluated these benefits using SparseGPT with
50% unstructured pruning over 2000 steps and a learning rate of 0.01. Dense orthogonal matrices were
replaced with block diagonal matrices, consisting of block_num orthogonal submatrices arranged
along the diagonal. Each submatrix has dimensions of hidden_size

block_num . This approach reduces both spatial
and computational complexity to 1

block_num of the original requirements.

Table 9: Performance and Computational Costs with Different Block Configurations
Block Number Perplexity Zero-Shot Accuracy Time Cost per Step (s) Entropy

1 7.597 69.58 0.124 384128
2 8.024 68.68 0.088 410816
4 8.544 68.47 0.076 428160
8 8.882 67.51 0.072 440512

These results highlight the trade-offs between performance and computational demands across
different block configurations, illustrating the capacity of block diagonal orthogonal matrices to
optimize these aspects effectively.

Looking ahead, potential enhancements could involve: 1. Varying the dimensions of each block
within the block diagonal matrix (as opposed to maintaining uniform block sizes in this section’s
experiments) to further improve performance. 2. Incorporating permutation matrices, which have
low computational complexity, to combine with block diagonal orthogonal matrices, thus emulating
dense orthogonal matrices. This approach might involve arranging highly correlated dimensions or
parameters adjacently for enhanced efficacy.

F Compatibility with LoRA for Fine-Tuning Pruned Models

In this section, we explore the use of LoRA [21] to fine-tune pruned models. By freezing rotation
matrices during fine-tuning, we maintain consistent gradient flow, aligning with scenarios where
rotations are not applied, thus ensuring stability throughout the training process.

DenoiseRotator Configuration

• Steps: 100

• Learning Rate: 0.01

• Model: LLaMA-3-8B

• Pruning Method: Wanda, 2:4 semi-structured

Fine-tuning Configuration

• Method: LoRA

• Alpha: 32.0

• Dropout: 0.1

• LoRA-r: 8

• Dataset: 4096 samples of length 2048 from the WikiText2 train set

• Learning Rate: 2e-4

• Weight Decay: 1e-2

• Optimizer: Adam

• Learning Rate Scheduler: Linear

24

• Warm-up Steps: 400
• Note: Rotation matrices are kept frozen during fine-tuning

Table 10: Performance of Fine-Tuning with LoRA on Pruned Models
Method Perplexity Zero-Shot Accuracy
Dense 6.14 72.72
Wanda 25.19 51.03
+ DenoiseRotator 14.31 60.67
+ Finetune 9.32 61.08

These results illustrate that additional fine-tuning with LoRA further reduces perplexity and im-
proves accuracy. This suggests that fine-tuning post-denoising is an effective strategy for boosting
performance, while confirming that the rotation matrices introduced do not destabilize the training
process.

G Performance of pruned model

Table 11: Pruning LLaMA - 3.2 - 1B
Model Zero-shot accuracy (%) Perplexity

LLaMA - 3.2 - 1B ARC-c ARC-e Hellaswag Piqa Winogrande Average wikitext2 c4

0% Dense 36.77 60.52 63.65 74.43 60.3 59.14 9.748 14.034

50%

Magnitude 22.35 28.87 30.51 55.6 48.38 37.14 410.099 535.319
+DenoiseRotator 24.32 34.68 35.4 58.0 52.41 40.96 55.735 79.761
Wanda 26.02 47.77 44.1 64.64 54.85 47.48 23.881 35.242
+DenoiseRotator 29.78 49.62 54.28 70.67 56.35 52.14 13.98 20.213
SparseGPT 29.61 47.52 50.63 68.06 57.06 50.58 19.961 28.117
+DenoiseRotator 33.02 52.48 57.01 71.33 59.04 54.58 12.857 18.611

2:4

Magnitude 24.57 26.52 26.92 52.39 49.49 35.98 7417.287 6169.094
+DenoiseRotator 22.18 31.23 29.75 55.77 51.07 37.99 458.362 524.964
Wanda 22.53 36.32 31.53 57.62 50.36 39.67 90.658 131.275
+DenoiseRotator 25.34 46.25 42.72 65.45 52.33 46.42 25.896 36.962
SparseGPT 25.0 40.57 38.06 61.32 53.91 43.77 36.233 48.101
+DenoiseRotator 28.67 48.74 48.62 68.28 57.46 50.35 18.088 25.091

4:8

Magnitude 23.89 28.24 27.77 52.88 47.99 36.18 1257.331 1334.822
+DenoiseRotator 23.29 29.55 30.59 55.11 52.17 38.14 245.479 259.474
Wanda 22.87 39.77 35.59 62.35 49.41 42.0 48.225 69.767
+DenoiseRotator 29.01 50.34 48.68 68.39 55.09 50.3 18.199 26.491
SparseGPT 25.51 45.33 43.37 65.18 56.04 47.09 25.458 35.121
+DenoiseRotator 31.14 50.63 52.49 70.29 56.27 52.17 15.019 21.369

25

Table 12: Pruning LLaMA - 3 - 8B
Model Zero-shot accuracy (%) Perplexity

LLaMA - 3 - 8B ARC-c ARC-e Hellaswag Piqa Winogrande Average wikitext2 c4

0% Dense 52.73 77.78 79.19 80.96 72.93 72.72 6.138 9.443

50%

Magnitude 35.92 58.46 59.33 72.2 62.98 57.78 30.393 36.197
+DenoiseRotator 38.65 60.02 65.51 73.12 64.88 60.44 14.425 22.761
Wanda 44.88 67.97 68.8 76.71 70.48 65.77 9.864 15.243
+DenoiseRotator 48.12 72.73 74.82 78.89 71.82 69.28 7.816 12.251
SparseGPT 44.45 69.44 72.34 76.88 71.27 66.88 9.567 14.223
+DenoiseRotator 46.67 74.45 75.67 78.94 72.14 69.58 7.597 11.819

2:4

Magnitude 30.03 42.68 46.25 66.38 54.85 48.04 141.962 183.124
+DenoiseRotator 23.38 36.45 37.11 57.51 51.07 41.1 75.233 107.187
Wanda 30.38 50.63 47.78 67.9 58.48 51.03 25.189 37.082
+DenoiseRotator 41.64 70.16 66.38 74.1 68.82 64.22 11.411 17.657
SparseGPT 32.76 55.72 55.97 70.08 65.19 55.95 17.669 25.027
+DenoiseRotator 41.89 70.12 69.67 76.88 71.98 66.11 10.008 15.011

4:8

Magnitude 32.42 49.92 53.67 70.08 59.91 53.2 47.863 59.894
+DenoiseRotator 27.73 44.78 53.92 66.43 59.67 50.51 23.971 34.597
Wanda 36.69 59.13 59.28 71.76 66.14 58.6 14.453 21.78
+DenoiseRotator 44.97 72.69 71.09 76.66 71.19 67.32 9.274 14.569
SparseGPT 37.12 61.53 63.87 74.32 67.56 60.88 12.836 18.443
+DenoiseRotator 44.62 68.9 73.14 77.64 73.48 67.56 8.557 13.151

Table 13: Pruning LLaMA-3-70B
Model Zero-shot accuracy (%) Perplexity

LLaMA-3-70B ARC-c ARC-e Hellaswag Piqa Winogrande Average wikitext2 c4

0% Dense 64.25 85.9 84.87 84.55 80.66 80.05 2.857 7.167

50%

Magnitude 43.6 68.06 70.4 73.78 64.4 64.05 10.578 17.681
+DenoiseRotator 48.38 73.02 76.9 78.73 74.82 70.37 6.998 11.951
Wanda 58.87 81.48 80.97 82.64 77.19 76.23 5.798 9.861
+DenoiseRotator 60.58 84.39 83.24 83.62 80.03 78.37 4.727 8.561
SparseGPT 57.85 82.15 80.73 81.88 80.66 76.66 5.986 9.764
+DenoiseRotator 61.35 84.68 83.46 83.68 79.56 78.54 4.607 8.363

2:4

Magnitude 40.44 63.01 60.51 73.39 57.85 59.04 18.169 25.919
+DenoiseRotator 40.19 64.27 66.05 73.99 65.19 61.94 11.528 20.073
Wanda 48.89 75.46 74.01 80.36 71.74 70.09 9.388 14.679
+DenoiseRotator 56.57 81.9 80.12 81.56 78.53 75.74 6.597 10.907
SparseGPT 47.27 74.37 69.7 78.94 75.53 69.16 10.972 16.652
+DenoiseRotator 57.85 81.73 81.1 81.99 79.16 76.37 6.253 10.113

4:8

Magnitude 44.54 67.42 66.27 75.24 62.75 63.25 12.653 19.851
+DenoiseRotator 45.73 73.48 60.87 75.14 66.85 64.42 10.579 18.887
Wanda 52.9 79.71 78.55 81.94 74.43 73.51 7.158 11.746
+DenoiseRotator 59.13 82.91 82.04 82.26 78.37 76.94 5.714 9.709
SparseGPT 54.44 80.26 76.51 81.12 77.43 73.95 8.011 12.736
+DenoiseRotator 60.75 83.59 82.52 82.81 79.32 77.8 5.453 9.175

26

Table 14: Pruning Mistral-7B
Model Zero-shot accuracy (%) Perplexity

Mistral-7B ARC-c ARC-e Hellaswag Piqa Winogrande Average wikitext2 c4

0% Dense 56.14 76.89 83.68 80.63 73.72 74.21 5.947 9.741

50%

Magnitude 35.92 58.46 59.33 72.2 62.98 57.78 30.393 36.197
+DenoiseRotator 51.02 70.2 77.65 78.24 71.82 69.79 7.303 11.611
Wanda 51.88 75.63 78.36 79.76 70.4 71.21 6.916 10.914
+DenoiseRotator 54.69 76.09 80.52 79.6 72.38 72.66 6.516 10.385
SparseGPT 51.96 74.33 79.53 80.47 72.53 71.76 6.938 10.783
+DenoiseRotator 54.52 76.09 81.94 81.18 73.56 73.46 6.376 10.228

2:4

Magnitude 30.03 42.68 46.25 66.38 54.85 48.04 141.962 183.124
+DenoiseRotator 40.44 60.65 65.39 73.72 62.67 60.57 9.523 14.718
Wanda 43.6 66.16 65.79 75.73 65.11 63.28 10.176 15.572
+DenoiseRotator 49.06 73.61 75.65 79.38 70.32 69.61 7.796 12.005
SparseGPT 46.84 70.2 69.64 76.5 67.72 66.18 9.714 13.974
+DenoiseRotator 51.02 74.58 77.38 80.09 71.82 70.98 7.301 11.229

4:8

Magnitude 32.42 49.92 53.67 70.08 59.91 53.2 47.863 59.893
+DenoiseRotator 46.25 65.53 73.34 78.18 67.56 66.17 8.061 12.678
Wanda 49.15 72.56 72.85 77.75 69.93 68.45 8.108 12.551
+DenoiseRotator 52.9 74.54 78.77 78.84 72.06 71.42 7.056 11.019
SparseGPT 50.17 71.63 74.27 77.97 70.17 68.84 8.062 12.031
+DenoiseRotator 53.24 74.71 79.47 80.63 71.27 71.86 6.724 10.617

Table 15: Pruning Qwen-2.5-7B
Model Zero-shot accuracy (%) Perplexity

Qwen-2.5-7B ARC-c ARC-e Hellaswag Piqa Winogrande Average wikitext2 c4

0% Dense 51.37 77.61 78.92 80.14 72.85 72.18 6.846 11.881

50%

Magnitude 26.37 40.91 30.02 50.11 48.07 39.09 198.879 217.043
+DenoiseRotator 45.56 73.19 70.75 76.99 67.64 66.83 9.272 15.702
Wanda 44.62 71.97 71.61 77.8 70.4 67.28 8.614 14.248
+DenoiseRotator 52.47 79.38 74.7 78.84 71.35 71.35 7.932 13.277
SparseGPT 47.95 74.12 73.58 77.75 71.35 68.95 8.455 13.587
+DenoiseRotator 53.33 79.0 76.18 79.92 72.45 72.18 7.599 12.789

2:4

Magnitude 24.74 34.97 38.2 55.6 49.01 40.51 559.866 948.652
+DenoiseRotator 42.15 69.11 63.99 74.76 62.04 62.41 11.966 19.712
Wanda 41.55 69.65 59.19 71.87 63.93 61.24 15.008 23.414
+DenoiseRotator 48.38 74.75 68.21 77.2 70.72 67.85 10.133 16.472
SparseGPT 42.92 72.05 64.3 74.86 69.22 64.67 11.349 17.179
+DenoiseRotator 50.0 77.95 71.41 77.8 70.64 69.56 8.878 14.334

4:8

Magnitude 24.49 37.88 32.81 51.47 50.28 39.38 1188.284 1095.696
+DenoiseRotator 44.88 70.41 67.54 75.84 65.98 64.93 10.379 17.446
Wanda 45.73 73.27 67.02 75.68 69.85 66.31 10.472 16.973
+DenoiseRotator 51.19 78.54 71.53 77.31 70.48 69.81 8.832 14.612
SparseGPT 48.89 76.39 68.81 76.82 70.17 68.22 9.612 15.088
+DenoiseRotator 50.94 76.68 73.66 78.29 70.64 70.04 8.168 13.435

27

Table 16: Pruning Qwen-2.5-14B
Model Zero-shot accuracy (%) Perplexity

Qwen-2.5-14B ARC-c ARC-e Hellaswag Piqa Winogrande Average wikitext2 c4

0% Dense 58.96 79.34 82.95 82.1 75.69 75.81 5.294 10.349

50%

Magnitude 40.36 59.81 54.07 70.4 62.98 57.52 22.936 32.148
+DenoiseRotator 41.21 65.11 63.34 75.9 66.69 62.45 8.781 15.919
Wanda 55.12 82.45 76.24 79.98 73.01 73.36 7.313 12.429
+DenoiseRotator 57.42 82.91 79.56 80.96 75.06 75.18 6.719 11.634
SparseGPT 55.29 82.24 77.71 80.09 74.66 74.0 7.271 12.076
+DenoiseRotator 59.22 83.84 79.92 80.9 74.66 75.71 6.505 11.325

2:4

Magnitude 36.43 56.69 49.49 69.15 57.7 53.89 58.927 68.898
+DenoiseRotator 38.48 67.13 55.14 71.44 62.27 58.89 13.513 22.581
Wanda 41.38 70.12 66.15 75.19 70.48 64.66 11.658 18.569
+DenoiseRotator 48.63 76.56 73.83 78.02 74.11 70.23 8.705 14.419
SparseGPT 43.43 72.18 69.08 76.82 72.3 66.76 10.196 15.678
+DenoiseRotator 52.9 79.34 75.84 78.78 75.06 72.38 7.858 12.875

4:8

Magnitude 37.97 60.19 50.75 71.82 60.22 56.19 29.907 42.944
+DenoiseRotator 43.43 70.71 60.85 74.86 66.06 63.18 9.871 17.492
Wanda 49.91 78.58 72.18 77.53 72.14 70.07 8.829 14.446
+DenoiseRotator 55.03 82.74 77.41 79.76 74.35 73.86 7.533 12.703
SparseGPT 48.89 78.07 73.18 78.89 73.09 70.42 8.398 13.539
+DenoiseRotator 55.38 81.61 78.17 80.47 74.51 74.03 7.127 11.997

Table 17: Pruning Qwen-2.5-32B
Model Zero-shot accuracy (%) Perplexity

Qwen-2.5-32B ARC-c ARC-e Hellaswag Piqa Winogrande Average wikitext2 c4

0% Dense 55.72 78.03 84.12 82.05 75.69 75.12 5.018 10.169

50%

Magnitude 46.93 66.62 63.1 72.96 69.46 63.81 19.221 33.582
+DenoiseRotator 47.7 73.7 73.63 79.43 71.51 69.19 6.971 12.845
Wanda 54.44 77.36 80.63 81.45 75.22 73.82 6.297 11.359
+DenoiseRotator 58.62 83.38 82.34 82.15 75.45 76.39 5.993 10.998
SparseGPT 53.5 78.62 81.25 81.34 75.61 74.06 6.348 11.179
+DenoiseRotator 57.76 81.69 82.56 81.94 76.16 76.02 5.858 10.76

2:4

Magnitude 43.6 62.42 57.82 69.75 65.35 59.79 24.272 45.718
+DenoiseRotator 46.08 71.17 68.25 78.07 68.67 66.45 8.613 14.929
Wanda 48.89 76.64 75.52 79.65 74.74 71.09 8.077 13.819
+DenoiseRotator 53.41 80.51 78.02 79.6 75.3 73.37 7.901 13.632
SparseGPT 48.63 74.62 76.45 79.92 75.85 71.1 7.919 13.047
+DenoiseRotator 51.88 78.32 79.74 80.69 75.61 73.25 6.754 11.695

4:8

Magnitude 45.22 65.28 61.51 72.03 68.43 62.5 21.363 36.348
+DenoiseRotator 46.84 72.22 71.65 78.4 69.22 67.67 7.619 13.565
Wanda 53.92 79.42 78.25 80.2 75.69 73.5 7.073 12.314
+DenoiseRotator 57.0 81.06 80.37 81.56 77.03 75.4 6.619 11.696
SparseGPT 52.56 79.17 78.63 80.52 76.32 73.44 7.099 12.015
+DenoiseRotator 55.03 81.06 81.42 81.56 75.61 74.94 6.324 11.177

28

Table 18: Pruning Qwen-2.5-72B
Model Zero-shot accuracy (%) Perplexity

Qwen-2.5-72B ARC-c ARC-e Hellaswag Piqa Winogrande Average wikitext2 c4

0% Dense 62.46 83.42 86.01 83.73 77.82 78.69 3.875 9.26

50%

Magnitude 30.46 46.17 28.73 47.33 53.67 41.27 734.042 557.275
+DenoiseRotator 57.08 81.02 80.83 82.37 76.4 75.54 5.369 10.695
Wanda 60.92 84.68 83.5 82.43 78.69 78.04 5.218 10.229
+DenoiseRotator 61.86 83.46 84.42 83.19 78.69 78.32 4.937 9.956
SparseGPT 61.52 85.19 83.29 82.15 79.08 78.25 4.937 9.957
+DenoiseRotator 62.2 84.51 84.8 83.08 77.51 78.42 4.778 9.761

2:4

Magnitude 28.75 47.01 28.32 49.67 53.28 41.41 287.701 314.286
+DenoiseRotator 50.43 74.41 72.32 79.22 70.72 69.42 8.81 14.647
Wanda 56.66 81.02 79.01 81.61 76.4 74.94 6.692 11.883
+DenoiseRotator 60.75 84.81 81.96 82.1 78.69 77.66 6.164 11.258
SparseGPT 56.31 82.41 78.59 81.28 78.53 75.43 7.187 11.947
+DenoiseRotator 59.81 84.22 82.29 82.26 77.19 77.16 5.851 10.715

4:8

Magnitude 30.29 47.14 25.38 48.04 52.01 40.57 456.802 397.805
+DenoiseRotator 52.39 76.35 78.62 82.05 74.03 72.69 6.138 11.434
Wanda 60.92 85.4 81.45 82.48 77.43 77.53 5.939 10.938
+DenoiseRotator 59.64 83.5 83.45 83.08 78.14 77.56 5.511 10.538
SparseGPT 61.09 84.72 81.33 82.32 79.79 77.85 6.158 10.962
+DenoiseRotator 58.19 83.71 83.81 82.48 76.16 76.87 5.295 10.164

Table 19: Pruning Llama-2-7B
Model Zero-shot accuracy (%) Perplexity

Llama-2-7B ARC-c ARC-e Hellaswag Piqa Winogrande Average wikitext2 c4

0% Dense 46.25 74.54 75.98 79.11 69.14 69.0 5.472 7.263

50%

Wanda 42.83 68.69 70.65 76.88 66.85 65.18 6.9 9.231
+DenoiseRotator 42.83 69.95 71.83 77.2 68.11 65.98 6.519 8.817
SparseGPT 41.3 67.38 71.11 77.04 69.3 65.22 7.003 9.254
+DenoiseRotator 42.92 72.26 72.09 76.99 68.59 66.56 6.273 8.409

2:4

Wanda 31.57 57.11 55.13 71.22 62.59 55.52 12.265 15.856
+DenoiseRotator 34.47 62.84 61.79 74.43 65.67 59.83 9.876 12.99
SparseGPT 33.36 59.05 57.99 71.76 65.43 57.51 11.291 14.301
+DenoiseRotator 37.37 64.98 64.64 74.37 66.61 61.59 8.696 11.156

4:8

Wanda 37.71 63.51 64.32 74.59 67.01 61.42 8.613 11.418
+DenoiseRotator 38.23 65.28 66.92 75.41 66.61 62.48 7.645 10.286
SparseGPT 38.57 63.17 65.19 75.41 67.48 61.96 8.689 10.946
+DenoiseRotator 37.29 65.61 68.46 76.55 68.59 63.3 7.157 9.543

29

Table 20: Pruning Llama-2-13B
Model Zero-shot accuracy (%) Perplexity

Llama-2-13B ARC-c ARC-e Hellaswag Piqa Winogrande Average wikitext2 c4

0% Dense 49.15 77.48 79.37 80.52 72.14 71.73 4.883 6.727

50%

Wanda 46.5 70.66 76.07 79.38 71.43 68.8 5.965 8.297
+DenoiseRotator 47.53 73.48 75.52 78.56 71.82 69.38 5.779 7.957
SparseGPT 45.73 71.25 75.16 79.33 71.11 68.51 6.058 8.261
+DenoiseRotator 47.44 75.72 75.94 79.0 70.72 69.76 5.515 7.582

2:4

Wanda 37.54 64.35 62.54 75.52 67.4 61.47 9.036 12.564
+DenoiseRotator 38.14 63.34 64.92 73.07 68.19 61.53 8.772 12.46
SparseGPT 38.48 63.8 64.44 75.68 69.46 62.37 9.058 11.804
+DenoiseRotator 41.64 70.66 70.77 76.17 72.06 66.26 6.811 9.322

4:8

Wanda 43.17 68.35 70.88 77.31 69.3 65.8 6.96 9.72
+DenoiseRotator 43.0 71.68 70.9 76.77 71.27 66.72 6.999 10.041
SparseGPT 43.09 69.07 70.48 76.71 70.56 65.98 7.222 9.705
+DenoiseRotator 43.6 71.46 73.95 78.02 72.53 67.91 6.119 8.335

Table 21: Pruning Llama-2-70B
Model Zero-shot accuracy (%) Perplexity

Llama-2-70B ARC-c ARC-e Hellaswag Piqa Winogrande Average wikitext2 c4

0% Dense 57.34 80.98 83.84 82.7 77.98 76.56 3.319 5.709

50%

Wanda 55.63 78.91 81.28 82.59 77.74 75.23 4.218 6.5
+DenoiseRotator 55.55 80.22 82.01 82.48 77.51 75.55 3.894 6.174
SparseGPT 55.55 79.67 81.27 82.21 78.14 75.36 4.256 6.459
+DenoiseRotator 55.2 79.5 82.45 82.48 77.03 75.33 3.81 6.075

2:4

Wanda 50.85 77.44 75.96 79.76 75.37 71.87 5.468 8.118
+DenoiseRotator 52.9 78.03 79.82 80.74 77.66 73.83 4.845 7.231
SparseGPT 50.68 76.77 75.9 79.16 75.22 71.54 5.727 8.16
+DenoiseRotator 53.16 78.32 79.48 81.28 77.27 73.9 4.643 6.936

4:8

Wanda 53.24 79.0 78.77 81.18 75.93 73.62 4.764 7.156
+DenoiseRotator 54.18 79.0 80.97 81.72 76.87 74.54 4.333 6.62
SparseGPT 53.84 78.7 78.68 80.79 76.56 73.71 4.926 7.201
+DenoiseRotator 54.01 79.5 81.41 81.61 77.03 74.71 4.247 6.467

Table 22: Pruning Llama-1-7B
Model Zero-shot accuracy (%) Perplexity

Llama-1-7B ARC-c ARC-e Hellaswag Piqa Winogrande Average wikitext2 c4

0% Dense 44.62 72.94 76.22 79.16 69.93 68.57 5.677 7.343

50%

Wanda 40.61 64.65 69.96 77.42 66.46 63.81 7.243 9.324
+DenoiseRotator 41.47 69.23 71.74 78.35 68.59 65.87 6.553 8.599
SparseGPT 39.85 65.28 69.47 77.48 69.22 64.25 7.247 9.347
+DenoiseRotator 41.3 69.23 72.02 77.26 70.17 65.99 6.379 8.317

2:4

Wanda 31.31 55.01 56.63 70.73 62.12 55.15 11.613 14.668
+DenoiseRotator 34.3 60.98 62.78 75.35 68.67 60.41 9.214 11.899
SparseGPT 32.51 56.78 57.7 72.2 65.11 56.85 11.341 13.847
+DenoiseRotator 35.41 60.56 65.54 74.48 67.09 60.61 8.233 10.489

4:8

Wanda 34.39 59.68 63.55 74.21 64.33 59.23 8.595 11.268
+DenoiseRotator 37.12 63.68 67.45 74.65 68.82 62.34 7.506 9.868
SparseGPT 35.32 59.85 64.26 74.37 65.51 59.86 8.67 10.914
+DenoiseRotator 39.25 65.28 68.78 76.66 68.67 63.72 7.136 9.254

30

Table 23: Pruning Llama-1-13B
Model Zero-shot accuracy (%) Perplexity

Llama-1-13B ARC-c ARC-e Hellaswag Piqa Winogrande Average wikitext2 c4

0% Dense 47.61 74.75 79.04 80.2 72.69 70.85 5.09 6.798

50%

Wanda 43.86 70.33 74.75 78.67 71.43 67.8 6.134 8.134
+DenoiseRotator 45.73 72.43 76.18 78.89 71.59 68.96 5.663 7.595
SparseGPT 40.61 66.2 74.25 78.35 72.06 66.29 6.229 8.145
+DenoiseRotator 46.16 71.46 76.62 79.16 73.32 69.34 5.665 7.458

2:4

Wanda 36.43 60.61 63.66 73.88 68.43 60.6 9.58 12.125
+DenoiseRotator 39.76 66.33 67.86 76.12 69.61 63.93 7.631 12.271
SparseGPT 36.09 60.82 65.6 75.19 69.22 61.38 9.084 11.385
+DenoiseRotator 42.32 69.44 71.16 76.71 71.19 66.16 6.902 8.993

4:8

Wanda 40.78 66.37 69.75 77.04 71.35 65.05 7.384 9.538
+DenoiseRotator 42.41 70.66 72.98 77.8 70.96 66.96 6.383 8.538
SparseGPT 41.21 67.68 69.75 76.61 71.43 65.33 7.513 9.458
+DenoiseRotator 43.6 70.83 73.99 78.67 73.16 68.05 6.221 8.146

Table 24: Pruning Llama-1-30B
Model Zero-shot accuracy (%) Perplexity

Llama-1-30B ARC-c ARC-e Hellaswag Piqa Winogrande Average wikitext2 c4

0% Dense 52.99 78.91 82.65 82.21 75.77 74.5 4.1 6.129

50%

Wanda 51.79 77.78 79.97 79.87 73.09 72.49 5.242 7.274
+DenoiseRotator 49.83 77.36 79.82 80.03 75.06 72.42 4.815 6.823
SparseGPT 50.85 76.77 79.27 80.47 74.43 72.35 5.35 7.351
+DenoiseRotator 49.57 75.67 80.34 81.12 73.88 72.11 4.7 6.683

2:4

Wanda 45.31 71.17 73.32 78.56 71.35 67.94 6.929 9.505
+DenoiseRotator 44.54 72.73 75.17 78.24 75.53 69.24 6.17 8.442
SparseGPT 43.94 72.1 72.61 78.24 71.9 67.75 7.244 9.542
+DenoiseRotator 45.31 74.07 76.21 79.11 73.72 69.68 5.822 7.888

4:8

Wanda 49.06 75.38 76.58 79.38 72.93 70.66 5.967 8.162
+DenoiseRotator 49.23 73.74 77.83 79.38 75.06 71.04 5.467 7.482
SparseGPT 48.12 75.17 75.52 79.71 73.72 70.44 6.239 8.26
+DenoiseRotator 48.89 76.43 78.26 80.58 75.85 72.0 5.267 7.216

Table 25: Pruning Llama-1-65B
Model Zero-shot accuracy (%) Perplexity

Llama-1-65B ARC-c ARC-e Hellaswag Piqa Winogrande Average wikitext2 c4

0% Dense 55.63 79.76 84.13 82.26 77.35 75.82 3.532 5.811

50%

Wanda 53.58 77.78 81.98 81.94 76.8 74.41 4.616 6.694
+DenoiseRotator 53.84 78.03 81.4 81.39 76.01 74.13 4.223 6.347
SparseGPT 54.18 76.56 81.89 81.72 77.19 74.3 4.601 6.661
+DenoiseRotator 54.78 79.76 82.43 81.83 77.11 75.18 4.094 6.229

2:4

Wanda 46.84 75.17 76.04 79.16 75.3 70.5 6.234 8.829
+DenoiseRotator 47.01 74.12 77.4 78.73 74.98 70.44 5.584 7.776
SparseGPT 48.81 75.63 76.11 79.49 76.95 71.39 6.263 8.427
+DenoiseRotator 51.96 76.64 79.48 79.76 77.82 73.13 5.061 7.222

4:8

Wanda 51.11 77.4 79.04 81.23 76.56 73.06 5.297 7.506
+DenoiseRotator 51.45 78.03 80.45 79.92 75.93 73.15 4.741 6.871
SparseGPT 51.19 76.22 79.04 80.47 77.66 72.91 5.308 7.404
+DenoiseRotator 52.99 77.78 80.58 81.23 77.03 73.92 4.558 6.689

31

	Introduction
	Background
	Method
	Enhance pruning robustness via parameter importance concentration
	Reducing information entropy of normalized importance score
	DenoiseRotator
	Integration of orthogonal matrices
	Invariance of total importance
	Optimization of the orthogonal matrix

	Experiment
	Main result
	Effectiveness of Entropy Reduction on Pruning Robustness
	Inference speedup and overhead analysis

	Conclusion
	Limitations
	Acknowledgements
	Details of Orthogonal Transformations and Importance Score Formulations
	Proof of invariance of total importance
	QR decomposition reparameterization
	Hyperparameter Sensitivity Analysis
	Trade-off with Block Diagonal Orthogonal Matrices
	Compatibility with LoRA for Fine-Tuning Pruned Models
	Performance of pruned model

