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ABSTRACT

This paper proposes a variant of multiple-play stochastic bandits tailored to resource
allocation problems arising from LLM applications, edge intelligence applications,
etc. The proposed model is composed of M arms and K plays. Each arm has
a stochastic number of capacities, and each unit of capacity is associated with a
reward function. Each play is associated with a priority weight. When multiple
plays compete for the arm capacity, the arm capacity is allocated in a larger priority
weight first manner. Instance independent and instance dependent regret lower
bounds of Ω(α1σ

√
KMT ) and Ω(α1σ

2MK
∆ lnT ) are proved, where α1 is the

largest priority weight and σ characterizes the reward tail. When model parame-
ters are given, we design an algorithm named MSB-PRS-OffOpt to locate the
optimal play allocation policy with a computational complexity of O(M3K3).
Utilizing MSB-PRS-OffOpt as a subroutine, an approximate upper confidence
bound (UCB) based algorithm is designed, which has instance independent and
instance dependent regret upper bounds matching the corresponding lower bound
up to factors of K

√
lnKT and α1K respectively. To this end, we address non-

trivial technical challenges arising from optimizing and learning under a special
nonlinear combinatorial utility function induced by the prioritized resource sharing
mechanism.

1 INTRODUCTION

The Multi-play multi-armed bandit (MP-MAB) is a classical sequential learning framework Anan-
tharam et al. (1987a). The canonical MP-MAB model consists of one decision maker who pulls
multiple arms per decision round. Each pulled arm generates a reward, which is drawn from an
unknown probability distribution. The objective is to maximize the cumulative reward facing the
exploration vs. exploitation dilemma. MP-MAB frameworks are applied to various applications such
as online advertising Lagrée et al. (2016); Komiyama et al. (2017); Yuan et al. (2023), power system
Lesage-Landry & Taylor (2017), mobile edge computing Chen & Xie (2022); Wang et al. (2022a);
Xu et al. (2023), etc. Recently, various variants of MP-MAB were studied, which tap potentials of
MP-MAB framework for resource allocation problems and advance the bandit learning literature
Chen & Xie (2022); Moulos (2020); Xu et al. (2023); Wang et al. (2022a); Yuan et al. (2023).

This paper extends MP-MAB to capture the prioritized resourcing sharing mechanism, contributing
a fine-grained resource allocation model. We aim to reveal fundamental insights on the interplay
of this mechanism and learning. Prioritized resourcing sharing mechanisms are implemented in a
large class of resource allocation problems arising from mobile edge computing Chen et al. (2021);
Gao et al. (2022); Ouyang et al. (2019; 2023), ride sharing Chen & Xie (2022), etc., and have the
potential to enable differentiated services in LLM applications. For example, in LLM applications,
reasoning tasks and LLM instances can be modeled as plays and arms respectively. Multiple LLM
reasoning tasks (plays) share an instance of LLM (an arm) according to their priority quantified by
price, membership hierarchy, etc. In mobile edge computing systems, the infrastructure of edge
intelligence, tasks and edge servers can be modeled as plays and arms respectively. When multiple
tasks (or plays) are offloaded to the same edge server (or arm), the available computing resource is
shared among them according to the differentiated pricing mechanism (an instance of prioritized
resourcing sharing mechanism).
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Formally, we proposed MSB-PRS (Multiple-play Stochastic Bandits with Prioritized Resource
Sharing). The MSB-PRS is composed of K ∈ N+ plays and M ∈ N+ arms. Each play has a
priority weight and movement costs. Each arm has a stochastic number of units of capacities. Plays
share the capacity in a high priority weight first manner. A play receives a reward scaled by its
weight only when it occupies one unit of capacity. The objective is to maximize the cumulative
utility (rewards minus costs) in T ∈ N+ rounds. Some recent works tailored MP-MAB to the
same or similar applications Chen & Xie (2022); Xu et al. (2023); Wang et al. (2022a;b); Yuan
et al. (2023). The key difference to this line of research is on the stochastic capacity with bandit
feedback and prioritized capacity sharing. This difference poses new challenges. One challenge
lies in locating the optimal play allocation policy. The movement cost and the prioritized capacity
sharing impose a nonlinear combinatorial structure on the utility function, which hinders locating the
optimal allocation. In contrast to previous works Xu et al. (2023); Wang et al. (2022a;b), top arms
do not warrant optimal allocation. This nonlinear combinatorial structure also makes it difficult to
distinguish optimal allocation from sub-optimal allocation from feedback. As a result, it is nontrivial
to balance the exploring vs. exploitation tradeoff. We address these challenges.

1.1 CONTRIBUTIONS

Model and fundamental learning limits. We formulate MSB-PRS, which captures the prioritized re-
sourcing sharing nature of resource allocation problems. We prove instance independent and instance
dependent regret lower bounds of Ω(α1σ

√
KMT ) and Ω(α1σ

2M
∆ lnT ) respectively. Technically,

we tackle the aforementioned nonlinear combinatorial structure challenge by identifying one special
instances of the MSB-PRS that are composed of carefully designed multiple independent groups of
classical multi-armed bandits and batched MP-MAB.

Efficient learning algorithms. (1) Computational efficiency. Given model parameters, to tackle
the computational challenge of locating the optimal play allocation policy, we characterize the afore-
mentioned nonlinear combinatorial structure by constructing a priority ranking aware bipartite graph.
A connection between the utility of arm allocation policies and the saturated, monotone and priority
compatible matchings is established. This connection enables us to design MSB-PRS-OffOpt,
which locates the optimal play allocation policy with a complexity O(M3K3) from a search space
with size KM . (2) Sample efficiency. Utilizing MSB-PRS-OffOpt as a subroutine, we design
an approximate UCB based algorithm, which reduces the per-round computational complexity of
the exact UCB based algorithm from KM to O(K3M3). We prove sublinear instance independent
and instance dependent regret upper bounds matching the corresponding lower bounds up to factors
of K

√
lnKT and α1K

2 respectively. The key proof idea is exploiting the monotone property of
the utility function to: (1) prove the validity of the approximate UCB index; (2) show suboptimal
allocations make progress in improving the estimation accuracy of poorly estimated parameters,
which gear the learning algorithm toward identifying more favorable play allocation policies.

2 RELATED WORK

Anantharam et al. Anantharam et al. (1987a) proposed the canonical MP-MAB model, where they
established an asymptotic lower bound on the regret and designed an algorithm achieving the lower
bound asymptotically. Komiyama et al. Komiyama et al. (2015) showed that Thompson sampling
achieves the regret lower bound in the finite time sense. Anantharam et al. Anantharam et al. (1987b)
extended the canonical MP-MAB model from IID rewards to Markovian rewards. This Markovian
MP-MAB model was further extended to the rested bandit setting Moulos (2020). MP-MAB with
a reward function depending on the order of plays was studied in Lagrée et al. (2016); Komiyama
et al. (2017). This reward function was motivated by clicking the model of web applications. They
established lower bounds on the regret and designed a UCB based algorithm to balance the exploration
vs. exploitation tradeoff. MP-MAB with switching cost is studied in Agrawal et al. (1990); Jun
(2004). They proved the lower bound on the regret and designed algorithms that achieve the lower
bound asymptotically. MP-MAB with budget constraint is considered in Luedtke et al. (2019); Xia
et al. (2016); Zhou & Tomlin (2018) and a stochastic number of plays in each round is considered in
Lesage-Landry & Taylor (2017), which is motivated by power system. Recently, Yuan et al. Yuan
et al. (2023) extended the canonical MP-MAB classical to the sleeping bandit setting, for the purpose
of being tailored to the recommender systems.
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Our work is closely related to Chen & Xie (2022); Wang et al. (2022a); Xu et al. (2023). Chen et al.
Chen & Xie (2022) tailored the canonical MP-MAB model for the user-centric selection problems.
Their model considered homogeneous plays and expert feedback on capacity. They designed a
Quasi-UCB algorithm for this problem with sublinear regret upper bounds. Our work generalizes
their model to capture heterogeneous plays, prioritized resourcing sharing, and bandit feedback on
the capacity. This extension not only be more friendly to real-world applications, but also incurs
new challenges for locating the optimal allocation and design learning algorithms. We design a UCB
based algorithm and prove both regret upper bounds and lower bounds. Wang et al. Wang et al.
(2022a) proposed a model that also allowed multiple plays to share capacity on an arm. Their model
considers a deterministic capacity provision. The capacity is unobservable and coupled with the
reward. They proved regret lower bound on regret and designed an action elimination based algorithm
whose regret matches the regret lower bound to a certain level. Xu et al. Xu et al. (2023) extended
this model to the setting with strategic agents and competing for the capacity. They analyzed the Nash
equilibrium in the offline setting and proposed a Selfish MP-MAB with an Averaging Allocation
approach based on the equilibrium.

Various works share some connections to the MP-MAB research line. Combinatorial bandits Cesa-
Bianchi & Lugosi (2012); Chen et al. (2013); Combes et al. (2015b) generalize the reward function
of the canonical MP-MAB from linear to non-linear. Various variants of combinatorial bandits were
studied: (1) combinatorial bandits with semi-bandit feedback Chen et al. (2013; 2016); Gai et al.
(2012); Combes et al. (2015b), i.e., the reward of each pulled arm is revealed; (2) combinatorial bandits
with bandit feedback: Cesa-Bianchi & Lugosi (2012); Combes et al. (2015b), i.e., only one reward
associated with the pulled arm set is revealed; (3) combinatorial bandits with different combinatorial
structures, i.e., matroid Kveton et al. (2014), m-set Anantharam et al. (1987a), permutation Gai
et al. (2012), etc. Cascading bandit Combes et al. (2015a); Kveton et al. (2015b); Wen et al. (2017)
extends the reward function of the canonical MP-MAB from linear to a factorization form over the
set of selected arms. Decentralized MP-MAB (a.k.a. multi-player MAB) Agarwal et al. (2022);
Anandkumar et al. (2011); Rosenski et al. (2016); Bistritz & Leshem (2018); Wang et al. (2020))
considers the setting that players either cannot communicate with others or their communication is
restrictive.

3 MSB-PRS MODEL

3.1 MODEL SETTING

For any integer N , the notation [N ] denotes a set [N ] ≜ {1, . . . , N}. The MSB-PRS consists of one
decision maker, M ∈ N+ arms, K ∈ N+ plays and a finite number of T ∈ N+ decision rounds. In
each decision round t ∈ [T ], the decision maker needs to assign all K plays to arms. Each play can
be assigned to one arm, and multiple plays can be allocated to the same arm. The objective is to
maximize the total utility, whose formal definition is deferred after the arm model and reward model
are made clear.

Arm model. The arm m ∈ [M ] is characterized by a pair of random variables (Dm, Rm), where
Dm characterizes the stochastic availability of capacity and Rm characterizes the per unit capacity
rewards. The support of Dm is a subset of [dmax], where dmax ∈ N+ denotes the maximum possible
units of capacity on an arm. Let D(t)

m denote the number of units of capacity available on arm
m in round t. The D

(t)
m is drawn from Dm, i.e., D(t)

m ∼ Dm, and each D
(t)
m drawn from Dm is

independent across t and m. The i-th unit of capacity on arm m is associated with a reward denoted
by R

(t)
m,i, where i ∈ [D

(t)
m ]. The R

(t)
m,i is drawn from Rm, i.e., R(t)

m,i ∼ Rm whose support is a subset

of R, and each R
(t)
m,i drawn from Rm is independent across t,m and i. Denote the mean of Rm as

µm ≜ E[Rm]. Without loss of generality, we assume µm > 0,∀m ∈ [M ]. We assume that Rm is
σ-subgaussian, where σ ∈ R+. Let µ ≜ [µm : ∀m ∈ [M ]] denote the reward mean vector. Let
Pm ≜ [Pm,d : ∀d ∈ [dmax]] denote the complementary cumulative probability vector of Dm, where

Pm,d = P[D(t)
m ≥ d],∀d ∈ [dmax],m ∈ [M ].

For presentation convenience, denote the complementary cumulative probability matrix as:

P ≜ [Pm,d : ∀d ∈ [dmax],m ∈ [M ]].

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

The µ and P are unknown to the decision maker. Arms can model instances of LLM, edge servers,
etc (refer to Section 1).

Play and priority model. The play k ∈ [K] is characterized by (ck, αk), where ck ∈ (R+ ∪
{+∞})M and αk ∈ R+. The ck denotes the movement cost vector associated with play k and denote
its entries as ck ≜ [ck,m : ∀m ∈ [M ]], where ck,m ∈ R+ ∪ {+∞} denotes the movement cost of
assigning play k to arm m. The case ck,m = +∞ models the constraint that arm m is unavailable
to play k. The weight αk quantifies the priority of play k. Larger weight implies higher priority.
Without loss of generality, we assume

α1 ≥ α2 ≥ · · · ≥ αK > 0.

The αk’s capture differentiated service of mobile edge computing, or the superiority of cars in ride
sharing systems. Both ck and αk are known to the decision maker. Plays can model reasoning tasks,
computing tasks, etc (refer to Section 1).

Prioritized capacity sharing model. Let a(t)k ∈ [M ] denote the arm pulled by play k ∈ [K] in round
t. Denote the play allocation or action profile in round t as a(t) ≜ [a

(t)
k : ∀k ∈ [K]]. Denote the

number of plays assigned to arm m in round t:

N (t)
m ≜

∑
k∈[K]

1{a(t)
k =m}

Plays are prioritized according to their weights. Specifically, in round t, the N
(t)
m plays assigned to

arm m are ranked according to their weights, i.e., αk’s, in descending order, where ties are broke
arbitrarily, and they share the capacity according to this order. Consider a play assigned to arm m,
i.e., a(t)k = m, denote its rank on arm m as ℓ(t)k ∈ [K]. In round t, only top-min{N (t)

m , D
(t)
m } plays

assigned to arm m are allocated capacities, in a fashion that one unit of capacity per play. Namely,
when the capacity is abundant, i.e., D(t)

m ≥N (t)
m , the D

(t)
m −N (t)

m units of capacity are left unassigned;
and when the capacity is scarce, i.e., D(t)

m <N
(t)
m , the N

(t)
m −D(t)

m plays do not get capacity.

Rewards and feedback. Once play k gets a unit of capacity, a reward scaled by the weight is
generated:

X
(t)
k ≜

αkR
(t)

m,ℓ
(t)
k

, if ℓ(t)k ≤ D
(t)

a
(t)
k

,

null, otherwise.
where null models that play k does not receive any reward when it does not occupy any capacity. The
decision maker observes the rewards received by each arm. Let X(t) ≜ [X

(t)
k : ∀k ∈ [K]] denote the

reward vector observed in round t. In round t, the number of capacity D
(t)
m is revealed to the decision

maker if and only if at least one play is assigned to arm m in this round, i.e., N (t)
m > 0. Denote the

capacity feedback vector D(t)≜[D
(t)
m : m ∈ {m′|N (t)

m′>0}]. The decision maker observes X(t) and
D(t) in round t.

3.2 PROBLEM FORMULATION

Denote the expected total reward generated from arm m in round t as Rm(a(t);µm,Pm), formally:

Rm(a(t);µm,Pm) ≜ E

 ∑
k∈[K]

1{a(t)
k =m}X

(t)
k

 = µm

∑
k∈[K]

1{a(t)
k =m}αkPm,ℓ

(t)
k

.

Let Um(a(t);µm,Pm) denote the expected utility earned from arm m in round t. It is defined as the
expected reward minus the movement cost, formally:

Um(a(t);µm,Pm) ≜ Rm(a(t);µm,Pm)−
∑

k∈[K]

ck,m1{a(t)
k =m}.

Let U(a(t);µ,P ) denote the aggregate utility from all plays given action profile at, formally:

U(a(t);µ,P ) ≜
∑

m∈[M ]

Um(a(t);µm,Pm). (1)

4
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The objective is to maximize the total utility in T rounds, i.e., maximize
∑T

t=1 U(a(t);µ,P ). Since
the system is stationary in t, the optimal action profile across different time slots can be expressed as:

a∗ ∈ argmax
a∈A

U(a;µ,P ). (2)

where A ≜ [M ]K . Note that a∗ is unknown to the decision maker because the parameters µ and P
are unknown. We define the regret as:

RegT ≜ E

[
T∑

t=1

(
U(a∗;µ,P )− U(a(t);µ,P )

)]
.

Remark 3.1. The utility function U(a(t);µ,P ) has a nonlinear combinatorial structure with respect
to µ,P and it has a cost term. As a consequence, arms with large per unit rewards are not necessarily
favorable. There are in total |A| = MK action profiles. Thus, locating a∗ is nontrivial. Distinguishing
optimal action profile from sub-optimal allocation from feedback is not easy. It is nontrivial to tackle
this nonlinear combinatorial structure to reveal fundamental learning limits and balance the exploring
vs. exploitation tradeoff.

4 FUNDAMENTAL LEARNING LIMITS

We reveal fundamental limits of learning the optimal action profile by proving instance independent
and instance dependent regret lower bounds.
Theorem 4.1. For any learning algorithm, there exists an instance of MSB-PRS such that

RegT ≥
1

27
α1σ
√
MKT.

Furthermore, RegT ≥ Ω(α1σ
√
KMT ).

The key proof idea is identifying one special instances of the MSB-PRS that are composed of carefully
designed multiple independent groups classical multi-armed bandits and batched MP-MAB. For each
group, we apply Theorem 15.2 of Lattimore & Szepesvári (2020) to bound its regret lower bound.
Finally, summing them up across groups we obtain the instance independent regret lower bound.
Theorem 4.2. Consider ∆ ∈ R+ utility gap MSB-PRS, i.e., the class of MSB-PRS satisfy

U(a∗;µ,P )− max
a:U(a;µ,P )̸=U(a∗;µ,P )

U(a;µ,P ) = ∆.

For any consistent play allocation algorithm, there exists ∆ utility gap instances of MSB-PRS, such
that the regret of any consistent learning algorithm on them satisfies

lim inf
T→∞

RegT

lnT
≥ α1σ

2M

∆

(
lnK

lnT
+ 1

)
.

The idea of restricting to ∆ utility gap MSB-PRS in proving the instance dependent regret lower
bound follows the work Kveton et al. (2015a), which proves the instance dependent regret lower
bound of stochastic combinatorial semi-bandits restricting to gap instances, instead of the basic model
parameters. The proof routine is similar to that of the Theorem 4.1. The constructed special instances
of the MSB-PRS are nearly the same as that of Theorem 4.1, except that for each group of bandits,
we carefully design their mean gap, such that the total gap equals ∆. We apply Theorem 16.2 of
Lattimore & Szepesvári (2020) to bound the asymptotic lower bound. Finally, summing them up
across groups we obtain the instance dependent regret lower bound.

5 Efficient Learning Algorithms

5.1 Efficient Computation Oracle

Given model parameters, we design MSB-PRS-OffOpt to locate the optimal action profile, which
will serve as an efficient computation oracle for learning the optimal action profile.

5
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Bipartite graph formulation. We formulate a complete weighted bipartite graph with node set
U ∪ V and edge set U × V , where U ∩ V = ∅ and

U ≜ {u1, . . . , uK}, V ≜
⋃

m∈[M ]

Vm, Vm ≜ {vm,1, . . . , vm,K}.

The node uk ∈ U corresponds to play k ∈ [K]. The node set Vm corresponds to arm m ∈ [M ]. Nodes
vm,j ∈ Vm, where j ∈ [K], are designed to capture the prioritized resource sharing mechanism.

Denote Λm(k, ℓ) as the marginal utility contribution of play k on an arm when it is ranked ℓ-th among
all plays pulling this arm, formally

Λm(k, ℓ) ≜ αkµmPm,ℓ − ck,m.

The Um(a;µm,Pm) can be decomposed as:

Um(a;µm,Pm) =
∑

k∈[K]

1{ak=m}Λm(k, ℓk(a)),

where ℓk(a) denote the rank of play on the arm ak according to the prioritized capacity sharing
mechanism. Denote θk as the number of plays proceeding play k with respect to their priority weights

θk ≜ |{k′|αk′ ≥ αk}|.

The prioritized capacity sharing mechanism implies an upper bound on the rank of k, i.e., ℓk(a) ≤ θk.
Namely, on each arm, play k would be ranked at most θk-th regardless of the number of plays assigned
to this arm.

Denote a weight function over the edge set as: W : U × V → R. The weight of the edge (uk, vm,j)
is defined as:

W (uk, vm,j) =

{
Λm(k, j), if j ≤ θk,

−∞, otherwise.

The weight W (uk, vm,j) quantifies the marginal utility contribution of play k for pulling arm m,
when it is ranked j-th. As imposed by the prioritized capacity sharing mechanism, the rank of play k
can not exceed θk. We thus set the utility associated with such invalid rank as −∞ to disable these
edges. Denote the weighted bipartite graph as G = (U ∪ V,U × V,W ).

From action profiles to matchings. LetM ⊆ U × V denote a matching in graph G, which is a
set of pairwise non-adjacent edges, i.e., |{u|(u, v) ∈M}| = |{v|(u, v) ∈M}| = |M|. Denote the
index of the arm that is linked to node vm,j underM as

ϕm,j(M) ≜

{
k, if (uk, vm,j) ∈M,

0, otherwise,

where index 0 is defined as a dummy play and we define its weight is as α0 = 0. Denote an indicator
function associated withM as:

bm,j(M) ≜

{
1, if ∃k, (uk, vm,j) ∈M,

0, otherwise.

We next define a class of matchings that can be connected to the action profiles.

Definition 5.1. A matching M is: (1) U-saturated if {u|(u, v) ∈ M} = U ; (2) V-monotone if
bm,j(M) ≥ bm,j′(M),∀j < j′; (3) priority compatible if αϕm,j(M) ≥ αϕm,j′ (M),∀j < j′.

The U -saturated property states that each play node is an endpoint of one edge ofM. The V-monotone
property states that end points ofM on the Vm side forms an increasing set, i.e., it can be expressed
as {vm,1, . . . , vm,J}, where J = |{v|(u, v) ∈M} ∩ Vm|.
Lemma 5.2. Action profile a∈A can be mapped into a U-saturated, V-monotone, and priority
compatible matching M̃(a) =

{
(uk, vak,ℓk(a))|k ∈ [K]

}
. Furthermore, it holds that U(a;µ,P ) =∑

(u,v)∈M̃(a)
W (u, v), and M̃(a) ̸= M̃(a′) for any a ̸= a′.

6
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Lemma 5.2 states that each action profile can be mapped into a U -saturated , V-monotone and priority
compatible matching with utility equals the weights of the matching.

From matchings to action profiles. In the following lemma, we show that a U-saturated, V-
monotone, and priority compatible matching can be mapped into an action profile with weights of the
matching equals the utility.
Lemma 5.3. A U -saturated, V-monotone, and priority compatible matchingM can be mapped into
action profile ã(M) ≜ (ãk(M) : ∀k ∈ [K]), where

ãk(M) =
∑

m∈[M ]

m
∑
j∈[K]

1{ϕm,j(M)=k}.

Furthermore, U(ã(M),µ,P ) =
∑

(u,v)∈M W (u, v).

Locating the optimal action profile. Lemma 5.2 and 5.3 imply that locating the optimal action
profile is equivalent to searching the U-saturated, V-monotone, and priority compatible matching
with the maximum total weights. However, a maximum weighted matching may not be U-saturated,
V-monotone and priority compatible. This hinders one to apply the maximum weighted matching
algorithm. For any U -saturated matchingM, if it is not V-monotone or priority compatible, it can be
adjusted to be a V-monotone and priority compatible matchingM′:

M′ ≜
⋃

m∈[M ]

|Km|⋃
j=1

{(uLm,j
, vm,j)} (3)

where Km = {j|ϕm,j(M) ̸= 0} denotes a set of plays linked to arm m byM, Lm,1, . . . , Lm,|Km|
is a ranked list of Km such that Lm,j < Lm,j′ ,∀j < j′. Furthermore, it can be easily verified that∑

(u,v)∈M W (u, v) ≤
∑

(u,v)∈M′ W (u, v). The implication is that one can first locate the maximum
weighted matching (the maximum weighted matching is U-saturated). If it does not have all three
desired properties, one can apply the above strategy to adjust it to have all three desired properties.
Locating the maximum weight matching is a well studied problem. The Hungarian algorithm and its
variants such as Crouse et al. Crouse (2016) provide computationally efficient algorithms for this
problem. Algorithm 1 combines the above elements to locate the optimal action profile. The essential
computational complexity is the maximum weighted matching. The computational complexity of
Algorithm 1 is O(M3K3), if Crouse et al. Crouse (2016) is applied.

Algorithm 1 MSB-PRS-OffOpt (µ,P )

1: G← (U ∪ V,U × V,W )
2: M← MaximumWeightedMatching(G)
3: IfM does not have three desired properties, adjust it according to Eq. (3)
4: ãk(M)←

∑
m∈[M ] m

∑
j∈[K] 1{ϕm,j(M)=k}

5: Return: ã(M) = [ãk(M) : k ∈ [K]]

5.2 EFFICIENT LEARNING ALGORITHM

Approximate UCB based algorithm. Note that in time slot t+ 1, the decision maker has access
to the historical feedback up to time slot t, formallyHt ≜ (D(1),X(1),a(1), . . . ,D(t),X(t),a(t)).

Denote the complementary cumulative probability matrix estimated fromHt as P̂ (t) ≜ [P̂
(t)
m,d : m ∈

[M ], d ∈ [dmax]], where the P̂
(t)
m,d is the empirical average:

P̂
(t)
m,d ≜

∑t
s=1 1{N(s)

m ≥1}1{D(s)
m ≥d}∑t

s=1 1{N(s)
m ≥1}

. (4)

Denote the mean vector estimated from Ht as µ̂(t) = [µ̂
(t)
m : m ∈ [M ]], where the µ̂

(t)
m is the

empirical average:

µ̂(t)
m ≜

∑t
s=1

∑K
k=1 1{X(s)

k ̸=null}1{a(s)
k =m}X

(s)
k /αk∑t

s=1

∑K
k=1 1{X(s)

k ̸=null}1{a(s)
k =m}

. (5)
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The following lemma states a confidence band for the above estimators.

Lemma 5.4. The estimators P̂ (t)
m,d and µ̂

(t)
m satisfy:

P
[
∃t,m, |µm − µ̂(t)

m | ≥ ϵ(t)m

]
≤ 2Mδ, P

[
∃t,m, d, |P̂ (t)

m,d − Pm,d|≥λ(t)
m

]
≤ 2Mdmaxδ,

where δ ∈ (0, 1), ϵ(t)m and λ
(t)
m are derived as

ϵ(t)m =


√√√√

2σ2(ñ
(t)
m + 1) ln

√
ñ
(t)
m + 1

δ

1

ñ
(t)
m

, if ñ(t)
m ≥ 1,

+∞, if ñ(t)
m = 0,

λ(t)
m =


√√√√n

(t)
m + 1

2
ln

√
n
(t)
m + 1

δ

1

n
(t)
m

∧ 1, if n(t)
m ≥ 1,

1, if n(t)
m = 0,

where the operation ∧ means selecting the smaller value between two,
ñ
(t)
m =

∑t
s=1

∑K
k=1 1{X(s)

k ̸=null}1{a(s)
k =m} and n

(t)
m =

∑t
s=1 1{N(t)

m ≥1}.

For simplicity, we denote ϵ(t) = [ϵ
(t)
m : m ∈ [M ]] and λ(t) = [λ

(t)
m : m ∈ [M ]]. Based on the above

lemma, the exact UCB index of action profile a can be expressed as:

Exact-UCB(t)(a) = max
µ,P ,|µ̂(t)

m −µm|≤ϵ
(t)
m ,∀m

|P̂ (t)
m,d

−Pm,d|≤λ
(t)
m ,∀m,d

U(a,µ,P ).

The Exact-UCB(t)(a) has a potential computational issue in locating the action profile with larger
index. Specifically, the Exact-UCB(t)(a) may attain the max value at different selections of µ,P for
different action profiles, especially when the confidence band fails. In this case, to locate the action
profile one can only resort to exhaustive search, resulting in a computational complexity of O(KM ).
To avoid this problem, we propose to use the approximate UCB index:

UCB(t)(a)=U(a, µ̂(t)+ϵ(t), P̂ (t)+λ(t)). (6)

One advantage of UCB(t)(a) over Exact-UCB(t)(a) is that all action profile share the same parameter
µ̂(t)+ϵ(t), P̂ (t)+λ(t). Algorithm 1 locates the action profile attaining the maximum UCB(t)(a) with
a computational complexity of O(K3M3). As we shown in the proof of instance independent upper
bound, the monotonicity of utility function with respect to µ and P element-wisely guarantees the
UCB validity of UCB(t)(a). The action profile in round t is then selected by:

a(t) ∈ argmax
a∈A

UCB(t−1)(a).

Summarizing the above ideas together, Algorithm 2 outlines an approximate UCB based algorithm.

Algorithm 2 MSB-PRS-ApUCB (Ht)

1: P̂
(0)
m,d ← 1, µ̂

(0)
m ← 0

2: for t = 1, . . . , T do
3: Calculate ϵ

(t−1)
m and λ

(t−1)
m applying Lemma (5.4)

4: a(t) ← MSB-PRS-OffOpt(µ̂(t−1)+ϵ(t−1), P̂ (t−1)+λ(t−1))
5: Observe D(t) and X(t)

6: Update P̂
(t)
m,d via Eq. (4), ∀m ∈ {m′|N (t)

m′>0}
7: Update µ̂

(t)
m via Eq. (5), ∀m ∈ {m′|N (t)

m′>0}
8: end for

Regret upper bounds. The following two theorems state the instance independent and instance
dependent regret lower bound individually.
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Theorem 5.5. The instance independent regret upper bound of Algorithm 2 can be derived as:

RegT ≤ 2M(1 + dmax)Kµmax + 8α1(µmax + 1)KM
√
T
(√

lnT + 4σ
√
lnKT

√
K/M

)
Furthermore, RegT ≤ O(α1σµmax

√
KMTK

√
lnKT ).

Compared to the instance independent regret lower bound derived in Theorem 4.1, the regret upper
bound matches the lower bound up to a factor of K

√
lnKT . The key proof idea is via exploiting the

monotone property of the utility function to prove the validity of the approximate UCB index.

Theorem 5.6. The instance dependent regret upper bound of Algorithm 2 can be derived as:

RegT ≤96MK2α2
1(2σ + 1)2

1

∆
lnKT + 2M(1 + dmax)Kµmax

Furthermore, RegT ≤ O(MK2α2
1σ

2 1
∆ lnKT ).

Compared to the instance dependent regret lower bound derived in Theorem 4.2, the regret upper
bound matches the lower bound up to a factor of α1K

2. The key proof idea of tackling the aforemen-
tioned nonlinear combinatorial structure in the proof is via exploiting the monotone property of the
utility function to show suboptimal allocations make progress in improving the estimation accuracy
of poor estimated parameters, which gear the learning algorithm toward identifying more favorable
suboptimal allocations. Furthermore, group suboptimal action profiles with respect to their gap to the
optimal action profile, with a double trick on determining the desired gap for each group.

Discussion on tightness. We believe that closing the regret gap is an open problem, since MSB-PRS
is neither a standard MP-MAB model nor a standard combinatorial bandit model.

6 SYNTHETIC EXPERIMENTS

Parameter setting. We consider M = 5 arms and K = 10 plays. It is essential to note that we will
systematically vary M and K to assess the performance of our proposed algorithm. The probability
mass function and the reward distribution is same as Chen et al. Chen & Xie (2022). We designate the
movement cost as ck,m = η|(k mod M)−m|/max{K,M}, where η ∈ R+ is a hyper-parameter
that controls the scale of the cost. Unless explicitly varied, we adopt the following default parameters:
T = 104, δ = 1/T , K = 10 plays, M = 5 arms, η = 1, σ = 0.2 and the U-Shape reward.
Furthermore, the weight of half of plays is 3 and the other half is 1. We consider two baselines: (1)
OnlinActPrf Chen & Xie (2022), which considers the setting with expert feedback on capacity
and homogeneous plays without priority capacity sharing; (2) OnlinActPrf-v, which is a variant
of OnlinActPrf enabling UCB on the capacity distribution estimation. Due to page limit, more
details on the setting are in appendix.

Impact of the number of arms We varied the number of arms, denoted as M , across three settings:
M = 5, 10, and 15, and plotted the regret of three algorithms. In Fig. 1a, it is evident that the
regret curves for MSB-PRS-ApUCB under M = 5, 10, and 20 initially exhibit a sharp increase
before leveling off, indicating a sub-linear regret. Additionally, one can find that the convergence
rate of MSB-PRS-ApUCB regret gradually decreases with an increase in M . Fig. 1b illustrates that
the regret curves for OnlinActPrf and OnlinActPrf-v follow a linear trend, while the regret
curve for MSB-PRS-ApUCB consistently remains at the bottom. This observation confirms that
MSB-PRS-ApUCB yields the smallest regret compared to the two baseline algorithms. This trend
persists even when M = 10 and 15, as shown in Fig. 1c and 1d, respectively. Due to page limit,
more experiments are presented in the appendix.

Impact of the number of plays We varied the number of plays, denoted as K, across three set-
tings: K = 10, 15, and 20, and plotted the regret of three algorithms. In Fig. 2a, it is evident
that the regret curves for MSB-PRS-ApUCB under K = 10, 15, and 20 initially exhibit a sharp
increase before plateauing, indicating a sub-linear regret. Additionally, Fig. 2b illustrates that the
regret curves for OnlinActPrf and OnlinActPrf-v follow a linear trend, while the regret
curve for MSB-PRS-ApUCB consistently remains at the bottom. This observation confirms that
MSB-PRS-ApUCB yields the smallest regret compared to the two baseline algorithms. This trend
persists even when K = 15 and 20, as shown in Fig. 2c and 2d, respectively.
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Figure 1: Impact of Number of Arms.
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Figure 2: Impact of Number of plays.

7 CONCLUSION

This paper proposes MSB-PRS. An algorithm is designed to locate the optimal play allocation
policy with a complexity of O(M3K3). Instance independent and instance dependent regret lower
bounds of Ω(α1σ

√
KMT ) and Ω(α1σ

2M
∆ lnT ) are proved respectively. An approximate UCB

based algorithm is designed which has a per round computational complexity of O(M3K3) and has
sublinear independent and dependent regret upper bounds matching the corresponding lower bounds
up to acceptable factors.
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APPENDIX

This appendix contains two section. Section A presents technical proofs to lemmas and theorems
Section B presents additional experiments.

A TECHNICAL PROOFS

A.1 PROOF OF LEMMA 5.2

We first prove the U -saturated property. Note that each action profile a assigns all plays to arms and
each arm is assigned to only one arm. Thus, it holds that {u|(u, v) ∈ M̃(a)} = U .
Now we prove the V-monotone and priority compatible property. Note that all the plays assigned to
an arm are ordered based on ℓk(a). This order list is monotone and priority compatible. Thus, M̃(a)
is monotone and priority compatible.

We prove the utility preserving property. Let Jm = {j|aj = m} denote the set of all plays that pull
arm m. By the monotone and priority compatible property of ℓk(a) and some basic arguments we
have:

U(a;µ,P ) =
∑

m∈[M ]

Um(a;µm,Pm)

=
∑

m∈[M ]

∑
k∈[K]

1{ak=m}Λm(k, ℓk(a))

=
∑

m∈[M ]

∑
k∈[K]

1{ak=m}W (uk, vm,ℓk(a))

=
∑

m∈[M ]

∑
k∈[K]

1{ϕm,ℓk(a)=k}W (uk, vm,ℓk(a))

=
∑

m∈[M ]

∑
k∈[K]

|Jm|∑
j=1

1{ϕm,j=k}W (uk, vm,j)

=
∑

m∈[M ]

|Jm|∑
j=1

∑
k∈[K]

1{ϕm,j=k}W (uk, vm,j)

=
∑

m∈[M ]

|Jm|∑
j=1

W (uk, vm,j) =
∑

(u,v)∈M̃(a)

W (u, v).

Finally, we prove the uniqueness. Consider two action profiles a and a′ such that a ̸= a′. Then,
we know that there exists at least one element that a and a′ do not agree. This means that there
exists at least one play that pulls different arms under a and a′ respectively. Then, we conclude the
uniqueness. This proof is then complete.

A.2 PROOF OF LEMMA 5.3

One can easily verify that ãk(M) is the arm pulled by play k under the matching M. Since
the matchingM is U-saturated, each play is assigned to one arm. Namely, ã(M) forms a valid
assignment. The remaining thing is to show the the utility of ã(M) matches the sum of weights of
M. Let Ṽm denote the end points ofM on the arm node side that belong to the set Vm, formally

Ṽm = {v|(u, v) ∈M} ∩ Vm.

Note that the matching M is V-monotone. This means that Ṽm can be expressed as Ṽm =
{vm,1, . . . , vm,|Ṽm|}. Furthermore, (uϕm,j(M), vm,j) is an edge of the matching with the arm side

14
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end point in the set Ṽm. The total weights of the matchingM can be decomposed as

∑
(u,v)∈M

W (u, v) =
∑

m∈[M ]

|Ṽm|∑
j=1

W (uϕm,j(M), vm,j) =
∑

m∈[M ]

|Ṽm|∑
j=1

Λm(ϕm,j(M), j).

We next complete this proof by showing that

|Ṽm|∑
j=1

Λm(ϕm,j(M), j) = Um(ã(M);µm,Pm).

The matchingM being priority compatible implies that

ℓϕm,j(M)(ã(M)) = j.

Then, it follows that:

|Ṽm|∑
j=1

Λm(ϕm,j(M), j) =

|Ṽm|∑
j=1

Λm(ϕm,j(M), ℓϕm,j(M)(ã(M)))

=

|Ṽm|∑
j=1

∑
k∈[K]

1{ϕm,j(M)=k}Λm(k, ℓk(ã(M)))

=
∑

k∈[K]

|Ṽm|∑
j=1

1{ϕm,j(M)=k}Λm(k, ℓk(ã(M)))

=
∑

k∈[K]

1{ãk(M)=m}Λm(k, ℓk(ã(M)))

= Um(ã(M);µm,Pm),

This proof is then complete.

A.3 PROOF OF LEMMA 5.4

Note that the range of 1{D(s)
m ≥d} is within {0, 1}. It is a 1

2 -subgaussian random variable. Note that

D
(t)
m ’s are independent across t and m. Lemma 10 of Maillard (2017) straightforwardly yields

P

∃t, |P̂ (t)
m,d − Pm,d|≥

√√√√n
(t)
m + 1

2
ln

√
n
(t)
m + 1

δ

1

n
(t)
m

 ≤ 2δ.

Note that Pm,d ∈ [0, 1] and P̂
(t)
m,d ≥ 0. Thus the above inequality can be made into

P

∃t, |P̂ (t)
m,d − Pm,d|≥

√√√√n
(t)
m + 1

2
ln

√
n
(t)
m + 1

δ

1

n
(t)
m

∧ 1

 ≤ 2δ.

This is equivalent to
P
[
∃t, |P̂ (t)

m,d − Pm,d|≥λ(t)
m

]
≤ 2δ.

The union bounds implies that

P
[
∃t,m, d, |P̂ (t)

m,d − Pm,d|≥λ(t)
m

]
≤

∑
m∈[M ],d∈[dmax]

P
[
∃t, |P̂ (t)

m,d − Pm,d|≥λ(t)
m

]
≤ 2Mdmaxδ.

By a similar argument, one can prove the confidence band with respect to the estimator µ̂(t)
m . This

proof is then complete.
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A.4 PROOF OF THEOREM 4.1

This proof relies on the construction of a special instance of our model. The special instance is
constructed as follows. The move cost of each arm is fixed to zero, formally

ck,m = 0,∀k,m.

All arms have the same weights, i.e.,

α1 = α1 = · · · = αK .

The reward of each follows a Normal distribution:

Rm ∼ N (µm, σ).

In each round, each arm generates K units of resource, and the number of resource is deterministic,
i.e.,

dmax = K,Pm,d = 1,∀m, d.

Suppose that the reward mean satisfies:

µ1 > µ2 > . . . > µM .

Then the optimal action profile is assigning all plays to arm m = 1, formally

a∗k = 1,∀k.

Now we prove the regret lower bound based on the above constructed special instance of our problem.
In each round the decision maker needs to assign K plays to arms, and multiple arms can be assigned
to the same arm. For each assigned play a

(t)
k , if it hits the optimal arm, i.e., a(t)k = a∗k, it does not

incur regret. If it hit a suboptimal arm, say a
(t)
k = m, where m ̸= 1, it incurs an expected regret of

µ1 − µm. Thus in each round, the action profile a(t) incurs an expected regret of∑
k∈[K]

α1(µ1 − µ
a
(t)
k

).

Note that this is not MP-MAB, as multiple plays is allowed be assigned to the same arm and generates
multiple independent rewards with the same distribution associated with this arm. We construct a
relaxed variant of this problem to make it easier for learning. Four model, though the decision maker
received K rewards, but these reward can be used to update the decision only when this round ends.
Namely, the decision maker can only update the decision when a round ends. To make the learning
easier, we allow the decision maker to update the decision within each round, when new rewards is
received. Specifically, we treat each round as K sub-rounds. Each sub-round receives one reward
and the decision maker can update the decision in each sub-round. This relaxation improves the data
utilization and making the learning easier. To unify, we treat each sub-round as a real round. This
leads to that the decision maker needs to assign one play in each round, but in total the decision maker
needs to play KT rounds. In each round of play, the decision maker observes all historical rewards
before this round. Then this becomes a tradition M -armed bandit problem with KT rounds of play.
Applying Theorem 15.2 of Lattimore & Szepesvári (2020), this problem has a regret lower bound of

1

27
α1σ
√
MKT.

This proof is then complete.

A.5 PROOF OF THEOREM 4.2

We construct the same instance of MSB-PRS as that in the proof of Theorem 4.1, except that we
adding more elements to its reward mean. The reward mean satisfies:

µ2 = µ1 −∆/α1, . . . , µM = µ1 −∆/α1.

Note that the optimal assign is a∗k = 1, namely

U(a∗;µ,P ) = Kα1µ1.
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And the most favorable sub-optimal action profiles are the ones that only one play misses the arm
m = 1, and all other plays hit the arm m = 1. This implies that

max
a:U(a;µ,P )̸=U(a∗;µ,P )

U(a;µ,P ) = Kα1µ1 −∆.

Thus we have
U(a∗;µ,P )− max

a:U(a;µ,P )̸=U(a∗;µ,P )
U(a;µ,P ) = ∆.

With a similar argument of the proof of Theorem 4.1, we only need to analyze the relaxed variant of
the instance. Note that the relaxed variant is a tradition M -armed bandit problem with KT rounds of
play. Applying Theorem 16.2 of Lattimore & Szepesvári (2020), the asymptotic regret lower bound
of this variant is

2α1σ
2M

∆
lnKT.

This proof is then complete.

A.6 PROOF OF THEOREM 5.5

We decompose the proof into the following four steps.

Step I: Prove the confidence level of the approximate UCB index. We aim to prove the following
holds

P

[
∀t,a,UCB(t)(a)− U(a;µ,P ) ≤

∑
m∈[M ] 4α1(µmax + 1)(λ

(t)
m + 2ϵ

(t)
m )

∑
k∈[K] 1{ak=m},

UCB(t)(a) ≥ U(a;µ,P )

]
≥ 1−2M(1+dmax)δ.

Lemma 5.4 and union bounds imply:

P
[
∀t,m, d, |µm − µ̂(t)

m | ≤ ϵ(t)m , |P̂ (t)
m,d − Pm,d|≤λ(t)

m

]
≥ 1− 2M(1 + dmax)δ.

We next derive an upper bound of UCB(t)(a)− U(a;µ,P ), given |µm − µ̂
(t)
m | ≤ ϵ

(t)
m and |P̂ (t)

m,d −
Pm,d|≤λ(t)

m . First we have:

UCB(t)(a)− U(a;µ,P ) = U(a, µ̂(t)+ϵ(t), P̂ (t)+λ(t))− U(a;µ,P )

=
∑

m∈[M ]

(Um(a, µ̂(t)
m + ϵ(t)m , P̂ (t)

m +λ(t)
m )− Um(a;µm,Pm))

=
∑

m∈[M ]

Φ(t)
m ,

where Φ
(t)
m is defined as Φ(t)

m ≜ Um(a, µ̂
(t)
m + ϵ

(t)
m , P̂

(t)
m +λ

(t)
m )− Um(a;µm,Pm). Note that

Um(a, µ̂(t)
m + ϵ(t)m , P̂ (t)

m +λ(t)
m ) = (µ̂(t)

m + ϵ(t)m )
∑

k∈[K]
1{ak=m}αk(P̂

(t)

m,ℓ
(t)
k

+ λ(t)
m )−

∑
k∈[M ]

ck,m1{ak=m},

Um(a;µm,Pm) = µm

∑
k∈[K]

1{ak=m}αkPm,ℓ
(t)
k

−
∑

k∈[M ]

ck,m1{ak=m}.

Note that |µm − µ̂
(t)
m | ≤ ϵ

(t)
m implies that µ̂(t)

m ≤ µm + ϵ
(t)
m and µ̂

(t)
m + ϵ

(t)
m ≥ µm. Furthermore,

|P̂ (t)
m,d−Pm,d|≤λ(t)

m implies that P̂ (t)
m,d ≤ Pm,d+λ

(t)
m and P̂

(t)
m,d+λ

(t)
m ≥ Pm,d. The condition µ̂

(t)
m ≤

µm+ϵ
(t)
m and P̂

(t)
m,d ≤ Pm,d+λ

(t)
m yields the following upper bound of Um(a, µ̂

(t)
m +ϵ

(t)
m , P̂

(t)
m +λ

(t)
m )

as follows:

Um(a, µ̂(t)
m + ϵ(t)m , P̂ (t)

m + λ(t)
m )

= (µ̂(t)
m + ϵ(t)m )

∑
k∈[K]

1{ak=m}αk(P̂
(t)

m,ℓ
(t)
k

+ λ(t)
m )−

∑
k∈[M ]

ck,m1{ak=m}

≤ (µm + 2ϵ(t)m )
∑

k∈[K]
1{ak=m}αk(P̂

(t)

m,ℓ
(t)
k

+ λ(t)
m )−

∑
k∈[M ]

ck,m1{ak=m}
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≤ (µm + 2ϵ(t)m )
∑

k∈[K]
1{ak=m}αk(Pm,ℓ

(t)
k

+ 2λ(t)
m )−

∑
k∈[M ]

ck,m1{ak=m}

= Um(a;µm,Pm) + µm

∑
k∈[K]

1{ak=m}αk2λ
(t)
m + 2ϵ(t)m

∑
k∈[K]

1{ak=m}αk(Pm,ℓ
(t)
k

+ 2λ(t)
m )

≤ Um(a;µm,Pm) + 2α1µmaxλ
(t)
m

∑
k∈[K]

1{ak=m} + 2ϵ(t)m (α1 + 2α1λ
(t)
m )

∑
k∈[K]

1{ak=m}

= Um(a;µm,Pm) + 2α1(µmax + 1)(λ(t)
m + ϵ(t)m )

∑
k∈[K]

1{ak=m} + 4α1ϵ
(t)
m λ(t)

m

∑
k∈[K]

1{ak=m}

≤ Um(a;µm,Pm) + 2α1(µmax + 1)(λ(t)
m + ϵ(t)m )

∑
k∈[K]

1{ak=m} + 4α1(µmax + 1)ϵ(t)m λ(t)
m

∑
k∈[K]

1{ak=m}

≤ Um(a;µm,Pm) + 4α1(µmax + 1)(λ(t)
m + ϵ(t)m + ϵ(t)m λ(t)

m )
∑

k∈[K]
1{ak=m}

≤ Um(a;µm,Pm) + 4α1(µmax + 1)(λ(t)
m + 2ϵ(t)m )

∑
k∈[K]

1{ak=m},

where the last step follows λ(t)
m ≤ 1. Then it follows that

Φ(t)
m = Um(a, µ̂(t)

m +ϵ(t)m , P̂ (t)
m +λ(t)

m )−Um(a;µm,Pm) ≤ 4α1(µmax+1)(λ(t)
m +2ϵ(t)m )

∑
k∈[K]

1{ak=m}.

The condition µ̂
(t)
m + ϵ

(t)
m ≥ µm and P̂

(t)
m,d + λ

(t)
m ≥ Pm,d yields that

Um(a, µ̂(t)
m + ϵ(t)m , P̂ (t)

m + λ(t)
m ) ≥ (a, µm, P̂ (t)

m + λ(t)
m ) ≥ Um(a;µm,Pm).

Where each step is a consequence of the piece-wise monotone property of the utility function.
Summing them up with respect to m, step I concludes.

Step II: Regret due to pulling suboptimal arms, but the confidence band of parameters hold. Recall
that the confidence interval of parameters holding implies that

U(a;µ,P ) ≤ UCB(t)(a) ≤ U(a;µ,P ) +
∑

m∈[M ]

4α1(µmax +1)(λ(t)
m +2ϵ(t)m )

∑
k∈[K]

1{ak=m}.

To simplify presentation, we define:

γ(t)(a) ≜
∑

m∈[M ]

4α1(µmax + 1)(λ(t)
m + 2ϵ(t)m )

∑
k∈[K]

1{ak=m}.

Based on them, we bound the regret as:

RegT ≜ E

[
T∑

t=1

(
U(a∗;µ,P )− U(a(t);µ,P )

)]

≤ E

[
T∑

t=1

(
UCB(t)(a∗)− U(a(t);µ,P )

)]

≤ E

[
T∑

t=1

(
UCB(t)(a(t))− U(a(t);µ,P )

)]

≤ E

[
T∑

t=1

γ(t)(a(t))

]

= E

 T∑
t=1

∑
m∈[M ]

4α1(µmax + 1)(λ(t)
m + 2ϵ(t)m )

∑
k∈[K]

1{a(t)
k =m}


= 4α1(µmax + 1)E

 T∑
t=1

∑
m∈[M ]

N (t)
m (λ(t)

m + 2ϵ(t)m )

 .

We next bound each individual term respectively. We fist bound the following term:
T∑

t=1

∑
m∈[M ]

N (t)
m λ(t)

m
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=

T∑
t=1

∑
m∈[M ]

N (t)
m

√√√√n
(t)
m + 1

2
ln

√
n
(t)
m + 1

δ

1

n
(t)
m

≤
T∑

t=1

∑
m∈[M ]

N (t)
m

√√√√ 1

n
(t)
m

ln

√
n
(t)
m + 1

δ

≤
T∑

t=1

∑
m∈[M ]

N (t)
m

√√√√ 1

n
(t)
m

ln

√
n
(t)
m + 1

δ

≤
∑

m∈[M ]

K

Bm∑
n
(t)
m =1

√√√√ 1

n
(t)
m

ln

√
n
(t)
m + 1

δ

≤
∑

m∈[M ]

K

√
ln

√
Bm + 1

δ

√
Bm

≤ K

√
ln

√
T

δ

√
M

∑
m∈[M ]

Bm

= KM

√
ln

√
T

δ

√
T .

where Bm denotes the number of rounds that arm m is pulled by at least one arm when the learning
ends. Similar, we obtain the following bound:

T∑
t=1

∑
m∈[M ]

N (t)
m ϵ(t)m =

T∑
t=1

∑
m∈[M ]

N (t)
m

√√√√
2σ2(ñ

(t)
m + 1) ln

√
ñ
(t)
m + 1

δ

1

ñ
(t)
m

≤
T∑

t=1

∑
m∈[M ]

N (t)
m

√√√√
4σ2

1

ñ
(t)
m

ln

√
ñ
(t)
m + 1

δ

≤ 2σK

√
ln

√
KT

δ

T∑
t=1

∑
m∈[M ]

√
1

ñ
(t)
m

≤ 2σK

√
ln

√
KT

δ

√
MKT.

Summing them up, we conclude the regret of this part as:

4α1(µmax + 1)KM
√
T

√
ln

√
T

δ
+ 4σ

√
ln

√
KT

δ

√
K

M



Step III: Regret due to failure of confidence bands. Note the per round regret is at most Kµmax. The
regret is upper bounded by

2M(1 + dmax)δKµmaxT.
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Step IV: Putting them together. Summing them up and setting δ = 1/T we have that the total regret
is upper bounded by

RegT ≤ 4α1(µmax + 1)KM
√
T

√
ln

√
T

δ
+ 4σ

√
ln

√
KT

δ

√
K

M

+ 2M(1 + dmax)δKµmaxT

≤ 8α1(µmax + 1)KM
√
T
(√

lnT + 4σ
√
lnKT

√
K/M

)
+ 2M(1 + dmax)Kµmax

This proof is then complete.

A.7 PROOF OF THEOREM 5.6

We first give a definition, which is useful in our proof.
Definition A.1. An action profile a is Ψ-optimal, if it satisfies

U(a;µ,P ) > U(a∗;µ,P )−Ψ.

where Ψ ∈ R+.

Step I: Prove sufficient conditions on n
(t)
m , such that the selected action profile is Ψ-optimal.

Note that

U(a∗;µ,P ) ≤ UCB(t)(a∗) ≤ UCB(t)(a(t)) ≤ U(a(t);µ,P ) + γ(t)(a(t))

This implies that
U(a(t);µ,P ) ≥ U(a∗;µ,P )− γ(t)(a(t)).

Thus in each round t, the pulled action profile is γ(t)(a(t))-optimal. The λ
(t)
m can be bounded as

λ(t)
m ≤

√√√√n
(t)
m + 1

2
ln

√
n
(t)
m + 1

δ

1

n
(t)
m

≤

√
1

n
(t)
m

ln

√
T

δ
≤

√
ln

√
T

δ

√
1

n
(t)
m

.

The ϵ
(t)
m can be bounded as

ϵ(t)m =

√√√√
2σ2(ñ

(t)
m + 1) ln

√
ñ
(t)
m + 1

δ

1

ñ
(t)
m

≤ 2σ

√
1

ñ
(t)
m

ln

√
KT

δ
≤ 2σ

√
1

n
(t)
m

ln

√
KT

δ
≤ 2σ

√
ln

√
KT

δ

√
1

n
(t)
m

.

Then it follows that

γ(t)(a) =
∑

m∈[M ]

4α1(µmax + 1)(λ(t)
m + 2ϵ(t)m )

∑
k∈[K]

1{ak=m}

≤
∑

m∈[M ]

4α1(µmax + 1)
∑

k∈[K]
1{ak=m}

√
ln

√
T

δ

√
1

n
(t)
m

+ 2σ

√
ln

√
KT

δ

√
1

n
(t)
m


≤

∑
m∈[M ]

4α1(µmax + 1)
∑

k∈[K]
1{ak=m}

√
ln

√
T

δ
+ 2σ

√
ln

√
KT

δ

√
1

n
(t)
m

<
∑

m∈[M ]

4α1(µmax + 1)
∑

k∈[K]
1{ak=m}(2σ + 1)

√
ln

√
KT

δ

√
1

n
(t)
m

=
∑

m∈[M ]

4α1(µmax + 1)
∑

k∈[K]
1{ak=m}ϕ(T, δ)

√
1

n
(t)
m

= 4α1(µmax + 1)ϕ(T, δ)
∑

m∈[M ]

∑
k∈[K]

1{ak=m}

√
1

n
(t)
m

,
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where ϕ(T, δ) is defined as

ϕ(T, δ) ≜ (2σ + 1)

√
ln

√
KT

δ
.

One sufficient condition to guarantee γ(t)(a) ≤ Ψ is

n(t)
m ≥

(4α1(µmax + 1)ϕ(T, δ)K)2

Ψ2
,∀m ∈ [M ].

This can be shown by

γ(t)(a) < 4α1(µmax + 1)ϕ(T, δ)
∑

m∈[M ]

∑
k∈[K]

1{ak=m}

√
1

n
(t)
m

≤ 4α1(µmax + 1)ϕ(T, δ)
∑

m∈[M ]

∑
k∈[K]

1{ak=m}
Ψ

4α1(µmax + 1)ϕ(T, δ)K

= 4α1(µmax + 1)ϕ(T, δ)K
Ψ

4α1(µmax + 1)ϕ(T, δ)K

= Ψ.

Step 2: We prove that when confidence bands of parameters hold, suboptimal plays make progress
in identifying better action profiles. Define ∆ as the utility gap between the optimal action profile
and the least favored sub-optimal action profile, i.e.,

∆ ≜ U(a∗;µ,P )− max
a:U(a;µ,P ) ̸=U(a∗;µ,P )

U(a;µ,P ).

We divide action profiles into groups, such that the action profile in the i-th group Gi satisfies

U(a∗;µ,P )− 2i∆ < U(a) ≤ U(a∗;µ,P )− 2i−1∆.

Note that the the action profiles in the 0-th group are ∆-optimal. In other words, all action profiles in
this group are optimal action profiles. We therefore only needs to focus on the groups with index
i ≥ 1. In the following analysis, we assume i ≥ 1. Suppose in round t, an action profile in i-group is
selected, i.e., at ∈ argmaxa∈A UCB(t)(a) and at ∈ Gi. Then it follows that there exists m, such
that

n(t)
m ≤

(4α1(µmax + 1)ϕ(T, δ)K)2

(2i−1∆)2
. (7)

LetMi ≜ {m|n(t)
m satisfies Eq. (7)} denote a set of all arms that satisfies Eq. (7). We next prove

that at least one arm from the setMi is pulled, i.e., at makes progress in shrinking these inaccurate
estimations and thus making progress for identifying better action profiles. Suppose that none of
arms fromMi are played. We next show this leads to a contradiction. We construct an instance of
the problem by that we set all the parameters of the arms to be the ground truth and the estimation
error to be zero, i.e.,

µ̂(t)
m = µm, P̂

(t)
m,d = Pm,d, ϵ

(t)
m = 0, λ(t)

m = 0,∀m ∈Mi.

We left the parameters of other arms, i.e., m ∈ [M ] \ Mi as the estimated ones. Let UCB(t)
i (a)

denote the upper confidence of action profiles in this constructed instance. The first consequence is
that this constructed instance locating a 2i−1∆ policy, i.e.,

U(a∗
i ;µ,P ) > U(a∗;µ,P )− 2i−1∆,

where a∗
i ∈ argmaxUCB(t)

i (a). Note that the UCB(t)
i (a) is piece-wisely increasing and the upper

confidence of each parameter is larger than its ground truth, which yields UCB(t)
i (a) ≤ UCB(t)(a).

Then it follows that

UCB(t)(a(t)) ≥ UCB(t)(a∗
i ) ≥ UCB(t)

i (a∗
i ) ≥ U(a∗

i ;µ,P ) > U(a∗;µ,P )− 2i−1∆.

This contradicts that a(t) belongs to the i-th group.
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Step III: Regret due to pulling suboptimal arms, but the confidence bands of parameters hold. In
total there are M arms. By the argument of Step II, the total number of rounds that one profile from
group Gi is selected is upper bounded by

M
(4α1(µmax + 1)ϕ(T, δ)K)2

(2i−1∆)2

rounds. Each such play incurs a regret of at most 2i∆. Thus the total regret is upper bounded by
∞∑
i=1

M
(4α1(µmax + 1)ϕ(T, δ)K)2

(2i−1∆)2
2i∆ =

∞∑
i=1

M
(4α1(µmax + 1)ϕ(T, δ)K)2

(2i−1∆)2
2i∆

= M(4α1(µmax + 1)ϕ(T, δ)K)2
∞∑
i=1

1

2i−2∆

≤ 4M(4α1(µmax + 1)ϕ(T, δ)K)2
1

∆
.

Step IV: The regret due to the failure of confidence bands. The regret is upper bounded by

2M(1 + dmax)δKµmaxT.

Step V: The total regret. By selecting δ = 1/T , we bound the total regret as:

RegT ≤ 4M(4α1(µmax + 1)ϕ(T, 1/T )K)2
1

∆
+ 2M(1 + dmax)Kµmax

≤ 64MK2α2
1(µmax + 1)2(ϕ(T, 1/T )K)2

1

∆
+ 2M(1 + dmax)Kµmax

≤ 64MK2α2
1

(
(2σ + 1)

√
lnT
√
KT

)2
1

∆
+ 2M(1 + dmax)Kµmax

= 64MK2α2
1(2σ + 1)2 lnT

√
KT

1

∆
+ 2M(1 + dmax)Kµmax

≤ 96MK2α2
1(2σ + 1)2

1

∆
lnKT + 2M(1 + dmax)Kµmax.

This proof is then complete.

B ADDITIONAL EXPERIMENTS

B.1 MORE DETAILS ON EXPERIMENT SETTING

Parameter setting. The probability mass function is defined as

pm,d =


αd, if d ≤ ⌈m/2⌉,
α(m+ 1− d), if ⌈m/2⌉ < d ≤ m,

0, otherwise

where α = 1/(
∑⌈m/2⌉

d=1 d +
∑m

d=⌈m/2⌉+1 m + 1 − d) is the normalizing factor. The probability
function exhibits a shape akin to a normal distribution. Essentially, as the index m increases, there
is an expected augmentation in the number of units of resource associated with an arm. This trend
arises due to the shifting of probability masses towards larger values of m with the increase in the
index d. Each arm’s rewards are sampled from Gaussian distributions, i.e., Rm ∼ N(µm, σ2), where
µm ∈ [1, 2] and σ > 0. We examine three cases regarding the reward mean:

• Inc-Shape: µm = 1 +m/M , the reward mean increases with the index of arm m.
• Dec-Shape: µm = 2−m/M , the reward mean decreases with the index of arm m.
• U-Shape: µm = 1+ |M/2−m|/M , the reward mean initially decreases and then increases

with the index of arm m.
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We designate the movement cost as ck,m = η|(k mod M)−m|/max{K,M}, where η ∈ R+ is a
hyper-parameter that controls the scale of the cost. Unless explicitly varied, we adopt the following
default parameters: T = 104, δ = 1/T , K = 10 plays, M = 5 arms, η = 1, σ = 0.2 and the
U-Shape reward. Furthermore, the number of play types is 2, with parameter α = [3, 1].

B.2 ADDITIONAL EXPERIMENTS

Impact of resource-reward correlation we fix the probability mass function of resource and
three cases of µm, i.e., Inc-Shape (positive correlation), Dec-Shape (negative correlation), and
U-Shape (weak correlation). Fig. 3 shows the corresponding regret of our algorithms and the
baselines. In Fig. 3a, it is evident that the regret curves for MSB-PRS-ApUCB under Inc-Shape,
U-Shape, and Dec-Shape initially exhibit a sharp increase before plateauing, indicating a sub-linear
regret. Additionally, when µm follows Inc-shape pattern, the convergence rate of regret is slower
compared to cases where it follows Dec-shape or U-shaped pattern. Fig. 3b illustrates that the
regret curves for OnlinActPrf and OnlinActPrf-v follow a linear trend, while the regret
curve for MSB-PRS-ApUCB consistently remains at the bottom. This observation confirms that
MSB-PRS-ApUCB yields the smallest regret compared to the two baseline algorithms. This trend
persists even when µm is under U-Shape and Dec-Shape, as shown in Fig. 3c and 3d, respectively.
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Figure 3: Impact of Resource-reward Correlation.

Impact of movement cost We varied the number of plays, denoted as η, across three settings: η = 1,
2, and 10, and plotted the regret of three algorithms. In Fig. 4a, it is evident that the regret curves for
MSB-PRS-ApUCB under η = 1, 2, and 10 initially exhibit a sharp increase before plateauing, indicat-
ing a sub-linear regret. Additionally, Fig. 4b illustrates that the regret curves for OnlinActPrf and
OnlinActPrf-v follow a linear trend, while the regret curve for MSB-PRS-ApUCB consistently
remains at the bottom. This observation confirms that MSB-PRS-ApUCB yields the smallest regret
compared to the two baseline algorithms. This trend persists even when η = 2 and 10, as shown in
Fig. 4c and 4d, respectively.

Impact of the standard deviation of reward We varied the standard deviation of reward, denoted as
σ, across three settings: σ = 0.1, 0.2, and 0.3, and plotted the regret of three algorithms. In Fig. 5a, it
is evident that the regret curves for MSB-PRS-ApUCB under σ = 0.1, 0.2, and 0.3 initially exhibit
a sharp increase before plateauing, indicating a sub-linear regret. Additionally, Fig. 5b illustrates
that the regret curves for OnlinActPrf and OnlinActPrf-v follow a linear trend, while the
regret curve for MSB-PRS-ApUCB consistently remains at the bottom. This observation confirms
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Figure 4: Impact of Movement Cost.

that MSB-PRS-ApUCB yields the smallest regret compared to the two baseline algorithms. This
trend persists even when σ = 0.2 and 0.3, as shown in Fig. 5c and 5d, respectively.
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Figure 5: Impact of Standard Deviation of Reward.
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